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Rough oscillatory singular integrals on Rn

by

Hussain Mohammad Al-Qassem (Doha),
Leslie Cheng (Bryn Mawr, PA) and Yibiao Pan (Pittsburgh, PA)

Abstract. We establish sharp bounds for oscillatory singular integrals with an arbi-
trary real polynomial phase P . The kernels are allowed to be rough both on the unit sphere
and in the radial direction. We show that the bounds grow no faster than log deg(P ), which
is optimal and was first obtained by Papadimitrakis and Parissis (2010) for kernels with-
out any radial roughness. Among key ingredients of our methods are an L1 → L2 estimate
and extrapolation.

1. Introduction and main results. Throughout this paper, Rn, n≥2,
is the n-dimensional Euclidean space and Sn−1 the unit sphere in Rn equip-
ped with the normalized Lebesgue surface measure dσ. Also, we let ξ′ denote
ξ/|ξ| for ξ ∈ Rn \ {0}, and p′ denotes the exponent conjugate to p, that is,
1/p+ 1/p′ = 1.

Let KΩ,h(y) be a Calderón–Zygmund type kernel of the form KΩ,h(y) =
h(|y|)Ω(y′)|y|−n where h : [0,∞)→ C is a measurable function and Ω is an
integrable function over Sn−1 satisfying

(1.1)
�

Sn−1

Ω(u) dσ(u) = 0.

Let P(n; d) denote the set of all polynomials on Rn which have real
coefficients and degrees not exceeding d. For γ > 0, let ∆γ(R+) denote the
collection of all measurable functions h : [0,∞)→ C satisfying

‖h‖∆γ = sup
k∈Z

( 2k+1�

2k

|h(t)|γ dt/t
)1/γ

<∞,

and Lγ(R+) denote the collection of all measurable functions h : [0,∞)→ C
satisfying
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Lγ(h) = sup
k∈Z

( 2k+1�

2k

|h(t)|
(
log(2 + |h(t)|)

)γ
dt/t

)
<∞.

Also, we let Nγ(R+) denote the class of all measurable functions h on R+

such that

Nγ(h) =

∞∑
m=1

mγ2mdm(h) <∞

where dm(h) = supk∈Z 2−k|E(k,m)| with

E(k,m) = {t ∈ (2k, 2k+1] : 2m−1 < |h(t)| ≤ 2m} for m ≥ 2,

E(k, 1) = {t ∈ (2k, 2k+1] : |h(t)| ≤ 2}.
For γ ≥ 1 define Hγ(R+) to be the set of all measurable functions h

on R+ satisfying the condition

‖h‖Lγ(R+,dr/r) =
(∞�

0

|h(r)|γ dr/r
)1/γ

<∞.

Remark. It is easy to verify that the following inclusion relations hold
and are proper:

(1) ∆γ2(R+) ⊂ ∆γ1(R+) for 1 ≤ γ1 < γ2;
(2) H∞(R+) = ∆∞(R+) and Hγ(R+) ⊂ ∆γ(R+) for 1 < γ <∞;
(3) Nγ2(R+) ⊂ Nγ1(R+) for γ1 < γ2;
(4) Lγ2(R+) ⊂ Lγ1(R+) for γ1 < γ2;
(5) ∆γ(R+) ⊂ Nα(R+) ⊂ Lα(R+) for any γ ≥ 1 and α > 0;
(6) for a given α > 1, Lγ+α(R+) ⊂ Lγ(R+) for any γ > 0;
(7) L(logL)γ(R+, dt/t)⊂Nγ(R+) for all γ>0 where L(logL)γ(R+, dt/t)

is the class of all measurable functions h on R+ which satisfy�

R+

|h(t)|
(
log(2 + |h(t)|)

)γ
dt/t <∞.

Let L(logL)α(Sn−1) (α > 0) denote the class of all functions Ω which
satisfy

‖Ω‖L(logL)α(Sn−1) =
�

Sn−1

|Ω(x)|
(
log(2 + |Ω(x)|)

)α
dσ(x) <∞.

Now, let us recall the definition of the block space B
(0,υ)
q (Sn−1).

Definition. A q-block (1 < q ≤ ∞) on Sn−1 is an Lq function b on
Sn−1 that satisfies the following conditions:

(i) supp(b) ⊂ I;
(ii) ‖b‖Lq ≤ |I|−1/q

′
where |I| = σ(I) and I = B(x′0, θ0) = {x′ ∈ Sn−1 :

|x′ − x′0| < θ0} is a cap on Sn−1 for some x′0 ∈ Sn−1 and θ0 ∈ (0, 1].
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Definition. The block space B
(0,υ)
q (Sn−1) is defined by

B(0,υ)
q (Sn−1) =

{
Ω ∈ L1(Sn−1) : Ω =

∞∑
µ=1

λµbµ, M
(0,υ)
q ({λµ}) <∞

}
where each λµ is a complex number, each bµ is a q-block supported on a cap
Iµ on Sn−1, υ > −1, and

(1.2) M (0,υ)
q ({λµ}) =

∞∑
µ=1

|λµ|{1 + logυ+1(|Iµ|−1)}.

