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The Lebesgue constants for the Franklin orthogonal system
by

Z. CIESIELSKI and A. KAMONT (Sopot)

Abstract. To each set of knots ¢; = i/2n for ¢ = 0,...,2v and t; = (i — v)/n for
t=2v+1,...,n+v, with 1 <v <n, there corresponds the space Sy,n of all piecewise
linear and continuous functions on I = [0, 1] with knots ¢; and the orthogonal projection
Py of L2(I) onto Sy,n. The main result is

lim  |[Puali=  swp  [[Penli =2+ 2-V3)*

(n—v)Av—oo vn:1<v<n

This shows that the Lebesgue constant for the Franklin orthogonal system is 2+ (2 — \/§)2

1. Introduction. Fourier expansions with respect to a complete or-
thonormal system in L2[0, 1] can be used to approximate functions e.g. in
LP[0,1],1 < p < o0, or in C[0,1] in case p = co. Suppose that (g, : n > 0)
is such an orthonormal system. We introduce the partial sums

n
Gu(f) = (1, %)k
k=0
and the subspaces
Gn =span{gy : k=0,...,n}.
Clearly, each Gy, : LP[0,1] — G, is a projection (it is orthogonal in case
p =2) and its L' norm is equal to

ey =

L, = esssup\ |K, (-, s)|ds,

where the Dirichlet kernel K, is given by

Kn(t’ S) = ka(t)fk(s)’ l,s € [0’ 1]'
k=0

The Lebesgue constant is now defined as

L =suplL,.
n>0
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56 7. Ciesielski and A. Kamont

For finite p, by Holder’s inequality, the LP norm of GG, satisfies

where L may be infinite. For the best approximation of f € LP[0,1] by G,
we introduce the customary notation

FE, = inf — .
n,p(f) 926, Hf g”p
It is elementary to see that

Enp(f) < If = Gu(Hllp < (1 + Ln) Enp(f) < (1+ L) Enp(f)-
It follows from the results of A. M. Olevskii [9] or S. V. Bochkarev [2] that
for any uniformly bounded orthonormal system we have L. = oco. In such
cases the asymptotic behaviour of L, may be important. In case L < oo the
numerical value of L is important.

In particular, we may consider a family of orthonormal complete systems
on [0,1] indexed by sequences of simple knots 7 = (¢, : n > 0) dense in
[0,1] with ¢t0 =0, ¢; =1 and ¢, € (0,1) for n > 1. For n > 1, the space of
piecewise linear and continuous functions on [0, 1] with knots at to,...,t,
is denoted by Sy, (7). Now the general orthonormal Franklin system (fy) is
defined as follows: fo = 1, f1(t) = v/3(2t—1) and for n > 2 the function f,, is
uniquely determined by the following conditions: f,, € S, (7), fn L Sn—1(7),
I fnll2 =1 and fy,(tn) > 0. It follows from the results of Z. Ciesielski [3] that
for the corresponding Lebesgue constant we have L = L(7) < 3. Moreover,
it was shown in K. Oskolkov [10] and P. Oswald [11] that the upper bound 3
is the best possible, i.e. supy L(7) = 3. It is also immediate that L(7) > 5/3
with strict inequality for each 7" with simple knots, and with equality for 7°
with all knots of multiplicity 2, or if the set of interior knots of 7 is empty.

We prove that for the classical Franklin orthonormal system correspond-
ing to the dyadic knots in [0, 1] we have L = 2 + (2 — v/3)2. This result was
suggested by numerical results presented in Z. Ciesielski and E. NiedZwiecka
[7]. In one case the problem was settled in Z. Ciesielski [5]: If there are n+ 1
equally spaced knots in [0,1] and P, denotes the (orthogonal) projection
onto the corresponding space of continuous piecewise linear functions, then
|IPs]l1 < 2and ||P,|l1 — 2 as n — oo. It was also shown in P. Bechler [1] that
for the Franklin—Stromberg wavelet (Franklin system on R) the Lebesgue
constant is 2 + (2 — v/3)2. It turns out that this result can also be obtained
from our result on [0, 1].

Finally, we mention that for higher order splines, of order k, according
to A. Yu. Shadrin [12], the general spline orthogonal systems corresponding
to 7 have finite Lebesgue constants L(7, k) bounded uniformly in 7, i.e.
for each k > 1,

Ly =sup L(T,k) < .
T
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2. Preliminaries. For n > 1let 7 = (¢; : i = —1,0,...,n,n+ 1) be
a given sequence of knots in I = [0,1]: ¢; < tj4q for i = 0,...,n — 1 and
t_1=1t=0,1t, =th+1 = 1. SetIi:(, 1, ) and 9; —|I’—t —tz 1- The
diameter of the partition 7 is |r| = sup{d; : i = 1,...,n}. Let S; be the
space of continuous, real-valued functions defined on I and linear on each
interval I;, i =1,...,n.

