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The Lebesgue constants for the Franklin orthogonal system

by

Z. Ciesielski and A. Kamont (Sopot)

Abstract. To each set of knots ti = i/2n for i = 0, . . . , 2ν and ti = (i− ν)/n for
i = 2ν + 1, . . . , n + ν, with 1 ≤ ν ≤ n, there corresponds the space Sν,n of all piecewise
linear and continuous functions on I = [0, 1] with knots ti and the orthogonal projection
Pν,n of L2(I) onto Sν,n. The main result is

lim
(n−ν)∧ν→∞

‖Pν,n‖1 = sup
ν,n : 1≤ν≤n

‖Pν,n‖1 = 2 + (2−
√

3)2.

This shows that the Lebesgue constant for the Franklin orthogonal system is 2+(2−
√

3)2.

1. Introduction. Fourier expansions with respect to a complete or-
thonormal system in L2[0, 1] can be used to approximate functions e.g. in
Lp[0, 1], 1 ≤ p < ∞, or in C[0, 1] in case p = ∞. Suppose that (gn : n ≥ 0)
is such an orthonormal system. We introduce the partial sums

Gn(f) =
n∑

k=0

(f, gk)gk

and the subspaces
Gn = span{gk : k = 0, . . . , n}.

Clearly, each Gn : Lp[0, 1] → Gn is a projection (it is orthogonal in case
p = 2) and its L1 norm is equal to

Ln = ess sup
[0,1]

1�

0

|Kn(·, s)| ds,

where the Dirichlet kernel Kn is given by

Kn(t, s) =
n∑

k=0

fk(t)fk(s), t, s ∈ [0, 1].

The Lebesgue constant is now defined as

L = sup
n≥0

Ln.
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For finite p, by Hölder’s inequality, the Lp norm of Gn satisfies

‖Gn‖p ≤ Ln ≤ L,
where L may be infinite. For the best approximation of f ∈ Lp[0, 1] by Gn
we introduce the customary notation

En,p(f) = inf
g∈Gn

‖f − g‖p.

It is elementary to see that

En,p(f) ≤ ‖f −Gn(f)‖p ≤ (1 + Ln)En,p(f) ≤ (1 + L)En,p(f).

It follows from the results of A. M. Olevskĭı [9] or S. V. Bochkarev [2] that
for any uniformly bounded orthonormal system we have L = ∞. In such
cases the asymptotic behaviour of Ln may be important. In case L <∞ the
numerical value of L is important.

In particular, we may consider a family of orthonormal complete systems
on [0, 1] indexed by sequences of simple knots T = (tn : n ≥ 0) dense in
[0, 1] with t0 = 0, t1 = 1 and tn ∈ (0, 1) for n > 1. For n ≥ 1, the space of
piecewise linear and continuous functions on [0, 1] with knots at t0, . . . , tn
is denoted by Sn(T ). Now the general orthonormal Franklin system (fn) is
defined as follows: f0 = 1, f1(t) =

√
3(2t−1) and for n ≥ 2 the function fn is

uniquely determined by the following conditions: fn ∈ Sn(T ), fn ⊥ Sn−1(T ),
‖fn‖2 = 1 and fn(tn) > 0. It follows from the results of Z. Ciesielski [3] that
for the corresponding Lebesgue constant we have L = L(T ) ≤ 3. Moreover,
it was shown in K. Oskolkov [10] and P. Oswald [11] that the upper bound 3
is the best possible, i.e. supT L(T ) = 3. It is also immediate that L(T ) ≥ 5/3
with strict inequality for each T with simple knots, and with equality for T
with all knots of multiplicity 2, or if the set of interior knots of T is empty.

We prove that for the classical Franklin orthonormal system correspond-
ing to the dyadic knots in [0, 1] we have L = 2 + (2−

√
3)2. This result was

suggested by numerical results presented in Z. Ciesielski and E. Niedźwiecka
[7]. In one case the problem was settled in Z. Ciesielski [5]: If there are n+ 1
equally spaced knots in [0, 1] and Pn denotes the (orthogonal) projection
onto the corresponding space of continuous piecewise linear functions, then
‖Pn‖1 < 2 and ‖Pn‖1 → 2 as n→∞. It was also shown in P. Bechler [1] that
for the Franklin–Strömberg wavelet (Franklin system on R) the Lebesgue
constant is 2 + (2−

√
3)2. It turns out that this result can also be obtained

from our result on [0, 1].
Finally, we mention that for higher order splines, of order k, according

to A. Yu. Shadrin [12], the general spline orthogonal systems corresponding
to T have finite Lebesgue constants L(T , k) bounded uniformly in T , i.e.
for each k ≥ 1,

Lk = sup
T
L(T , k) <∞.
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2. Preliminaries. For n ≥ 1 let π = (ti : i = −1, 0, . . . , n, n + 1) be
a given sequence of knots in I = [0, 1]: ti < ti+1 for i = 0, . . . , n − 1 and
t−1 = t0 = 0, tn = tn+1 = 1. Set Ii = (ti−1, ti) and δi = |Ii| = ti − ti−1. The
diameter of the partition π is |π| = sup{δi : i = 1, . . . , n}. Let Sπ be the
space of continuous, real-valued functions defined on I and linear on each
interval Ii, i = 1, . . . , n.