We remark that for any q > 1, 0 < α < β, and υ > −1, the following
inclusions hold and are proper:

Lq(Sn−1) ⊂ L(logL)β(Sn−1) ⊂ L(logL)α(Sn−1) ⊂ L1(Sn−1),(1.3) ⋃
r>1

Lr(Sn−1) ⊂ B(0,υ)
q (Sn−1) ⊂ L1(Sn−1),(1.4)

B(0,υ2)
q (Sn−1) ⊂ B(0,υ1)

q (Sn−1) for any −1 < υ1 < υ2.(1.5)

The question of relation between B
(0,υ−1)
q (Sn−1) and L(log+ L)υ(Sn−1)

(for υ > 0) remains open.

By Plancherel’s Theorem, the L2 boundedness problem for oscillatory
singular integral operators of convolution type directly leads to the con-
sideration of the oscillatory singular integral J(P ) and its n-dimensional
analogue IΩ,h(P ), which are defined by

J(P ) = p.v.
�

R

eiP (t)dt

t
for P ∈ P(1; d),(1.6)

IΩ,h(P ) = p.v.
�

Rn
eiP (x)KΩ,h(x) dx for P ∈ P(n; d).(1.7)

One of the main problems regarding these oscillatory singular integrals
is to obtain sharp estimates with constants depending only on the degree of
the polynomial P . Also of importance is estimating IΩ,h(P ) under minimal
conditions both on Ω and h. The study of these problems was initiated
by Stein–Wainger [17] and Stein [16], and continued by Parissis [12], [13]
and by Papadimitrakis–Parissis [11]. Stein and Wainger [17] proved that if
P ∈ P(1; d), then |J(P )| ≤ Cd for some constant Cd depending only on the
degree d of the polynomial P and independent of its coefficients. Parissis [13]
showed that the true order of magnitude of J(P ) is log d, as stated in the
following theorem:
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Theorem A. Let J(P ) be as above. Then there is an absolute constant
C such that

(1.8)
∣∣∣ sup
P∈P(1;d)

J(P )
∣∣∣ ≤ C(log d+ 1).

On the other hand, Stein [16] studied the higher-dimensional singular
integral IΩ,1(P ) and proved that if h ≡ 1 and Ω ∈ L∞(Sn−1) satisfies (1.1),
then for any P ∈ P(n; d), there exists a positive constant Cd depending only
on the degree d of the polynomial P and independent of its coefficients such
that

(1.9) |IΩ,1(P )| ≤ Cd‖Ω‖L∞(Sn−1).

Recently, Papadimitrakis and Parissis [11] improved Stein’s result by
showing that the constant Cd can be replaced by C(log d + 1) for some
absolute constant C and that the condition on Ω can be weakened to Ω ∈
L logL(Sn−1). Their result can be stated as follows.

Theorem B. Assume that h ≡ 1 and Ω ∈ L logL(Sn−1) satisfies (1.1).
Then there exists an absolute positive constant C such that

(1.10) sup
P∈P(n;d)

|IΩ,1(P )| ≤ C(log d+ 1)(1 + ‖Ω‖L logL(Sn−1)).

It is worth mentioning that, by Theorem A, one can easily show that if
Ω is an odd function on Sn−1 and Ω is merely in L1(Sn−1), then

(1.11) sup
P∈P(n;d)

|IΩ,1(P )| ≤ C(log d+ 1)‖Ω‖L1(Sn−1).

Very recently [2], Theorem B was improved by replacing the condition
Ω ∈ L logL(Sn−1) by the weaker condition Ω ∈ H1(Sn−1) (the Hardy space
on the unit sphere). At this point we remark that the investigation of kernels
KΩ,h which have the additional roughness in the radial direction due to the
presence of h was started by R. Fefferman [8] and taken up by several other
well-known authors. We remark that the method employed in [2] is no longer
applicable if the kernel has roughness in the radial direction. So in light of
the estimates in (1.9)–(1.10) and the inclusion relations in (1.3)–(1.5), the
following questions arise naturally:

Question 1. Does an estimate of supP∈P(n;d) |IΩ,h(P )| as in (1.10)

hold under conditions of the form Ω ∈ L(logL)α(Sn−1) (for 0 < α ≤ 1) and
h ∈ ∆γ(R+) for some γ > 1, and if so, what is the best possible value of the
exponent α?

Question 2. Does an estimate of supP∈P(n;d) |IΩ,h(P )| as in (1.10)

hold under conditions of the form Ω ∈ B
(0,α)
q (Sn−1) (for α > −1) and

h ∈ ∆γ(R+) for some γ > 1, and if so, what is the best possible value of the
exponent α?
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The main purpose of this paper is to answer the above questions. Our
approach will rely on some delicate estimates of supP∈P(n;d) |IΩ,h(P )| and
an extrapolation argument. The exact statements of our results are the
following:

Theorem 1.1. Assume that Ω ∈ Lq(Sn−1) for some 1 < q ≤ 2 and
h ∈ ∆γ(R+) for some 1 < γ ≤ 2. Then

(1.12) sup
P∈P(n;d)

|IΩ,h(P )| ≤ C(log d+1)(q−1)−1(γ−1)−1‖h‖∆γ‖Ω‖Lq(Sn−1)

where C is an absolute positive constant. Moreover, the exponent −1 is the
best possible.

Theorem 1.2. Assume that Ω ∈ Lq(Sn−1) for some 1 < q ≤ 2 and
h ∈ Hγ(R+) for some γ > 1. Then

(1.13) sup
P∈P(n;d)

|IΩ,h(P )|≤C(log d+1)(q−1)−1/γ
′‖h‖Lγ(R+,dr/r)‖Ω‖Lq(Sn−1)

where C is an absolute positive constant.

