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Polynomial functions on the classical projective spaces

by

Yu. I. Lyubich and O. A. Shatalova (Haifa)

Abstract. The polynomial functions on a projective space over a field K = R, C
or H come from the corresponding sphere via the Hopf fibration. The main theorem states
that every polynomial function φ(x) of degree d is a linear combination of “elementary”
functions |〈x, ·〉|d.

1. Spaces and operators. The classical projective spaces are KPm−1

where K is one of three fields R, C, H and m ≥ 2. The quaternion field H
is noncommutative in contrast to R and C. However, R ⊂ H and each real
number commutes with all quaternions. In general, K is an associative unital
algebra over R of dimension δ = δ(K) = 1, 2, 4 for K = R,C,H respectively.
The standard conjugation α 7→ α is an involutive automorphism of K (or
anti-automorphism if K = H since αβ = βα in this case). For any α ∈ K the
real number Reα = 1

2(α+α) is the real part of α. (If K = R we set α = α.)

The space KPm−1 can be constructed starting with Km that consists of
all m-tuples x = (ξi), ξi ∈ K. This is an m-dimensional right (for definite-
ness) linear space over K; the addition in Km is standard, the multiplication
by a scalar α ∈ K is xα = (ξiα). Moreover, Km is a Euclidean space provided
with the inner product

(1) 〈x, y〉 =
∑

ξiηi (x = (ξi), y = (ηi)).

The properties of the latter are standard but with the fixed order of factors
in the relations

〈xα, y〉 = α〈x, y〉, 〈x, yα〉 = 〈x, y〉α
if K = H. The corresponding Euclidean norm on Km is

(2) ‖x‖ =
√
〈x, x〉 =

√∑
|ξi|2.

2000 Mathematics Subject Classification: Primary 33C55; Secondary 46B04.
The second author was supported in part by the European Research Training Network

HPRN-CT-2002-00281.

[77]



78 Yu. I. Lyubich and O. A. Shatalova

We denote the unit sphere {x : ‖x‖ = 1} by S(m,K). The multiplicative
group

(3) U(K) = {α ∈ K : |α| = 1}
acts on S(m,K) by the rule x 7→ xα. The corresponding quotient space (the
space of orbits) is KPm−1 by definition. Let us emphasize that the mapping
x 7→ xα is not linear over H except for α ∈ R.

For any m ≥ 1 a linear operator A in Km can be described in terms of an
m×mmatrix (αji) overK, so that if x = (ξi) then Ax = (

∑
i αjiξi). As usual,

a linear operator A is called unitary if 〈Ax,Ax〉 = 〈x, y〉, or, equivalently, if
‖Ax‖ = ‖x‖, which means that A is an isometry. These operators constitute
the unitary group Um(K). (This is the orthogonal group O(m) if K = R and
the symplectic group Sp(m) if K = H.) The group Um(K) acts transitively
on the unit sphere. Indeed, let x, z ∈ S(m,K). Then there are two ortho-
normal bases in Km, say {xi}mi=1 and {zi}mi=1, such that x1 = x and
z1 = z. The conditions Axi = zi, 1 ≤ i ≤ m, determine the required unitary
operator.

More generally, one can consider two systems (xi)
l
i=1 and (zi)

l
i=1 of vec-

tors with the same Gram matrix and prove that they are unitarily equivalent,
i.e. there exists a unitary operator A such that Axi = zi, 1 ≤ i ≤ l. Let us
briefly show this for the case when the system (xi)

l
i=1 is linearly indepen-

dent. Then the conditions Txi = zi, 1 ≤ i ≤ l, determine a linear mapping
T : Span (xi) → Span (zi). This T is an isometry since 〈xi, xk〉 = 〈zi, zk〉,
1 ≤ i, k ≤ l. It remains to set A = T ⊕S where S : Span (xi)

⊥ → Span (zi)
⊥

is an arbitrary isometry. The latter does exist since the corresponding sub-
spaces have the same dimension m− l.

Thus, the Euclidean geometry of the space Km can be developed irre-
spective of K. However, some special concepts and constructions relate to
K = R initially. In order to introduce them for any K we have to view Km as
a real linear space Rδm, δ = δ(K). Under this realification the inner product
has to be replaced by

(4) 〈x, y〉R = Re〈x, y〉,
but the norm remains the same since 〈x, x〉 is real. Accordingly, S(δm,R) =
S(m,K), so S(m,K) is the standard real (δm− 1)-dimensional sphere.