The space Sπ has a natural basis Ni, i = 0, . . . , n, where

Ni(t) =





(t− ti−1)/δi for ti−1 ≤ t ≤ ti,
(ti+1 − t)/δi+1 for ti ≤ t ≤ ti+1,

0 for t ≤ ti−1 or t ≥ ti+1.

(2.1)

Note that suppNi = [ti−1, ti+1]; therefore, for any reals (a0, . . . , an), the sum
n∑

i=0

aiNi(t)

is in Sπ and for each t ∈ I it contains at most two non-zero terms. Moreover,
n∑

i=0

Ni(t) = 1 for t ∈ I.

Set νi = (1, Ni) and bi,j = (Ni, Nj), where (f, g) = � I f(t)g(t) dt. Observe
that for i, k = 0, . . . , n we get νi = (δi + δi+1)/2 and

bi,k =





0 for |i− k| > 1,

δi/6 for k = i− 1,

(δi + δi+1)/3 for k = i,

δi+1/6 for k = i+ 1.

(2.2)

We use the notation a∨ b = max(a, b), a∧ b = min(a, b). The Gram matrix
B = [bi,j : i, j = 0, . . . , n] is a three-diagonal band matrix. Its inverse A =
B−1 = [ai,j : i, j = 0, . . . , n] has a number of important properties (cf. [8]):

ai,j = aj,i, ai,j = (−1)i+j |ai,j |,(2.3)

2|ai−1,j| ≤ |ai,j | for i ≤ j,(2.4)

|ai,j | ≥ 2|ai+1,j| for j ≤ i,(2.5)

|ai,j| ≤
2

2|i−j|
· 1
νi ∨ νj

,(2.6)
∑

i

νi|ai,j | = 3.(2.7)

Now, let

Kπ(t, s) =
n∑

i,j=0

ai,jNi(t)Nj(s) for t, s ∈ I.(2.8)
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It follows that
ai,j = Kπ(ti, tj) for i, j = 0, . . . , n.(2.9)

The operator Pπ defined by

Pπf(t) =
�

I

Kπ(t, s)f(s) ds(2.10)

is the orthogonal projection of L2(I) onto Sπ. It can be seen that for its L1

norm we have the formula

‖Pπ‖1 = sup
0≤k≤n

�

I

|Kπ(tk, s)| ds(2.11)

and, since sgn ai,k = −sgn ai−1,k,

�

I

|Kπ(tk, s)| ds =
1
2

n∑

i=1

δi
|ai−1,k|2 + |ai,k|2
|ai−1,k|+ |ai,k|

.(2.12)

Formula (2.12) can be rewritten as a mean value with respect to the weights

pi,k =
δi
6

(|ai,k|+ |ai−1,k|) for i = 1, . . . , n,(2.13)

which by (2.7) satisfy
n∑

i=1

pi,k = 1.(2.14)

Now, if φ(t) = 3(1 + t2)/(1 + t)2, then
�

I

|Kπ(tk, s)| ds =
n∑

i=1

pi,k φ

( |ai,k|
|ai−1,k|

)
.(2.15)

Since the rational function φ(t) is important for the rest of the paper, its
properties are collected in

Lemma 2.1. The function φ(t) = 3(1 + t2)/(1 + t)2 has the following
properties:

φ(t) = φ(1/t) for t > 0,

φ is increasing on [1,∞) and

φ(1) = 3/2 < φ(2) = 5/3 < φ(2 +
√

3) = 2 < φ(∞) = 3.

Moreover ,

2u+
√

3(u− 1) < φ(2−
√

3u) < 2u for
√

3/2 < u < 1,(2.16)

and for u < 1 and close to 1 we have

φ(2−
√

3u) = 2u+ o(1).(2.17)

Since 3 > φ(t) ≥ 5/3 for t ∈ [2,∞) it follows from (2.15) by (2.4) and
(2.5) that

5/3 ≤ ‖Pπ‖1 < 3,(2.18)
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and it is known that the constants 5/3 and 3 are the best possible (see [10]
and [11]). The constant 5/3 is attained for knots of multiplicity 2 each or
for n = 1, and 3 can be approached by knots distributed geometrically.

Our aim is to prove that the Lebesgue constant for the classical orthog-
onal Franklin system is 2 + (2−

√
3)2. For this, we need delicate numerical

estimates for (2.15) in the case of dyadic knots.

3. The norms of orthogonal projections on [0, 1]
3.1. The case of equally spaced knots. In this section we assume that

n ≥ 1 and consider the particular knots πn = (ti : i = −1, . . . , n + 1) with
ti = i/n for i = 0, . . . , n, i.e. δi = 1/n for i = 1, . . . , n. For Sπn and Pπn we
simply write Sn and Pn, respectively. Moreover, ν0 = νn = 1/2n and νi =
1/n for 0 < i < n. In this case we have a fairly simple formula for the inverse
matrix A. To write the formula for its entries it is convenient to introduce
two sequences of integers: (A(n) : n = 0, 1, . . .) and (B(n) : n = 0, 1, . . .)
defined by the following recurrence relations:

{
A(n+ 1) = 2A(n) + 3B(n) with A(0) = 1,

B(n+ 1) = A(n) + 2B(n) with B(0) = 0.
(3.1)

In particular, A(1) = 2, A(2) = 7, A(3) = 26, B(1) = 1 and B(2) = 4.
Explicit formulas for A(n) and B(n) are sometimes helpful: if α is the
positive solution to the equation coshα = 2, then A(n) = cosh(nα) and√

3B(n) = sinh(nα). Note that exp(α) = 2 +
√

3 and exp(−α) = 2 −
√

3;
the notation q = 2 +

√
3 will occasionally be used later on as well.

