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The Daugavet property and translation-invariant subspaces

by

Simon Lücking (Berlin)

Abstract. Let G be an infinite, compact abelian group and let Λ be a subset of its
dual group Γ . We study the question which spaces of the form CΛ(G) or L1

Λ(G) and which
quotients of the form C(G)/CΛ(G) or L1(G)/L1

Λ(G) have the Daugavet property.
We show that CΛ(G) is a rich subspace of C(G) if and only if Γ \Λ−1 is a semi-Riesz

set. If L1
Λ(G) is a rich subspace of L1(G), then CΛ(G) is a rich subspace of C(G) as well.

Concerning quotients, we prove that C(G)/CΛ(G) has the Daugavet property if Λ is a
Rosenthal set, and that L1

Λ(G) is a poor subspace of L1(G) if Λ is a nicely placed Riesz
set.

1. Introduction. I. K. Daugavet [3] proved in 1963 that all compact
operators T on C[0, 1] satisfy the norm identity

‖Id + T‖ = 1 + ‖T‖,
which has become known as the Daugavet equation. C. Foiaş and I. Singer [5]
extended this result to all weakly compact operators on C[0, 1] and A. Peł-
czyński [5, p. 446] observed that their argument can also be used for weakly
compact operators on C(K) provided that K is a compact space without
isolated points. Shortly afterwards, G. Ya. Lozanovskĭı [20] showed that
the Daugavet equation holds for all compact operators on L1[0, 1], and
J. R. Holub [12] extended this result to all weakly compact operators
on L1(Ω,Σ, µ) where µ is a σ-finite non-atomic measure. V. M. Kadets,
R. V. Shvidkoy, G. G. Sirotkin, and D. Werner [17] proved that the validity
of the Daugavet equation for weakly compact operators already follows from
the corresponding statement for operators of rank one. This result led to the
following definition: A Banach space X is said to have the Daugavet property
if every operator T : X → X of rank one satisfies the Daugavet equation.

Examples include the aforementioned spaces C(K) and L1(Ω,Σ, µ), cer-
tain function algebras such as the disk algebra A(D) or the algebra of
bounded analytic functions H∞ [28, 29], and non-atomic C∗-algebras [23].
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If X has the Daugavet property, not only all weakly compact operators on
X satisfy the Daugavet equation but also all strong Radon–Nikodým op-
erators [17], meaning operators T for which T [BX ] is a Radon–Nikodým
set, and operators not fixing a copy of `1 [27]. Furthermore, X fails the
Radon–Nikodým property [29], contains a copy of `1 [17], does not have
an unconditional basis [13], and does not even embed into a space with an
unconditional basis [17].

The listed properties give the impression that spaces with the Daugavet
property are “big”. It is therefore an interesting question which subspaces of a
spaceX with the Daugavet property inherit this property. One approach is to
look at closed subspaces Y such that the quotient space X/Y is “small”. For
this purpose, V. M. Kadets and M. M. Popov [15] introduced on C[0, 1] and
L1[0, 1] the class of narrow operators, a generalization of the class of compact
operators, and called a subspace rich if the corresponding quotient map is
narrow. This concept was transferred to spaces with the Daugavet property
by V. M. Kadets, R. V. Shvidkoy, and D. Werner [18]. Rich subspaces inherit
the Daugavet property and the class of narrow operators includes all weakly
compact operators, all strong Radon–Nikodým operators, and all operators
which do not fix copies of `1 [18].

If Y is a rich subspace of a Banach space X with the Daugavet prop-
erty, then not only Y inherits the Daugavet property but also every closed
subspace of X which contains Y . In view of this property, V. M. Kadets,
V. Shepelska, and D. Werner introduced a similar notion for quotients of
X and called a closed subspace Y poor if X/Z has the Daugavet property
for every closed subspace Z ⊂ Y . They also showed that poverty is a dual
property to richness [16].

Let us consider an infinite, compact abelian group G with its Haar mea-
sure m. Since G has no isolated points and m has no atoms, the spaces
C(G) and L1(G) have the Daugavet property. Using the group structure
of G, we can translate functions that are defined on G and look at closed,
translation-invariant subspaces of C(G) or L1(G). These subspaces can be
described via subsets Λ of the dual group Γ and are of the form CΛ(G) =
{f ∈ C(G) : spec f ⊂ Λ} and L1

Λ(G) = {f ∈ L1(G) : spec f ⊂ Λ}, where

spec f = {γ ∈ Γ : f̂(γ) 6= 0}.
We are going to study the question which closed, translation-invariant

subspaces of C(G) and L1(G) and which quotients of the form C(G)/CΛ(G)
or L1(G)/L1

Λ(G) have the Daugavet property. We will show that CΛ(G) is
a rich subspace of C(G) if and only if Γ \ Λ−1 is a semi-Riesz set, and
that CΛ(G) is rich in C(G) if L1

Λ(G) is rich in L1(G). We will prove that
C(G)/CΛ(G) has the Daugavet property if L1

Γ\Λ−1(G) is a rich subspace of
L1(G), and that L1(G)/L1

Λ(G) has the Daugavet property if CΓ\Λ−1(G) is
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a rich subspace of C(G). We will furthermore identify a big class of poor,
translation-invariant subspaces of L1(G).

2. Preliminaries. Let T be the circle group, i.e., the multiplicative
group of all complex numbers with absolute value one. In what follows,
G will be an infinite, compact abelian group with addition as group oper-
ation and eG as identity element. B(G) will denote its Borel σ-algebra, m
its normalized Haar measure, Γ its (discrete) dual group, i.e., the group of
all continuous homomorphisms from G into T, and Λ a subset of Γ . Linear
combinations of elements of Γ are called trigonometric polynomials and we
set T (G) = linΓ . We will write 1G for the identity element of Γ , which
coincides with the function identically equal to one.

Lemma 2.1. If O is an open neighborhood of eG, then there exists a
covering of G by disjoint Borel sets B1, . . . , Bn with Bk − Bk ⊂ O for k =
1, . . . , n.

Proof. Let V be an open neighborhood of eG with V − V ⊂ O. Since
G is compact, we can choose x1, . . . , xn ∈ G with G =

⋃n
k=1(xk + V ). Set

B1 = x1+V and Bk = (xk+V )\
⋃k−1
l=1 Bl for k = 2, . . . , n. Then B1, . . . , Bn

is a covering of G by disjoint Borel sets and for every k ∈ {1, . . . , n},

Bk −Bk ⊂ (xk + V )− (xk + V ) ⊂ V − V ⊂ O.

L1(G) and M(G), the space of all regular Borel measures on G, are
commutative Banach algebras with respect to convolution, and L1(G) is a
closed ideal of M(G) [25, Theorems 1.1.7, 1.3.2, and 1.3.5]. If µ ∈M(G), its
Fourier–Stieltjes transform is defined by

µ̂(γ) =
�

G

γ dµ (γ ∈ Γ ),

and the map µ 7→ µ̂ is injective, multiplicative, and continuous [25, Theo-
rems 1.3.3 and 1.7.3]. L1(G) does not have a unit, unless G is discrete. But
we always have an approximate unit [11, Remark VIII.32.33(c) and Theo-
rem VIII.33.12].

Proposition 2.2. There is a net (vj)j∈J in L1(G) with the following
properties:

(i) ‖f − f ∗ vj‖1 → 0 for every f ∈ L1(G);
(ii) ‖f − f ∗ vj‖∞ → 0 for every f ∈ C(G);
(iii) vj ≥ 0, vj ∈ T (G) and v̂j ≥ 0 for every j ∈ J ;
(iv) ‖vj‖1 = 1 for every j ∈ J ;
(v) v̂j(γ)→ 1 for every γ ∈ Γ .



272 S. Lücking

If f : G → C is a function and x an element of G, the translate fx of f
is defined by

fx(y) = f(y − x) (y ∈ G).