Theorem 1.3.

(a) Assume that Ω ∈ L logL(Sn−1) and h ∈ N1(R+). Then

(1.14) sup
P∈P(n;d)

|IΩ,h(P )| ≤ C(log d+ 1)(1 + ‖Ω‖L logL(Sn−1))

where C is an absolute positive constant.

(b) The condition Ω ∈ L logL(Sn−1) is the best possible in the sense
that there exists an Ω with Ω ∈ L(logL)1−ε(Sn−1) for all ε > 0 and
satisfying (1.1) such that supP∈P(n;d) |IΩ,1(P )| =∞.

Theorem 1.4.

(a) Assume that Ω∈B(0,0)
q (Sn−1) for some q > 1 and h∈N1(R+). Then

(1.15) sup
P∈P(n;d)

|IΩ,h(P )| ≤ C(log d+ 1)(1 + ‖Ω‖
B

(0,0)
q (Sn−1)

)

where C is an absolute positive constant.

(b) The condition Ω ∈ B(0,0)
q (Sn−1) is the best possible in the sense that

there exists an Ω ∈ B
(0,υ)
q (Sn−1) for any υ, −1 < υ < 0, which

satisfies (1.1) and is such that supP∈P(n;d) |IΩ,1(P )| =∞.
Theorem 1.5.

(a) Assume that h ∈ Hγ(R+) for some γ>1 and Ω ∈ L(logL)1/γ
′
(Sn−1).

Then

(1.16) sup
P∈P(n;d)

|IΩ,h(P )| ≤ C(log d+ 1)(1 + ‖Ω‖L(logL)1/γ′ (Sn−1)).
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(b) Assume that h ∈ Hγ(R+) for some γ > 1 and Ω ∈ B(0,−1/γ)
q (Sn−1)

for some q > 1. Then

(1.17) sup
P∈P(n;d)

|IΩ,h(P )| ≤ C(log d+ 1)(1 + ‖Ω‖
B

(0,−1/γ)
q (Sn−1)

)

where C is an absolute positive constant.

Remarks. (1) In Theorems 1.3–1.4, the condition h ∈ N1(R+) is the
least stringent condition known to date.

(2) In Theorem 1.5(a), the condition Ω ∈ L(logL)1/γ
′
(Sn−1) is weaker

than the condition Ω ∈ L(logL)(Sn−1) in Theorem 1.3(a), which is due to
fact that the condition imposed on h is more restrictive than in Theorem
1.3(a). A similar situation occurs in both Theorems 1.4(a) and 1.5(b).

The paper is organized as follows. A few lemmas will be recalled or proved
in Section 2. In Section 3 we prove the optimality of the conditions imposed
on Ω. Section 4 contains the proofs of the main results. In Section 5, we
present an alternative proof of Theorem A.

Throughout this paper, we let C denote a constant which is independent
of the essential variables. Its value may change from line to line.

2. Some lemmas. We start this section by recalling the following result
from [11], which was established on the basis of a result of Carbery and
Wright [5].

Lemma 2.1. Let P be a real homogeneous polynomial of degree d on Rn.
Then

�

Sn−1

‖P‖1/(2d)
L∞(Sn−1)

‖P (x)‖1/(2d)
dσ(x) ≤ C

for some absolute constant C, independent of P and d.

We shall need the following lemma from [3].

Lemma 2.2. Let h(t) = b0+b1t+ · · ·+bdt
d be a real polynomial of degree

at most d, and let ψ ∈ C1[a, b]. Then for any j0 with 1 ≤ j0 ≤ d, there exists
a positive constant C independent of a, b and of the coefficients of b0, . . . , bd,
and also independent of d, such that∣∣∣ b�

a

eih(t)ψ(t) dt
∣∣∣ ≤ C|bj0 |−1/d{ sup

a≤t≤b
|ψ(t)|+

b�

a

|ψ′(t)| dt
}

for 0 < a < b ≤ 1.

One of the main ingredients in the proof of the main results in this paper
is the following lemma, which is similar in spirit to Lemmas 3.3 and 3.4 in [7].
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Lemma 2.3. Let P be a homogeneous polynomial of degree d on Rn sat-
isfying

(2.1)
�

Sn−1

P (x) dσ(x) = 0.

Then there exists a positive constant C, independent of P and d, such that

(2.2) sup
ω∈R

�

Sn−1

‖P‖δd
L∞(Sn−1)

|P (x)− ω|δd
dσ(x) ≤ C

where δd = 1/(2d) if d is even and δd = 1/(4d) if d is odd.

Proof. We need to consider two cases.

Case 1: d is even. Let ‖ · ‖p denote the Lp norm on Sn−1 and

〈F,G〉 =
�

Sn−1

F (x)G(x) dσ(x).

Then by (2.1) we have 〈P, ω〉 = 0 for any constant ω. Thus

‖P − ω‖22 = 〈P − ω, P − ω〉 = 〈P, P 〉 − 2〈P, ω〉+ ω2

= 〈P, P 〉+ ω2 ≥ ‖P‖22,
which implies that

‖P‖2 ≤ inf{‖P − ω‖2 : ω ∈ R}.
In the rest of the proof we shall use very frequently the following in-

equalities: For any homogeneous polynomial P of degree d, we have

(2.3) ‖P‖1/d
Lp(Sn−1)

≤ ‖P‖1/d
Lq(Sn−1)

≤ C‖P‖1/d
Lp(Sn−1)

for some absolute constant C independent of d and for 1 ≤ p ≤ q ≤ ∞. The
first inequality in (2.3) is clear, while the second follows from [5, Corollary,
p. 234] and from the fact that P is a homogeneous polynomial.