Proposition 3.1 ([4]). If n ≥ 1, then for i, k = 0, . . . , n,

ai,k =
2n
B(n)

(−1)i+kA(i ∧ k)A(n− i ∨ k).(3.2)

This result can be used to prove

Corollary 3.2 ([5]). For each n ≥ 1 we have ‖Pn‖1 < 2. Moreover ,

lim
n→∞

‖Pn‖1 = 2.(3.3)

For completeness, we present the proof of Corollary 3.2, given in [6] (cf.
the proof of Theorem 5.2 in [6]): φ(t) = φ(1/t), φ(2 +

√
3) = 2 and φ(t) < 2

for 2−
√

3 < t < 2 +
√

3. Moreover, for 0 ≤ k ≤ n we have

φ

( |ai,k|
|ai−1,k|

)
=





φ

(
A(i)

A(i− 1)

)
for 1 ≤ i ≤ k,

φ

(
A(n− i+ 1)
A(n− i)

)
for k < i ≤ n .

(3.4)
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But, according to (3.1),

2 ≤ A(m+ 1)
A(m)

= 2 +
√

3 tanh(αm) for m ≥ 0.(3.5)

These inequalities and formula (2.15) imply the first part of the statement
of Corollary 3.2. For the proof of (3.3) let us fix m and take k, n such that
m < k ≤ n−m. Then

‖Pn‖1 ≥
k∑

i=m+1

pi,k φ(2 +
√

3 tanh(α(i− 1)))

+
n−m∑

i=k+1

pi,k φ(2 +
√

3 tanh(α(n− i)))

≥ φ(2 +
√

3 tanh(αm))×
n−m∑

i=m+1

pi,k

≥ φ(2 +
√

3 tanh(αm))×
(

1−
( m∑

i=1

+
n∑

i=n−m+1

)
pi,k

)
.

Now, choosing k = bn/2c and using (2.13) and (3.2) we find that
( m∑

i=1

+
n∑

i=n−m+1

)
pi,k → 0 as n→∞,

whence
lim inf
n→∞

‖Pn‖1 ≥ φ(2 +
√

3 tanh(αm)).

Now, letting m→∞ and applying the first part of Corollary 3.2 completes
the proof.

3.2. Partially equally spaced knots. The set of knots πν,n = (ti : i =
−1, . . . , n + 1) is determined by the two integer parameters n ≥ 1 and
1 ≤ ν ≤ n and it is defined as follows: t−1 = 0, tn+1 = 1 and

ti =
{
i/2n for i = 0, . . . , 2ν,

(i− ν)/n for i = 2ν + 1, . . . , N,
(3.6)

where N = n+ν and 1 ≤ ν ≤ n. These knots are obtained as follows: we take
a uniform partition πn={0, 1/n, 2/n, . . . , (n−1)/n, 1}, and add to it middle
points of the first ν intervals, i.e. the points {1/2n, 3/2n, . . . , (2ν−1)/2n}.
Note that the case n = ν corresponds to the equally spaced knots π2n. As
this case was treated separately, it is assumed in what follows, if necessary,
that ν < n. We call knots of this kind partially equally spaced. For simplicity
the orthogonal projection Pπν,n is denoted by PN = Pν,n and the space Sπν,n
by SN = Sν,n. To any such partially equally spaced knots corresponds the
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inverse matrix A = AN = Aν,n and in what follows the dependence on
{ν, n} will be suppressed in notation.

Our main goal is to prove

Theorem 3.3. For each integer n ≥ 1,

sup
ν : 1≤ν≤n

‖Pν,n‖1 < D = 2 + (2−
√

3)2.(3.7)

Moreover ,
lim

(n−ν)∧ν→∞
‖Pν,n‖1 = D.(3.8)

Before starting the proof of Theorem 3.3 some auxiliary results need
to be recalled or established. For the matrix A we have an explicit formula
(see [4]):

Proposition 3.4. If N = n+ ν with 1 ≤ ν ≤ n, then

ai,k =
2n

C(N)
(−1)i+kεi,k,(3.9)

where C(N) = B(N) +B(N − 2ν)A(2ν) and for 0 ≤ i, k ≤ N ,

εi,k =





2A(i ∧ k) ·K if i ∨ k ≤ 2ν,

A(N − i ∨ k) · L if i ∧ k > 2ν,

2A(i ∧ k)A(N − i ∨ k) if i ∧ k ≤ 2ν < i ∨ k,

(3.10)

where K = A(N − i ∨ k) + 3B(N − 2ν)B(2ν − i ∨ k) and L = A(i ∧ k) +
A(2ν)A(i ∧ k − 2ν).

Lemma 3.5. Let

α(s, t) = A(s+ t) + 3B(s)B(t), β(s, t) = α(s, t+ 1)/α(s, t).

