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BSDEs with random terminal time and
semilinear elliptic PDEs in divergence form

by

ANDRZEJ R0OzKOSZ (Torun)

Abstract. We study connections between Sobolev space solutions of the Dirichlet
problem for semilinear second order elliptic equations in divergence form and solutions of
backward stochastic differential equations with random terminal time.

1. Introduction. In Peng [9] and Darling and Pardoux [4] (see al-
so the expository paper by Pardoux [8] and the references given therein)
connections between solutions of backward stochastic differential equations
(BSDEs) with random terminal time and viscosity solutions of the Dirichlet
problem for semilinear second order elliptic equations in non-divergence form
are investigated. In the present paper we are interested in finding connec-
tions between Sobolev space solutions of the semilinear Dirichlet problem
and solutions of BSDEs with random terminal time in the case when the
forward driving process is a diffusion generated by a uniformly elliptic di-
vergence form operator with measurable coefficients. We emphasize that it
is not a semimartingale generally.

To be more precise, let us fix a bounded domain (non-empty, open, con-
nected set) D in R? and consider the differential operator A of the form

d d
(1.1) A= % " Dy(ai (#)D;) + ;bi(:ﬁ)Di

4,j=1

where a : D — R @ R? and b : D — R% are measurable functions such that
for some 0 < A\ < A,

d
(12) MNP <D a¥ @& < AEP, a(x) =a¥(z), |b(x) <A

t,j=1
for x € D and ¢ € R?. By putting " = (5;'-, b® = 0 outside D we can and will
2000 Mathematics Subject Classification: Primary 60H30; Secondary 35J60.

Research supported by State Committee for Scientific Research (KBN) under grant
0253 P03 2000 19.

(1



2 A. Rozkosz

assume that a, b are defined and satisfy (1.2) in all R%. Let p(-, -, -) denote a
weak fundamental solution for A and let X = {(X, P,); x € R?} be a Markov
process for which p is a transition density function, that is,

P (Xo=2)=1, PFP(Xyel)= Sp(t,:v,y)dy, t>0,
r
for any Borel I' C R? (see [16]). From [10, Theorem 3.4] it follows that
for each starting point x € R¢ the canonical process X admits a unique
decomposition of the form

(13) Xt — XO = Mt + At, t> 0, Pm—a.s.,

where M is a continuous martingale additive functional (in the strict sense)
of X and A is a continuous additive functional (in the strict sense) of X
of zero quadratic variation. Moreover, the co-variation process of M =
(M"Y, ..., M%) is given by

t
(1.4) (M, M), =\ a¥(X,)ds, t>0.

0

Suppose that D is regular for A. For given ¢ : 9D — Rand f : DxRxR?

— R consider the semilinear Dirichlet problem

(1.5) Au=—F,, ulop =,

where
Fy(z) = f(z,u(z), (cVu)(z)), =€D,

and o is the symmetric square root of a. In this paper we show that under
some natural assumptions on ¢ and f there exists a bounded continuous
solution u of (1.5) in the Sobolev space W.} and for each x € D there also
exists a unique solution (Y*, Z%) of the BSDE

T
(1.6) Vi =o(X:)+ | f(Xe, Y7, Z8) ds

tAT

-

— (22,071 (X)dM,), t>0, Pras,

AT
where

(1.7) T=inf{t > 0:|Xy| ¢ D}.

Moreover, for each x € D we have

(1.8) (Y72, ZF) = (w(Xinr), (0VUu)(Xinr)), >0, Ppas.

From (1.8) it follows in particular that Y] = u(x) P-a.s. for z € D and
Z§ = (oVu)(z) Py-a.s. for a.e. x € D, which yields a stochastic representa-
tion of u and its gradient.
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For regular a (i.e. if A is a non-divergence form operator and X is an
It6 process under P,), a representation similar to (1.8) was proved in Dar-
ling and Pardoux [4] under assumptions on ¢ and f similar to those in the
present paper, and in Peng [9] under more restrictive assumptions. Let us
also mention that the Cauchy problem for the semilinear parabolic equation
Dy + Au = F,, with A given by (1.1) is investigated in Bally, Pardoux and
Stoica [1], Rozkosz [11] and Stoica [15], and the mixed boundary problem
in Lejay [7]. Let us stress, however, that in [1] a representation of the form
(1.8) is obtained for quasi-every starting point x € D, whereas in [7, 15] only
for a.e. x € D.

As for proofs, we would like to point out only one aspect. Roughly speak-
ing, the main difficulty in proving (1.5)—(1.8) for every (and not quasi- or
almost every) starting point is that we have to show P,-integrability of the
quadratic variation of the martingale part of (1.6) (or the martingale part
of u(X.A;) in its decomposition of the form (1.3)). From (1.4), (1.6) it is
therefore clear that to the requirement that the solution u of (1.5) belongs
to the space C([0, 00); R?) N W} a condition on the integrability of Vu must
be added. Therefore in the present paper we consider for each z € D a
Sobolev space W, (x) with weight, the weight being the a-Green function
for A in D with suitably chosen o > 0 (see Section 2). Using stochastic
calculus we derive a sort of “energy estimates” in the space W, (z). The
crucial fact is that these estimates do not involve any regularity assumptions
about @ and allow one to prove existence of a unique continuous solution
u € W of (1.5) such that u € W, (z) for every x € D. This is enough for
our purposes, because from the definition of W, (z) it follows in particular
that E, { |Vu(Xy)|? dt < oo if u € Wu(x). As far as we know, the idea of
using the spaces W, (z) for investigation of the problem (1.5) is new. Notice,
however, that an idea similar in spirit has appeared in [11].

NOTATION. 2 = C([0,00);RY) is the space of continuous R?-valued func-
tions on [0, c0) equipped with the topology of uniform convergence on com-
pact sets. X is the canonical process on 2, X] = Xiar, t > 0. By E,
(resp. ET) we denote expectation with respect to P, (resp. PJ'), by L[Y | P,]
(resp. L[Y | P}']) the law of the process Y under P, (resp. P}'), and by “=”
convergence in law.

