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Composition operator and Sobolev–Lorentz spaces WLn,q

by

Stanislav Hencl, Luděk Kleprlík and Jan Malý (Praha)

Abstract. Let Ω,Ω′ ⊂ Rn be domains and let f : Ω → Ω′ be a homeomorphism.
We show that if the composition operator Tf : u 7→ u ◦ f maps the Sobolev–Lorentz space
WLn,q(Ω′) to WLn,q(Ω) for some q 6= n then f must be a locally bilipschitz mapping.

1. Introduction. Let Ω,Ω′ ⊂ Rn be domains and let f : Ω → Ω′ be
a homeomorphism. Given a function space X we would like to characterize
mappings f for which the composition operator Tf : Tf (u) = u ◦ f maps
X(Ω′) into X(Ω) continuously. This problem has been studied for many
function spaces and one the most important is the following well-known
result: The composition operator Tf maps W 1,n

loc (Ω′) into W 1,n
loc (Ω) contin-

uously if f : Ω → Ω′ is a quasiconformal mapping ([N], [L], [VG], [VG2],
[Re], [HKM], [K, Lemma 5.13]). Conversely, each homeomorphism f which
maps W 1,n

loc (Ω′) into W 1,n
loc (Ω) continuously is necessarily a quasiconformal

mapping up to a reflection; this is a consequence of ring characterizations
of quasiconformality ([N], [G1], [L], [V]). Similarly it is possible to charac-
terize homeomorphisms for which the composition operator is continuous
from W 1,p

loc to W 1,p
loc ([G2], [L], [M], [GRo], [GGR], [Kl1]). A homeomorphism

f ∈ W 1,1
loc (Ω,Rn) is called a quasiconformal mapping if there is a constant

Q ≥ 1 such that

(1.1) |Df(x)|n ≤ QJf (x) for a.e. x ∈ Ω.
For the properties and further applications of quasiconformal mappings and
their generalizations see e.g. [Re], [GR], [V], [Ri], [Vu], [IM], [AIM], [K].

The class of quasiconformal mappings serves as the best class of mor-
phisms not only forW 1,n

loc functions but also for other function spaces that are
“close” to W 1,n

loc . Let us mention for example the stability under quasiconfor-
mal mappings for the BMO space (see [R]), fractional Sobolev spaces Ṁ s

n/s,q,
s ∈ (0, 1] (see [KYZ, Theorem 1.3]; also [TV] and [HK]), absolutely contin-
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uous functions of several variables ACnλ (see [H]), exponential Orlicz space
expL(Ω) in the plane (see [FG]) and Sobolev–Orlicz spaces likeWLn logα L,
α ∈ R (see [HKl]).

We wanted to know if the similar result holds for the Sobolev–Lorentz
space WLn,1, which is important in many applications (see e.g. [S], [CP],
[KKM]). Surprisingly we have found that it is false for any Sobolev–Lorentz
space WLn,q, q 6= n (see Preliminaries for the definition). This is the first
result that we are aware of that says that some reasonable and useful function
space close to W 1,n is not stable under quasiconformal mappings. The main
reason behind this seems to be that quasiconformality is a geometrical notion
while the use of the non-increasing rearrangement in the definition of Lorentz
spaces erases the geometrical information about the function Du. In the
meantime, a similar feature has been observed in the scale of homogeneous
Besov spaces Ḃs

n/s,q with sq 6= n (see [KKSS]).
It is easy to see that a composition of a bilipschitz mapping f and a

function u ∈ WLp,q satisfies u ◦ f ∈ WLp,q but the following results show
that we cannot improve on this.

Theorem 1.1. Let 1 ≤ q ≤ ∞, q 6= n. Let f : Ω → Ω′ be a Sobolev
homeomorphism. Assume that Tf maps W0L

n,q(Ω′) to WLn,q(Ω). Then f is
a locally bilipschitz mapping.

As one of the steps of the proof we need the following result which is of
independent interest for p 6= n. Note that especially for q = p we obtain a new
proof of the characterization of homeomorphisms for which the composition
operator is continuous fromW 1,p

loc toW 1,p
loc . Our proof uses a different idea and

in contrast to the original article [GGR] (see also [Kl1]) we do not need to
use the volume derivative instead of Jf , or the technical assumption that f
is differentiable a.e. (See also [Kl2] for a more general version of the following
theorem.)

Theorem 1.2. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Let f : Ω → Ω′ be a
Sobolev homeomorphism. Suppose that Tf maps W0L

p,q(Ω′) into WLp,q(Ω).
Then there exists Q ∈ R such that

|Df(x)|p ≤ Q|Jf (x)| for a.e. x ∈ Ω.