2. Functions on KPm−1. The functions we will focus on originate from
the polynomials in the following sense.

Definition 1. A mapping ψ : Km → C is called a polynomial of degree
d if such is its realification Rδm → C.

The set of all polynomials on Km is an associative commutative unital
algebra over C. Moreover, if ψ(x) is a polynomial then so is ψ(x). The



Polynomial functions 79

simplest polynomials are constants, the coordinates ξi, their conjugates, etc.
As usual, a polynomial ψ is called a form if it is homogeneous of some
degree d, i.e.

(5) ψ(xλ) = λdψ(x), λ ∈ R.
Every (nonhomogeneous, in general) polynomial ψ of degree d is the sum
of uniquely determined forms ψk of degrees k = 0, 1, . . . , d, which are the
homogeneous components of ψ. Hence,

ψ(xλ) =
d∑

k=0

λkψk(x), λ ∈ R.

Therefore, ψ is a form of degree d as long as ψ(xλ) = λdψ(x) for λ > 0.
The forms of degree d = 0 are just constants. The forms of degree 1 are

the sums of arbitrary linear functionals and their conjugates. In particular,
〈x, y〉 is a form of degree 1 with respect to x and y separately. Hence, the
function

ψ2;y(x) = |〈x, y〉|2 = 〈x, y〉〈y, x〉
is a form of degree 2. Moreover, for every even d the function

(6) ψd;y(x) = |〈x, y〉|d = (ψ2;y(x))d/2

is a form of degree d. We call it an elementary form of degree d. These forms
play a central role in what follows.

Now let F be an arbitrary (nonempty) set. Any mapping φ : KPm−1 → F
can be lifted to π∗φ : S(m,K) → F where π∗φ = φ ◦ π and π : S(m,K) →
KPm−1 is the Hopf fibration (the natural factorization; cf. [1]). The mapping
π∗φ : S(m,K)→ F is U(K)-invariant in the sense that

(7) (π∗φ)(xα) = (π∗φ)(x), |α| = 1,

since xα and x belong to the same U(K)-orbit.
Conversely, if θ : S(m,K) → F is U(K)-invariant then there exists a

unique φ : KPm−1 → F such that π∗φ = θ. This relation can be extended to

the mappings ψ : Km → F by restriction ψ̂ = ψ|S(m,K). If ψ̂ = π∗φ then
we say that φ is generated by ψ. The commutative diagram

(8)

Km
ψ // F

S(m,K)

i

OO
ψ̂

99rrrrrrrrrrr

π
// KPm−1

φ

OO

with the canonical embedding i summarizes the aforesaid. In this context
the relation (7) turns into

(9) ψ̂(xα) = ψ̂(x), |α| = 1.

In particular, this general scheme is applicable to a polynomial ψ.
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Definition 2. A mapping φ : KPm−1 → C is called a polynomial func-
tion on KPm−1 if it is generated by a polynomial ψ.

This ψ is determined up to a summand (1 − 〈x, x〉)ω(x) where ω is an
arbitrary polynomial. Indeed, we have

Lemma 1. Any polynomial χ vanishing on the unit sphere is divisible by
1− 〈x, x〉.

Proof. First, note that 1 − 〈x, x〉 is irreducible, otherwise, it would be
divisible by a polynomial f of degree 1. Then the affine hyperplane {x :
f(x) = 0} would lie on the unit sphere, which is impossible.

Now consider χ such that χ|S(m,K) = 0 and assume for a while that
χ(−x) = χ(x). Then

χ =
∑

k

χ2k

where χ2k is a form of degree 2k, 0 ≤ k ≤ d/2, d = degχ. Hence,

χ(x) =

d/2∑

k=0

〈x, x〉kχ2k(x̂)

where x̂ = x/‖x‖. By assumption,

d/2∑

k=0

χ2k(x̂) = 0.

Therefore,

χ(x) =

d/2∑

k=0

(1− 〈x, x〉k)χ2k(x̂) = (1− 〈x, x〉)
d/2∑

k=0

χ2k(x̂)
k−1∑

j=0

〈x, x〉j

whence,

〈x, x〉d/2χ(x) = (1− 〈x, x〉)
d/2∑

k=0

χ2k(x)
k−1∑

j=0

〈x, x〉d/2−k+j.

The polynomial 〈x, x〉d/2 is not divisible by 1−〈x, x〉, hence χ(x) is divisible
as required.