D; = 0/0x" is the partial derivative in the distribution sense, and V =
(D1,...,Dy). By C(G) we denote the set of all continuous functions on G,
and by C*8(D) (resp. C*#(D)) the space of functions whose kth order par-
tial derivatives are uniformly Holder continuous (resp. locally Holder con-
tinuous) with exponent § in D. Furthermore, L, (resp. L) is the Banach
space of measurable functions on D that are p-integrable (resp. essentially
bounded); W is the usual Sobolev space of all elements u of Ly having

derivatives D;u in Lo, and W21 is the closure of the space of infinitely dif-
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ferentiable functions with compact supports lying in D with respect to the
W-norm || - lwz- By |- [l we denote the norm in Ly; (-, -)2 denotes the sca-

lar product in Ly whereas (-, -) is the usual scalar product in R%; |D| is the
Lebesgue measure of D. The abbreviation “a.e.” means “almost everywhere
with respect to the Lebesgue measure”.

2. Uniqueness and a priori estimates. Let {F;}:>0 denote the mi-
nimum completed admissible filtration for X.

DEFINITION. Let ¢ : 9D — R and f : D x R x RY — R be measu-
rable functions and let z € D. We say that a pair {(Y*, Z});t > 0} of
{Fi}+>0-progressively measurable processes is a solution of the BSDE (¢, f)
associated with (X, P,) if Y is continuous, {;|Zf|*dt < co P,-a.s. and
(1.6) is satisfied with the martingale additive functional M of the decompo-
sition (1.3).

In fact we will consider solutions with better integrability properties,
namely solutions in the class Héj;d of all {F;}+>0-progressively measurable
processes & with values in R'*¢ having a finite norm

I3, = Ex {el&l dt
0
for some o > 0.

We will assume that D is a bounded domain in R? which is regular for A,
that is, P,(T = 0) = 1, z € 9D, where 7 = inf{t > 0 : | X{| ¢ D}. We will
need the following assumptions on ¢ and f:

(i) ¢ : 9D — R is continuous and can be extended by continuity to D
so that the extended function (still denoted by ) belongs to Wa;

(ii) f: D x R x R? — R satisfies the Carathéodory condition, that is,

f(x,-,-) is continuous for a.e. x € D and f(-,y, z) is measurable for
each (y,2) € R x R,

(i) (31— 92) - (f (291, 2) — F(, 92, 2)) < plys — ol? for some i € R (the

monotonicity condition);

(iv) |f(z,y,21) — f(z,y, 22)| < L|z1 — 22| for some L > 0;

(v) |f(z,y,0)] < g(x) + K]y| for some K > 0 and non-negative g € L,

with p > 2V dif 2u+ L? <0, and g € L, in the general case.
For p, L we will assume that
(vi') 2u+ L? <0 if b # 0 (non-symmetric case), or
(vi") Supgea(r,A) SUPgeD EWea™ < oo for some o > 2u + L2 if b = 0
(symmetric case). Here E;a) denotes expectation with respect to
the measure P;,ga) corresponding to operator (1.1) with b = 0 and
A(X, A) is the set of all measurable a : D — RY®@R? satisfying (1.2).
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REMARK 2.1. Since there exists ¢ = ¢(\, 4, d) such that

2
c y—x
(2.1) p(t,z,y) < Wexp<—’7’>

for all t > 0 and =,y € R? (see, e.g., [16, Section 1.1]), the proof of [3,
Proposition 1.18] shows that there is C' > 0 depending only on A, A, d such
that sup,e 4z ) SUPzep Eze®” < 00 for any a < ag = C|D|~%/%. Therefore
(vi”) is satisfied if 2u + L% < ay.

PROPOSITION 2.2. If (i)-(iv) are satisfied and Eze®” < oo, where o =
2u + L2, then the BSDE (i, f) has at most one solution in the space Hé‘;d.

Proof. See, e.g., the proof of [4, Proposition 3.2]. =

The remainder of this section is devoted to some a priori estimates on
solutions of (1.6). These estimates will be needed in the next two sections.

PROPOSITION 2.3. Assume (i)—(iv) and that || f(-,0,0)||a;z < 00 for some
a>0.If(Y* Z*%) e Hé;‘;d is a solution of the BSDE (p, f) such that
(2.2) E, sup eY/]? < oo,
0<t<r
then (Y*,Z7%) € Hé‘;';cd and for any 0, > 0,
(23) B IVE P+ | e (o - a4 (1 +2) 7Y Z2?) ds )

tAT
r

< Bo{elp(X)P + 97§ eI £(X,,0,0) ds }
tAT
for all t >0, where o = 6 + 2u+ (1 +¢)L2.
Proof. See, e.g., the proof of [4, Corollary 4.4.1]. m

For given = € D let L,(x) denote the space of functions having a finite

norm
r

lull2e = Ex § e fu(X0)[? dt = Ju(X)
0
and let W, (z) denote the space of all elements of £, (z) having generalized
derivatives D;u in L, (z) and equipped with the norm

I
;T

Hu“)z/\/a(z) = Huui,x + Hvu“(zx,x .
Notice that by Fubini’s theorem, ||ull%., = {° Tiu?(z) dt = Usu®(x), where
{T},t > 0} is the semigroup of positive linear operators on L., defined by
Tif(z) = Exlyene® f(Xy) and U, is the potential operator for {T;}. By
(2.1) there is C = C(\, A, d) such that Ty f(x) < Ce**P,(1pf)(x), where
{P;,t > 0} is the transition semigroup of a standard d-dimensional Wiener
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process. Hence, by [3, Theorem 3.10], for each ¢ > 0, T} is also a bounded
operator from L; to Lo. Therefore, if sup,cp Ual(z) < oo, then there is a
measurable density U,(-,-) such that

Huui,z - S ]u(y)]2Ua(x,y) dy
D

(see, e.g., the proof of Corollary to Theorem 3.18 in [3]). Thus £,(z) is in
fact an Lo-space with the weight U, (z, -). The function U, will be called the
a-Green function for A in D. In the case where @ = 0 the a-Green function
reduces to the usual Green function which we will denote by Gp. Notice
also that if b = 0 then the operators T; are symmetric, and consequently
Ua(xay) = Uoc(yax)’ z,y €D.