Then

2α(s, t) = 3A(s+ t)− A(s− t),(3.11)

β(s, t) ≥ β(s, t+ 1) > 1 for s ≥ 1, t ≥ 0,(3.12)

1 < β(s, t) ≤ β(s+ 1, t) for s ≥ 1, t ≥ 0.(3.13)

Lemma 3.6. Let φ(t) = 3(1 + t2)/(1 + t)2 for t > 0. Then

β(s, 0)↗ β0 = 2 + 2
√

3 as s↗∞,(3.14)

φ(β0) = D + 2(2−
√

3)2,(3.15)

β(s, 1)↗ β1 =
7 + 8

√
3

2 + 2
√

3
as s↗∞,(3.16)

φ(β1) =
257 + 120

√
3

127 + 60
√

3
< D.(3.17)
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Lemma 3.7. For s > 0 and t > 0 we have

1 <
A(s+ t+ 1) + A(s)A(t+ 1)

A(s+ t) + A(s)A(t)
≤ 2 +

√
3.(3.18)

The elementary proofs of Lemmas 3.5, 3.6 and 3.7 will be omitted.
To simplify notation we introduce

γi,k =
εi,k
εi−1,k

for i = 1, . . . , N and k = 0, . . . , N,(3.19)

where the εi,k are as in (3.10), and

Dk,N =
N∑

i=1

pi,k φ(γi,k) for k = 0, . . . , N.(3.20)

Now, using (2.11), (2.12) and (2.15) we find that

‖PN‖1 = ‖PN‖∞ = sup
0≤k≤N

Dk,N .(3.21)

In the proof of Theorem 3.3 the following Lemmas 3.8 and 3.9 are crucial.

Lemma 3.8. Let N = n+ ν with 1 ≤ ν < n. Then

D2ν−1,N < D.(3.22)

Proof. We split the sum (3.20) with k = 2ν − 1 into three pieces:

D2ν−1,N =
( 2ν−1∑

i=1

+
∑

i=2ν

+
N∑

i=2ν+1

)
pi,2ν−1φ(γi,2ν−1).(3.23)

The terms of these sums can be handled with the help of formulae (2.13),
(3.9), (3.10) and (3.19). In particular for 1 ≤ i ≤ 2ν − 1 we get

(3.24) C(N)pi,2ν−1 φ(γi,2ν−1) =
1
6

(εi−1,2ν−1 + εi,2ν−1)φ(γi,2ν−1)

= (A(N − 2ν + 1) + 3B(N − 2ν))φ
(

A(i)
A(i− 1)

)
A(i− 1) + A(i)

3

< (A(N − 2ν + 1) + 3B(N − 2ν))φ
(
A(2ν − 1)
A(2ν − 2)

)
(B(i)−B(i− 1)).

The last inequality follows from the monotonicity of A(m+ 1)/A(m) (cf.
(3.5)) and the identity A(i− 1) + A(i) = 3(B(i)− B(i− 1)), which in turn
can be obtained from (3.1). Now, Lemma 2.1 gives in particular

φ

(
A(m)

A(m− 1)

)
< 2

√
3B(m)
A(m)

for m ≥ 1.(3.25)

The combination of (3.25) and (3.24) gives the upper bound for the first
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sum of (3.23):

Σ1 =
2ν−1∑

i=1

pi,2ν−1φ(γi,2ν−1)(3.26)

< 4
√

3 · A(N − 2ν) + 3B(N − 2ν)
C(N)

· B(2ν − 1)2

A(2ν − 1)
.

For the second sum in (3.23) we have, by Proposition 3.4,

Σ2 = p2ν,2ν−1φ(γ2ν,2ν−1) =
1

2C(N)
·
ε2

2ν−1,2ν + ε2
2ν−1,2ν−1

ε2ν−1,2ν + ε2ν−1,2ν−1
(3.27)

=
A(2ν − 1)
C(N)

· 4(A(N − 2ν) + 3B(N − 2ν))2 +A(N − 2ν)2

3(A(N − 2ν) + 2B(N − 2ν))
.

To obtain the estimate for the third sum of (3.23) we proceed very much
like in the first case:

Σ3 =
N∑

i=2ν+1

pi,2ν−1φ(γi,2ν−1) =
1
3

N∑

i=2ν+1

(εi−1,2ν−1+εi,2ν−1)φ(γi,2ν−1)(3.28)

< 4
√

3 · A(2ν − 1)B(N − 2ν)2

C(N)A(N − 2ν)
.

Moreover,

C(N) = A(2ν − 1)A(N − 2ν) + 2B(2ν − 1)A(N − 2ν)(3.29)

+ 4A(2ν − 1)B(N − 2ν) + 6B(2ν − 1)B(N − 2ν).

To continue the proof we introduce new variables s = 2ν − 1, t = N − 2ν,
x = A(t), y = B(t), u = A(s) and z = B(s). Now,

C(N)Σ1 <
f1(x, y, u, z)
f2(x, y, u, z)

,

where
f1(x, y, u, z) = 4

√
3 (x+ 3y)z2, f2(x, y, u, z) = u;

moreover,

C(N)Σ2 <
g1(x, y, u, z)
g2(x, y, u, z)

,

where

g1(x, y, u, z) = u(x2 + 4(x+ 3y)2), g2(x, y, u, z) = 3(x+ 2y);

and finally,

C(N)Σ3 <
h1(x, y, u, z)
h2(x, y, u, z)

,

where
h1(x, y, u, z) = 4

√
3uy2, h2(x, y, u, z) = x.
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In addition we have

C(N) = C(x, y, u, z) = xu+ 2xz + 4uy + 6zy.

Moreover, let us introduce the function m = m(x, y, u, z) defined as

m = (9− 4
√

3) · C · f2 · g2 · h2 − f1 · g2 · h2 − f2 · g1 · h2 − f2 · g2 · h1.