The space S; has a natural basis N;, i =0, ...,n, where
(t—ti—1)/0 for t;1 <t <t
(2.1) Ni(t) = (tig1 —t)/0iy1 for t; <t <ti1,
0 fort <t;_jort>tiq.
Note that supp N; = [ti—1, ti+1]; therefore, for any reals (ag, . .., ay), the sum

Z CLiN t
1=0

is in Sy and for each t € I it contains at most two non-zero terms. Moreover,

ZNi(t) =1 fortel.

Set v; = (1, N) and b” = (NZ,N ), where (f,g) = §, f(t)g(t) dt. Observe
that for i,k =0,...,n we get v; = (§; + di+1)/2 and
0 for i — k| > 1,
0;/6 for k=1—1,
(2.2) bi = i/ )
(51 + 67,-1—1)/3 for k = 7,
5i+1/6 for k=1+1.
We use the notation a Vb = max(a,b), a Ab = min(a,b). The Gram matrix
B =1[b;:i,7=0,...,n] is a three-diagonal band matrix. Its inverse A =
B! =Ja;;:4,7=0,...,n] has a number of important properties (cf. [8]):
(2.3) aij = aji,  aij=(=1)""al,
(2.4) 2‘(11‘_17j| < ‘ai7]‘| for ¢ < j,
(2.5) |aijl = 2laiv14]  for j <4,
(26) s < 5 —
. al,] — 2‘z7.7| v; v Ujv

(2.7) > vilaiz| = 3.

%

(2.8) Kx(t,s) =Y aijNi(t)Nj(s) fort,sel.
i,j=0
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It follows that

(29) Q5 = Kﬂ-(ti,t]’) for ’L,] = O,...,n.
The operator P, defined by
(2.10) Prf(t) =\ Kx(t,s)f(s)ds

I

is the orthogonal projection of L?(I) onto Sy. It can be seen that for its L!
norm we have the formula

(2.11) 1Py = sup {|Kx(ty,s)|ds
0<k<n7
and, since sgna; = —Sgn a;_1 k,
1~ a1kl + laigl®
2.12 K (ty,s)|ds = = 0; : .
I R PR R
Formula (2.12) can be rewritten as a mean value with respect to the weights
i .
(2.13) Pik = é (laik| +lai-1k])  fori=1,...,n,
which by (2.7) satisfy
n
(2.14) > pip=1.
i=1
Now, if ¢(t) = 3(1 +¢2)/(1 +t)?, then
n
a; L
(2.15) §|Kﬂ<tk,s>ds=2pm( 9141 )
T i—1 |ai—1,k|

Since the rational function ¢(t) is important for the rest of the paper, its
properties are collected in

LEMMA 2.1. The function ¢(t) = 3(1+t%)/(1+1t)? has the following

properties:
¢(t) = ¢(1/t)  fort >0,

¢ 1is increasing on [1,00) and

B(1) =3/2 < ¢(2) =5/3 < p(2+ V3) =2 < p(c0) = 3.
Moreover,
(216) 2u+V3u—1) <p(2—V3u)<2u forV3/2<u<1,
and for u < 1 and close to 1 we have
(2.17) $(2 —V3u) =2u+o(1).

Since 3 > ¢(t) > 5/3 for t € [2,00) it follows from (2.15) by (2.4) and
(2.5) that

(2.18) 5/3 < ||Px|l1 < 3,
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and it is known that the constants 5/3 and 3 are the best possible (see [10]
and [11]). The constant 5/3 is attained for knots of multiplicity 2 each or
for n =1, and 3 can be approached by knots distributed geometrically.

Our aim is to prove that the Lebesgue constant for the classical orthog-
onal Franklin system is 2 4+ (2 — v/3)2. For this, we need delicate numerical
estimates for (2.15) in the case of dyadic knots.

3. The norms of orthogonal projections on [0, 1]

3.1. The case of equally spaced knots. In this section we assume that

n > 1 and consider the particular knots 7, = (¢; : i = —1,...,n+ 1) with
ti=1i/nfori=0,...,n,ie. §;=1/nfori=1,...,n. For S;, and P, we
simply write S,, and P,, respectively. Moreover, vy = v, = 1/2n and v; =
1/n for 0 < i < n. In this case we have a fairly simple formula for the inverse
matrix A. To write the formula for its entries it is convenient to introduce
two sequences of integers: (A(n) : n = 0,1,...) and (B(n) : n = 0,1,...)
defined by the following recurrence relations:

A(n+1)=2A(n)+3B(n) with A(0) =1,
{ B(n+1)=A(n)+2B(n) with B(0) =0.
In particular, A(1) = 2, A(2) =7, A(3) = 26, B(1) = 1 and B(2) =4.
Explicit formulas for A(n) and B(n) are sometimes helpful: if « is the
positive solution to the equation cosha = 2, then A(n) = cosh(na) and
V3 B(n) = sinh(na). Note that exp(a) = 2+ v/3 and exp(—a) = 2 — V/3;
the notation ¢ = 2 + V3 will occasionally be used later on as well.