Suppose w is a solution of (1.5) such that (Y, Z) = (w(X7), (cVu)(X7)) €
Hé;d is a solution of (1.6) satisfying (2.2). Then from (2.3) with ¢ = 0 it
follows that

(24)  Ju(@)* + (@ — a1)l|ulla, + (1 + &) HloVullz,.
< EIQQTKO(XT”Z + 5_1||f(70)0)||i,x
Consider now the problem (1.5) with f(x,y, z) = F(x), that is, the linear

problem. Suppose u is a solution of it such that (1.8) is a solution to (1.6)
in the space Hé;d. By It6’s formula, for any n € N we have

TAN TAN
Yi1?+ | 1Z8Pds+2 | (VPZE 07N (X) dM,)
0 0
TAN
= [Ynal® +2 S F(X,)Y{ ds.
0
Taking expectations and letting n — oo gives
T T
E,E{|Y5’/‘|2 + {1271 ds} < Em{|Yf|2 +2{ POy dt},
0 0
and so
(2.5) u(@)? + [IVull§e < Baolo(X) P+ [|F 50 + llullgq-
By (1.6),
-
(2:6) [u(@)| < Ealo(X)| + By | [F(X0)] dt.

0
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Obviously [Jullg., < ||lul|2,Ex.T, so from (2.5), (2.6) we see that

(2.7) IVull.e < (1 +2E:7)llell3 + I Fll5.q

T 2
+ 2B, 7 sup (Exs IF(X,)] dt) .
zeD 0

3. Linear equations. It is well known that in case d > 1 for any ¢ € W
and F' € Ly the problem

(3.1) Au=—F, ulspp=¢

has a unique weak solution in W, that is, there exists a unique u € W3 such
that u — ¢ € W3 and (aVu, Vi) — 2(Vu,nb)y = 2(F,n), for all n € W3
(see, e.g., [5, Theorem 8.3]). If, in addition, ¢ satisfies (i) and F' € L, with
p > d/2 then u is continuous on D ([5, Theorem 8.31]). In the case where
d =1 the problem (3.1) has an even more regular weak solution for F' € L,
with p = 1 (the substitution v = au’/2 reduces Au = —F to the ordinary
linear differential equation v'42ba~'v = —F, so one can easily write down an
explicit formula for the solution). Our purpose is to show that the condition
F € IL, can be replaced by

(3.2) sup || F')|o;z < 00
xeD

and, what is more important, that under (3.2) the pair (w(X7), (cVu)(X7))
is a solution of the BSDE (¢, F'). To prove this, we will need some auxiliary
results.

PROPOSITION 3.1. If ¢ € C(0D) and F satisfies (3.2) then u: D — R
defined by

-
u(z) = Ex{go()g) + | F(xy) dt}, v €D,
0
18 continuous.

Proof. Since D is regular, P.(t = 7) = 1 for x € D. Hence, by stan-
dard arguments, D > x ~— FE,p(X,) is continuous (see, e.g., the proof
of [3, Theorem 1.23]). Therefore we only need to show that if {x,} C D,
z € OD and x, — x then E,, {J F(X;)dt — E,{; F(X;)dt = 0, and for
this purpose it suffices to show that E, 7 — 0, because by Schwarz’s in-
equality |E,, §7 F(X;)dt| < ||F|low(Ex,7)Y2. By [3, Proposition 1.19], for
each ¢ > 0 the function z +— P,(7 > t) is upper semicontinuous in R,
so limsup, . Py, (1 > t) < Py(r > t) = 0. On the other hand, since
P(1 > t) < e 2gup, ., Ee®7/2 for t > 0, it follows from Remark 2.1
that the functions ¢t — P,(7 > t) are bounded by an integrable function
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uniformly in = € D. Therefore applying Fatou’s lemma gives
oo [ee)

limsup E,,, 7 = limsup S P, (r>t)dt < S limsup P, (7 > t)dt =0,

and the proof is complete. =

LEMMA 3.2. Let z € D. If up, — u in Ly and {uy,} is bounded in Lo(z)
then u € Lo(x) and ||ullo,r < limsup,,_ ||unllox- If, in addition, {u,} is a

Cauchy sequence in Lo(x) then u, — u in Lo(x).

Proof. Let {V,,} be a sequence of open sets such that ¢ V,,, C Vj11 C
Vsl C D for m € N and Uy_ Vin = D. It is known that Gp(z,-) is
continuous on D \ {z} (see [14]). Therefore Gp(x,-) is bounded on V,,,
and consequently ||1y;, (u, — u)H%m = Svm lun (y) — u(y)|? Gp(z,y) dy — 0,
that is, 1y, un, — 1y, u in Lo(z). On the other hand, {u,} is bounded in
Lo(z) and therefore weakly relatively compact. Suppose u,, ;) — v weakly in
Lo(z) for some subsequence {n(k)}. Then 1y, u, ) — 1v,,v weakly in Lo(z)
as well. It follows that |1y, ullo; = [|1v,,v/l0- Since 1y, u® 1 1py gm0’
and 1y,,v* T 1p\ ;v pointwise, using the monotone convergence theorem
yields ||ullo;z = ||v]|o,z- Let (-, -)o:» denote the scalar product in Ly(z). Since
(Un(k)> V)oz — (v,)0z, it follows that |(uy(x), v)o.z| — (v,v)0z, hence

10,0 = lim sup | (1), v)ose| < limsup [ llowe - [|v]loa

k—o0 k—o0

< lim sup ||Un||0,x : ||U’
n—oo

025
which proves the first assertion. The second one follows from the fact that if
un — v in Lo(x) then ||1y,, (u —v)[jox =0 for m € N. u

For n € N let a, : R —» R? @ R? and b, : R? — R? be measurable
functions satisfying (1.2) and let o, € W and F,, € Ly. Set

d d
(33) A" =3 3 Da@)D) + 34 @D

ij=1
and let u, € W4 be a weak solution of the problem
(3.4) Aup = —F,, uplop = ¢n.