A subspace X of L1(G) or C(G) is called translation-invariant if X contains
with a function f all possible translates fx. As already mentioned in the
introduction, all closed, translation-invariant subspaces of C(G) or L1(G)
are of the form CΛ(G) or L1

Λ(G) [11, Theorem IX.38.7], where Λ is a sub-
set of Γ . We define TΛ(G), L∞Λ (G), and MΛ(G) analogously. Note that by
Proposition 2.2 the space TΛ(G) is ‖ · ‖∞-dense in CΛ(G) and ‖ · ‖1-dense in
L1
Λ(G).
We will need the following characterization of the Daugavet property [17,

Lemma 2.2].

Lemma 2.3. Let X be a Banach space. The following assertions are
equivalent:

(i) X has the Daugavet property.
(ii) For every x ∈ SX , x∗ ∈ SX∗, and ε > 0 there is some y ∈ SX such

that Rex∗(y) ≥ 1− ε and ‖x+ y‖ ≥ 2− ε.
(iii) For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0 there is some y∗ ∈ SX∗

such that Re y∗(x) ≥ 1− ε and ‖x∗ + y∗‖ ≥ 2− ε.

3. Structure-preserving isometries. The Daugavet property depends
crucially on the norm of a space and is preserved under isometries but in gen-
eral not under isomorphisms. Considering translation-invariant subspaces of
C(G) and L1(G), it would be useful to know isometries that map translation-
invariant subspaces onto translation-invariant subspaces.

Definition 3.1. Let G1 and G2 be locally compact abelian groups with
dual groups Γ1 and Γ2. Let H : G1 → G2 be a continuous homomorphism.
The adjoint homomorphism H∗ : Γ2 → Γ1 is defined by

H∗(γ) = γ ◦H (γ ∈ Γ2).

The adjoint homomorphism H∗ is continuous [10, Theorem VI.24.38],
H∗∗ = H [10, VI.24.41(a)], and H∗[Γ2] is dense in Γ1 if and only if H is
one-to-one [10, VI.24.41(b)].

Lemma 3.2. Let H : G → G be a continuous and surjective homomor-
phism. Then H is measure-preserving, i.e., each Borel set B of G satisfies
m(H−1[B]) = m(B).

Proof. Denote by µ the push-forward of m under H. It is easy to see that
µ is regular and µ(G) = 1. Since the Haar measure is uniquely determined,
it suffices to show that µ is translation-invariant.
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Fix B ∈ B(G) and x ∈ G. H is surjective and thus there is y ∈ G with
H(y) = x. It is not difficult to check that H−1[B + H(y)] = H−1[B] + y.
Using this equality, we get

µ(B + x) = m(H−1[B +H(y)]) = m(H−1[B] + y)

= m(H−1[B]) = µ(B).

Proposition 3.3. Let H : Γ → Γ be a one-to-one homomorphism and
let Λ be a subset of Γ . Then CΛ(G) ∼= CH[Λ](G) and L1

Λ(G)
∼= L1

H[Λ](G).

Proof. If we define T : C(G)→ C(G) by

T (f) = f ◦H∗ (f ∈ C(G)),
then T is well-defined and an isometry because H∗ is continuous and surjec-
tive. (Note that H∗[G] is compact and therefore closed.) For every trigono-
metric polynomial f =

∑n
k=1 akγk and every x ∈ G we get

T (f)(x) =
n∑
k=1

akγk(H
∗(x)) =

n∑
k=1

akH(γk)(x).

Hence for every Λ ⊂ Γ , T maps the space TΛ(G) onto TH[Λ](G) and by
density the space CΛ(G) onto CH[Λ](G).

Let us look at the same T but now as an operator from L1(G) into itself.
It is again an isometry because H∗ is measure-preserving by Lemma 3.2. For
every Λ ⊂ Γ , it still maps the space TΛ(G) onto TH[Λ](G) and so by density
L1
Λ(G) onto L

1
H[Λ](G).

Corollary 3.4. Let H : Γ → Γ be a one-to-one homomorphism. If
CΛ(G) has the Daugavet property, then CH[Λ](G) has the Daugavet property
as well. Analogously, if L1

Λ(G) has the Daugavet property, then L
1
H[Λ](G) has

the Daugavet property as well.

Let us give an example. Every one-to-one homomorphism on Z is of the
form k 7→ nk where n is a fixed non-zero integer. So CΛ(T) ∼= CnΛ(T) and
L1
Λ(T) ∼= L1

nΛ(T) for every non-zero integer n.

4. Rich subspaces

Definition 4.1. Let X be a Banach space with the Daugavet property
and let E be an arbitrary Banach space. An operator T ∈ L(X,E) is called
narrow if for any x, y ∈ SX , x∗ ∈ X∗, and ε > 0 there is an element z ∈ SX
such that ‖T (y−z)‖+ |x∗(y−z)| ≤ ε and ‖x+z‖ ≥ 2−ε. A closed subspace
Y of X is said to be rich if the quotient map π : X → X/Y is narrow.

A rich subspace inherits the Daugavet property. But even a little bit more
is true [18, Theorem 5.2].
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Proposition 4.2. Let X be a Banach space with the Daugavet property
and let Y be a rich subspace. Then (Y,X) is a Daugavet pair, i.e., for every
x ∈ SX , y∗ ∈ SY ∗, and ε > 0 there is some y ∈ SY with Re y∗(y) ≥ 1 − ε
and ‖x+ y‖ ≥ 2− ε.

Proof. Fix x ∈ SX , y∗ ∈ SY ∗ , and ε > 0. Choose δ > 0 with 1−3δ
1+δ ≥ 1−ε

and z ∈ SY with Re y∗(z) ≥ 1 − δ. Since Y is a rich subspace of X, there
exists x0 ∈ SX with d(x0, Y ) = d(z − x0, Y ) < δ, |y∗(z − x0)| ≤ δ, and
‖x + x0‖ ≥ 2 − δ. Fix y0 ∈ Y with ‖x0 − y0‖ ≤ δ and set y = y0/‖y0‖.
Then

Re y∗(y0) ≥ Re y∗(z)− |y∗(z − x0)| − ‖x0 − y0‖ ≥ 1− 3δ

and
‖x0 − y‖ ≤ ‖x0 − y0‖+ ‖y0 − y‖ ≤ 2δ.

So by our choice of δ we get Re y∗(y) ≥ 1− ε and ‖x+ y‖ ≥ 2− ε.
Let us recall the following characterizations of narrow operators on C(K)

spaces [18, Theorem 3.7] and on L1(Ω,Σ, µ) spaces [14, Theorem 2.1], [18,
Theorem 6.1].

Proposition 4.3. Let K be a compact space without isolated points and
let E be a Banach space. An operator T ∈ L(C(K), E) is narrow if and
only if for every non-empty open set O and every ε > 0 there is a function
f ∈ SC(K) with f |K\O = 0 and ‖T (f)‖ ≤ ε.

Remark. In Proposition 4.3, the function f can be chosen to be real-
valued and non-negative. This was proven for C(K,R) in [15, Lemma 1.4].
The same proof works with minor modifications for C(K,C) as well.

Proposition 4.4. Let (Ω,Σ, µ) be a non-atomic probability space and
let E be a Banach space. A function f ∈ L1(Ω) is said to be a balanced
ε-peak on A ∈ Σ if f is real-valued, f ≥ −1, χAf = f ,

	
Ω f dµ = 0, and

µ({f = −1}) ≥ µ(A) − ε. An operator T ∈ L(L1(Ω), E) is narrow if and
only if for every A ∈ Σ and every δ, ε > 0 there is a balanced ε-peak f on A
with ‖T (f)‖ ≤ δ.

Corollary 4.5. If CΛ(G) is a rich subspace of C(G), then for every
x ∈ G, every open neighborhood O of eG, and every ε > 0 there exists a
real-valued and non-negative f ∈ SC(G) with f(x) = 1, f |G\(x+O) = 0, and
d(f, CΛ(G)) ≤ ε.