Now, to prove (3.22) it is enough to show the positivity of the rational
function

r(a, b) = m

(
a+ 1/a

2
,
a− 1/a

2
√

3
,
b+ 1/b

2
,
b− 1/b

2
√

3

)

for a = (2 +
√

3)t ≥ 2 +
√

3 and b = (2 +
√

3)s ≥ 2 +
√

3, or of the function
w(a, b) = r(a + 2 +

√
3, b + 2 +

√
3) for a ≥ 0 and b ≥ 0. However, with

the help of MATHEMATICA we find that the numerator of the rational
function w(a, b) is equal to

555776 + 320768
√

3 + 784320a+ 452800
√

3a+ 463872a2 + 267776
√

3a2

+ 148640a3 + 85856
√

3 a3 + 27528a4 + 15928
√

3 a4 + 2832a5 + 1632
√

3 a5

+ 128a6 + 72
√

3 a6 + 406016b+ 234368
√

3 b+ 547008ab+ 315808
√

3 ab

+ 306768a2b+ 177104
√

3 a2b+ 93056a3b+ 53744
√

3 a3b+ 16440a4b

+ 9508
√

3 a4b+ 1644a5b+ 948
√

3 a5b+ 74a6b+ 42
√

3 a6b+ 104128b2

+ 60032
√

3 b2 + 127888ab2 + 73824
√

3 ab2 + 63416a2b2 + 36600
√

3 a2b2

+ 16456a3b2 + 9536
√

3 a3b2 + 2446a4b2 + 1444
√

3 a4b2 + 222a5b2

+ 126
√

3 a5b2 + 11a6b2 + 5
√

3 a6b2 + 13312b3 + 7680
√

3 b3

+ 14624ab3 + 8448
√

3 ab3 + 5968a2b3 + 3456
√

3 a2b3 + 1072a3b3

+ 624
√

3 a3b3 + 68a4b3 + 44
√

3 a4b3 + 896b4 + 512
√

3 b4

+ 976ab4 + 568
√

3 ab4 + 392a2b4 + 236
√

3 a2b4 + 68a3b4

+ 44
√

3 a3b4 + a4b4 + 5
√

3 a4b4,

and its denominator is equal to

8(2 +
√

3 + a)3(2 +
√

3 + b)2.

Consequently, w(a, b) is positive for a, b ≥ 0, which completes the proof of
(3.22).

Lemma 3.9. Let 1 ≤ ν < n and k < 2ν − 1. Then

p2ν−1,kφ(β1) + p2ν,k φ(β0) ≤ D(p2ν−1,k + p2ν,k),(3.30)

where β0 and β1 are as in Lemma 3.6.
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Proof. It follows by (2.13), Proposition 3.4, (3.6) and (3.1) that for k <
2ν − 1,

p2ν−1,k =
A(k)

3C(N)
(2A(N − 2ν) + 6B(N − 2ν)),(3.31)

p2ν,k =
A(k)

3C(N)
A(N − 2ν)(3.32)

p2ν−1,k + p2ν,k =
A(k)

3C(N)
(3A(N − 2ν) + 6B(N − 2ν)).(3.33)

Thus (3.30) is equivalent to

(3.34) (2A(N − 2ν) + 6B(N − 2ν))φ(β1) +A(N − 2ν)φ(β0)

< D(3A(N − 2ν) + 6B(N − 2ν)).

Since t = N − 2ν ≥ 1 and tanh(αt) =
√

3B(t)/A(t), we get in particular
tanh(α) =

√
3B(1)/A(1) =

√
3/2. Thus, inequality (3.34) is equivalent to

(2 + 2
√

3 tanh(αt))φ(β1) + φ(β0) < D(3 + 2
√

3 tanh (αt)).(3.35)

Introducing the new variable y = 2 + 2
√

3 tanh(αt) we get an equivalent
inequality

y(D − φ(β1)) > φ(β0)−D for y ≥ 5,(3.36)

which, by (3.17), is equivalent to
5
6
φ(β1) +

1
6
φ(β0) < D.(3.37)

Now, by Lemma 3.6, it follows that

5
6
φ(β1) +

1
6
φ(β0) = 3

341 + 76
√

3

(9 + 10
√

3)2
< D = 9− 4

√
3 ,

and the proof is complete.

Proof of Theorem 3.3. Since P2n = Pn,n, we may assume by Corollary 3.2
that 1 ≤ ν < n or equivalently that 1 < 2ν < N . Moreover, according to
(2.11), (2.12), (3.20) and by Lemma 3.8 we need to check for fixed N and
0 ≤ k ≤ N that

Dk,N < D for k 6= 2ν − 1.(3.38)

Consider the following cases: (A) k ≤ 2ν and (B) k > 2ν. In case (A) the set
of indices E = {0, . . . , N} in the sum (3.20) can be split as E = E1∪E2∪E3,
where

E1 = {i ∈ E : i ≤ k}, E2 = {i∈E : k < i ≤ 2ν}, E3 = {i ∈ E : i > 2ν}.
Since we are in case (A), it follows from (3.10) that

γi,k =
{
A(i)/A(i− 1) for i ∈ E1,

A(N − i)/A(N − i+ 1) for i ∈ E3;
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this implies 2−
√

3 < γi,k < 2 +
√

3, whence

φ(γi,k) < 2 for i ∈ E1 ∪E3.(3.39)