In the rest of this section we will assume that a — % and bl — b’ a.e.
fori,j=1,...,d.

The following proposition is undoubtedly known. We provide a proof,
because we could not find an appropriate reference.

PROPOSITION 3.3. If ¢, — ¢ in W21 and F,, — F in Ly then u,, — u
in W, where u is a unique weak solution of the problem (3.1).
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Proof. First we show that there is C' = C(\, A) such that
(3-5) [ull2 < ClIF[l2

for some C' = C'(\, A). We can certainly assume that ' is bounded, for if { f; }
is a sequence of bounded functions such that f; — F in Lo and uy is a weak
solution of (3.1) with F' replaced by fk, kE € N, then ||ull2 = limg— oo ||Jukl|2
by [5, Corollary 8.7]. Let A = ¢, D;(4a%(x)D; — b/(x)) be the formal
adjomt of A. By [5, Theorem 8.6] there exists a unique weak solution v €
W of the problem Av = —1, v|yp = 0. Since, by [5, Theorem 8.15], u,v
are bounded, it follows that wv € Wy, and hence —27'(aVu, V(uv))s +
(Vu, uvb)y = —(F, uv)y. Therefore
(aVu,vVu)s + (aVu,uVv)e — 2(Vu, uvb)y = 2(F, uv)s.
On the other hand, —27!(aVv, Vu?)s + (vb, Vu?)y = —(u?, 1)z, and conse-
quently
ull3 = (aVu, uVv)e — 2(Vu, uvb)s.

By the above,
(3.6) |ull3 + (aVu, vVu)y = 2(F, uv)s,

and so [Jull2 < ||v|lec||F||2, which proves (3.5), because from [5, Theorem
8.16] it follows that v is bounded by a constant depending only on A, A.
Now, write w, = u, — @ — u + . Since w,, € Wzl,
MIVwn |3 < (anVwn, Vi, )s
= (anVun, Vwy )2 — (an Vi, Vwy)a
+ ((a — an)V(u — ¢), Vwy )2 — (aVu, Vwy)a + (aVp, Vwy)2
= 2(F, — F,wy)2 + ((a — an)Vu, Vwy)2 + (an V(e — ¢n), Vwy)2
+ 2(Vwp, wpbn)2 + 2(V(en — @), wpb)2 + 2(Vu, wy(by, — b))a2.

From this and (3.5) the proposition follows. =

Let X" = {(X, P?); 2 € R?} be a Markov process corresponding to the
operator A" and let M"™ denote the martingale additive functional of X" of
the decomposition of X of the form (1.3).

LEMMA 3.4. L[(X,M™)| P = L[(X,M)|P;] in C([0,00);R??) for
each x € D.

Proof. Since P! = P, in C([0,00);R?) (see, e.g., [16]), it suffices to
repeat, with some obvious changes, the proof of [11, Lemma 3.2]. =

In the proof of the following lemma we combine ideas from the proofs of
[3, Theorem A.1] and [17, Lemma 11.1.2].
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LEMMA 3.5. Let © € D. There exists a sequence of regular domains
{Dp.} such that {z} C D,, C Dy, C D form € N, > _, Dp, = D and
Tm = 1inf{t > 0: | Xy| & D,,} is continuous at w for P-almost all w € (2.

Proof. Set g9 = dist(z,0D). For ¢ € (0,e9) let D, = {y € D : dist(y, 9D)
> ¢} and let E. denote the connected component of D. containing z. In
the proof of [3, Theorem A.1] it is shown that the sets E. are regular and
Uop<ee o e = D, so it is clear that the lemma will be proved once we show
that except for at most countably many ¢’s from (0,¢q), 0. = inf{t > 0 :
| X:| ¢ E.} is continuous for P,-almost all w in 2. Let of = inf{t > 0 :
|X:| ¢ E.}. Since o = lims). 05 and € — E, exp(—o.) is a non-negative
non-increasing function,

E,exp(—ol) = l(sigl E,exp(—os) = Eexp(—oe)

for all but a countable number of ¢’s. Since o > o this shows that o = o,
for all but a countable number of ¢’s, which is the desired conclusion because
o is lower semicontinuous and o is upper semicontinuous. m

LEMMA 3.6. For given x € D let {D,,} be the sequence of domains of
Lemma 3.5 and let {1, } be the sequence of the corresponding stopping times.
Assume F,,,F: D — R and G, = (G},...,G%),G = (G',...,GY) :R? = R

are measurable functions such that F, — F and G\ — G, i = 1,....d,
in La. Then for any m, N € N and § > 0,
(ANATm)VE (ANATm)VE
c[(Xeawnma: § BaXodt, § (Ga(X), an)) | P2
' (‘ANATm)VE ' (‘ANATm)VE
= £[<X(~/\N/\rm)v6> S F<Xt) dt, S <G(Xt)7th>> ‘Px]
1) 1)

in C(]0,00); R¥*2) as n — oco.
Proof. By Lemmas 3.4 and 3.5,

LI(N A Tm) V 8, X(ANArmvs: M") | Py
= LI(NATm) V6 X ANArm)ver M) | Pr]

in R x C([0, 00); R??) as n — oo. On the other hand, by (2.1), for any h € Ly,

(NATm)VE NVé
Er | axyldt<cona) e %at | |w(y)ldy
s s D,

< C(\ A,d,N,90)| |1,
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and similar estimates hold if we replace E} by E,. Therefore the lemma
follows by the same method as in the proof of [12, Theorem 1]. m

We are now ready to prove our main result on the Dirichlet problem for
linear equations.