Proof. Let V be a symmetric open neighborhood of eG with V +V ⊂ O.
Since CΛ(G) is a rich subspace of C(G), we can pick a real-valued, non-
negative g ∈ SC(G) with g|G\V = 0 and d(g, CΛ(G)) ≤ ε. Fix x0 ∈ V with
g(x0) = 1 and set f = gx−x0 . This function is still at a distance of at most ε
from CΛ(G) because CΛ(G) is translation-invariant. Furthermore, f(x) = 1
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and f |G\(x+O) = 0 by our choice of V . In fact, if we pick y ∈ G with
f(y) 6= 0, we get g(y − x + x0) = f(y) 6= 0. Consequently, y − x + x0 ∈ V
and y ∈ x− x0 + V ⊂ x+ V + V ⊂ x+O.

We have seen in Proposition 4.2 that a rich subspace inherits the Dau-
gavet property. But even more is true. A closed subspace Y of X is rich if
and only if every closed subspace Z of X with Y ⊂ Z ⊂ X has the Daugavet
property [18, Theorem 5.12]. In order to prove that a translation-invariant
subspace Y of C(G) or L1(G) is rich, we do not have to consider all sub-
spaces of C(G) or L1(G) containing Y but only the translation-invariant
ones.

Lemma 4.6. Let X be a Banach space. If for every ε > 0 there is a
Banach space Y that has the Daugavet property and is (1 + ε)-isomorphic
to X, then X has the Daugavet property.

Since the proof is straightforward, it will be omitted.

Proposition 4.7. Suppose Λ is a subset of Γ such that CΘ(G) has the
Daugavet property for all Λ ⊂ Θ ⊂ Γ . Then CΛ(G) is a rich subspace of
C(G). The analogous statement is valid for subspaces of L1(G).

Proof. We will only prove the result for subspaces of C(G). The proof
for subspaces of L1(G) works the same way.

It suffices to show that for arbitrary f1, f2 ∈ SC(G) the linear span
of CΛ(G), f1 and f2 has the Daugavet property [18, Lemma 5.6]. In or-
der to do this, we are going to prove that X = lin{CΛ(G) ∪ {f1, f2}} meets
the assumptions of Lemma 4.6.

Fix ε > 0, and suppose that f1 does not belong to CΛ(G) and f2 does
not belong to lin{CΛ(G) ∪ {f1}}; the other cases can be treated similarly.
Then X is isomorphic to CΛ(G)⊕1 lin{f1}⊕1 lin{f2} and there existsM > 0
with

M(‖h‖∞ + |α|+ |β|) ≤ ‖h+ αf1 + βf2‖∞ (h ∈ CΛ(G), α, β ∈ C).
Using the density of T (G) in C(G), we choose g1, g2 ∈ ST (G) with ‖fk−gk‖∞
≤Mε for k = 1, 2. If we define T : X → lin{CΛ(G) ∪ {g1, g2}} by

T (h+ αf1 + βf2) = h+ αg1 + βg2 (h ∈ CΛ(G), α, β ∈ C),
then T is surjective and ‖T−1‖‖T‖ ≤ (1 + ε)/(1− ε) since

‖T (h+ αf1 + βf2)− (h+ αf1 + βf2)‖∞ ≤Mε(|α|+ |β|)
≤ ε‖h+ αf1 + βf2‖∞

for h ∈ CΛ(G) and α, β ∈ C.
To complete the proof, we have to show that Y = lin{CΛ(G) ∪ {g1, g2}}

has the Daugavet property. Set ∆ = spec g1 ∪ spec g2. Since g1 and g2 are
trigonometric polynomials, the set ∆ is finite. By assumption, CΛ∪∆(G)
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has the Daugavet property. The space Y is a finite-codimensional subspace
of CΛ∪∆(G), and has therefore the Daugavet property as well [17, Theo-
rem 2.14].

Not all translation-invariant subspaces of C(G) or L1(G) which have the
Daugavet property must be rich. The subspace C2Z(T) has the Daugavet
property because C(T) ∼= C2Z(T) by Corollary 3.4. But every f ∈ C2Z(T)
satisfies

f(t) = f(−t) (t ∈ T),

and therefore C2Z(T) cannot be a rich subspace of C(T). Similarly, L1
2Z(T)

has the Daugavet property but is not a rich subspace of L1(T).
If X is a Banach space with the Daugavet property, then all opera-

tors on X which do not fix `1 are narrow [18, Theorem 4.13]. This im-
plies that Y is a rich subspace of X if the quotient space X/Y contains
no copy of `1 or if (X/Y )∗ has the Radon–Nikodým property [18, Propo-
sition 5.3]. Let us apply these results to translation-invariant subspaces of
C(G) or L1(G).

Definition 4.8.

(a) Λ is called a Rosenthal set if every equivalence class of L∞Λ (G) con-
tains a continuous member, i.e., L∞Λ (G) = CΛ(G).

(b) Λ is called a Riesz set if every µ ∈ MΛ(G) is absolutely continuous
with respect to the Haar measure, i.e., MΛ(G) = L1

Λ(G).

Every Sidon set is a Rosenthal set. (Recall that Λ ⊂ Γ is said to be a
Sidon set if there exists a constant M > 0 such that

∑
γ∈Λ |f̂(γ)| ≤M‖f‖∞

for all f ∈ TΛ(G).) But
⋃∞
n=1(2n)!{1, . . . , 2n} is an example of a Rosenthal

set which is not a Sidon set [24, Corollary 4]. Every Rosenthal set is a Riesz
set [21, Théorème 3] and it is a classical result due to F. and M. Riesz that
N is a Riesz set [26, Theorem 17.13].

Proposition 4.9. If Λ is a Riesz set, then CΓ\Λ−1(G) is a rich subspace
of C(G), and if Λ is a Rosenthal set, then L1

Γ\Λ−1(G) is a rich subspace of
L1(G).

Proof. Suppose Λ is a Riesz set. Since TΓ\Λ−1(G) is dense in CΓ\Λ−1(G),
we have CΓ\Λ−1(G)⊥ = MΛ(G). Hence MΛ(G) can be identified with the
dual space of C(G)/CΓ\Λ−1(G). Since Λ is a Riesz set, MΛ(G) has the
Radon–Nikodým property [21, Théorème 2] and CΓ\Λ−1(G) is a rich sub-
space of C(G) [18, Proposition 5.3].

Suppose now that Λ is a Rosenthal set. We apply the same reasoning as
before and use the fact that L∞Λ (G) has the Radon–Nikodým property if Λ
is a Rosenthal set [21, Théorème 1].
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In Section 5, we will give an example of a non-Rosenthal set Λ such that
L1
Γ\Λ−1(G) is a rich subspace of L1(G). In the case of translation-invariant

subspaces of C(G), the previous result can be strengthened.

Definition 4.10. A measure µ ∈ M(G) is said to be diffuse or non-
atomic if µ(B) = 0 for all countable sets B ⊂ G. We denote by Mdiff(G) the
set of all diffuse members of M(G). A subset Λ of Γ is called a semi-Riesz
set if every µ ∈MΛ(G) is diffuse.

If G is infinite, then the Haar measure on G is diffuse and every Riesz
set of Γ is a semi-Riesz set. The set {

∑n
k=0 εk4

k : n ∈ N, εk ∈ {−1, 0, 1}} is
an example of a proper semi-Riesz set [28, p. 126].

D. Werner showed that CΓ\Λ−1(G) has the Daugavet property if Λ is a
semi-Riesz set [28, Theorem 3.7]. Combining this result with the fact that
every subset of a semi-Riesz set is still a semi-Riesz set, by Proposition 4.7
we get the following corollary.