In the general case we can pass to χ(x)χ(−x) and then conclude that
the irreducible factor 1− 〈x, x〉 is contained in χ(x) or in χ(−x). However,
this factor is even, hence it is contained in χ(x) in any case.

If φ is a polynomial function on KPm−1 then the minimal degree of
polynomials generating φ is called the degree of φ. Under this definition we
have
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Lemma 2. The degree of the elementary polynomial function φd;y gen-
erated by ψd;y is equal to d.

Proof. Obviously, deg φd;y ≤ d. Suppose that deg φd;y < d, so φd;y is
generated by a polynomial ε with deg ε < d. By Lemma 1,

(10) |〈x, y〉|d = (1− 〈x, x〉)ω(x) + ε(x)

where ω is a polynomial. If η(x) is the leading homogeneous component of
ω(x) then (10) yields

(11) |〈x, y〉|d = −〈x, x〉η(x), deg η = d− 2.

This is a contradiction since on the left-hand side of (11) the irreducible
factors are only 〈x, y〉 and 〈y, x〉 while the right-hand side contains the irre-
ducible factor 〈x, x〉.

Now we prove the following important

Lemma 3. For every polynomial function φ of degree d there exists a
unique form ψ, degψ = d, generating φ. This form is U(K)-invariant , i.e.

(12) ψ(xα) = ψ(x) (x ∈ Km, |α| = 1).

Proof. Let ψ0 be a generating polynomial for φ such that degψ0 =
deg φ = d. The even polynomial

ψ1(x) =
ψ0(x) + ψ0(−x)

2
also generates φ because of (9). Moreover, degψ1 ≤ d but, in fact, degψ1 = d
since d is the minimal degree of polynomials generating φ. Hence, the number
d is even and

ψ1(x) =

d/2∑

k=0

κ2k(x)

where κ2k is a form of degree 2k. The form

ψ(x) =

d/2∑

k=0

〈x, x〉d/2−kκ2k(x)

is as required. Its uniqueness is obvious: two forms of the same degree co-
inciding on the unit sphere coincide everywhere. Finally, this form is U(K)-
invariant since for |α| = 1 and x̂ = x/‖x‖ we have

ψ(xα) = ‖x‖dψ̂(x̂α) = ‖x‖dψ̂(x) = ψ(x)

by (9) again.

Corollary. The degree of every polynomial function φ 6= 0 is an even
number.

From now on d is a fixed even positive integer.
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Lemma 4. The following properties are equivalent for a complex-valued
function ψ on Km:

(i) ψ is a U(K)-invariant form of degree d.
(ii) ψ is a polynomial such that

(13) ψ(xλ) = |λ|dψ(x) (x ∈ Km, λ ∈ K).

Proof. (i)⇒(ii). For α = λ/|λ| we have ψ(xλ) = |λ|dψ(xα) = |λ|dψ(x).
(ii)⇒(i). For λ > 0 we have ψ(xλ) = λdψ(x), so the polynomial ψ is a

form of degree d. Moreover, ψ(xα) = ψ(x) for |α| = 1 by (13) again.

The functions with the property (13) are called absolutely homogeneous
of degree d.

The U(K)-invariant forms (≡ absolutely homogeneous polynomials) of
degree d constitute a complex linear space ΦK(m,d). All elementary forms
ψd;y belong to this space. Another example is 〈x, x〉d/2. However, the corre-
sponding polynomial function is the constant 1 irrespective of d.

Note that the space ΦK(m,d) is symmetric in the sense that

(14) ψ ∈ ΦK(m,d) ⇒ ψ ∈ ΦK(m,d).

Main Theorem. The subspace Span{ψd;y : y ∈ Km} coincides with the
whole space ΦK(m,d).

Combining this result with Lemma 3 we obtain

Corollary. In the space of all polynomial functions of degree ≤ d there
exists a basis {ψd;yi}Ni=1 where {yi}Ni=1 is a system of points on the unit sphere
S(m,K).

In the real case the Main Theorem is classical (see [6, pp. 29–32] for
a proof and survey) but the complex and quaternionic cases are new. Our
proof is equally valid for all three fields due to some general methods of
functional analysis. In addition, we give a simple proof for the commutative
fields R and C simultaneously.