(3.1)

ProOPOSITION 3.1 ([4]). If n > 1, then fori,k=0,...,n,
) .
(3.2) i = TZ) (=) A(i A k) A(n — iV k).
This result can be used to prove

COROLLARY 3.2 ([5]). For each n > 1 we have ||P,||1 < 2. Moreover,

(3.3) lim [Pyl = 2.
n—oo

For completeness, we present the proof of Corollary 3.2, given in [6] (cf.
the proof of Theorem 5.2 in [6]): ¢(t) = ¢(1/t), ¢(2+ V/3) = 2 and ¢(t) < 2
for2—V3<t<2+3. Moreover, for 0 < k < n we have

qﬁ(%) for 1<i <k,

s o) - o An=ith

> fork<i<n.
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But, according to (3.1),
A(m+1)
A(m)
These inequalities and formula (2.15) imply the first part of the statement

of Corollary 3.2. For the proof of (3.3) let us fix m and take k,n such that
m < k <n—m. Then

(3.5) 2< =2+ +V3tanh(am) for m > 0.

k
1Pl = 3 pix 62+ V3tanh(a(i — 1))

i=m+1

+ > pio(2+ Vitanh(a(n - 1))

i=k+1

(2+\/7tanh (aom) Z Dik

i=m+1

> ¢(2 + V3tanh(am)) (1 — (Z + Z >pzk>

i=n—m-+1

Now, choosing k = |n/2] and using (2.13) and (3.2) we find that

(24— Z >pl-7kH0 as n — 00,

i=n—m-+1
whence
liminf || Pa|l1 > ¢(2 + V3 tanh(am)).

Now, letting m — oo and applying the first part of Corollary 3.2 completes
the proof.

3.2. Partially equally spaced knots. The set of knots m,, = (t; : i =

—1,...,n + 1) is determined by the two integer parameters n > 1 and
1 <v <n and it is defined as follows: t_1 =0, t,+1 = 1 and

i/2n fori=0,...,2v,
(3.6) i=19 . .

(i—v)/n fori=2v+1,...,N,

where N = n+v and 1 < v < n. These knots are obtained as follows: we take
a uniform partition 7, ={0,1/n,2/n,...,(n—1)/n,1}, and add to it middle
points of the first v intervals, i.e. the points {1/2n,3/2n,...,(2v—1)/2n}.
Note that the case n = v corresponds to the equally spaced knots ma,. As
this case was treated separately, it is assumed in what follows, if necessary,
that v < n. We call knots of this kind partially equally spaced. For simplicity
the orthogonal projection Py, is denoted by Py = P, ;, and the space Sy, ,
by Sy = S,,. To any such partially equally spaced knots corresponds the
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inverse matrix A = Ay = A,, and in what follows the dependence on
{v,n} will be suppressed in notation.
Our main goal is to prove

THEOREM 3.3. For each integer n > 1,

(3.7) sup  [|[Pynlli < D=2+ (2-V3)%
v:1<v<n

Moreover,

(3.8) lim |Pynlh = D.

(n—v)Av—o0

Before starting the proof of Theorem 3.3 some auxiliary results need
to be recalled or established. For the matrix A we have an explicit formula
(see [4]):

PROPOSITION 3.4. If N =n+v with 1 <v <n, then

(39) = g (U e

where C(N) = B(N) + B(N —2v)A(2v) and for 0 < i,k < N,
24(iNk) - K if 1VEk<2v,

(310)  ep=4{ AN —iVE)-L if ink > 2,

2A(i NK)A(N —iVk) if ink<2w<iVk,

where K = A(N —iVk)+3B(N —2v)B(2v —iV k) and L = A(i N k) +
AQv)A(i Nk —2v).

LEMMA 3.5. Let
a(s,t) = A(s+1t)+3B(s)B(t), B(s,t) =a(s,t+1)/a(s,t).
Then

(3.11) 2a(s,t) = 3A(s +1t) — A(s — t),

(3.12) B(s,t) > B(s,t+1)>1 fors>1,t>0,

(3.13) 1< pB(s,t) <B(s+1,t) for s>1,t>0.
LEMMA 3.6. Let ¢(t) = 3(1 +t2)/(1 +t)% for t > 0. Then

(3.14) B(5,0) /" Bo=2+2V3 ass /oo,

(3.15) d(f0) = D +2(2 = V3)%,

(3.16) ﬂ@D/&zE%% ws s /oo,

(317) () = B0V

< D.
127 + 603
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LEMMA 3.7. For s >0 and t > 0 we have
A(s+t+1)+ A(s)A(t+ 1)
A(s+1t) + A(s)A(t)
The elementary proofs of Lemmas 3.5, 3.6 and 3.7 will be omitted.