Corollary 4.11. If Λ is a semi-Riesz set, then CΓ\Λ−1(G) is a rich
subspace of C(G).

The converse implication is also valid.

Proposition 4.12. If CΛ(G) is a rich subspace of C(G), then CΛ(G)⊥
consists of diffuse measures.

Proof. Let [µ] denote the equivalence class of µ in M(G)/CΛ(G)
⊥. It

suffices to show the following: For every x ∈ G, every α ∈ C, and every
µ ∈ M(G) with µ({x}) = 0 we have ‖[αδx] + [µ]‖ = |α| + ‖[µ]‖. Indeed, if
the preceding statement is true, for every µ ∈ CΛ(G)⊥ and every x ∈ G we
get

0 = ‖[µ]‖ = ‖[µ({x})δx] + [µ− µ({x})δx]‖ = |µ({x})|+ ‖[µ− µ({x})δx]‖.

Hence |µ({x})| = 0 and µ is a diffuse measure.
Fix x ∈ G, α ∈ C \ {0}, µ ∈ M(G) with µ({x}) = 0, and ε > 0. Choose

f ∈ SCΛ(G) with Re
	
G f dµ ≥ ‖[µ]‖− ε. Since |µ| is a regular Borel measure

and f is a continuous function, there is an open neighborhood O of eG with
|µ|(x+O) < ε and |f(x) − f(x + y)| < ε for all y ∈ O. As CΛ(G) is a rich
subspace of C(G), by Corollary 4.5 we can pick a real-valued, non-negative
g0 ∈ SC(G) with g0(x) = 1, g0|G\(x+O) = 0, and d(g0, CΛ(G)) < ε.

Let g be an element of CΛ(G) with ‖g − g0‖∞ ≤ ε. If we set h0 =
f + (|α|/α − f(x))g0 and h = f + (|α|/α − f(x))g, then h ∈ CΛ(G) and
‖h− h0‖∞ ≤ 2ε. Furthermore,

(4.1) αh0(x) = |α|
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and

Re
�

G

h0 dµ = Re
�

G

(f + (|α|/α− f(x))g0) dµ(4.2)

≥ ‖[µ]‖ − ε− 2
�

G

g0 d|µ| = ‖[µ]‖ − ε− 2
�

x+O

g0 d|µ|

≥ ‖[µ]‖ − ε− 2|µ|(x+O) ≥ ‖[µ]‖ − 3ε.

Let us estimate the norm of h. For y ∈ G \ (x+O) we get

|h(y)| = |f(y) + (|α|/α− f(x))g(y)|
≤ ‖f‖∞ + 2‖g|G\(x+O)‖∞ ≤ 1 + 2ε,

and for y ∈ x+O,

|h(y)| = |f(y) + (|α|/α− f(x))g(y)|
≤ |f(y)− f(x)g0(y)|+ g0(y) + 2‖g − g0‖∞
≤ |f(y)− f(x)|+ |f(x)|(1− g0(y)) + g0(y) + 2ε

≤ ε+ (1− g0(y)) + g0(y) + 2ε = 1 + 3ε.

Hence ‖h‖∞ ≤ 1 + 3ε. Combining this estimate with (4.1) and (4.2), we get

(1 + 3ε)‖[αδx] + [µ]‖ ≥
∣∣∣ �
G

h d(αδx + µ)
∣∣∣

≥
∣∣∣ �
G

h0 d(αδx + µ)
∣∣∣− 2ε‖αδx + µ‖

≥ |α|+ ‖[µ]‖ − 3ε− 2ε‖αδx + µ‖.
We can choose ε > 0 arbitrarily small, and so ‖[αδx] + [µ]‖ = |α|+ ‖[µ]‖.

Combining the last two results, we get the following characterization of
the closed, translation-invariant subspaces of C(G) that are rich.

Theorem 4.13. The space CΛ(G) is a rich subspace of C(G) if and only
if Γ \ Λ−1 is a semi-Riesz set.

A linear projection P on a Banach space X is called an L-projection if

‖x‖ = ‖P (x)‖+ ‖x− P (x)‖ (x ∈ X).

A closed subspace of X is called an L-summand if it is the range of an
L-projection. In the proof of Proposition 4.12 we showed that every Dirac
measure δx still has norm one and still spans an L-summand if we consider
it as an element of CΛ(G)∗. Such subspaces are called nicely embedded and
were studied by D. Werner [28]. His proof of the fact that CΛ(G) has the
Daugavet property if Γ \ Λ−1 is a semi-Riesz set is as well based on the
observation that then CΛ(G) is nicely embedded.
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Let us present an alternative proof of Theorem 4.13 for the case that G
is metrizable. It is based on results of V. M. Kadets and M. M. Popov [15].
We say that an operator T ∈ L(C(G), E) vanishes at a point x ∈ G and
write x ∈ vanT if there exist a sequence (On)n∈N of open neighborhoods of
x with diamOn → 0 and a sequence (fn)n∈N of real-valued and non-negative
functions satisfying fn ∈ SC(G), fn|G\On = 0, (fn)n∈N converges pointwise to
χ{x}, and ‖T (fn)‖ → 0. An operator T is narrow if and only if vanT is dense
inG [15, Lemma 1.6]. Furthermore, x ∈ vanT if and only if for any functional
e∗ ∈ E∗ the point x is not an atom of the measure corresponding to T ∗(e∗)
[15, Lemma 1.7]. Let Λ be a subset of Γ , let π : C(G) → C(G)/CΛ(G) be
the canonical quotient map, and note that

ran(π∗) = CΛ(G)
⊥ =MΓ\Λ−1(G).

If Γ \ Λ−1 is a semi-Riesz set, then every element of MΓ\Λ−1(G) is a diffuse
measure. Therefore vanπ = G, and π is a narrow operator. Conversely, if π is
narrow, it is an easy consequence of Corollary 4.5 that vanπ = G. Therefore,
MΓ\Λ−1(G) must consist of diffuse measures and Γ \Λ−1 is a semi-Riesz set.

Let Λ be a subset of Z and let λ1, λ2, . . . be an enumeration of Λ with
|λ1| ≤ |λ2| ≤ · · · . We say that Λ is uniformly distributed if

1

n

n∑
k=1

tλk → 0 (t ∈ T, t 6= 1).

R. Demazeux proved that CΛ(T) is a rich subspace of C(T) if Λ is uniformly
distributed [4, Théorème I.1.7]. Theorem 4.13 shows that Z\ (−Λ) is a semi-
Riesz set if Λ is uniformly distributed.

Theorem 4.14. If L1
Γ\Λ−1(G) is a rich subspace of L1(G), then Λ is a

semi-Riesz set.

Proof. The proof is based on arguments used by G. Godefroy, N. J. Kal-
ton, and D. Li [8, Proposition III.10] and N. J. Kalton [19, Theorem 5.4].

Suppose that Λ is not a semi-Riesz set. We will show that L1
Γ\Λ−1(G) is

not a rich subspace of L1(G).
Let µ ∈MΛ(G) be a non-diffuse measure and assume that µ({eG}) = 1,

i.e., µ = δeG + ν with ν({eG}) = 0. (If µ is not of this form, fix x ∈ G
with µ({x}) 6= 0 and consider the measure µ({x})−1(µ ∗ δ−x) ∈ MΛ(G).)
Let R,S, T : L1(G) → L1(G) be the convolution operators defined by
R(f) = µ ∗ f , S(f) = ν ∗ f , and T (f) = |ν| ∗ f . Note that R = Id + S.
Recall that for every λ ∈M(G) and f ∈ L1(G) we have

(λ ∗ f)(x) =
�

G

f(x− y) dλ(y)
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for m-almost all x ∈ G [10, Theorem V.20.12]. Therefore,

‖S(χE)‖1 ≤ ‖T (χE)‖1 (E ∈ B(G)).