2. Preliminaries. Throughout this paper, Ω and Ω′ are open subsets
of Rn. We use the symbol |A| for the Lebesgue measure of a measurable set
A ⊂ Rn. We say that a function f : Ω → Rn satisfies the Luzin (N) condition
on A ⊂ Ω if |f(S)| = 0 for every measurable set S ⊂ A with |S| = 0. If we
do not specify where the Luzin (N) condition is satisfied, we mean the case
A = Ω.
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The function f : Ω → R is called essentially unbounded if |{x : f(x) > t}|
> 0 for every t ∈ R. The support of the function f is denoted by supp f =
{x : f(x) 6= 0}.

The term Sobolev function is used for a function of class W 1,1
loc (Ω). Sim-

ilarly we define Sobolev mappings. A Sobolev mapping f : Ω → Ω′ is a
Sobolev homeomorphism if f is homeomorphic and onto Ω′.

It is well-known that the area formula

(2.1)
�

A

Jf (x) dx = |f(A)|

holds for every quasiconformal mapping f and measurable set A ⊂ Rn (see
e.g. [IM, Theorem 16.13.4] or [K, Remark 6.1]). Moreover, it is valid for every
Sobolev homeomorphism on every set A on which the Luzin (N) condition
holds. It is well-known that for each Sobolev mapping f : Ω → Rn we can
find a set N such that |N | = 0 and f satisfies the Luzin (N) condition on
Ω \N (see e.g. [Ha]).

We denote by C a generic real constant which can change at each occur-
rence. Similarly we use c for a constant > 0.

2.1. Lorentz spaces. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. The Lorentz
space Lp,q(Ω) is defined as the class of all measurable functions (modulo
equality a.e.) g : Ω → Rm for which the following “norm” is finite:

‖g‖Lp,q(Ω) =


(∞�

0

sq−1|{x ∈ Ω : |g(x)| > s}|q/p ds
)1/q

for q <∞,

sup
s>0

s|{x ∈ Ω : |g(x)| > s}|1/p for q =∞.

In fact, ‖ · ‖Lp,q(Ω) is a genuine norm only for 1 ≤ q ≤ p, but for 1 < p < q it
still remains to be a quantity equivalent to a norm. It is well-known that for
each 1 ≤ p <∞ and 1 < q <∞ and for each function g : Ω → R we have

(2.2) c‖g‖Lp,∞(Ω) ≤ ‖g‖Lp,q(Ω) ≤ C‖g‖Lp,1(Ω).

For an introduction to Lorentz spaces see e.g. [SW].
The Sobolev–Lorentz spaceWLp,q(Ω) is defined as the class of all Sobolev

functions f : Ω → R such that f ∈ Lp,q(Ω) and |Df | ∈ Lp,q(Ω).

3. p-quasiconformality

Lemma 3.1. Let E ⊂ Rn be a measurable set and g : E → [0,∞] be an
essentially unbounded measurable function. Then there exists an infinite se-
quence {Uk}k∈N of pairwise disjoint open sets in Rn such that g is essentially
unbounded on each E ∩ Uk.
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Proof. Using the fact that g is essentially unbounded, it is not difficult
to find z ∈ Rn and rj ↘ 0 such that

|{x ∈ E ∩B(z, rj) \B(z, rj+1) : |g(x)| ≥ j}| > 0, j = 1, 2, . . . .

Then we write
Aj = B(z, rj) \B(z, rj+1)

and set

Uk+1 = A2k ∪A3·2k ∪A5·2k ∪ · · · , k = 0, 1, 2, . . . .

Lemma 3.2. Let f : Ω → Ω′ be a Sobolev homeomorphism. Let E ⊂ Ω be
a Borel measurable set of finite positive measure and t > |f(E)|. Then there
exist a compact set K ⊂ E, an open set G ⊂ Ω′ and a function u ∈ C∞c (Ω′)
such that

G ⊃ f(E),(3.1)

|K| ≥ 1

2n+ 1
|E|,(3.2)

|G| ≤ t,(3.3)
suppu ⊂ G,(3.4)
|∇u| ≤ 2 in G,(3.5)

|D (u ◦ f)| ≥ 1

2n
|Df | in K.(3.6)

Proof. Consider the sets

Ei =

{
x ∈ E : |Dfi(x)| ≥ 1

n
|Df(x)|

}
and take i ∈ {1, . . . , n} such that

|Ei| ≥
1

n
|E|.