THEOREM 3.7. If ¢ satisfies (i) and F € Lo satisfies (3.2) then there
exists a unique weak solution u € W3 NC(D) of the problem (3.1). Moreover,
for each © € D the pair (1.8) is a solution, in H[l)j;,d, of the BSDE (¢, F)
associated with (X, P;).

Proof. We first prove the theorem under the additional assumption that
F is bounded. Let j(z) = cexp(—1/(1 — |z|?)) if |x| < 1 and j(z) = 0 if
|z| > 1, where c is chosen so that {3, j(z)dz = 1, and let j,(z) = n%j(nz).
Set
(37) a =a" * Jns bqlm = * Jns On = @ * Jn, Fn = Fxj,

n

(we first extend ¢ to a continuous function on R? and F to be zero outside D)
and let u,, € C?(D)NC (D) be a (unique) solution to the problem (3.4). Then
for any n,m, N € N,

NATm
(38)  un(Xianarn) = tn(Xnnr,) + | Fu(Xy)ds
tAN AT
NATm,
- | (Vun(Xo),dMD), ¢ >0, Pl-as.
tANATm

By Proposition 3.3, u,, — w in WQI, where u € I/V21 is a unique solution of the
problem (3.1). On the other hand, by (2.6), {u,,} is bounded on D and hence,
by De Giorgi’s continuity theorem (see [5, Theorem 8.24]), equicontinuous in
each compact subset of D. Therefore there is a bounded continuous (on D)
version of u (still denoted by w) such that u,, — w uniformly on compact
subsets of D. As a consequence, by Lemma 3.6 and the continuous mapping
theorem (see [2, Theorem 5.5]),

(‘ANATm)VS (‘ANATm)VS
[ (wXannmps) § FaXdt§ (Tun(X0),dMp) ) | P
0 0
(‘ANATm )V (-ANATm)VS
= L |:<U(X(~/\N/\Tm)\/5)a S F(Xt) dt, S <V’LL(Xt), th>> ‘ PIE]
6 0

in C([0,00); R3). By the above and (3.8), using once again the continuous
mapping theorem, we get
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(NATm)VI
WX AN AT )V8) = WX (N Ar)vE) T S F(X,)ds
(EANATm)VE
(NATm)VS
— S (Vu(Xy),dMg), t>0, Ppas.
(EANATm)VE
Letting 6 | 0 and then N T co we see that
w(Xipr,) =u(X7,)+ | F(Xy)ds— | (Vu(X,),dM,) Pas.
tATm tATm
for t > 0. Since 7, T 7 Ps-a.s. and F is bounded, S:;\"Tm F(Xs)ds —

(7. F(Xs)ds Py-a.s. Furthermore, by (2.5) and boundedness of {u,}, {Vu,}

tAT
is bounded in Ly(z) for each x € D. From this and Lemma 3.2 we con-

clude that Vu € Lo(z) for € D, hence that {7 (Vu(Xy),dM;) —

§i\ (Vu(Xy),dM,) Py-a.s. Finally, by Proposition 3.1, u is continuous in

D and u = ¢ on 0D. Hence u(Xipr,,) — u(Xinr) and u(X,,,) — o(X;)
P,-a.s. Thus, for each x € D,

u(Xinr) = o(X-) + | F(Xo)ds — | (Vu(X,),dM,) P-as.

for each t > 0. Since the processes on the left and right-hand side of the
above equality are continuous, this proves the proposition for bounded F'.

To prove the general case, we set F,, = (—n)V F' An. By what has already
been proved, the pair (u,(X7),(cVu,)(X7)), where u,, € W) N C(D) is a
solution of the problem Au,, = —F,, u,|sp = ¢, solves the BSDE (¢, F},).
In particular,

T

(3.9) un(Xinr,) = 0(X) + | Fu(X,)ds

— | (Vun(Xy),dM,), ¢ >0, Pras.
tATm
Clearly |F,, — F| — 0 and |F,, — F| < F. Therefore, since F satisfies (3.2),
the Lebesgue dominated convergence theorem shows that

(3.10) lim ||F,, — F|§,, = lim | |F, — F*(y)Gp(z,y)dy =0
n—00 ’ n—>ooD

for x € D. Similarly, since F' € Ly, we have F;, — F in Lo, and consequently,
by Proposition 3.3, u,, — wu in W, where u is a unique solution of (3.1).
Moreover, for each x € D,

(3.11) Vu, — Vu in Lo(z).
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Indeed, from (2.7) it follows that for any n,m € N,

.

2

I9 (i — )z < 1 = Fl + 2(E27) sup (§15 — Fl (X )
[AS 0

By (3.10), limy, o0 | Fy — Finl|3,, = 0. At the same time, since |F,, — F;,| <
|F| and |F,, — F,,| = 0if |[F| < N and n,m > N, for any n,m > N we have

T T

(3.12)  sup B, | |Fy — Fou|(Xy) dt < sup B, { 1gjpps | FI(X0) dt
zeD 0 zeD 0

T T ) 1/2
< sup (B §1grmmy (X0 dt- B, [ IF(X0)P dt)
xe 0 0

< N~V sup || FIZ,.
zeD

Therefore {Vu,} is a Cauchy sequence in Ly(x). On the other hand, for any
V. defined in the proof of Lemma 3.2 we have

limsup ||1v,, V(uy, — u)||(2),ac

n—oo

< sup Gp(z,y) - limsup X IV (un — u)|(y) dy = 0,
yEVm n—oo Vin

so (3.11) follows. We now observe that by De Giorgi’s continuity theorem
(see [5, Theorem 8.24]), for any compact subset K of D and any z,y € K
and N € N we have

sup [un () = un(y)| < C1 sup ([unll2 + A7 Folla) e - y|*
n<N n<N

where C; = C1(\, A, d,dist(K,0D)) and o = a(\, A, d) > 0. Moreover,

sup |un(x) - un(y)|
n>N

< Jun(z) —un(y)| + Sup (Jun () = un (@)] + fun(y) = un(y)])