To simplify notation we introduce

(3.18) 1< <243

(3.19) yip = —E . fori=1,...,Nand k=0,...,N,
€i—1,k

where the ¢; 5, are as in (3.10), and

N
(3.20) Dpn = pixd(vig) fork=0,...,N.

i=1
Now, using (2.11), (2.12) and (2.15) we find that
(3.21) [1Pnl[s = [PNllc = sup Dgn.
0<k<N

In the proof of Theorem 3.3 the following Lemmas 3.8 and 3.9 are crucial.
LEMMA 3.8. Let N=n+v with1 <v <n. Then

(3.22) Dy, _1.n <D.
Proof. We split the sum (3.20) with & = 2v — 1 into three pieces:

2v—1

N
(3.23) Doy 1N = ( Y+ Y )pi,2u—l¢('7i,2u—1)~
=1

1=2v  i=2v+1

The terms of these sums can be handled with the help of formulae (2.13),
(3.9), (3.10) and (3.19). In particular for 1 <i <2v —1 we get

1
(3.24)  C(N)pi2v—1 ¢(Vi2v—1) = = (€i—1,20—1 + €i20—1) d(Vi20—1)

6
= (AN —2v+1)+3B(N — QV))(Z)(A(A?(_Z)l)) A(i — 1; + A(i)

< (AN —2v+1) +3B(N — 2””‘75@&7:2) (B(i) — B(i — 1)).

The last inequality follows from the monotonicity of A(m + 1)/A(m) (cf.
(3.5)) and the identity A(i — 1) + A(i) = 3(B(i) — B(i — 1)), which in turn
can be obtained from (3.1). Now, Lemma 2.1 gives in particular

(3.25) ¢<%> <2 % for m > 1.

The combination of (3.25) and (3.24) gives the upper bound for the first
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sum of (3.23):

2v—1
(3.26) S1=) pioav16(vi2-1)
i=1
_ _ )2
<4\/§.A(N 2v)+3B(N —2v) B(2v-1) .

C(N) A(2v —1)
For the second sum in (3.23) we have, by Proposition 3.4,

1 €3 120 T € 1201
3.27 22 = Pov 2V—1¢ 72%21/—1 = . : :
(3.27) ’ ( ) 2C(N) ea-120+€20-120-1

AQ2v —1) 4(A(N —2v)+3B(N —2v))? + A(N — 2v)?
C(N) 3(A(N —2v) + 2B(N — 2v)) '
To obtain the estimate for the third sum of (3.23) we proceed very much

like in the first case:

N N
1
(3.28) 23:4 E Pi2v—10(Vi2v—1) = 3 E (eim1,20—1+€i20—1)0(Vi,20—1)
i=2v+1 i=2v+1

A(2v — 1)B(N —2v)?
<4v3: <0(N),31(1§ —o) =
Moreover,
(329)  C(N)=AQ2v—1)A(N — 2v) + 2B(2v — 1)A(N — 2v)
+4A(2v —1)B(N —2v) +6B(2v — 1)B(N — 2v).

To continue the proof we introduce new variables s = 2v — 1, t = N — 2v,
x=A(t), y= B(t), u = A(s) and z = B(s). Now,

fl(fUayanZ)
C(N)X < ————————=,
( ) ! f2($7y7uaz)

where

f1($7y7uvz):4\/§($+3y)z25 fQ(x,y,u,z):u;
moreover,

C(N)22< 91(%%%@7
92(%%%2)

where

gl(xayv u, Z) = U(.’L'2 + 4($ + 3y)2)’ 92(:17, Yy, u, Z) = 3(:1: + Qy)a

and finally,
C(N)E < hl(xvyaua Z)
s h2(aj7yaua Z)’

where
hi(z,y,u,2) = 4V3uy?,  ho(z,y,u,z) = z.
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In addition we have
C(N) =C(z,y,u,z) = xu+ 2zz + 4duy + 62y.
Moreover, let us introduce the function m = m(z,y, u, z) defined as
m=(9-4V3)-C-fo-go-ho—fi-g2-ho— fa-g1-ha— fo- g2+ ha.