Find a compact set Ki ⊂ Ei such that

|Ki| >
2

2n+ 1
|E|

and an open set G ⊂ Ω′ such that f(E) ⊂ G and |G| ≤ t. Let η ∈ C∞c (Ω′)
be a cut-off function such that supp η ⊂ G, 0 ≤ η ≤ 1 and η = 1 on f(Ki).
Find m ∈ N such that ‖Dη‖∞ ≤ m. Choose K to be one of the sets

Ksin = {x ∈ Ki : cos2(mfi(x)) ≥ 1/2},
Kcos = {x ∈ Ki : sin2(mfi(x)) ≥ 1/2}

such that
|K| ≥ 1

2
|Ki| ≥

1

2n+ 1
|E|
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and set

u(y) =

{
1
mη(y) sin(myi) if K = Ksin,
1
mη(y) cos(myi) if K = Kcos.

Then the properties (3.1)–(3.4) follow directly from the construction. In-
equality (3.5) follows easily by the product rule as ‖D sin(myi)‖∞ ≤ m and
‖Dη‖∞ ≤ m. For (3.6) we assume e.g. that K = Ksin. Since K ⊂ Ei, for
x ∈ K we have

|D(u ◦ f)(x)| = |cos(mfi(x))| |Dfi(x)| ≥ 1√
2

1

n
|Df(x)| ≥ |Df(x)|

2n
.

Theorem 3.3. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Let f : Ω → Ω′ be a
Sobolev homeomorphism. Suppose that there is a constant Cf such that

(3.7) ‖D(u ◦ f)‖Lp,q(Ω) ≤ Cf‖Du‖Lp,q(Ω′)

for every u ∈ C∞c (Ω′). Then there exists Q ∈ R such that

(3.8) |Df(x)|p ≤ Q|Jf (x)| for a.e. x ∈ Ω.
Proof. Fix a point z ∈ Ω of approximate differentiability of f and of

approximate continuity of Df . Moreover, we assume that Df(z) 6= 0, other-
wise there is nothing to prove. Choose ε > 0 and find δ > 0 with B(z, δ) ⊂ Ω
such that for each 0 < r < δ we have∣∣{x ∈ B(z, r) : |Df(x)| < 1

2 |Df(z)| or |Jf (x)| > |Jf (z)|+ ε
}∣∣ < 1

2 |B(z, r)|.
Consider r ∈ (0, δ) and set

(3.9) Ẽ =
{
x ∈ B(z, r) : |Df(x)| ≥ 1

2 |Df(z)| and |Jf (x)| ≤ |Jf (z)|+ ε
}
.

Then we pass to a Borel measurable subset E ⊂ Ẽ of full measure in Ẽ
such that f fulfills the Luzin (N) condition on E. Using Lemma 3.2 we find
a compact set K ⊂ E, an open set G ⊂ Ω and a test function u ∈ C∞c (Ω′)
such that the properties (3.1)–(3.6) are satisfied with t = |f(E)|+ε|E|. Then
u = 0 on Ω′ \G, |Du| ≤ 2 a.e., and thus (with the aid of (2.2))

‖Du‖Lp,q ≤ C‖Du‖Lp,1 ≤ C
2�

0

|G|1/p ds ≤ C|G|1/p ≤ Ct1/p.

Using (2.2) and the morphism property (3.7), we obtain

(3.10) ‖D(u ◦ f)‖pLp,∞ ≤ C‖D(u ◦ f)‖pLp,q ≤ CCpf‖Du‖
p
Lp,q ≤ CCpf t.

This means that for each s > 0 we have

(3.11) sp
∣∣{x ∈ Ω : |D(u ◦ f)(x)| > s

}∣∣ ≤ Ct.
(Here and below we do not indicate the dependence of the generic constant
C on Cf .) In particular, it is useful to put s := 1

4n |Df(z)|. Indeed, by (3.6),

(3.12) |D(u ◦ f)(x)| ≥ 1

4n
|Df(z)| = s, x ∈ K.
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From (3.11) and (3.12) we obtain

(3.13) |Df(z)|p|K| ≤ Ct = C(|f(E)|+ ε|E|).
Now, in view of the condition (N) on E we can use the area formula (2.1)

and (3.9) to obtain

(3.14) |f(E)| =
�

E

|Jf (x)| dx ≤ |E|(|Jf (z)|+ ε).

From (3.13), (3.14) and (3.2) we easily infer that

|Df(z)|p ≤ C
|E|(|Jf (z)|+ 2ε)

|K|
≤ C(|Jf (z)|+ 2ε).