In particular, if in case (A) the set E2 is empty, i.e. k = 2ν, then the proof
is complete. Now, since 2ν < N we get s = N − 2ν ≥ 1 and for i ∈ E2 we
have t = 2ν − i ≥ 0. Thus, for i ∈ E2 we deduce from (3.10) that

φ(γi,k) = φ(β(s, t)),(3.40)

where β(s, t) is as in Lemma 3.5. Applying Lemma 3.6 we find that for
k < i ≤ 2ν − 1,

φ(γi,k) ≤ φ(β(s, 1))↗ φ(β1) < D as s↗∞,(3.41)

φ(γ2ν,k) = φ(β(s, 0))↗ φ(β0) = D + 2(2−
√

3)2 as s↗∞.(3.42)

Now, (3.39) gives
∑

i∈E1∪E3

φ(γi,k)pi,k ≤ 2
∑

i∈E1∪E3

pi,k.(3.43)

Moreover, (3.41), (3.42) and Lemma 3.9 imply

(3.44)
∑

i∈E2

φ(γi,k)pi,k =
2ν−2∑

i=k+1

φ(γi,k)pi,k+φ(γ2ν−1,k)p2ν−1,k+φ(γ2ν,k)p2ν,k

≤ φ(β1)
2ν−2∑

i=k+1

pi,k + φ(β1)p2ν−1,k + φ(β0)p2ν,k ≤ D
∑

i∈E2

pi,k.

Adding inequalities (3.43) and (3.44) we obtain Dk,N < D, which completes
the proof in case (A). In case (B) we find that

γi,k =





A(i)
A(i− 1)

for i ≤ 2ν,

A(i) + A(2ν)A(i− 2ν)
A(i− 1) + A(2ν)A(i− 1− 2ν)

for 2ν < i ≤ k,

A(N − i)
A(N − i+ 1)

for i > k;

according to Lemma 3.7 we get 2 −
√

3 < γi,k < 2 +
√

3 and consequently
φ(γi,k) < 2 for all i ∈ E. Thus, Dk,N < 2 for k > 2ν and the proof of (3.7)
is complete.

For the lower estimate we have, for given natural m and for large enough
(n− ν) ∧ ν,

D2ν−1,N ≥
N−m∑

i=m+1

pi,2ν−1φ(γi,2ν−1),(3.45)
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where according to (3.10),

γi,2ν−1 =
{
A(i)/A(i− 1) for i = 1, . . . , 2ν − 1,

A(n+ ν − i)/A(n+ ν + 1− i) for i = 2ν + 1, . . . , n+ ν.

Now,
2ν−1∑

i=m+1

pi,2ν−1φ(γi,2ν−1) ≥ φ
(
A(m+ 1)
A(m)

) 2ν−1∑

i=m+1

pi,2ν−1,

N−m∑

i=2ν+1

pi,2ν−1φ(γi,2ν−1) ≥ φ
(

A(n+ ν −m)
A(n+ ν −m− 1)

) n+ν−m∑

i=2ν+1

pi,2ν−1,

p2ν,2ν−1 =
A(2ν − 1)B(n− ν + 1)

B(n+ ν) +B(n− ν)A(2ν)
→ 1

3
as (n− ν) ∧ ν →∞,

φ(γ2ν,2ν−1) = φ(β(n−ν, 0))↗ φ(β0) = D+2(2−
√

3)3 as (n−ν)∧ν →∞.
Moreover, we have identity (2.14). In addition for fixed m there is a Km

such that
max

1≤i≤m
pi,2ν−1 ≤ Km(2−

√
3)2ν for 2ν > m.

Thus,
m∑

i=1

pi,2ν−1 ≤ mKm(2−
√

3)2ν for 2ν > m.

Similarly,
N∑

i=N−m+1

pi,2ν−1 ≤ mKm(2−
√

3)n−ν for n− ν > m.

It now follows from (3.45) and Lemma 2.1 that with some ηk = o(1) for
large k we get

D2ν−1,N ≥ (φ(γ2ν,2ν−1)− (2− ηm+1 ∨ ηn+ν−m))p2ν,2ν−1

+ (2− ηm+1 ∨ ηn+ν−m)
N−m∑

i=m+1

pi,2ν−1

≥ (φ(γ2ν,2ν−1)− (2− ηm+1 ∨ ηn+ν−m))p2ν,2ν−1

+ (2− ηm+1 ∨ ηn+ν−m)− 4mKm(2−
√

3)(n−ν)∧ν .

Letting (n− ν) ∧ ν →∞ while m remains fixed we obtain

lim inf
(n−ν)∧ν→∞

D2ν−1,N ≥ (φ(β0)− (2− ηm+1))
1
3

+ (2− ηm+1) = D − 2
3
ηm+1,

and this completes the proof.
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4. The norms of orthogonal projections on R. P. Bechler [1] has
proved that the norm of the orthogonal projection onto piecewise linear
functions on R with integer knots is 2, and that the Lebesgue constant for
the Franklin–Strömberg wavelet is 2 + (2 −

√
3)2. The aim of this section

is to show how these results on R can be obtained from the result on [0, 1].
Namely, the entries of the inverse to the corresponding Gram matrix on R are
obtained as limits of the corresponding entries on [0, 1] (cf. Propositions 4.1
and 4.4).