3. The reproducing kernel. Let us provide the space ΦK(m,d) with
the inner product

(15) (ψ1, ψ2) =
�
ψ1ψ2 dσ

where the integral is taken over the sphere S(m,K) against the normalized
Lebesgue measure σ. For any ψ ∈ ΦK(m,d) and for any point x ∈ Km the
evaluation mapping ψ 7→ ψ(x) is a linear functional on ΦK(m,d). According
to the Riesz Theorem,

(16) ψ(x) =
�
R(x, y)ψ(y) dσ(y)
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where R(x, ·) ∈ ΦK(m,d), i.e. R(x, y) is a U(K)-invariant form of degree d
with respect to the variable y while x is a parameter. The function R(x, y) of
two vector variables x, y is uniquely determined; it is called the reproducing
kernel.

Now let A be a unitary operator in Km. Then A is also unitary (orthog-
onal) in Rδm (see (4)). It follows from (16) that

(Ãψ)(x) ≡ ψ(Ax) =
�
R(Ax, y)ψ(y) dσ(y)(17)

=
�
R(Ax,Ay)(Ãψ)(y) dσ(y)

since the measure σ is orthogonally invariant. When ψ runs over ΦK(m,d),

the function Ãψ runs over the same space. Comparing (17) to (16) we obtain

(18) R(Ax,Ay) = R(x, y), A ∈ Um(K),

i.e. the kernel R is unitarily invariant.
Let x, y ∈ S(m,K). Since any pair z, w ∈ S(m,K) with 〈z, w〉 = 〈x, y〉 can

be represented as z = Ax, w = Ay, A ∈ Um(K), we conclude that R(x, y)
depends only on 〈x, y〉. Moreover, R(x, yα) = R(x, y) for all α, |α| = 1,
hence, R(x, y) depends only on |〈x, y〉| or, equivalently,

(19) R(x, y) = P (|〈x, y〉|2) (x, y ∈ S(m,K))

where P = P (s), 0 ≤ s ≤ 1. Thus, (16) takes the form

(20) ψ(x) =
�
P (|〈x, y〉|2)ψ(y) dσ(y) (x, y ∈ S(m,K)).

Lemma 5. P (s) is a polynomial of degree ≤ d.

Proof. Let {χi}mi=1 be an orthonormal basis in ΦK(m,d). Then for any
fixed x ∈ S(m,K) we have

P (|〈x, y〉|2) =

n∑

i=1

ϕi(x)χi(y)

where

ϕi(x) =
�
P (|〈x, y〉|2)χi(y) dσ(y) = χi(x)

by (14) and (16). Therefore,

(21) P (|〈x, y〉|2) =
n∑

i=1

χi(x)χi(y).

Now we fix y = y0 ∈ S(m,K) and let x = x(ϑ) = y0 cosϑ + x0 sinϑ where
x0 ∈ S(m,K), 〈x0, y0〉 = 1. Then (21) yields

P (cos2 ϑ) =
n∑

i=1

χi(y0 + x0 tanϑ)χi(y0) cosd ϑ =
d∑

j=0

pj sind−j ϑ cosj ϑ
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where pj are some complex coefficients. Actually, pj = 0 for odd j since
P (cos2 ϑ) is an even function. Hence,

P (cos2 ϑ) =

d/2∑

k=0

p2k sind−2k ϑ cos2k ϑ,

and, by the substitution cos2 ϑ = s, we obtain

P (s) =

d/2∑

k=0

p2k(1− s)d/2−ksk, 0 ≤ s ≤ 1.

Remark. Lemma 5 is closely related to the addition formula for spher-
ical functions on projective spaces (cf. [2], [3]).

4. Proof of the Main Theorem. We start with a formula which
shows that the elementary polynomials constitute a Jordan chain for the
Laplacian ∆. Let us emphasize that when applying ∆ we mean that all
functions on Km are viewed as depending on the real coordinates in Rδm.

Lemma 6. For x ∈ S(m,K), y ∈ Km, and δ = δ(K) we have the formula

(22) ∆y(|〈x, y〉|d) = d(d+ δ − 2)|〈x, y〉|d−2.

Proof. The linear functional ξ(y) = 〈x, y〉 is a coordinate of y for an
orthonormal basis which includes x. In its turn,

ξ(y) =

δ−1∑

l=0

ηl(y)εl

where ε0 = 1 and the remaining εl are the basic imaginary units of K if
K 6= R. The coefficients ηl(y) are the coordinates of y for the corresponding
orthonormal basis in Rδm. We have

|〈x, y〉|d =
( δ−1∑

l=0

η2
l

)d/2
,

and (22) follows immediately.