We will first show that there exists A ∈ B(G) with m(A) > 0 such that
R|L1(A) is an isomorphism onto its image. (We write L1(A) for the subspace
{f ∈ L1(G) : χAf = f}.) Since ν({eG}) = 0, we can choose a sequence
(On)n∈N of open neighborhoods of eG with |ν|(On) → 0. For each n ∈ N,
use Lemma 2.1 to find a covering of G by disjoint Borel sets Bn,1, . . . , Bn,Nn
with Bn,k −Bn,k ⊂ On for k = 1, . . . , Nn. For every n ∈ N set

Rn =

Nn∑
k=1

PBn,kRPBn,k , Sn =

Nn∑
k=1

PBn,kSPBn,k , Tn =

Nn∑
k=1

PBn,kTPBn,k ,

where for every E ∈ B(G), PE denotes the projection from L1(G) onto L1(E)
defined by PE(f) = χEf . For every n ∈ N let ρn be the map defined by

ρn(E) = ‖Tn(χE)‖1 (E ∈ B(G)).

Since Tn is continuous and maps positive functions to positive functions, it
is a consequence of the monotone convergence theorem that ρn is a positive
Borel measure on G. Every ρn is absolutely continuous with respect to the
Haar measure m and has Radon–Nikodým derivative ωn. For each n ∈ N,
we get

ρn(G) = ‖Tn(χG)‖1 =

Nn∑
k=1

�

Bn,k

T (χBn,k)(x) dm(x)

=

Nn∑
k=1

�

Bn,k

�

G

χBn,k(x− y) d|ν|(y) dm(x)

=

Nn∑
k=1

�

Bn,k

|ν|(x−Bn,k) dm(x)

≤
Nn∑
k=1

�

Bn,k

|ν|(Bn,k −Bn,k) dm(x) ≤ |ν|(On).

Therefore, ρn(G) → 0, and in particular ωn → 0 in m-measure. So there
exists a Borel set B0 of G with m(B0) > 0 and n0 ∈ N satisfying

ωn0(x) ≤ 1/2 (x ∈ B0).

Consequently, ‖Sn0(χE)‖1 ≤ ‖Tn0(χE)‖1 ≤ 1
2m(E) for all Borel sets E ⊂ B0,

and ‖Sn0 |L1(B0)‖ ≤ 1/2. Therefore (Id + Sn0)|L1(B0) = Rn0 |L1(B0) is an
isomorphism onto its image. Fix k0 ∈ {1, . . . , Nn0} with m(B0 ∩Bn0,k0) > 0
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and set A = B0 ∩ Bn0,k0 . Then R|L1(A) is an isomorphism onto its image
because ‖Rn0(f)‖1 ≤ ‖R(f)‖1 for all f ∈ L1(G).

We will now finish the proof by showing that L1
Γ\Λ−1(G) is not a rich

subspace of L1(G). Let π : L1(G) → L1(G)/ker(R) be the canonical quo-
tient map and let R̃ : L1(G)/ker(R) → L1(G) be a bounded operator with
R = R̃ ◦ π. Since R|L1(A) is an isomorphism, π|L1(A) is bounded from be-
low. By Proposition 4.4, π cannot be a narrow operator. Then L1

Γ\Λ−1(G) is
contained in ker(R), and is therefore not a rich subspace of L1(G).

Corollary 4.15. If L1
Λ(G) is a rich subspace of L1(G), then CΛ(G) is

a rich subspace of C(G).

The space CN(T) is a rich subspace of C(T), but L1
N(T) has the Radon–

Nikodým property and therefore not the Daugavet property. So the converse
of Corollary 4.15 is not true.

5. Products of compact abelian groups. Let G1 and G2 be com-
pact abelian groups with normalized Haar measures m1 and m2. The direct
product G = G1 ×G2 is again a compact abelian group if we endow it with
the product topology. If f : G1 → C and g : G2 → C, we denote by f ⊗ g
the function (x, y) 7→ f(x)g(y). The dual group of G can now be identified
with Γ1 × Γ2 because every γ ∈ Γ is of the form γ1 ⊗ γ2 with γ1 ∈ Γ1 and
γ2 ∈ Γ2 [25, Theorem 2.2.3]. Furthermore, the Haar measure on G coincides
with the product measure m1 ×m2 [10, Example IV.15.17(i)].

Proposition 5.1. Let G1 be an infinite, compact abelian group, let G2

be an arbitrary compact abelian group, let Λ1 be a subset of Γ1, and let Λ2

be a subset of Γ2.

(a) Suppose that CΛ1(G1) is a rich subspace of C(G1) and CΛ2(G2) is
a rich subspace of C(G2) (or, if G2 is finite, that Λ2 = Γ2). Then
CΛ1×Λ2(G1 ×G2) is a rich subspace of C(G1 ×G2).

(b) Suppose that CΛ1(G1) is a rich subspace of C(G1) and Λ2 is non-
empty. Then CΛ1×Λ2(G1 ×G2) has the Daugavet property.

Proof. Set G = G1 ×G2 and Λ = Λ1 × Λ2.
We start with part (a). Let O be a non-empty open set of G, and

ε > 0. By Proposition 4.3, we have to find f ∈ SC(G) with f |G\O = 0 and
d(f, CΛ(G)) ≤ ε.

Pick non-empty open sets O1 ⊂ G1 and O2 ⊂ G2 with O1 × O2 ⊂ O,
and δ > 0 with 2δ + δ2 ≤ ε. By assumption, there exist fk ∈ SC(Gk) and
gk ∈ TΛk(Gk) with fk|Gk\Ok = 0 and ‖fk − gk‖∞ ≤ δ for k = 1, 2. If we set
f = f1 ⊗ f2 and g = g1 ⊗ g2, then f ∈ SC(G), g ∈ TΛ(G), and f |G\O = 0.
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Furthermore,

d(f, CΛ(G)) ≤ ‖f − g‖∞ ≤ ‖f1‖∞‖f2 − g2‖∞ + ‖g2‖∞‖f1 − g1‖∞
≤ δ + (1 + δ)δ ≤ ε.

Let us now consider part (b). The space CΓ1×Λ2(G) can canonically be
identified with C(G1, CΛ2(G2)), the space of all continuous functions fromG1

into CΛ2(G2), and has therefore the Daugavet property [13, Theorem 4.4]. We
will prove that CΛ(G) is a rich subspace of CΓ1×Λ2(G). For this, it is sufficient
to show that for every non-empty open set O of G1, every g ∈ TΛ2(G2) with
‖g‖∞ = 1, and every ε > 0, there exists f ∈ SC(G1) with f |G1\O = 0 and
d(f ⊗g, CΛ(G)) ≤ ε [1, Proposition 4.3(a)]. Since CΛ1(G1) is a rich subspace
of C(G1), there exist f ∈ SC(G1) and h ∈ TΛ1(G1) with f |G1\O = 0 and
‖f − h‖∞ ≤ ε. Then h⊗ g ∈ TΛ(G) and

d(f ⊗ g, CΛ(G)) ≤ ‖f ⊗ g − h⊗ g‖∞ ≤ ‖f − h‖∞‖g‖∞ ≤ ε.

Proposition 5.2. Let G be the product of two compact abelian groups G1

and G2 and denote by p the projection from Γ = Γ1×Γ2 onto Γ1. If CΛ(G)
is a rich subspace of C(G), then Cp[Λ](G1) is a rich subspace of C(G1) (or
p[Λ] = Γ1 if G1 is finite).

Proof. Let O be a non-empty open set of G1, and ε > 0. By Proposi-
tion 4.3, we have to find f ∈ SC(G1) with f |G1\O = 0 and d(f, Cp[Λ](G1)) ≤ ε.
(Note that this is sufficient in the case of finite G1 as well.)