Since P (x)− ω|x|d is a homogeneous polynomial of degree d (and ω|x|d
= ω for x ∈ Sn−1), by (2.3) we have

(2.4) ‖P‖1/(2d)∞ ≤ C inf{‖P − ω‖1/(2d)∞ : ω ∈ R}
with C independent of d. Thus,

(2.5)
�

Sn−1

‖P − ω‖1/(2d)
L∞(Sn−1)

|P (x)− ω|1/(2d)
dσ(x) ≤ C.

By (2.4)–(2.5) we get

(2.6)
�

Sn−1

‖P‖1/(2d)
L∞(Sn−1)

|P (x)− ω|1/(2d)
dσ(x) ≤ C

for every ω ∈ R, which ends the proof of (2.2) when d is even.
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Case 2: d is odd. Now we need to prove

(2.7) sup
ω∈R

�

Sn−1

‖P‖1/(4d)
L∞(Sn−1)

|P (x)− ω|1/(4d)
dσ(x) ≤ C.

By (2.3) there exists a constant c0 ≥ 1 independent of d such that

(2.8) ‖P‖1/(2d)2 ≤ ‖P‖1/(2d)∞ ≤ c0‖P‖1/(2d)2

for every homogeneous polynomial P of degree d, and hence

(2.9) ‖P̃‖1/(4d)2 ≤ ‖P̃‖1/(4d)∞ ≤ c0‖P̃‖1/(4d)2

for every homogeneous polynomial P̃ of degree 2d. Thus (2.7) is equivalent
to

(2.10) sup
ω∈R

�

Sn−1

‖P‖1/(4d)
L2(Sn−1)

|P (x)− ω|1/(4d)
dσ(x) ≤ C.

By a scaling argument, (2.10) will follow from the next proposition.

Proposition 2.4. Let d ∈ N be odd. If P is a homogeneous polynomial
of degree d and ‖P‖2 = 1, then

(2.11) sup
ω∈R

�

Sn−1

1

|P (x)− ω|1/(4d)
dσ(x) ≤ C

where C is independent of d.

Proof. By (2.8) and since ‖P‖2 = 1, we have

(2.12) 1 ≤ ‖P‖∞ ≤ c(2d)0 .

If |ω| > 2c
(2d)
0 , then for every x ∈ Sn−1 we have |P (x) − ω|1/(4d) ≥

(c
(2d)
0 )1/(4d) ≥ 1 and hence (2.11) holds. We now assume that |ω| ≤ 2c

(2d)
0 .

Let φω(x) = (P (x))2 − ω2|x|2d. Since φω is a homogeneous polynomial of
degree 2d, by Lemma 2.1 we obtain

(2.13) sup
ω∈R

�

Sn−1

‖φω‖1/(4d)L∞(Sn−1)

|φω(x)|1/(4d)
dσ(x) ≤ C.

For any x ∈ Sn−1, by (2.12) we have

(2.14) |φω(x)|1/(4d) = |P (x) +ω|1/(4d)|P (x)−ω|1/(4d)≤ 2c0|P (x)−ω|1/(4d).

Now we notice that

〈φ1, 1〉 =
�

Sn−1

φ1(x) dσ(x) = ‖P‖22 − 1 = 0.
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Thus,

‖φω‖22 = ‖φ1 + (1− ω2)‖22(2.15)

= 〈φ1, φ1〉+ 2(1− ω2)〈φ1, 1〉+ (1− ω2)2

= ‖φ1‖22 + (1− ω2)2 ≥ ‖φ1‖22.
Since d is odd, there exists an x0 ∈ Sn−1 with P (x0) = 0. By (2.9) and (2.15)
we obtain

1 =
∣∣(P (x0))

2 − |x0|2d
∣∣1/(4d) = |φ1(x0)|1/(4d)(2.16)

≤ ‖φ1‖1/(4d)∞ ≤ c0‖φ1‖1/(4d)2 ≤ c0‖φω‖1/(4d)∞ .

By (2.14) and (2.16), we have

(2.17)
1

|P (x)− ω|1/(4d)
≤ 2c20‖φω‖

1/(4d)
∞

|φω(x)|1/(4d)
.

By (2.13) and (2.17) we see that (2.11) holds when |ω| ≤ 2c
(2d)
0 . The proof

of the proposition is now complete.

3. Proof of the optimality of the conditions imposed on Ω

Proof of Theorem 1.3(b). Let P∗(n) denote the set of all polynomials
Pa on Rn given by Pa(x) = a · x where a = (a1, . . . , an) ∈ Sn−1 and x =
(x1, . . . , xn) ∈ Rn. Let Pa ∈ P∗(n) for some a ∈ Sn−1. Then

IΩ,1(Pa) = lim
ε→0
R→∞

�

ε≤|x|≤R

eiPa(x)
Ω(x/|x|)
|x|n

dx

= lim
ε→0
R→∞

�

Sn−1

R�

ε

e−i2πt(a·x)Ω(x)
dt

t
dσ(x).