Now, to prove (3.22) it is enough to show the positivity of the rational
function

r(a,b) = m<a—|— 1/a’ a— 1/a7 b+ 1/b’ b— l/b)

2 2v3 7 2 7 23
fora = (2+v3)!>2++v3and b = (2+ V/3)* > 2 + /3, or of the function
w(a,b) = r(a +2+ 3,0+ 2+ +/3) for a > 0 and b > 0. However, with
the help of MATHEMATICA we find that the numerator of the rational
function w(a, b) is equal to

555776 + 3207683 + 784320a + 452800v/3a + 46387242 + 267776V 3a>
+ 148640a° + 85856v/3 a® + 27528a* + 159283 a* + 28324° + 1632v/3 a°

+ 128a8 + 72v/3 a8 + 406016b + 234368v/3 b + 547008ab + 315808v/3 ab
+ 306768ab + 177104v/3 a®b + 93056a°b + 53744v/3 a’b + 16440a*b
+ 9508v/3 a*b + 1644a°b + 948+v/3 a®b + 74a°b + 42+/3 ab + 104128p°
+ 60032v/3 b7 + 127888ab® + 73824V/3 ab® + 63416a°b> + 36600v/3 a’b?
+ 16456a°b? + 9536v/3 a3b? 4 2446a*b% + 1444V/3 a*b? + 222a°b?
+126V3a°b? + 11a°b? + 5v/3 a%b% 4 133126° + 7680v/3 b°
+ 14624ab® + 8448+/3 ab® + 5968a2b> + 3456v/3 a%b + 1072a°b°
+ 624v/3 a®b® 4 68ab® + 44v/3 a*b?® + 896b* + 512/3 b*
+ 976ab* + 568v/3 ab* + 392a%b* + 236+/3 a?b* + 68a°b*
+ 44v3 a®b* + a*b* + 5v3 a*?,

and its denominator is equal to

8(2+V3+0a)’(2+ V3 +b)2

Consequently, w(a,b) is positive for a,b > 0, which completes the proof of
(3.22).

LEMMA 3.9. Let 1<v<nandk <2v —1. Then
(3.30) P2—1,k0(B1) + P2k #(Bo) < D(pav—1,k + P2vk),

where By and By are as in Lemma 3.6.
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Proof. Tt follows by (2.13), Proposition 3.4, (3.6) and (3.1) that for k <
2v —1,

(3.31) Dot = 321@) (2A(N — 2v) + 6B(N — 2v)),
(3.32) Pk = 32“(’2) A(N = 20)
333)  pa1at pak = s BAN — 20) + OB(N - ).

Thus (3.30) is equivalent to
(3.34)  (2A(N —2v) + 6B(N — 2v))¢(61) + AN — 2v)¢(fo)

< D(3A(N —2v) +6B(N — 2v)).
Since t = N — 2v > 1 and tanh(at) = v/3 B(t)/A(t), we get in particular
tanh(a) = V3 B(1)/A(1) = v/3/2. Thus, inequality (3.34) is equivalent to
(3.35) (2 + 2V3tanh(at))(B1) + é(B) < D(3 + 2V/3tanh (at)).

Introducing the new variable y = 2 4 2v/3tanh(at) we get an equivalent
inequality

(3.36) y(D — ¢(B1)) > ¢(Bo) — D fory >5,
which, by (3.17), is equivalent to
) 1
(3.37) 6 (B1) + G ¢(Bo) < D.
Now, by Lemma 3.6, it follows that
5 1 3414+ 76V3 o
6¢(51) + gﬁb(ﬁo) —37(9+10\/§)2 <D=9-4+3,

and the proof is complete.

Proof of Theorem 3.3. Since Py, = P, ;,, we may assume by Corollary 3.2
that 1 < v < n or equivalently that 1 < 2v < N. Moreover, according to
(2.11), (2.12), (3.20) and by Lemma 3.8 we need to check for fixed N and
0 < k < N that
(3.38) Dyn <D fork#2v—1
Consider the following cases: (A) k < 2v and (B) k& > 2v. In case (A) the set
of indices E = {0, ..., N} in the sum (3.20) can be split as £ = E1 UE;UEs3,
where
Bi={icE:i<k}, Bo={icE:k<i<2), Ey={icE:i>2w).
Since we are in case (A), it follows from (3.10) that

_[A@)/AGE-1) for i € En,
" LA(N =) JAN —i+1) fori€ Es;
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this implies 2 — V3 < Vig <2+ \/5, whence
(339) ¢(7@,k) <2 forie F1UEs3.

In particular, if in case (A) the set E9 is empty, i.e. kK = 2v, then the proof
is complete. Now, since 2v < N we get s = N — 2v > 1 and for i € Ey we
have t = 2v — ¢ > 0. Thus, for i € Ey we deduce from (3.10) that

where (3(s,t) is as in Lemma 3.5. Applying Lemma 3.6 we find that for

k<i<ow—1,
(3.41) (Vi) < 0(B(s,1)) /" ¢(B1) <D ass /oo,
(342)  d(y2r) = B(B(5,0)) / d(fo) = D +2(2-V3)* ass /oo
Now, (3.39) gives
(3.43) > ipik <2 > pige
i€E1UES3 i€B1UE;3
Moreover, (3.41), (3.42) and Lemma 3.9 imply