< |un(z) — un(y)| + 2 sup sup E, | |F, — Fy|(Xy) dt.
n>N xeK 0

Analysis similar to that in the proof of (3.12) shows that the second term on
the right-hand side of the last inequality is bounded by 2N~ sup,c ¢ || F[[§.,.-
Since [lunll2 < Ca(ll@llwy + [|Fl2) for some C; not depending on n (see
[5, Corollary 8.7] or the proof of Proposition 3.3), putting together the above
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estimates yields

sup Jun(2) = un(y)] < 2C1(Callellwy + [1Fll2) + A~ N|D|%)|a —y|*
ne

+ 2N sup || FZ,.
rzeK

This proves that {u,} is equicontinuous in K. By (2.6) and (3.2) it is also
bounded on any compact subset of D, and hence, by the Ascoli-Arzela the-
orem, converges to u uniformly on any such subset. Using this and (3.10),
(3.11), and letting n — oo in (3.9) gives

u(Xinr,) = o(Xo)+ | F(Xo)ds— | (Vu(Xy),dM,), >0,
tATm tATm

P,-a.s. Hence, letting m — oo we obtain (3.9), because 7,,, 1 7 Py-a.s. and u
is continuous on D. This proves the theorem. =

4. Semilinear PDEs and BSDESs. In this section we prove our main
theorem on connections between weak solutions of the problem (1.5) and
solutions of BSDEs of the form (1.6). We begin with results on uniqueness,
existence and regularity of solutions of (1.5).

Before proving the first theorem we observe that if sup, F;e®” < oo
then Uyl is a bounded weak solution of the problem (a + A)U,1 = —1,
Uallspp = 0. This follows from the fact that for bounded f the function
Gpf is a weak solution of the problem AGpf = —f, Gpflosp = 0 and
Gp(aU,l) = Uy1—Gpl, because using the Markov property and integration
by parts gives

T T T
E, S a(EXt S e’ ds) dt = E, S E.((e* — 1) | F)ae * dt
0 0 0
= FE, (e —1).

THEOREM 4.1. Assume that ¢ € W4 and f satisfies (ii)—(v). If either
u+L><0,0orb=0 and sup,cp Ere®” < oo for some o > 2 + L?, then
the problem (1.5) cannot have more than one weak solution in W3 .

Proof. Suppose that u;,us € W, are weak solutions of (1.5). Then u =
Uy — Uz € W21 and u solves the problem (3.1) with F' = F,, — Fy,,, ¢ = 0.
Let {F,} be a sequence of bounded measurable functions such that F,, — F
in Lo, and for n € N let w, € W21 be a weak solution of the problem
Aw, = —F,, wylop = 0. Assume that b = 0. As in the proof of (3.6) one
can show that

[wn |3 + a(wn, wpUa1)2 + (aVwn, Ug1Vwy)2 = 2(Fy, wyUal)a.
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By Proposition 3.3, w, — u in W21, so letting n — oo we obtain
(4.1) )3 + a(u, ulgl)s + (aVu, UglVu)y = 2(F, ulyl)s.
On the other hand, by (iii), (iv),
2(F,uUa1)2 < 2u(u,ulyl)e 4+ 2L(|u| - |[oVu|,Uyl)2
< 2p(u, uUn 1)z + (aVu, UplVu)g + L (u, uUq1)s.

Hence |[u|2 + a(u,ulUy1)2 < (21 + L2)(u uUq1)2, and the theorem follows.
Consider now the case b # 0. Let A be the formal adjoint of A and let
Gpl(z) = SD G(y, )dy, z € D. Since Gpl € W} is a weak solution of the

problem AG pl=-—1, G pllagp = 0, analysis similar to that in the proof of
(4.1) shows that

(4.2) |ull3 4 (aVu, GplVu)y = 2(F,uGpl)s.
Hence |[u|? < (2u + L?)(u, uGp1l)s, and the proof is complete.

THEOREM 4.2. Assume (i)—(v) and (vi') or (vi”). Then there exists a
(unique) solution v € W3 N C(D) of the problem (1.5). Moreover, u €
Wavo(x) for each x € D and sup,cp ||Fullavos < oo with o = 0 in the
first case and any « satisfying condition (vi”) in the second one.

Proof. By Remark 2.1 we may and will assume that o > 0. Throughout
the proof v = a if b = 0 and 2u + L? > 0, and v = ag/q’ if 2u + L? < 0,
where « is the constant from Remark 2.1 and ¢’ is the Holder conjugate of
some ¢ € (1,p/(2V d)). Moreover, we write a; = & + 2 + (1 + €)L?, where
§,e > 0 are chosen so that a1 < 7, § +eL? < ap/2 and eL?||Gpljoo < 1.

The proof will be divided into 5 steps.

Step 1. We first prove that for any square-integrable w : D — R? such
that sup,cp [[w|w, @) < oo the problem

(4.3) Av = —~U, vlop = ¢,

where ﬁv(:p) = f(x, v(x)), f(a:,y) = f(z,y,w(x)), x € D, y € R, is uniquely
solvable in W3 . For this purpose, for n € N we define a,, b, by (3.7), and
ho=(hl,....,hd): D —R%and f,: D x R — R by

hi(x) = (—n)Vw'(x) An, i=1,....d, fulz,y) = f(z,y, hp(z)).
Let {(X,P");z € R} be a diffusion corresponding to A™ defined by (3.3).
By [4, Theorem 3.4] (see also [8, Theorem 3.1]), for each x € D there is a
unique solution (Y7, Z%") of the BSDE (¢, f) associated with (X, P), and
moreover, by [4, Lemma 6.2], Y*" = v,(X") Pl-as., where v,(z) = Y;™"
for x € D. We will show that v,, is a unique solution of the problem

(4.4) A'vp = —F,,  wvnlop=¢
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in W}, where F, : D — R, F(2) = fu(z,va()). Since a1 < v, by (2.4)
applied to v, we have

(4.5) o (@)* < lll3ERe™ + 26 (gl30 + L2[w]3.0).