Since
R�

ε

(e−2πit(a·x) − cos(2πt))
dt

t
→ log |a · x|−1 − iπ

2
sgn(a · x)

as R → ∞ and ε → 0, the integral is bounded, uniformly in ε and R, by
C
(
1 +

∣∣log |a · x|
∣∣).

Thus, using (1.1) and Lebesgue’s Dominated Convergence Theorem, we
get

IΩ,1(Pa) =
�

Sn−1

Ω(x)

(
log |a · x|−1 − iπ

2
sgn(a · x)

)
dσ(x) = mΩ(a),

and hence

sup
P∈P(n;d)

|IΩ,1(P )| ≥ mΩ(a) for any a = (a1, . . . , an) ∈ Sn−1.
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Now consider the homogeneous Calderón–Zygmund singular integral oper-
ator TΩ given by

TΩf(x) = p.v.
�

Rn
Ω(y′)|y|−nf(x− y) dy.

It is well-known that T̂Ωf(ξ) = mΩ(ξ)f̂(ξ) and the convolution operator TΩ
is bounded from L2(Rn) to itself if and only if mΩ ∈ L∞(Rn).

From the result of M. Weiss and A. Zygmund [18] we deduce that there
exists Ω ∈ L(logL)1−ε(Sn−1) for any ε > 0 such that mΩ is unbounded
on Rn. Hence we have supP∈P(n;d) |IΩ,1(P )| = ∞, which ends the proof of
Theorem 1.3(b).

Proof of Theorem 1.4(b). We argue as in the proof of Theorem 1.3(b).

By a counterexample in [1] we deduce that there exists Ω ∈ B(0,υ)
q (Sn−1) for

any υ, −1 < υ < 0, such that mΩ is unbounded on Rn, which in turn ends
the proof of Theorem 1.4(b).

4. Proofs of theorems

Proof of Theorem 1.1. Assume that h ∈ ∆γ(R+) for some γ ∈ (1, 2], and
assume that Ω ∈ Lq(Sn−1) for some q ∈ (1, 2] and satisfies (1.1). Let

Ad = Ad(Ω, h, n) = sup
0<ε<R
P∈P(n;d)

|Jε,R(P )|

where
Jε,R(P ) =

�

ε≤|x|≤R

eiP (x)KΩ,h(x) dx.

We need to show that

(4.1) Ad ≤ C(log d+ 1)(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1)

for some absolute positive constant C. We shall first prove (4.1) for the case
d = 2m for some integer m ≥ 0; then the general case will be an immediate
consequence.

Switching to polar coordinates, we get

Jε,R(P ) =
�

Sn−1

R�

ε

eiP (tx)h(t)Ω(x)
dt

t
dσ(x).

Write

(4.2) P (tx) =
d∑
j=1

Pj(x)tj +R(t)

with

(4.3)
�

Sn−1

Pj(x) dσ(x) = 0
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for every j = 1, . . . , d where Pj(x) is homogeneous of degree j. We remark
that when j is odd, then (4.3) holds automatically. When j is even, one
may need to add/subtract a constant multiple of |x|j , which is itself a ho-
mogeneous polynomial of degree j. Since Ω satisfies (1.1), we may assume
without loss of generality that R(t) ≡ 0. Let

mj = ‖Pj‖L∞(Sn−1) and Q(tx) =

d/2∑
j=1

Pj(x)tj .

Since ε and R are arbitrary positive numbers and P is a polynomial of
degree d, by a dilation in t we may assume, without loss of generality, that
maxd/2<j≤dmj = 1. Also, there is d/2 < j0 ≤ d such that mj0 = 1. Now,
Jε,R(P ) can be written as

|Jε,R(P )| ≤
∣∣∣∣ �

Sn−1

R0�

ε

eiP (tx)h(t)Ω(x)
dt

t
dσ(x)

∣∣∣∣(4.4)

+

∣∣∣∣ �

Sn−1

R�

R0

eiP (tx)h(t)Ω(x)
dt

t
dσ(x)

∣∣∣∣
= I1 + I2

where R0 will be defined later.

Let us first estimate I1:

I1 ≤
�

Sn−1

R0�

0

|eiP (tx) − eiQ(tx)| |h(t)| |Ω(x)| dt
t
dσ(x)

+

∣∣∣∣ �

Sn−1

R0�

ε

eiQ(tx)h(t)Ω(x)
dt

t
dσ(x)

∣∣∣∣
≤ ‖Ω‖L1(Sn−1)

∑
d/2<j≤d

mj

(R0�

0

tj |h(t)| dt
t

)
+Ad/2.

By Hölder’s inequality and letting R0 = d1/(dγ
′) we get

(4.5) I1 ≤ C(log θ)‖Ω‖Lq(Sn−1)‖h‖∆γ +Ad/2.

Now we estimate I2. It is clear that

I2 ≤
R�

1

|h(t)|
∣∣∣ �

Sn−1

Ω(x)eiP (tx) dσ(x)
∣∣∣ dt
t
.

Let θ = 2q
′γ′ . For each fixed R > 1 we have a unique k0 ∈ Z+ such that
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θk0−1 ≤ R < θk0 . Hence

I2 ≤ sup
k0∈Z+

θk0�

θk0−1

|h(t)|
∣∣∣ �

Sn−1

eiP (tx)Ω(x) dσ(x)
∣∣∣ dt
t

+ sup
k0∈Z+

( ∞∑
k=k0+1

Ik,θ

)
(4.6)

= J1 + J2

where

Ik,θ =

θk�

θk−1

|h(t)|
∣∣∣ �

Sn−1

eiP (tx)Ω(x) dσ(x)
∣∣∣ dt
t
.