2v—2

(344) D o(vimpin = Y S(ik)pik+E(Var—1.k)P2 1k +O(Vark)D2vk
i€Es i=k+1
2v—-2

<G(B1) D> pik+ S(B)Pa—1k + 3(B0)P2vk < DY i

i=k+1 i€E>
Adding inequalities (3.43) and (3.44) we obtain Dy, y < D, which completes
the proof in case (A). In case (B) we find that
(_AQ)
A(i—1)
A(i) + A(2v)A(i — 2v)

for i < 2v,

= for 2v < i <k
Yk T AG- ) FA@AG—1—2p) TVSIER
AN — i) .
| AN =i+ 1) ore >R

according to Lemma 3.7 we get 2 — /3 < Vik < 2+ v/3 and consequently
¢(vik) <2 foralli € E. Thus, Dy y < 2 for k > 2v and the proof of (3.7)
is complete.
For the lower estimate we have, for given natural m and for large enough

(n—v)Av,

N—m
(3.45) Dy,_1.n > Z Pi2v—10(Vi2v—1),

i=m-+1



Lebesgue constants for the Franklin system 67

where according to (3.10),
_ [A@)/AGE-1) fori=1,...,2v—1,
Fodv-1 = An+v—i)JAln+v+1—4) fori=2v+1,...,n+4v.

Now,

2v—1 m+ 1 2v—1
Z Di2v— 1¢ Vi, 2v— 1)>¢< ) Z Pi2v—1,
i=m-+1 i=m+1
N—m n+v—m
An+v—
4 Z pi,2u—1¢(’7i,21/—1) > ¢<A(’I’L—|— b 1 ) Z Di2v—1,
1=2v+1 i=2v+1
A(2v — 1)B(n — 1 1
P2w2v-1 = @v-DBn-v+l) 1 as (n —v) Av — oo,

B(n+v)+ B(n—v)AQ2v) 3
d(vav,20—1) = ¢(B(n—v,0)) / d(Bo) = D—I—2(2—\/§)3 as (n—v)A\v — o0.

Moreover, we have identity (2.14). In addition for fixed m there is a K,
such that

max pjoy—1 < Kp(2 \/5)2” for 2v > m.

1<i<m
Thus,
m
ZPi,QV—l <mK,(2—V3)%  for 2v > m.
i=1
Similarly,
N
Z Piov—1 <MKy, (2—V3)""  forn—v>m.
i=N—-m+1

It now follows from (3.45) and Lemma 2.1 that with some 7, = o(1) for
large k we get

Day—1.n > (¢(v2v,20-1) = (2 = Nmt1 V Mngv—m) ) P2v,20—1
N—m
+ (2 = Mmg1 V Dnsv—m) Z Di2v—1
i=m-+1
> (¢('721/,21/71) - (2 — Nm+1 V 77n+ufm))p21/,21/71
(2= D1 V Ngoem) — AmE (2 — V3) I

Letting (n — v) A v — oo while m remains fixed we obtain

2

+ (2 - Tlm+1) =D — - Nmt1,

liminf Doy_1,n > (0(B0) — (2 — Nm+1)) 1 3

(n—v)Av—oo 3

and this completes the proof.
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4. The norms of orthogonal projections on R. P. Bechler [1] has
proved that the norm of the orthogonal projection onto piecewise linear
functions on R with integer knots is 2, and that the Lebesgue constant for
the Franklin-Strémberg wavelet is 2 + (2 — v/3)2. The aim of this section
is to show how these results on R can be obtained from the result on [0, 1].
Namely, the entries of the inverse to the corresponding Gram matrix on R are
obtained as limits of the corresponding entries on [0, 1] (cf. Propositions 4.1
and 4.4).

4.1. FEqually spaced knots on R. In this section we consider the set of

integer knots {t; = ¢ : ¢ € Z}. The corresponding piecewise linear continuous
B-splines in this case have a simple formula

Nz(t) :No(t—i) fori e Z,t € R,

where

(4.1) No(t)=(1—|t))v0O forteR.

Let 8P = span[N; : i € Z] N LP(R), where 1 < p < oo. The orthogonal
projection of L!'(R) onto S will be obtained as a weak limit of properly
transformed corresponding orthogonal projections on the interval I = [0, 1].
The affine map s = n- (2t — 1) takes the interval I = [0, 1] onto I, = [—n,n]
and the knots (i/2n : ¢ =0,...,2n) onto the knots (k = —n,...,n). The re-

lation of the new B-splines, corresponding to I,,, and old ones, corresponding
to I, is as follows:

s+n
Nk,n(s) = Nl<

2n

For the entries of the Gram matrix of the new B-splines we have

s+n s+n
(Nk,me/,n)In = IS Nz<7>Ni’< om ) ds

> with k =i —n, s,k € I,,.

=2n | N;(t)Ny(t) dt = (N;, Ny);  withi=k+n, i’ =k +n.