Letting ε→ 0 we conclude that

|Df(z)|p ≤ C|Jf (z)|.
Proof of Theorem 1.2. We assume that f is not p-quasiconformal, i.e.

does not satisfy (3.8). Our aim is to construct u ∈ W0L
p,q(Ω′) such that

u ◦ f /∈WLp,q(Ω). Set

g(x) =


|Df(x)|p/|Jf (x)|, Jf (x) 6= 0,
∞, Jf (x) = 0, Df(x) 6= 0,
1, Df(x) = 0.

Then the function g is essentially unbounded. By Lemma 3.1, there exist
pairwise disjoint open sets Uk ⊂ Ω, k = 1, 2, . . . , such that g is essentially
unbounded on each Uk. We know that f is not p-quasiconformal on Uk and
hence the assumptions of Theorem 3.3 cannot be satisfied there. It follows
that we can construct uk ∈ C∞c (f(Uk)) such that

‖Duk‖Lp,q(f(Uk)) ≤ 2−k and ‖D(uk ◦ f)‖Lp,q(Uk) ≥ 2k.

We extend the domain of the functions uk by putting uk = 0 on Ω′ \Uk. Set

u =

∞∑
k=1

uk.

Then the sum converges in the norm of W0L
p,q(Ω′). Now, assume that the

function u ◦ f is a Sobolev function on Ω, otherwise there is nothing to
prove. Then D(u ◦ f) = D(uk ◦ f) a.e. in Uk and it easily follows that
D(u ◦ f) /∈ Lp,q(Ω).

4. Bilipschitz property

Theorem 4.1. Let 1 ≤ q ≤ ∞, q 6= n. Let f : Ω → Ω′ be a Sobolev
homeomorphism. Assume that

(4.1) ‖D(u ◦ f)‖Ln,q(Ω) ≤ C‖Du‖Ln,q(Ω′)

for every u ∈ C∞c (Ω′). Then f is a locally bilipschitz mapping.
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Proof. We already know from Theorem 3.3 that there exists a constant
Q such that

(4.2) |Df(x)|n ≤ Q|Jf (x)|.

The reverse inequality

(4.3) |Jf (x)| ≤ |Df(x)|n

holds always. Thus, f is quasiconformal or antiquasiconformal. We may as-
sume that f is quasiconformal; then it follows that Jf > 0 a.e. If there are
0 < c < C such that c ≤ Jf ≤ C a.e., then we may use (4.3) and (4.2) to
show that

c ≤ |Df |n ≤ QC a.e.

Since f is quasiconformal, f satisfies the (N) condition and thus for a.e.
y = f(x) ∈ Ω′ we have

|Df−1(y)| = |(Df(x))−1| ≤ |Df(x)|n−1

Jf (x)
≤ (QC)(n−1)/n

c
.

This is enough to conclude that f is locally bilipschitz.
Now, assume for a contradiction that Jf is not essentially bounded by C

from above or by c from below. Choose k ∈ N. Then there exist 0 < a1 <
a2 < · · · < ak and measurable sets Aj , j = 1, . . . , k, such that |Aj | > 0 and

2naj−1 < aj , j = 2, . . . , k,(4.4)
aj ≤ Jf ≤ 2aj on Aj , j = 1, . . . , k.(4.5)

Choose positive constants µj < |Aj | and λj , j = 1, . . . , k, to be specified
later. Find compact sets Ej ⊂ Aj such that

(4.6) µj = |Ej |.

Since Ej are pairwise disjoint, there exist pairwise disjoint “separating” open
sets Wj ⊂ Ω such that Ej ⊂Wj . Since

|f(Ej)| =
�

Ej

|Jf (x)| dx > 0,

we can set
tj = 2|f(Ej)| > |f(Ej)|.

According to Lemma 3.2 we construct compact sets Kj ⊂ Ej , open sets
Gj ⊂ f(Wj) and functions uj ∈ C∞c (f(Ω)) such that for j = 1, . . . , k we
have

(4.7) Gj ⊃ f(Ej),
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|Kj | ≥
1

2n+ 1
|Ej |,(4.8)

|Gj | ≤ tj ,(4.9)
suppuj ⊂ Gj ,(4.10)
|Duj | ≤ 2 in G,(4.11)

|D(uj ◦ f)| ≥ 1

2n
|Df | in Kj .(4.12)

Set

u =
k∑
j=1

λjuj .

Now we distinguish three cases.

Case A: 1 ≤ q < n. We specify

(4.13) λj = λ, µj =
1

ajλn
, j = 1, . . . , k,

where λ > 0 is chosen so large that µj < |Aj | for each j. From (4.9), (4.6)
and (4.5) we obtain

|Gj | ≤ 2|f(Ej)| = 2
�

Ej

Jf (x) dx ≤ 4ajµj = 4λ−n.