If 244 L* > 0 then ||g||2., < U,(2)]|gllso, and if 21+ L? < 0 then by Hélder’s
inequality,

/ / 1/(p/2q9)
90120 < Wag @)Y (§(Gn gD @ dy) g2,
D

where (p/2q)’ is the Holder conjugate to p/2q. By [13, Corollary A.1.2] and
[5, Theorem 8.16] (for d = 1 see remarks at the beginning of Section 3),
sup,ep |Gp(z,-)|» < oo for any r > 1 whose Hélder conjugate is greater
than (2Vvd)/2. Hence in both cases, sup,¢p [|9|2., < oc. From this and (4.5)
we see that v, € Lo, hence F}, € Lo. Set now o = @*Ji and Fn = ((—k)V
F, A k) = ji for k € N, where jj is defined as in the proof of Theorem 3.7.
Since D is regular, ¢, € C#(D) = C%#(D) and F,  are bounded and belong
to CP(D), it follows from [5, Theorem 6.11] that there is a unique solution
Unk € CQﬂ( )N C(D) of the problem A" Upk = —Fn,k, Unklop = k. By
It&’s formula, (Y"’k ZFY = (01 (X7), (00 Von 1) (XT)), t > 0, is a solution
of the BSDE (g, F,, 1) associated with (X, P}'). Therefore

(4.6) Y = on(X) + | Fus(Xs)ds
A

tAT

-
-\ (Z0F, 0,1 (X)dMD), ¢ >0, Plas.
tAT
Obviously ¢ — ¢ uniformly on D and ﬁnk — F, in Ly as k — co. Hence,
by Proposition 3.3, vy, — v, in W, where 9, € W3 is a unique solution of
the problem A"v,, = —F,, Un|op = ¢. On the other hand, by (2.6) we have

o,k (@)] < elloo + 19" # Gkllose + K l|vnlloo + Ln,

since ||vklloo < l|¢lloe and |Fp kx| < |Fp| * jg- Consequently, {vn i tren is
bounded in D. Using the above properties of {¢y }ren, {Fnk}reN, {Vn.k}ren
and the fact that F), € Lo(x) for x € D, as in the proof of (3.9) we deduce
from (4.6) that there is a continuous version vy, of v,, such that

On(Xt) = p(Xr) + S Fvn(XS) ds — S (VU (Xs),dM), >0,
tAT tAT

Pl-a.s. At the same time,
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T T
VI = o(Xo) + | Fa(Xo)ds — [ (20", 01 (Xo)dM), 20,
tAT AT

Pl-a.s. Putting
¢
&=Y"" —Tn(Xy), Ne=\(Z0" — (00 VT,)(Xs), 07, (Xs)dMT)
0
we have & = Nyar — N, t > 0, and hence
gt = é-t/\T = E;L(ft/\T | ft/\T) = Eg(_N‘r |]:t/\7') + Nt/\T =0.
Therefore v, (X]) = Y;"", t > 0, P! a.s., and consequently v,(z) = v,,(X[)
=Yy" = vp(x).
From what has already been proved it follows that v, is a unique, in W21,
weak solution of the problem (4.4), and moreover, (v,(X7), (6,Vv,)(X7))

is a solution of the BSDE (¢, f) associated with (X, P}'). By the definition
of a weak solution, v,, — ¢ € W3 and

(anV (vn = ©), V)2 = 2(Fp, n)2 — (anVep, V)2 + 2(V (vn — ), 11bn )2
+2(Veo, nbn)2
for any n € W21 Putting n = v,, — ¢ we obtain
(anV(vn = ¢), V(vn — 9))2
< 2Fy = Fyyvn = 9)2+ 2(Fg, va = )2 + A Vll2 - [V (wn = )2

+24[V (vn = @)ll2 - lvn = ll2 + 24[[Veell2 - [lon — ]2
< 2pllvn — @3 + 2(lgll2 + Kllellz + Lliwll2) - lvn = ¢ll2
+ AT A2 Vl3 + AT A o — I3 + 27NV (vn — )3

+24[[Velle - [lon — @ll2,

and hence [[V(vn —¢)ll2 < C(llgll2 + lellwy + llwll2 + lvn — ¢]l2) for some
C =C(\ A, u, K, L). From this and (4.5) we see that {v, —¢},en is bounded
in W21, and therefore, by Rellich’s theorem (see, e.g., [5, Theorem 7.22]),
precompact in Ly. Suppose that for some subsequence (still denoted by n)
vp — v in Ly. Then F, — F, in Ly by [6, Theorem 2.1]. From this and
Proposition 3.3 we conclude that v is a weak solution of (4.3).

Step 2. There exists a version u of v such that v is continuous on D,
suPgep |[ullw, @) < oo and for each x € D the pair (1.8) is a solution, in

H+Hd of the BSDE (p, f) associated with (X, P;). Indeed, by Lemma 3.2

viz 5
and (4.5), sup,ep |[v]lo.x < 0o. Hence sup,ep || Fyllo.e < 00, and so, by The-
orem 3.7, there is a unique solution « € W} NC(D) of (3.1) with F replaced

by F,. Since the problem (3.1) is uniquely solvable in W3, it follows that
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u = v a.e. Moreover, again by Theorem 3.7, the pair (1.8) solves the BSDE
(¢, f) in Héfgcd. Since (2.2) is satisfied and sup,¢cp 17, 0)[|y;2 < 00, it follows
from Proposition 2.3 that u is in fact a solution of class H%;*;d for every x
and its norms in H}fod are bounded uniformly in x € D.