I
Thus, the Gram matrix B = [b; : 4,9 = 0,...,2n] for (N; : i =0,...,2n)
and the Gram matrix B = [b,in,z, : kK" € I,] for (N, : k € I,) differ by
a factor of 2n, i.e. B(") = 2nB. More explicitly, according to formula (2.2),

(4.2) b,(;?]z, = bfgi’)k/' for n > |k| v |K'],
where bgoo) = b(_oio) and

2/3 fori=0,
(4.3) B =316 fori=1,

0 for ¢ > 1.
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However, we are interested in the inverse A = (B(M)~1 = +A and
after replacing n by 2n in (3.2) we find the following formula for the entries
of A™);

(4.4) af =2+ (-1)

oy AN+ ENE)AMn —kVE)
B(2n) '
Now, (4.3), (4.4) and the asymptotic formulae
24(m) = (2+V3)™,  2V3B(m) =~ (2+V3)"
for large m imply
PROPOSITION 4.1. For fized k, k' € Z we have

(4.5) Jim by = bfljo_)mv

and
(4.6) nllrgo“5€7lz/:a\(;fi)k/\=\/§'(—1)’“’“/(2—Jﬁ)'k—k/|:\/§.(\/§—2)‘k‘k’\_

COROLLARY 4.2. For i,k € Z we have

Z% m| |m k| = = Oik-

meZ
We may now define the dual basis in S! to the B-splines (N;(-) : i € Z),
ie.
(4.7) )= al) Ni(s) forieZ seR.
keZ
The duality relation (N, Ni,) = 0, for i,k € Z, with respect to the scalar
product (f,g) = {5 f(s)g(s) ds follows from Corollary 4.2. Let us take a look

at the operator P(1) : L1(R) — S* defined by
(4.8) PUO(f) =Y (f.N)N;  for f € L'(R).
i€z
Since ¢(t) < 3, the formula analogous to (2.15) for knots on R implies that

(4.9) PO <3lIfl for f € LY(R),
and that P() is the orthogonal projection onto S i.e.
(4.10) (f=PWfg)=0 for feL'(R), ge 8.
LEMMA 4.3. For the Ll(R) norm of P we have |[PW||; = 2. Conse-
quently, lim, .o || Ponlli = |PM||1, where Py, is as in Section 3.2.

Proof. Formulae (2.11) and (2.12) extended to equally spaced knots on R
give
2 2
a, + |a;
|yp<1>||1_—z| Sl + a5 for k € Z.
iez |ai—l—k| + \ai—k|
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Using the notation of Section 2 and formula (4.6) we find that

1 |a k|2—|—|a k|2
Sl T~ S SRR

1EZL ”le|+|lk‘ €L

since the weights (p;o : ¢ € Z) add to 1 and since according to Lemma 2.1
we also have ¢(2 — v/3) = 2. Combining these equalities and Corollary 3.2
completes the proof.

4.2. Partially equally spaced knots on R. Let us start with given N =
n+v,n>1and 1 <v <n. Now the affine map ¢ n(t) = 2(nt — ) transfers
the knots (3.6) from I = [0, 1] to the knots

1 —2v for:=0,...,2v,

(411) Yn(ts) = {2(i—21/) fori=2v+1,...,N.
After reindexing we get the set of knots
1 fori=—-2v,...,0,

W= {2@ fori=1,...,N — 2v.
Let Iy = [t—au N, tN—20N] = [-20,2(N — 2v))] and (f,9)1y = SIN fg. The
limiting set of knots (4.12) as N — oo with v A (n —v) — o0 is
ti:{i for i <0,

2i  for i > 0.

(4.12)

(4.13)

For the B-splines (B; : i € Z) corresponding to the knots (4.13) we have for
t € R the formulae

No(t —1) fori < —1,
(4.14) Bi(t) =< No(t) + 2 No(t —1) fori=0,
No(t/2 — 1) for i > 1;

where Ny() is as in (4.1). Now, for each integer N we have the Gram matrix
BM) = b -4, & € Ty with b = (B; n, i) 1y for i, k € Iy Tt is useful
to introduce now the infinite matrix B with the entries
(4.15) bip= lim ) = (B, By forikeZ

vA(n—v)—oo
Each B™) has an inverse A(Y) = [a,gjl\g) : i,k € Iy]. For its entries, after
transforming the knots from I to Iy and reindexing them, we get, from
Proposition 3.4,
(_1)i+k

N
() W&HV,HQV

(4.16) a;,’ = fori,k=—2v,...,N — 2v,

with the €.. as in (3.10). Clearly, a%) dependson N =n+v =2v+(n—v).
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PROPOSITION 4.4. Let i,k € Z be fized. Then
(4.17) fim az(,jl\f[) =a;p = (—1)" A (2 VB)ITH,

vA(n—v)—o00

where \; 1 is uniformly bounded and

\% if iVk>0>iAk,
1 .
(4.18)  Aip = 273 3+ (2—V3)2W] if iAE >0,
% 3—(2—V3)2WVR] if ivEk<o0.
\

Proof. Use (4.16).