It is easy to see that

(4.7) J1 ≤ C(log θ)‖Ω‖Lq(Sn−1)‖h‖∆γ .
Therefore, it remains to estimate J2.

To this end, we first estimate Ik,θ:

Ik,θ ≤
( θk�

θk−1

|h(t)| dt
t

)1/γ( θk�

θk−1

∣∣∣ �

Sn−1

eiP (tx)Ω(x) dσ(x)
∣∣∣γ′ dt

t

)1/γ′

(4.8)

≤ C(log θ)1/γ‖h‖∆γ |Ω|
1−2/γ′
Lq(Sn−1)

( θk�

θk−1

∣∣∣ �

Sn−1

eiP (tx)Ω(x) dσ(x)
∣∣∣2dt
t

)1/γ′

.

Now

(4.9)

θk�

θk−1

∣∣∣ �

Sn−1

eiP (tx)Ω(x) dσ(x)
∣∣∣2 dt

t

=
�

Sn−1×Sn−1

Ω(x)Ω(y)

( θk�

θk−1

ei(P (tx)−P (ty)) dt

t

)
dσ(x) dσ(y).

By a change of variable and invoking Lemma 2.2 we get∣∣∣∣ θk�

θk−1

ei(P (tx)−P (ty)) dt

t

∣∣∣∣ ≤ Cθ · θ−kj0/d|Pj0(x)− Pj0(y)|−1/d.

By combining the last estimate with the trivial estimate∣∣∣∣ θk�

θk−1

ei(P (tx)−P (ty)) dt

t

∣∣∣∣ ≤ log θ,

we obtain

(4.10)

∣∣∣∣ θk�

θk−1

ei(P (tx)−P (ty)) dt

t

∣∣∣∣ ≤ C(log θ)θ−kj0/δd |Pj0(x)− Pj0(y)|−δd/q′
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where δj = 1/(2j) if j is even and δj = δd = 1/(4j) if j is odd. Thus, by
(4.8)–(4.10) and since ‖Pj0‖L∞(Sn−1) = 1, we have

Ik,θ ≤ C(log θ)‖h‖∆γ‖Ω‖Lq(Sn−1)(4.11)

×
( �

Sn−1×Sn−1

‖Pj0‖
δd
L∞(Sn−1)

|Pj0(x)− Pj0(y)|δd
dσ(x) dσ(y)

)1/q′

.

Now since ‖Pj0‖L∞(Sn−1) = 1 and d/2 < j0 ≤ d we get

‖Pj0‖
δd
L∞(Sn−1)

|Pj0(x)− Pj0(y)|δd
≤ C

‖Pj0‖
δj0
L∞(Sn−1)

|Pj0(x)− Pj0(y)|δj0
.

Thus by (4.11) and Lemma 2.3 we have

Ik,θ ≤ C(log θ)θ−kj0δj0‖h‖∆γ‖Ω‖Lq(Sn−1),

which in turn implies

(4.12) J2 ≤ C(log θ)‖h‖∆γ‖Ω‖Lq(Sn−1).

By (4.4)–(4.6) and (4.12) we obtain

Ad ≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1) +Ad/2.

Since d = 2m, we get

A2m ≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1) +A2m−1 ,

and hence by induction on m we have

(4.13) A2m ≤ Cm(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1) +A1.

Now, we need to estimate A1. To this end, we notice that any P ∈ P(n; 1)
has a non-constant term of the form a · x for some a ∈ Rn. It is easy to see
that

|Jε,R(P )| ≤
∣∣∣∣ �

Sn−1

1�

ε

eit(a
′·x)h(t)Ω(x)

dt

t
dσ(x)

∣∣∣∣(4.14)

+

∣∣∣∣ �

Sn−1

R�

1

eit(a
′·x)h(t)Ω(x)

dt

t
dσ(x)

∣∣∣∣
= L1 + L2

where a′ = a/|a|. By (1.1) we have

L1 ≤
�

Sn−1

1�

ε

|eit(a′·x) − 1| |h(t)| |Ω(x)| dt
t
dσ(x)(4.15)

≤ ‖Ω‖L1(Sn−1)‖h‖∆γ .
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To estimate L2 we proceed as for J2 above. For each fixed R > 1 we have a
unique k0 ∈ Z+ such that θk0−1 ≤ R < θk0 . Hence

L2 ≤ sup
k0∈Z+

θk0�

θk0−1

|h(t)|
∣∣∣ �

Sn−1

eit(a
′·x)Ω(x) dσ(x)

∣∣∣ dt
t

+ sup
k0∈Z+

∞∑
k=k0+1

Hk(4.16)

= E1 + E2

where

Hk =

θk�

θk−1

|h(t)|
∣∣∣ �

Sn−1

eit(a
′·x)Ω(x) dσ(x)

∣∣∣ dt
t
.

It is easy to see that

(4.17) E1 ≤ C(log θ)‖Ω‖Lq(Sn−1)‖h‖∆γ .
By Hölder’s inequality we have

Hk ≤ C(log θ)1/γ‖h‖∆γ‖Ω‖
1−2/γ′
Lq(Sn−1)

(4.18)

×
( θk�

θk−1

∣∣∣ �

Sn−1

eit(a
′·x)Ω(x) dσ(x)

∣∣∣2 dt
t

)1/γ′

.