Hence by (4.10), (4.13) and (4.11),

|{|Du| > s}| ≤


k∑
j=1

|Gj | ≤ 4kλ−n, 0 < s < 2λ,

0, s ≥ 2λ.
It follows that

(4.14) ‖Du‖qLn,q ≤
2λ�

0

sq−1(4kλ−n)q/n ds ≤ Ckq/n.

On the other hand, from |Df |n ≥ Jf , (4.12) and (4.5), on Kj we have

|D(u ◦ f)|n = λn|D(uj ◦ f)|n ≥ λn 1

(2n)n
|Df |n ≥ λnaj

(2n)n
,

so that ∣∣{|D(u ◦ f)| > s}
∣∣ ≥ |Kj |, 0 ≤ s < sj :=

λ

2n
a

1/n
j .

By (4.8), (4.6) and (4.13),

(4.15) |Kj | ≥
1

2n+1
|Ej | =

1

(2n+1)ajλn
≥ cs−nj .
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With the convention s0 = 0, from (4.4) we infer that

sj−1 ≤ 1
2sj , j = 1, . . . , k.

From (4.15) it follows that

(4.16) ‖D(u ◦ f)‖qLn,q ≥
k∑
j=1

sj�

sj−1

sq−1|Kj |q/n ds ≥ c
k∑
j=1

sqj |Kj |q/n ≥ ck.

Comparing (4.14) and (4.16) we observe that (4.1) leads to k ≤ Ckq/n with a
constant independent of k. Since we can construct a corresponding function
u for an arbitrary k ∈ N, this is a contradiction.

Case B: n < q <∞. We specify

(4.17) λj = (µaj)
−1/n, µj = µ, j = 1, . . . , k,

where µ > 0 is chosen so small that µ < |Aj | for each j. From (4.9), (4.5)
and (4.6) we obtain

|Gj | ≤ 2|f(Ej)| = 2
�

Ej

Jf (x) dx ≤ 4ajµ.

By (4.4), ai ≤ 2n(j−i)aj , i = 1, . . . , j, and thus

(4.18)
∣∣{|Du| > s}

∣∣ ≤


j∑
i=1

|Gi| ≤ C
j∑
i=1

µai ≤ Cµaj , 0 < s < 2λj ,

0, s ≥ 2λ1.

From (4.17) it follows that

(4.19) ‖Du‖qLn,q ≤ C
k∑
j=1

2λj�

0

sq−1(µaj)
q/n ds ≤ C

k∑
j=1

λqj(µaj)
q/n ≤ Ck.

On the other hand, as |Df |n ≥ Jf , by (4.12), (4.5) and (4.17), on Kj we
have

|D(u ◦ f)|n = λnj |D(uj ◦ f)|n ≥
λnj

(2n)n
|Df |n ≥

λnj aj

(2n)n
=

1

(2n)nµ
.

By (4.8) and (4.6),

|Kj | ≥
1

2n+1
|Ej | ≥ cµ.

Consequently,

(4.20)
∣∣{|D(u ◦ f)| > s}

∣∣ ≥ k∑
j=1

|Kj | ≥ ckµ, 0 ≤ s < s̄ :=
1

2nµ1/n
.
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Hence

(4.21) ‖D(u ◦ f)‖qLn,q ≥ c
s̄�

0

sq−1(kµ)q/n ds ≥ cs̄q(kµ)q/n ≥ ckq/n.

Comparing (4.19) and (4.21) we observe that (4.1) leads to kq/n ≤ Ck, which
is again a contradiction.

Case C: q = ∞. Again, we specify the choice of λj and µj by (4.17).
From (4.18) we obtain

s
∣∣{|Du| > s}

∣∣1/n ≤ {Cλj(µaj)1/n ≤ C, 0 < s ≤ 2λj , j = 1, . . . , k,
0, s ≥ 2λ1,

and thus

(4.22) ‖Du‖Ln,∞ ≤ C.
From (4.20) we see that

s̄
∣∣{|D(u ◦ f)| > 1

2 s̄
}∣∣1/n ≥ ck1/n.

Hence

(4.23) ‖D(u ◦ f)‖Ln,∞ ≥ Ck1/n.

Once more, comparing (4.22) and (4.23) we arrive at a contradiction.

Proof of Theorem 1.1. We already know from Theorem 1.2 that |Df(x)|n
≤ Q|Jf (x)|. Thus, f is quasiconformal or antiquasiconformal. Hence it is
enough to show that Jf is bounded from above by some c and from below
by some 1/c. Now, we proceed similarly to the proof of Theorem 1.2 with
p = n but instead of Theorem 3.3 we use Theorem 4.1.
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