COROLLARY 4.5. For the infinite matrices B and A we have
Z ai,jbj7k = 6i,k for 7, keZ.
JEZ
As in the equally spaced case on R we define the biorthogonal system
(4.19) Bf = a; 1B
keZ
and the orthogonal projection
Pof =Y (f B )rB; for f € L'(R).
icZ
Applying the argument standard by now we find that
IPofllciwy < 31 flziw) for f e LY(R).
Moreover,

(f—=Pof,g)r =0 for g € span[B; : i € Z) N L*(R).

Now, if PéN) is the orthogonal projection corresponding to N = n + v and
to the interval Iy, then
N
125 Nty = 1 Punllisgny  for N 22,

where P, , is as in Section 3.2. Using (2.12) and Proposition 4.4 we can show
that

. N
tim (B ) = 1Pl ey,

vA(n—v)—

Let Yi,k = ]ai7k|/|ai_1ykl and 51 =1t; —t;—1. Then

I1Poll 2t (my > sz‘,m(%,k) for k € Z,
€7
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where p; . = (04/6)(a; x| + [ai—1%|) and Y, ., pix = 1 for each k € Z. In
particular, for k¥ = —1 we infer from (4.18) that
2

— for i > 0,
Ve >
Ni—1 = 1
411 - — for ¢ < —1.
(1-75) i
Thus,
23 fori> 1,
-1
Yi,—1 = V3 for i =0,

4
243 fori<-—1.
Consequently, pg —1 = 1/3, 70 -1 = (v/3 — 1)/4 and since ¢(2 + v/3) = 2 we
obtain

> pi1d(vi-1) =po16(Y0-1) +2D pi1
i€z i£0
=2+po-1(¢(0,-1) —2) =2+ (2—V3)* =D,
whence we infer

COROLLARY 4.6. || Pollr1r) = D.

REMARK. Note that if we knew that for each N = n + v and —2v <
i,k <N —2v,

Jaicial? + lasel? _ ¢ 100047 + lafy P
(4:20) 6 o L 5 L T
=Ll + laia a2 ] + lagy |

then the estimate on [0, 1] would be a simple consequence of the result on R.
However, inequality (4.20) is not true in general. For example, for i = —1
and k =1, and with s =2, t = N — 2v, (4.20) takes the form
(4.21) 4(2 - /3) . A(t) + 3B(t) CA(s - 17+ A(s — 2)

' 3 — A(t)B(s) +2B(t)A(s)  A(s—1)+A(s—2)

It is easy to see that this inequality fails e.g. for s = 2 and ¢t = 1. In addition,
one can find infinite sequences of ¢, s (e.g. with s = ¢t + 2) for which (4.21)
fails to hold.

References

[1] P. Bechler, Lebesgue constant for the Stromberg wavelet, J. Approx. Theory 122
(2003), 13-23.

[2] S.V.Bochkarev, A Fourier series divergent on a set of positive measure for an arbi-
trary bounded orthonormal system, Mat. Sb. 98 (140) (1975), 436—449 (in Russian).



[10]

[11]

[12]

Lebesgue constants for the Franklin system 73

Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963),
141-157.

—, Properties of the orthonormal Franklin system, II, ibid. 27 (1966), 289-323.
—, The C(I) norms of orthogonal projections onto subspaces of polygonals, Trudy
Mat. Inst. Steklova 134 (1975), 366-369.

Z. Ciesielski and A. Kamont, Survey on the orthogonal Franklin system, in: Ap-
proximation Theory. A volume dedicated to B. Sendov, B. Bojanov (ed.), DARBA,
Sofia, 2002, 84-132.

7. Ciesielski and E. Niedzwiecka, A conversation with the Odra 1204 computer
about approximation by polygonal functions, Wiadomosci Mat. 20 (1977), 29-34 (in
Polish).

B. S. Kashin and A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (in
Russian).

A. M. Olevskii, Fourier series and Lebesque functions, Uspekhi Mat. Nauk 22
(1967), no. 3, 237-239 (in Russian).

K. Oskolkov, The upper bound of the norms of orthogonal projections onto subspaces
of polygonals, in: Approximation Theory, Banach Center Publ. 4, PWN, Warszawa,
1979, 177-183.

P. Oswald, The norm in C of orthoprojections onto subspaces of piecewise linear
functions, Mat. Zametki 21 (1977), 495-502 (in Russian).

A. Yu. Shadrin, The Los-norm of the Lo spline projector is bounded independently of
the knot sequence: a proof of de Boor’s conjecture, Acta Math. 187 (2001), 59-137.

Institute of Mathematics
Polish Academy of Sciences
Abrahama 18

81-825 Sopot, Poland
E-mail: zc@impan.gda.pl

ak@impan.gda.pl

Received September 11, 2003
Revised version December 23, 2003 (5273)