Since

θk�

θk−1

∣∣∣ �

Sn−1

eiP (tx)Ω(x) dσ(x)
∣∣∣2 dt

t

=
�

Sn−1×Sn−1

Ω(x)Ω(y)

( θk�

θk−1

eita
′·(x−y) dt

t

)
dσ(x) dσ(y),

by Hölder’s inequality, (4.17) and the estimate

(4.19)

∣∣∣∣ θk�

θk−1

eita
′·(x−y) dt

t

∣∣∣∣ ≤ C(log θ)θ−k|a′ · (x− y)|−1/(2q′),

we get

Hk ≤ C(log θ)‖h‖∆γ‖Ω‖Lq(Sn−1),

and hence

(4.20) E2 ≤ C(log θ)‖h‖∆γ‖Ω‖Lq(Sn−1).

Now (4.14)–(4.16), (4.20), and the definition of A1 lead to

(4.21) A1 ≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1).

Hence, by (4.13) and (4.21) we obtain

(4.22) A2m ≤ C(m+ 1)(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1).
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The case of the general d is now easy. Choose a positive integer m so that
2m−1 < d ≤ 2m. By definition of Ad and since P(n; d) ⊂ P(n; 2m), we have

Ad ≤ A2m ≤ C(m+ 1)(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1)

≤ C(log d+ 1)(q − 1)−1(γ − 1)−1‖h‖∆γ‖Ω‖Lq(Sn−1),

which completes the proof of Theorem 1.1.

Proof of Theorem 1.2. We use exactly the same method as in the proof
of Theorem 1.1, except for two minor modifications which occur in several
places: First, we need to replace θ = 2q

′γ′ by θ = 2q
′
. Next, we notice that

by Hölder’s inequality we have

θk�

θk−1

|h(t)| dt
t
≤ (log θ)1/γ

′
( θk�

θk−1

|h(t)|γ dt
t

)1/γ

≤ (log θ)1/γ
′‖h‖Lγ(R+,dr/r).

The details are omitted.

Proof of Theorem 1.3(a). We follow the extrapolation method of Yano
[19], and we present a similar argument to [4] and [15]. Assume that Ω ∈
L(logL)(Sn−1) and satisfies (1.1). Let SΩ,h = supP∈P(n;d) IΩ,h(P ). Fix γ ∈
(1, 2], h ∈ ∆γ(R+), and put T (Ω) = SΩ,h. Then we have T (Ω1 + Ω2) ≤
T (Ω1) + T (Ω2). Now, we decompose Ω as follows: For m ∈ N, let Em =
{x ∈ Sn−1 : 2m ≤ |Ω(x)| < 2m+1}. For m ∈ N, set bm = ΩχEm where χA is
the characteristic function of a set A. Let

E(Ω) = {m ∈ N : ‖bm‖1 ≥ 2−4m},

and define the sequence {Ωm}m∈E(Ω)∪{0} of functions by

Ωm(x) = ‖bm‖−11

(
bm(x)−

�

Sn−1

bm(x) dσ(x)
)

for m ∈ E(Ω),

Ω0(x) = Ω(x)−
∑

m∈E(Ω)

‖bm‖1Ωm(x).

It is easy to verify that the following hold:∑
m∈E(Ω)

m‖bm‖1 ≤
1√

log 2
‖Ω‖L(logL)(Sn−1),(4.23)

�

Sn−1

Ωm(u) dσ(u) = 0 for all m ∈ E(Ω) ∪ {0},(4.24)

‖Ωm‖1+1/m ≤ 26 for m ∈ E(Ω) and ‖Ω0‖2 ≤ 22.(4.25)
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By (4.23)–(4.25) and invoking Theorem 1.1, we obtain

T (Ω) ≤ T (Ω0) +
∑

m∈E(Ω)

‖bm‖1T (Ωm)

≤ C(log d+ 1)(γ − 1)−1‖h‖∆γ
×
(
‖Ω0‖L2(Sn−1) +

∑
m∈E(Ω)

m‖bm‖1‖Ωm‖1+1/m

)
≤ C(log d+ 1)(1 + ‖Ω‖L logL(Sn−1))(γ − 1)−1‖h‖∆γ .

Now, fix Ω ∈ L logL(Sn−1) and let L(h) = SΩ,h. Decompose h as follows:
For m ∈ N, let Em = {x ∈ R+ : 2m ≤ |h(x)| < 2m+1}. For m ∈ N, set
hm = hχEmand set D(h) = {m ∈ N : dm(h) ≥ 2−4m}. Also, let h0 =
h−

∑
m∈D(h) hm. Then it is easy to verify that

‖hm‖∆1+1/m
≤ 2m(dm(h))m/(m+1) ≤ 2mdm(h),(4.26)

‖h0‖∆2 ≤ 32.(4.27)

Now by (4.26)–(4.27) and applying Theorem 1.1, we get

L(h) ≤ L(h0) +
∑

m∈D(h)

dm(h)L(hm)

≤ C(log d+ 1)(1 + ‖Ω‖L logL(Sn−1))
(

32 +
∑

m∈D(h)

m2mdm(h)
)

≤ C(log d+ 1)(1 + ‖Ω‖L logL(Sn−1))(1 +N1(h)).