Since CΛ(G) is a rich subspace of C(G), there exist f0 ∈ SC(G) and
g0 ∈ TΛ(G) with f0|G\(O×G2) = 0 and ‖f0− g0‖∞ ≤ ε. Fix (x0, y0) ∈ G with
|f0(x0, y0)| = 1. Setting f = f0( · , y0) and g = g0( · , y0), we get f ∈ SC(G1),
g ∈ Tp[Λ](G1), and f |G1\O = 0. Finally,

d(f, Cp[Λ](G1)) ≤ ‖f − g‖∞ ≤ ‖f0 − g0‖∞ ≤ ε.

Proposition 5.3. Let G1 and G2 be infinite compact abelian groups, let
Λ1 be a subset of Γ1, and let Λ2 be a subset of Γ2.

(a) If L1
Λ2
(G2) is a rich subspace of L1(G2), then L1

Γ1×Λ2
(G1 ×G2) is a

rich subspace of L1(G1 ×G2).
(b) Suppose that L1

Λ1
(G1) is a rich subspace of L1(G1) and Λ2 is non-

empty. Then L1
Λ1×Λ2

(G1 ×G2) has the Daugavet property.

Proof. Set G = G1 ×G2 and Λ = Λ1 × Λ2.
We start with part (a). The space L1(G) can canonically be identified

with the Bochner space L1(G1, L
1(G2)), and L1

Γ1×Λ2
(G) with the subspace

L1(G1, L
1
Λ2
(G2)). Since L1

Λ2
(G2) is a rich subspace of L1(G2), the space

L1(G1, L
1
Λ2
(G2)) is rich in L1(G1, L

1(G2)) [14, Lemma 2.8].
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Let us now consider part (b). Identifying again L1
Γ1×Λ2

(G) with the
Bochner space L1(G1, L

1
Λ2
(G2)), we see that L1

Γ1×Λ2
(G) has the Daugavet

property [17, Example after Theorem 2.3]. We will show that L1
Λ(G) is a

rich subspace of L1
Γ1×Λ2

(G). For this, for every Borel set A of G1, every
g ∈ TΛ2(G2) with ‖g‖1 = 1, and every δ, ε > 0 it is sufficient to find a
balanced ε-peak f on A with d(f ⊗ g, L1

Λ(G)) ≤ δ [2, Theorem 2.4]. Since
L1
Λ1
(G1) is a rich subspace of L1(G1), there exist a balanced ε-peak f on A

and h ∈ TΛ1(G1) with ‖f − h‖1 ≤ δ. Then h⊗ g ∈ TΛ(G) and
d(f ⊗ g, L1

Λ(G)) ≤ ‖f ⊗ g − h⊗ g‖1 = ‖f − h‖1‖g‖1 ≤ δ.
Proposition 5.4. Let G be the product of two compact abelian groups

G1 and G2, and denote by p the projection from Γ = Γ1 × Γ2 onto Γ1.
If L1

Λ(G) is a rich subspace of L(G), then L1
p[Λ](G1) is a rich subspace of

L1(G1) (or p[Λ] = Γ1 if G1 is finite).

Proof. If p[Λ] = Γ1, we have nothing to show. So let us assume that there
exists γ ∈ Γ1 \ p[Λ]. Set ϑ = γ ⊗ 1G2 and Θ = ϑΛ. The map f 7→ ϑf is an
isometry from L1(G) onto L1(G) and maps L1

Λ(G) onto L
1
Θ(G). Analogously,

the map f 7→ γf is an isometry from L1(G1) onto L1(G1) and maps L1
p[Λ](G1)

onto L1
γp[Λ](G1). Note that

γp[Λ] = p[(γ,1G2)Λ] = p[Θ]

and 1G1 /∈ γp[Λ]. Taking into account that L1
Λ(G) is a rich subspace of L1(G)

if and only if L1
Θ(G) is a rich subspace of L1(G) and that L1

p[Λ](G1) is a rich
subspace of L1(G1) if and only if L1

p[Θ](G1) is a rich subspace of L1(G1), we
may assume that 1G1 /∈ p[Λ].

Fix a Borel subset A of G1 and δ, ε > 0. By Proposition 4.4, we have
to find a balanced ε-peak f on A with d(f, L1

p[Λ](G1)) ≤ δ. By assumption,
L1
Λ(G) is a rich subspace of L1(G), and therefore there exist a balanced

(ε/3)-peak f0 on A×G2 and g ∈ TΛ(G) with ‖f0 − g‖1 ≤ δ/6. Set
B = {y ∈ G2 : m1({f0( · , y) = −1}) > m1(A)− ε},
C = {y ∈ G2 : ‖f0( · , y)− g( · , y)‖1 ≤ δ/2}.

Note we may assume that B and C are measurable [10, Theorem III.13.8].
We then get

m1(A)− ε/3 ≤ m({f0 = −1}) =
�

G2

�

G1

χ{f0=−1}(x, y) dm1(x) dm2(y)

=
�

G2

m1({f0( · , y) = −1}) dm2(y)

≤ m2(B)m1(A) + (1−m2(B))(m1(A)− ε)
= m1(A) +m2(B)ε− ε
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and
δ

6
≥ ‖f0 − g‖1 =

�

G2

‖f0( · , y)− g( · , y)‖1 dm2(y)

≥ δ

2
(1−m2(C)).

Hence m2(B) ≥ 2/3 and m2(C) ≥ 2/3. Therefore B ∩ C 6= ∅ and we can
choose y0 ∈ B ∩ C.

Let us gather the properties of f0( · , y0) ∈ L1(G1). It is clear that
f0( · , y0) is real-valued, f0( · , y0) ≥ −1, and χAf0( · , y0) = f0( · , y0). As
y0 belongs to B and C, we have m1({f0( · , y0) = −1}) > m1(A) − ε and
‖f0( · , y0)− g( · , y0)‖1 ≤ δ/2. The function g( · , y0) belongs to Tp[Λ](G) and
1G1 /∈ p[Λ]. So

	
G1
g(x, y0) dm1(x) = 0 and |

	
G1
f0(x, y0) dm1(x)| ≤ δ/2.

Modifying f0( · , y0) a little bit, we get a balanced ε-peak f on A with
‖f − g( · , y0)‖1 ≤ δ.

Set Λ = Z×{0}. Then Λ is not a Rosenthal set because CΛ(T2) ∼= C(T)
contains a copy of c0 [22, Proof of Theorem 3]. But Z2 \(−Λ) = Z×(Z\{0})
and L1

Z×(Z\{0})(T
2) is a rich subspace of L1(T2) by Proposition 5.3(a). So

the converse of Proposition 4.9 is not true.
Let us come back to examples of translation-invariant subspaces that

have the Daugavet property but are not rich. The examples mentioned in
Section 4 are of the following type: We take a one-to-one homomorphism
H : Γ → Γ that is not onto. Then CH[Γ ](G) and L1

H[Γ ](G) have the Dau-
gavet property but are not rich subspaces of C(G) or L1(G). In this case⋂
γ∈H[Γ ] ker(γ) contains ker(H∗) 6= {eG}. Set Λ = Z × {1}. Using Proposi-

tions 5.1(b) and 5.3(b), we see that CΛ(T2) and L1
Λ(T2) have the Daugavet

property. But they are not rich subspaces of C(T2) or L1(T2) by Proposi-
tions 5.2 and 5.4. Furthermore,

⋂
γ∈Λ ker(γ) = {(1, 1)}.

6. Quotients with respect to translation-invariant subspaces.
We will now study quotients of the form C(G)/CΛ(G) and L1(G)/L1

Λ(G).
The following lemma is the key ingredient for all results of this section.

Lemma 6.1. If we interpret f ∈ C(G) as a functional on M(G), then

‖f |L1
Λ(G)‖ = ‖f |MΛ(G)‖.

Analogously, if we interpret g ∈ L1(G) as a functional on L∞(G), then

‖g|CΛ(G)‖ = ‖g|L∞Λ (G)‖.