4.1. Equally spaced knots on R. In this section we consider the set of
integer knots {ti = i : i ∈ Z}. The corresponding piecewise linear continuous
B-splines in this case have a simple formula

Ni(t) = N0(t− i) for i ∈ Z, t ∈ R,
where

N0(t) = (1− |t|) ∨ 0 for t ∈ R.(4.1)

Let Sp = span[Ni : i ∈ Z] ∩ Lp(R), where 1 ≤ p ≤ ∞. The orthogonal
projection of L1(R) onto S1 will be obtained as a weak limit of properly
transformed corresponding orthogonal projections on the interval I = [0, 1].
The affine map s = n · (2t− 1) takes the interval I = [0, 1] onto In = [−n, n]
and the knots (i/2n : i = 0, . . . , 2n) onto the knots (k = −n, . . . , n). The re-
lation of the new B-splines, corresponding to In, and old ones, corresponding
to I, is as follows:

Nk,n(s) = Ni

(
s+ n

2n

)
with k = i− n, s, k ∈ In.

For the entries of the Gram matrix of the new B-splines we have

(Nk,n, Nk′,n)In =
�

In

Ni

(
s+ n

2n

)
Ni′

(
s+ n

2n

)
ds

= 2n
�

I

Ni(t)Ni′(t) dt = (Ni, Ni′)I with i = k + n, i′ = k′ + n.

Thus, the Gram matrix B = [bi,i′ : i, i′ = 0, . . . , 2n] for (Ni : i = 0, . . . , 2n)

and the Gram matrix B(n) = [b(n)
k,k′ : k, k′ ∈ In] for (Nk,n : k ∈ In) differ by

a factor of 2n, i.e. B(n) = 2nB. More explicitly, according to formula (2.2),

b
(n)
k,k′ = b

(∞)
|k−k′| for n > |k| ∨ |k′|,(4.2)

where b(∞)
i = b

(∞)
−i and

b
(∞)
i =





2/3 for i = 0,

1/6 for i = 1,

0 for i > 1.

(4.3)
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However, we are interested in the inverse A(n) = (B(n))−1 = 1
2nA and

after replacing n by 2n in (3.2) we find the following formula for the entries
of A(n):

a
(n)
k,k′ = 2 · (−1)k+k′ A(n+ k ∧ k′)A(n− k ∨ k′)

B(2n)
.(4.4)

Now, (4.3), (4.4) and the asymptotic formulae

2A(m) ' (2 +
√

3)m, 2
√

3B(m) ' (2 +
√

3)m

for large m imply

Proposition 4.1. For fixed k, k′ ∈ Z we have

lim
n→∞

b
(n)
k,k′ = b

(∞)
|k−k′|,(4.5)

and

lim
n→∞

a
(n)
k,k′=a

(∞)
|k−k′|=

√
3 · (−1)k+k′(2−

√
3)|k−k

′|=
√

3 · (
√

3−2)|k−k
′|.(4.6)

Corollary 4.2. For i, k ∈ Z we have
∑

m∈Z
a

(∞)
|i−m|b

(∞)
|m−k| = δi,k.

We may now define the dual basis in S1 to the B-splines (Ni(·) : i ∈ Z),
i.e.

N∗i (s) =
∑

k∈Z
a

(∞)
|i−k|Ni(s) for i ∈ Z, s ∈ R.(4.7)

The duality relation (N ∗i , Nk) = δi,k for i, k ∈ Z, with respect to the scalar
product (f, g) = � R f(s)g(s) ds follows from Corollary 4.2. Let us take a look
at the operator P (1) : L1(R)→ S1 defined by

P (1)(f) =
∑

i∈Z
(f,N∗i )Ni for f ∈ L1(R).(4.8)

Since φ(t) ≤ 3, the formula analogous to (2.15) for knots on R implies that

‖P (1)(f)‖1 ≤ 3‖f‖1 for f ∈ L1(R),(4.9)

and that P (1) is the orthogonal projection onto S1 i.e.

(f − P (1)f, g) = 0 for f ∈ L1(R), g ∈ S∞.(4.10)

Lemma 4.3. For the L1(R) norm of P (1) we have ‖P (1)‖1 = 2. Conse-
quently , limn→∞ ‖Pn,n‖1 = ‖P (1)‖1, where Pn,n is as in Section 3.2.

Proof. Formulae (2.11) and (2.12) extended to equally spaced knots on R
give

‖P (1)‖1 =
1
2

∑

i∈Z

|a(∞)
i−1−k|2 + |a(∞)

i−k |2

|a(∞)
i−1−k|+ |a

(∞)
i−k |

for k ∈ Z.
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Using the notation of Section 2 and formula (4.6) we find that

1
2

∑

i∈Z

|a(∞)
i−1−k|2 + |a(∞)

i−k |2

|a(∞)
i−1−k|+ |a

(∞)
i−k |

=
∑

i∈Z
pi,0φ(2−

√
3) = 2,

since the weights (pi,0 : i ∈ Z) add to 1 and since according to Lemma 2.1
we also have φ(2 −

√
3) = 2. Combining these equalities and Corollary 3.2

completes the proof.