Proof of Theorem 1.4(a). Assume that Ω ∈ B(0,0)
q (Sn−1) for some q > 1

satisfies (1.1). Without loss of generality, we may assume 1 < q ≤ 2. Fix γ ∈
(1, 2] and h ∈ ∆γ(R+). Let SΩ,h = supP∈P(n;d) IΩ,h(P ). Put T (Ω) = SΩ,h.

Since Ω ∈ B(0,0)
q (Sn−1), we can write Ω as Ω =

∑∞
µ=1 λµbµ where λµ ∈ C,

bµ is a q-block supported on a cap Iµ on Sn−1, and M
(0,0)
q ({λµ}) <∞. For

each block function bµ(·), define

Ω̃µ(x) = bµ(x)−
�

Sn−1

bµ(u) dσ(u).

Let K = {µ ∈ N : |Iµ| < e−(q−1)
−1} and Ω̃0 = Ω −

∑
µ∈K λµΩ̃µ. Also, for

µ ∈ K let αµ = log(|Iµ|−1) and β =
∑∞

µ=1 |λµ|. Then it is easy to see that
�

Sn−1

Ω̃µ(u) dσ(u) = 0 for all µ ∈ K ∪ {0},(4.28)

‖Ω̃0‖q ≤ βe1/q,(4.29)

‖Ω̃µ‖1+1/αµ ≤ 4 for all µ ∈ K.(4.30)
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By (4.28)–(4.30) and invoking Theorem 1.1, we get

T (Ω) ≤ T (Ω̃0) +
∑
µ∈K
|λµ|T (Ω̃µ)

≤ C(log d+ 1)
(

(q − 1)−1‖Ω̃0‖q +
∑
µ∈K
|λµ| log |Iµ|−1‖Ω̃µ‖1+1/αµ

)
≤ C(log d+ 1)

(
βe1/q(q − 1)−1 + 4

∑
µ∈K
|λµ| log |Iµ|−1

)
≤ C(log d+ 1)(1 + ‖Ω‖

B
(0,0)
q (Sn−1)

).

Proof of Theorem 1.5. The proof uses the same argument employed in
the proofs of Theorems 1.3(a) and 1.4(a). The details are omitted.

5. Proof of the one-dimensional case of Theorem 1.1. In this
section we shall present another proof of Theorem A. The idea of the proof
is similar to that in the proof of Theorem 1.1. Let

Kd = sup
0<ε<R
P∈P(1;d)

|Hε,R(P )| where Hε,R(P ) =
�

ε≤|x|≤R

eiP (t) dt

t
.

We need to show that

(5.1) Kd ≤ C(log d+ 1)

for some absolute positive constant C. We shall first prove (5.1) for the
case d = 2m for some integer m ≥ 0, and then the general case will be an
immediate consequence. Fix P (t) = a0 + a1t+ · · ·+ adt

d ∈ P(1; d). We may
assume, without loss of generality, that a0 = 0. LetQ(t) = a1t+· · ·+ad/2td/2.
Let |aj0 | = maxd/2<j≤d |aj |. Since ε and R are arbitrary positive numbers,
by a dilation in t we may assume, without loss of generality, that |aj0 | = 1.
Now,

(5.2) |Hε,R(P )| ≤
∣∣∣∣ �

ε≤|t|≤1

eiP (t) dt

t

∣∣∣∣+

∣∣∣∣ �

1≤|t|≤R

eiP (t) dt

t

∣∣∣∣ = X1 +X2.

Let us first estimate X1:

X1 ≤
�

0≤|t|≤1

|eiP (t) − eiQ(t)| dt
t

+

∣∣∣∣ �

ε≤|t|≤1

eiQ(t) dt

t

∣∣∣∣
≤

∑
d/2<j≤d

|aj |
j

+ Cd/2.

Since |aj | ≤ 1 for d/2 < j ≤ d, we get

(5.3) X1 ≤ C +Kd/2.
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Now we estimate X2. We notice that

(5.4) X2 ≤
∣∣∣∣ �

1≤t≤R
eiP (t) dt

t

∣∣∣∣+

∣∣∣∣ �

−R≤t≤−1
eiP (t) dt

t

∣∣∣∣ = X+
2 +X−2 .

To estimate X+
2 , notice that for each fixed R > 1 we have a unique j0 ∈ Z+

such that 2j0−1 ≤ R < 2j0 . Hence

(5.5) X+
2 ≤ sup

j0∈Z+

∣∣∣∣ 2j0�

2j0−1

eiP (t) dt

t

∣∣∣∣+ sup
j0∈Z+

∣∣∣∣ ∞∑
k=j0+1

1�

1/2

eiP (2kt) dt

t

∣∣∣∣ = Y1 + Y2.

It is easy to see that

(5.6) Y1 ≤ log 2.

To estimate Y2 observe that by Lemma 2.2 we have∣∣∣∣ 1�

1/2

eiP (2kt) dt

t

∣∣∣∣ ≤ C2−k(j0−1)/d,

which in turn implies

(5.7) Y2 ≤ C sup
j0∈Z+

∞∑
k=j0+1

2−k(j0−1)/d ≤ C.

By (5.5)–(5.7) we obtain

(5.8) X+
2 ≤ C.

Similarly, we get

(5.9) X−2 ≤ C.
Therefore, by (5.2)–(5.4) and (5.8)–(5.9), we get

Kd ≤ C +Kd/2.

Now, we argue as in the n-dimensional case to finish the proof of Theorem A.
The details are omitted.
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