Proof. We will just show the first statement. The proof of the second
statement works the same way.
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It is clear that ‖f |L1
Λ(G)‖ ≤ ‖f |MΛ(G)‖ because L1

Λ(G) ⊂MΛ(G). In order
to prove the reverse inequality, we may assume without loss of generality that
‖f |MΛ(G)‖ = 1. Fix ε > 0 and an approximate unit (vj)j∈J of L1(G) that has
the properties listed in Proposition 2.2. Pick µ ∈ MΛ(G) with ‖µ‖ = 1 and
|
	
G f dµ| ≥ 1− ε/2. Using v̂j(γ)→ 1 for every γ ∈ Γ , we can deduce that�

G

g d(µ ∗ vj)→
�

G

g dµ

for every g ∈ T (G). So µ is the weak∗-limit of (µ ∗ vj)j∈J because T (G) is
dense in C(G). Fix j0 ∈ J with |

	
G f d(µ∗vj0)| ≥ 1−ε. Since µ∗vj0 ∈ L1

Λ(G)
and ‖µ ∗ vj0‖1 ≤ 1, we have ‖f |L1

Λ(G)‖ ≥ 1 − ε. As ε > 0 was arbitrarily
chosen, this finishes the proof.

Theorem 6.2. If L1
Γ\Λ−1(G) is a rich subspace of L1(G), then the quo-

tient C(G)/CΛ(G) has the Daugavet property.

Proof. Note that CΛ(G)⊥ = MΓ\Λ−1(G) because TΛ(G) is dense in
CΛ(G). We can therefore identify the dual space of C(G)/CΛ(G) with
MΓ\Λ−1(G).

Fix [f ] ∈ C(G)/CΛ(G) with ‖[f ]‖ = 1, µ ∈ MΓ\Λ−1(G) with ‖µ‖ = 1,
and ε > 0. By Lemma 2.3, we have to find ν ∈ MΓ\Λ−1(G) with ‖ν‖ = 1,
Re

	
G f dν ≥ 1− ε, and ‖µ+ ν‖ ≥ 2− ε. Let µ = µs+ g dm be the Lebesgue

decomposition of µ where µs and m are singular and g ∈ L1(G).
If we interpret f as a functional on M(G), then by Lemma 6.1 we have

‖f |L1
Γ\Λ−1 (G)‖ = ‖f |MΓ\Λ−1 (G)‖ = 1.

L1
Γ\Λ−1(G) is a rich subspace of L1(G), and so by Proposition 4.2 there

exists a function h ∈ L1
Γ\Λ−1(G) with ‖h‖1 = 1, Re

	
G fh dm ≥ 1 − ε, and

‖g/‖g‖1 + h‖1 ≥ 2− ε. Setting ν = h dm, we therefore get
‖µ+ ν‖ = ‖µs‖+ ‖g + h‖1

= ‖µs‖+
∥∥g/‖g‖1 + h− (1− ‖g‖1)g/‖g‖1

∥∥
1

≥ ‖µs‖+
∥∥g/‖g‖1 + h

∥∥
1
− (1− ‖g‖1)

≥ ‖µs‖+ (2− ε)− (1− ‖g‖1)
= ‖µ‖+ 1− ε = 2− ε.

Corollary 6.3. If Λ is a Rosenthal set, then C(G)/CΛ(G) has the Dau-
gavet property.

Theorem 6.4. If CΓ\Λ−1(G) is a rich subspace of C(G), then the quo-
tient L1(G)/L1

Λ(G) has the Daugavet property.

Proof. Let us begin as in the proof of Theorem 6.2. We can identify
the dual space of L1(G)/L1

Λ(G) with L
∞
Γ\Λ−1(G), because TΛ(G) is dense in

L1
Λ(G), and therefore L1

Λ(G)
⊥ = L∞Γ\Λ−1(G).
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Fix [f ] ∈ L1(G)/L1
Λ(G) with ‖[f ]‖ = 1, g ∈ L∞Γ\Λ−1(G) with ‖g‖∞ = 1,

and ε > 0. By Lemma 2.3, we have to find h ∈ L∞Γ\Λ−1(G) with ‖h‖∞ = 1,
Re

	
G fh dm ≥ 1− ε, and ‖g + h‖∞ ≥ 2− ε.
Choose δ ∈ (0, 1) with (1− 5‖f‖1δ)/(1 + 3δ) ≥ 1− ε/2, η > 0 such that	

A |f | dm ≤ δ for all A ∈ B(G) with m(A) ≤ η, and t ∈ T with

m({Re(t−1g) ≥ 1− ε/2}) > 0.

If we interpret f as a functional on L∞(G), then by Lemma 6.1 we have

‖f |CΓ\Λ−1 (G)‖ = ‖f |L∞
Γ\Λ−1 (G)‖ = 1.

Pick h0 ∈ CΓ\Λ−1(G) with ‖h0‖∞ = 1 and Re
	
G fh0 dm ≥ 1 − δ. Since h0

is uniformly continuous, there exists an open neighborhood O of eG with

|h0(x)− h0(y)| ≤ δ (x− y ∈ O)

and m(O) ≤ η. By assumption, CΓ\Λ−1(G) is a rich subspace of C(G), and
so by Corollary 4.5 there exist a real-valued non-negative p0 ∈ SC(G) with
p0|G\O = 0 and p0(eG) = 1 and p ∈ CΓ\Λ−1(G) with ‖p0 − p‖∞ ≤ δ. Then
V = {p0 > 1 − δ} is an open neighborhood of eG and V ⊂ O. An easy
compactness argument shows that there exists x0 ∈ G with

m({x ∈ x0 + V : Re(t−1g(x)) ≥ 1− ε/2}) > 0.

If we set
h1 = h0 + (t− h0(x0))px0 and h = h1/‖h1‖∞,

then h is normalized and belongs by construction to CΓ\Λ−1(G). Let us
estimate the norm of h1. For x ∈ G \ (x0 +O) we get

|h1(x)| = |h0(x) + (t− h0(x0))p(x− x0)| ≤ ‖h0‖∞ + 2‖p|G\O‖∞ ≤ 1 + 2δ,

and for x ∈ x0 +O,

|h1(x)| = |h0(x) + (t− h0(x0))p(x− x0)|
≤ |h0(x)− h0(x0)p0(x− x0)|+ p0(x− x0) + 2‖p− p0‖∞
≤ |h0(x)− h0(x0)|+ |h0(x0)|(1− p0(x− x0)) + p0(x− x0) + 2δ

≤ δ + (1− p0(x− x0)) + p0(x− x0) + 2δ = 1 + 3δ.

Consequently, ‖h1‖∞ ≤ 1 + 3δ. Let us check that h is as desired. We first
observe that

Re
�

G

fh1 dm ≥ Re
�

G

fh0 dm− 2
�

G

|fpx0 | dm

≥ (1− δ)− 2
�

x0+O

|f | dm− 2‖f‖1‖p0 − p‖∞

≥ (1− δ)− 2δ − 2‖f‖1δ = 1− (3 + 2‖f‖1)δ.
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Therefore, Re
	
G fh dm ≥ 1− ε by our choice of δ. If x ∈ x0 + V , we get

Re(t−1h1(x)) ≥ Re(t−1h0(x)) + Re(1− t−1h0(x0))p0(x− x0)− 2‖p0 − p‖∞
≥ Re(t−1h0(x)) + Re(1− t−1h0(x0))(1− δ)− 2δ

≥ 1− 3δ − |h0(x)− h0(x0)| ≥ 1− 4δ,

and hence Re(t−1h(x)) ≥ 1− ε/2 by our choice of δ. Thus

m({|g + h| ≥ 2− ε}) ≥ m({Re(t−1(g + h)) ≥ 2− ε})
≥ m({Re(t−1g) ≥ 1− ε/2} ∩ {Re(t−1h) ≥ 1− ε/2})
≥ m({Re(t−1g) ≥ 1− ε/2} ∩ (x0 + V )) > 0

and ‖g + h‖∞ ≥ 2− ε.