In order to prove the Main Theorem, it suffices to derive θ = 0 when
θ ∈ ΦK(m,d) satisfies

(23)
�
θ(x)|〈x, y〉|d dσ(x) = 0

for all y ∈ Km. To this end we apply the Laplacian to (23) using (22) and
then iterate this procedure. This yields

�
θ(x)|〈x, y〉|2k dσ(x) = 0



Polynomial functions 85

for 0 ≤ k ≤ d/2. By Lemma 5,
�
θ(x)P (|〈x, y〉|2) dσ(x) = 0.

It follows from (20) that θ(y) = 0.

5. An application (cf. [5] and the references therein). We consider the
problem of existence of isometric embeddings `m2 → `np or, equivalently, of
existence of m-dimensional Euclidean subspaces in `np over K. The latter is
Kn endowed with the norm

(24) ‖x‖ =
( n∑

k=1

|ξk|p
)1/p

, p ≥ 1,

so `m2 is what we considered before (cf. (2)). Such an isometric embedding
with m ≥ 2 cannot exist except for the case when p is an even integer.
This necessary condition is sufficient if n is large enough, n ≥ NK(m, p).
An explicit form of the function NK(m, p) is unknown; however, there are
some lower and upper bounds for it. In this theory a crucial role is played
by an equivalence between isometric embeddings f : `m2 → `np and cubature
formulas

(25)
�
ψ dσ =

n∑

k=1

ψ(xk)%k, ψ ∈ ΦK(m, p),

where {xk}nk=1 ⊂ S(m,K) and %k are some positive numbers.
The way from (25) to an isometric embedding f is direct. Indeed, (25)

is applicable to every elementary polynomial ψd;y, so that

(26)
�
|〈x, y〉|p dσ(x) =

n∑

k=1

|〈xk, y〉|p%k, y ∈ Km.

As a function of y the integral in (26) is a unitary invariant form of de-
gree p. All such forms are constant on S(m,K), so they are all proportional

to 〈y, y〉p/2 on the whole space Km. Therefore, (26) can be written as the
identity

(27)
n∑

k=1

|〈zk, y〉|p = 〈y, y〉p/2, y ∈ Km.

Geometrically, (27) means that the K-linear mapping

(28) f(y) = (〈zk, y〉)nk=1

is an isometric embedding `m2 → `np .
The converse way is short due to the Main Theorem. Indeed, (28) is

a general form of a linear mapping f : `m2 → Kn. If f is isometric then
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(27) holds, so we can return to (26). Thus, (25) is valid for all elementary
polynomials. By the Main Theorem it is valid for all φ ∈ ΦK(m, p).

Concluding this section we note that the cubature formula (25) can be

transferred to KPm−1. Indeed, by the substitution ψ̂ = π∗φ we obtain

(29)
�
φdσ∗ =

n∑

k=1

φ(πxk)%k

where σ∗ is the π-induced measure on KPm−1. Formula (29) is valid for all
polynomial functions of degree ≤ p on the projective space KPm−1.

6. The commutative case (cf. [4]). If K = R or C then there is a
monomial basis of the space ΦK(m,d), namely,

{
ξi11 · · · ξimm :

m∑

l=1

il = d
}

in the real case and
{
ξi11 · · · ξimm ξ

j1
1 · · · ξ

jm
m :

m∑

l=1

il =
m∑

l=1

jl = d/2
}

in the complex case. Further we use the abridged notation

I = [il]
m
l=1, |I| =

m∑

l=1

il, I! =
m∏

l=1

il!

and

xI =
m∏

l=1

ξill , xI =
m∏

l=1

ξ
il
l .

Then

|〈x, y〉|d = 〈x, y〉d =
∑

I : |I|=d

d!

I!
xIyI (K = R)

and

|〈x, y〉|d = 〈x, y〉d/2〈y, x〉d/2 =
∑

I,J : |I|=|J |=d/2

(d/2)!

I!J !
xJxIyIyJ (K = C).

By substitution in (23) we obtain
∑

I : |I|=d

1

I!
yI(θ, xI) = 0 (K = R)

and ∑

I,J : |I|=|J |=d/2

1

I!J !
yIyJ(θ, xJxI) = 0 (K = C).

Hence, θ is orthogonal to all basis monomials in both cases, therefore, θ = 0.
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