Step 3. There is a weak solution u € W3 of (1.5). To prove this, denote
by V the space W, equipped with the norm

2 { lul|3 + (o — 1) (u, uUa1)2 + (aVu, Uy 1Vu)y  if b= 0,
ul|y = P

VL2 + (aVu, GplVu), if b0,
and let V,, = {u €V : sup,¢p |[ullw, (z) < o0}. Define the mapping ¢:V, —V
by letting @¢(w) be the solution of (4.3) with w = o Vw. By what has already
been proved, ¢ is well defined and in fact @ : V, — V,. Set &(w;) = v;,
i=1,2,v=v —vy, w=w; —wg and F = f(-,v1,0Vwy) — f(-,v2, 0 Vwa).
If b = 0 then as in the proof of Theorem 4.1 we show that (4.1) holds with
v in place of u. On the other hand,

2(F,'Z)Ua].)2 = 2(f(‘, U1, O'le) - f(',’l)g,O'vwl), UUal)g
+2(f(-,v2,0Vwy) — f(+,v2,0Vws),vU,1)2
< 2u(v,vUqu1)2 + 2L(JoVw|, [vUa1|)2
< 2u+ (1+e)L*)(v,0Ual)2 + (1 4 €)Y aVw, Uyl Vw)s,

the last inequality being a consequence of an elementary inequality 2ab <
na® +n=1b? with = (1 + ¢)L. Hence

[0]5 + (v, vUa1)2 + (aVv, UalVv)a
< (2u+ (14 6) L) (v,vUal)2 + (1 + &) (aVw, Uy1Vw)s.
If b # 0 then (4.2) holds with v in place of u and, since 2 < —L?, we have
(F,0Gpl)s < eL?|Gpllo[vll3 + (14 )~} (aVuw, Gp1Vuw)s.

Thus, in both cases @ is contractive. Set ug = 0, up, = P(up—1), n € N.
Then {u,} is a Cauchy sequence in V' and hence bounded in L. In fact, it
is bounded in W,. Indeed, we have

NIV (un = )13 < (aV (un = 9), V(un = 9))2
= —(aVe, V(un —9))2 + 2(Vup, (un — ¢)b)2
+2(f(-y tn, oVup_1),un — ¢)2
<47V (un — @)I3 + A7 A%Vl 3
+ 27NV (g — @)lI3 + 27 A Vel3 + 4A A un — 03
+2(9 + Klup| + LloVup—_1|, |[un — ¢|)2.
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Hence [|[Vu,|3 < C1 + Co|[Vuy—1|2 for some Cyi,C> depending only on
MNAK L ||glle and sup,,~q ||tn|l2, which implies boundedness of {u,} in
W.. Therefore {u,} is weakly relatively compact in W.}. Since we know that
{uy,} is Cauchy in V as well, it converges in V' to some .

Step 4. u € V,. To prove this, for fixed z € D we denote by V(z) the
space W, () equipped with a norm || - ||y, equivalent to | - ||y, (), defined
by

ullpy = (v = a))lull3 + oVl

Define {u,} as in Step 3. By Step 2, @ : V(z) — V(z) and for each n € N
the pair (wn41(X7), (6Vwy41)(XT7)), where w,, = u,, — up—1, is a solution,
in 115, of the BSDE (0, F,,11 — F,,) with F, = f(-, un,0Vuy_1). By It6’s
formula,

T

0 = &7 |wp1(X)* = |war1 (Xo)* + 7 | €1 (X,) [ ds

0
+ {7 w41 (Xs) d(wn1 (X)) + | €7 d{wni1 (X))
0 0

Hence
-

Ey S €7t{’}’\wn+1(Xt)|2 + (aVwpt1, Vwn 1) (Xe) } dt
0

T

S 2Em X e’yt(Fn+1 - Fn) . wn+1(Xt) dt.
0
We have

2(Fuq1 — Fp) - wnar = 2(f (5 unt1,0Vug) — f(o U, 0Vun 1)) - ot
= 2(f (s unt1,0Vup) — f(o; U, oVuy)) - wpir
+2(f (-, un,oVuy) — (-, un,0Vup—_1)) - Wpt1
< 2N‘wn+l|2 + 2L|oVwy| - [wp1]
< (2u+ (14 &) L) |wpia > + (1 4+ &) HaVwy, Vw,).
By the above,

T

E (v = 21— (1 + &) L) w1 (X)) + (aVwnsr, V) (X)) dt

0
r

< (1+e) B, | e (aVwy, V) (Xy) dt,

0
which shows that ||wn+1||]2;(m) <(1+ 6)_1HwnH]2)(x). Hence {u,} is a Cauchy
sequence in V(x) and therefore converges to some wu. In particular, u, — u
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in Lo(z). On the other hand, since u,, — u in V, u,, — @ in Ly, and hence
u = u a.e. by Lemma 3.2. Consequently, u, — u in V(z) and

lur = lly) < a1 = @) Hlur — uollyy — with ¢ = (1+¢)71/2
Hence [|il|y(z) < (1 — ¢) Huilly(y), and so u € V,, since u; € V.

Step 5. By Step 4, @(u) is well defined. Therefore u is a fixed point
of @, because ||u — P(u)||y < ||t — upllv + ||P(un—1) — (u)||y for n € N.
Consequently, & € W, is a weak solution of (3.2). Since F; € V it follows
from Theorems 3.7 and 4.1 that @ has a version u € C(D), which completes
the proof. m

From the above proof it is evident that if a € C*#(D) for some 3 € (0, 1)
then in case b = 0 condition (vi”) may be replaced by sup,cp Eze®” < oo
(in Step 1 we need not approximate a by {a,}). We do not know whether
(vi”) may be replaced by the latter condition in the case of arbitrary a
satisfying (1.2).

THEOREM 4.3. Assume (i)—(vi) and define o as in Theorem 4.2. If u €
W) N C(D) is a solution of (1.5) then for each x € D the pair (1.8) is
a unique, in the class H(ll'\tg;x, solution of the BSDE (p, f) associated with
(X, Py).

Proof. This follows from Theorems 3.7 and 4.2.
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