4.2. Partially equally spaced knots on R. Let us start with given N =
n+ν, n ≥ 1 and 1 ≤ ν ≤ n. Now the affine map ψN (t) = 2(nt−ν) transfers
the knots (3.6) from I = [0, 1] to the knots

ψN (ti) =
{
i− 2ν for i = 0, . . . , 2ν,

2(i− 2ν) for i = 2ν + 1, . . . , N .
(4.11)

After reindexing we get the set of knots

ti,N =
{
i for i = −2ν, . . . , 0,

2i for i = 1, . . . , N − 2ν.
(4.12)

Let IN = [t−2ν,N , tN−2ν,N ] = [−2ν, 2(N − 2ν))] and (f, g)IN = � IN fg. The
limiting set of knots (4.12) as N →∞ with ν ∧ (n− ν)→∞ is

ti =
{
i for i ≤ 0,

2i for i > 0.
(4.13)

For the B-splines (Bi : i ∈ Z) corresponding to the knots (4.13) we have for
t ∈ R the formulae

Bi(t) =





N0(t− i) for i ≤ −1,

N0(t) + 1
2N0(t− 1) for i = 0 ,

N0(t/2− i) for i ≥ 1;

(4.14)

where N0(t) is as in (4.1). Now, for each integer N we have the Gram matrix
B(N) = [b(N)

i,k : i, k ∈ IN ] with b(N)
i,k = (Bi,N , Bk,N )IN for i, k ∈ IN . It is useful

to introduce now the infinite matrix B with the entries

bi,k = lim
ν∧(n−ν)→∞

b
(N)
i,k = (Bi, Bk)R for i, k ∈ Z.(4.15)

Each B(N) has an inverse A(N) = [a(N)
i,k : i, k ∈ IN ]. For its entries, after

transforming the knots from I to IN and reindexing them, we get, from
Proposition 3.4,

a
(N)
i,k =

(−1)i+k

C(N)
εi+2ν,k+2ν for i, k = −2ν, . . . , N − 2ν,(4.16)

with the ε·,· as in (3.10). Clearly, a(N)
i,k depends on N = n+ν = 2ν+(n−ν).
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Proposition 4.4. Let i, k ∈ Z be fixed. Then

lim
ν∧(n−ν)→∞

a
(N)
i,k = ai,k = (−1)i+kλi,k · (2−

√
3)|i−k|,(4.17)

where λi,k is uniformly bounded and

λi,k =





2√
3

if i ∨ k > 0 ≥ i ∧ k,

1

2
√

3
[3 + (2−

√
3)2(i∧k)] if i ∧ k > 0,

1√
3

[3− (2−
√

3)−2(i∨k)] if i ∨ k ≤ 0.

(4.18)

Proof. Use (4.16).

Corollary 4.5. For the infinite matrices B and A we have
∑

j∈Z
ai,jbj,k = δi,k for i, k ∈ Z.

As in the equally spaced case on R we define the biorthogonal system

B∗i =
∑

k∈Z
ai,kBk(4.19)

and the orthogonal projection

P0f =
∑

i∈Z
(f,B∗i )RBi for f ∈ L1(R).

Applying the argument standard by now we find that

‖P0f‖L1(R) ≤ 3‖f‖L1(R) for f ∈ L1(R).

Moreover,

(f − P0f, g)R = 0 for g ∈ span[Bi : i ∈ Z] ∩ L∞(R).

Now, if P (N)
0 is the orthogonal projection corresponding to N = n+ ν and

to the interval IN , then

‖P (N)
0 ‖L1(IN ) = ‖Pν,n‖L1(I) for N ≥ 2,

where Pν,n is as in Section 3.2. Using (2.12) and Proposition 4.4 we can show
that

lim
ν∧(n−ν)→∞

‖P (N)
0 ‖L1(IN ) ≥ ‖P0‖L1(R).

Let γi,k = |ai,k|/|ai−1,k| and δi = ti − ti−1. Then

‖P0‖L1(R) ≥
∑

i∈Z
pi,kφ(γi,k) for k ∈ Z,
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where pi,k = (δi/6)(|ai,k| + |ai−1,k|) and
∑

i∈Z pi,k = 1 for each k ∈ Z. In
particular, for k = −1 we infer from (4.18) that

λi,−1 =





2√
3

for i ≥ 0,

4
(

1− 1√
3

)
for i ≤ −1.

Thus,

γi,−1 =





2−
√

3 for i ≥ 1,√
3− 1
4

for i = 0,

2 +
√

3 for i ≤ −1.

Consequently, p0,−1 = 1/3, γ0,−1 = (
√

3− 1)/4 and since φ(2±
√

3) = 2 we
obtain∑

i∈Z
pi,−1 φ(γi,−1) = p0,−1 φ(γ0,−1) + 2

∑

i6=0

pi,−1

= 2 + p0,−1(φ(γ0,−1)− 2) = 2 + (2−
√

3)2 = D,

whence we infer

Corollary 4.6. ‖P0‖L1(R) = D.

Remark. Note that if we knew that for each N = n + ν and −2ν ≤
i, k ≤ N − 2ν,

δi
|ai−1,k|2 + |ai,k|2
|ai−1,k|+ |ai,k|

≥ δi
|a(N)
i−1,k|2 + |a(N)

i,k |2

|a(N)
i−1,k|+ |a

(N)
i,k |

,(4.20)

then the estimate on [0, 1] would be a simple consequence of the result on R.
However, inequality (4.20) is not true in general. For example, for i = −1
and k = 1, and with s = 2ν, t = N − 2ν, (4.20) takes the form

4(2−
√

3)
3

≥ A(t) + 3B(t)
A(t)B(s) + 2B(t)A(s)

· A(s− 1)2 + A(s− 2)2

A(s− 1) + A(s− 2)
.(4.21)

It is easy to see that this inequality fails e.g. for s = 2 and t = 1. In addition,
one can find infinite sequences of t, s (e.g. with s = t + 2) for which (4.21)
fails to hold.
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