Corollary 6.5. If Λ is a semi-Riesz set, then L1(G)/L1
Λ(G) has the

Daugavet property.

7. Poor subspaces of L1(G). In Section 6, we have seen some cases in
which the quotient space L1(G)/L1

Λ(G) has the Daugavet property. Recall
that a closed subspace Y of a Banach space X with the Daugavet property
is rich if and only if every closed subspace Z of X with Y ⊂ Z ⊂ X has the
Daugavet property. A similar notion for quotients of X was introduced by
V. M. Kadets, V. Shepelska, and D. Werner [16].

Definition 7.1. Let X be a Banach space with the Daugavet property.
A closed subspace Y of X is called poor if X/Z has the Daugavet property
for every closed subspace Z ⊂ Y .

The poor subspaces of a Banach space with the Daugavet property can
be described using a generalized concept of narrow operators [16]. In the case
of L1(Ω,Σ, µ) this leads to the following characterization [16, Corollary 6.6]:

Proposition 7.2. Let (Ω,Σ, µ) be a non-atomic probability space.
A subspace X of L1(Ω) is poor if and only if for every A ∈ Σ of posi-
tive measure and every ε > 0 there exists f ∈ SL∞(Ω) with χAf = f and
‖f |X‖ ≤ ε, where we interpret f as a functional on L1(Ω).

Using this characterization, we can build a link to a property that was
studied by G. Godefroy, N. J. Kalton, and D. Li [8]. In the following, (Ω,Σ, µ)
denotes a non-atomic probability space and P the natural projection from
L1(Ω)∗∗ onto L1(Ω). For every A ∈ Σ, we write L1(A) for the subspace
{f ∈ L1(Ω) : χAf = f} and PA for the projection from L1(Ω) onto L1(A)
defined by PA(f) = χAf .

Definition 7.3. A closed subspace X of L1(Ω) is said to be small if
there is no A ∈ Σ of positive measure such that PA maps X onto L1(A).
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If X is a poor subspace of L1(Ω), then X is small [16, Corollary 6.7].
The converse is valid too.

Proposition 7.4. If X is a small subspace of L1(Ω), then X is a poor
subspace of L1(Ω).

Proof. Fix A ∈ Σ with µ(A) > 0 and ε > 0. By Proposition 7.2, we have
to find f ∈ SL∞(Ω) with χAf = f and ‖f |X‖ ≤ ε.

Since X is small, the projection PA : L1(Ω) → L1(A) does not map
X onto L1(A). By the (proof of the) open mapping theorem, PA[ε−1BX ]

is nowhere dense in L1(A). Pick g ∈ BL1(A) with g /∈ PA[ε−1BX ]. The set
PA[ε−1BX ] is absolutely convex, and so by the Hahn–Banach theorem there
exists a function f ∈ SL∞(A) with

sup

{∣∣∣ �
A

fh dµ
∣∣∣ : h ∈ 1

ε
BX

}
≤ Re

�

A

fg dµ.

Using this inequality, we get

‖f |X‖ = sup
{∣∣∣ �
A

fh dµ
∣∣∣ : h ∈ BX} ≤ εRe �

A

fg dµ ≤ ε.

An important tool in the study of small subspaces is the topology of
convergence in measure.

Definition 7.5.

(a) A subspace X of L1(Ω) is called nicely placed if BX is closed with
respect to convergence in measure.

(b) Λ is said to be nicely placed if L1
Λ(G) is a nicely placed subspace

of L1(G).
(c) Λ is said to be a Shapiro set if every subset of Λ is nicely placed.

These terms were coined by G. Godefroy [6, 7], who showed that every
Shapiro set is a Riesz set [9, Proposition IV.4.5]. The natural numbers are
a Shapiro set in Z [9, Example IV.4.11] and Λ =

⋃∞
n=0{k2n : |k| ≤ 2n} is a

nicely placed Riesz set which is not a Shapiro set [9, Example IV.4.12].

Lemma 7.6. Let X be a nicely placed subspace of L1(G) and suppose that
there exists A ∈ B(G) with m(A) > 0 such that PA maps X onto L1(A),
i.e., suppose that X is not small. Then there exists a continuous operator
T : L1(A) → X with jA = PAT where jA : L1(A) → L1(G) is the natural
injection.

Proof. This proof is a modification of a proof by G. Godefroy, N. J. Kal-
ton, and D. Li [8, Lemma III.5]. We identify X∗∗ with X⊥⊥ ⊂ L1(G)∗∗ and
recall that A. V. Bukhvalov and G. Ya. Lozanovskĭı showed that P [BX⊥⊥ ] =
BX if X is nicely placed in L1(G) [9, Theorem IV.3.4].
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Denote by N the directed set of open neighborhoods of eG. (We turn N
into a directed set by setting V ≤W if and only if V contains W .) Let U be
an ultrafilter on N which contains the filter base

{{W ∈ N : V ≤W} : V ∈ N}.

PA is an open map by the open mapping theorem. So we can fix M > 0
with BL1(A) ⊂ MPA[BX ]. For every V ∈ N , use Lemma 2.1 to choose
disjoint Borel sets BV,1, . . . , BV,NV with A =

⋃NV
k=1BV,k and BV,k−BV,k ⊂ V

for k = 1, . . . , NV . Picking fV,k ∈ MBX with PA(fV,k) = m(BV,k)
−1χBV,k

for k = 1, . . . , NV , we define SV : L1(A)→ X by

SV (f) =

NV∑
k=1

( �

BV,k

f dm
)
fV,k (f ∈ L1(A)).

As the norm of every SV is bounded by M , we can define S : L1(A)→ X⊥⊥

by
S(f) = w∗- lim

V,U
SV (f) (f ∈ L1(A))

and set T = PS.
Let us check that jA = PAT . Fix f ∈ L1(A). Since C(G) is dense in

L1(G), we may assume that f is the restriction to A of a continuous function.
Let (Sϕ(j)(f))j∈J be a subnet of (SV (f))V ∈N with S(f) = w∗- limj Sϕ(j)(f).
Since f is uniformly continuous, it is easy to construct an increasing sequence
(jn)n∈N in J with

(7.1) sup
{
‖f − PASϕ(j)(f)‖∞ : j ≥ jn

}
→ 0.

Furthermore, there exists a sequence (gn)n∈N in L1(G) that converges
m-almost everywhere to PS(f) with gn ∈ co{Sϕ(j)(f) : j ≥ jn} for all
n ∈ N [9, Lemma IV.3.1]. Hence by (7.1) for m-almost all x ∈ A we have

T (f)(x) = PS(f)(x) = limn gn(x) = f(x),

and therefore jA = PAT .

Theorem 7.7. If Λ is a nicely placed Riesz set, then L1
Λ(G) is a small

subspace of L1(G).

Proof. Assume that Λ is a nicely placed Riesz set such that L1
Λ(G) is not

a small subspace of L1(G).
Since L1

Λ(G) is not small, there exists a Borel set A of positive mea-
sure such that PA maps L1

Λ(G) onto L1(A). Using Lemma 7.6, we find
T : L1(A) → L1

Λ(G) with jA = PAT . This operator is an isomorphism
onto its image and L1

Λ(G) contains a copy of L1(A). So L1
Λ(G) fails the

Radon–Nikodým property. But this contradicts our assumption because Λ
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is a Riesz set if and only if L1
Λ(G) has the Radon–Nikodým property [21,

Théorème 2].

Corollary 7.8. If Λ is a Shapiro set, then L1
Λ(G) is a poor subspace

of L1(G).

Theorem 7.7 can be strengthened if G is metrizable. Let Λ be nicely
placed. Then L1

Λ(G) is a poor subspace of L1(G) if and only if Λ is a semi-
Riesz set [8, Proposition III.10].
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