Morita equivalence of groupoid C^* -algebras arising from dynamical systems

by

XIAOMAN CHEN (Shanghai) and CHENGJUN HOU (Qufu)

Abstract. We show that the stable C^* -algebra and the related Ruelle algebra defined by I. Putnam from the irreducible Smale space associated with a topologically mixing expanding map of a compact metric space are strongly Morita equivalent to the groupoid C^* -algebras defined directly from the expanding map by C. Anantharaman-Delaroche and V. Deaconu. As an application, we calculate the K_* -group of the Ruelle algebra for a solenoid.

1. Introduction. In [4, 5], Ian F. Putnam constructed C^* -algebras from irreducible Smale spaces. These Smale spaces include subshifts of finite type, solenoids and Anosov diffeomorphims. The corresponding C^* -algebras are defined as the reduced groupoid C^* -algebras for various equivalence relations.

Let X be a compact metric space, and let σ be an expanding surjection on X. It is well known that the system (X, σ) can give rise to a Smale space (Ω, φ) , as defined in [8]. For the Smale space (Ω, φ) , one has the groupoid G_s and its semidirect product $G_s \times_{\alpha} \mathbb{Z}$ given by the stable equivalence relation on Ω (see [4]). Note that the groupoids G_s and $G_s \times_{\alpha} \mathbb{Z}$ are not r-discrete. In [1] and [2], C. Anantharaman-Delaroche and V. Deaconu considered two r-discrete groupoids R_{∞} and $G(X, \sigma)$ defined directly from the dynamical system (X, σ) . Ian F. Putnam [5] conjectured that there should be an explicit relation between the groupoids $G_s \times_{\alpha} \mathbb{Z}$ and $G(X, \sigma)$. In this paper, using the results on the correspondence of groupoids given by M. Stadler and M. O'uchi [9], we show that these two groupoids are equivalent in the sense

²⁰⁰⁰ Mathematics Subject Classification: 46L05, 46L80, 46L89.

Key words and phrases: Smale space, expanding map, Morita equivalent, Ruelle algebra, groupoid C^* -algebra, K_* -group.

The first author was supported in part by Foundation of Education Ministry of China, MCSEC and The Project-973.

The second author was supported in part by NSF of China (No. 19871048) and YSF of Shandong Province (No. Q99A05).

of Muhly–Renault–Williams [3]. Consequently, the reduced groupoid C^* algebras $C^*_{\mathbf{r}}(G_{\mathbf{s}} \times_{\alpha} \mathbb{Z})$ and $C^*_{\mathbf{r}}(G(X, \sigma))$ are strongly Morita equivalent. Since $G(X, \sigma)$ is given directly by the dynamical system (X, σ) , without using the complicated process of inverse limit, and more importantly, it is also r-discrete, it is more tractable than $G_{\mathbf{s}} \times_{\alpha} \mathbb{Z}$. As an application, we can compute the K_* -group of $C^*_{\mathbf{r}}(G_{\mathbf{s}} \times_{\alpha} \mathbb{Z})$ for solenoids.

We recall some definitions and notions.

Let G be a second countable locally compact Hausdorff groupoid. We denote by s (resp. r) the source (resp. range) map of G. The unit space is denoted by $G^{(0)}$. Set $G_x = s^{-1}(x)$, $G^x = r^{-1}(x)$ for $x \in G^{(0)}$. We denote by $G^{(2)}$ the set of composable pairs, and by $C_r^*(G)$ the reduced groupoid C^* -algebra of G. For general results on groupoids and groupoid C^* -algebras, we refer to [7].

DEFINITION 1.1 (see [8]). Let X be a compact metric space, with metric d, and σ a continuous surjective map of X. We say that σ is *expanding* if there exist a positive number ε and $\lambda \in (0, 1)$ such that the following property holds:

If $d(\sigma(x), y') < 2\varepsilon$, then there exists a unique y such that $\sigma(y) = y'$ and $d(x, y) < 2\varepsilon$. Furthermore, $d(x, y) \leq \lambda d(\sigma(x), \sigma(y))$.

REMARK. By the definition, $d(\sigma x, \sigma y) \geq \lambda^{-1}d(x, y)$ whenever $d(x, y) < 2\lambda\varepsilon$; and σ is *expansive*, i.e., there is a constant c > 0 such that $x \neq y$ implies $d(\sigma^n(x), \sigma^n(y)) \geq c$ for some integer $n \geq 0$. In particular, σ is an open map and a local homeomorphism.

Let σ be an expanding map of a compact metric space X. We define

$$\Omega = \{ (x_n)_{n \ge 0} \mid x_n \in X, \ \sigma(x_{n+1}) = x_n, \ n = 0, 1, \ldots \}.$$

Then Ω is a compact metric space with respect to the metric

$$d(x,y) = \sum_{n \ge 0} \frac{d(x_n, y_n)}{2^n} \quad \text{for } x = (x_n)_{n \ge 0}, y = (y_n)_{n \ge 0} \in \Omega.$$

Let φ and φ^{-1} be two maps from Ω onto itself defined by

 $(\varphi(x))_n = \sigma x_n, \quad (\varphi^{-1}(x))_n = x_{n+1} \quad \text{for } n \ge 0 \text{ and } x = (x_k)_{k \ge 0} \in \Omega.$

Then φ is a homeomorphism of Ω with inverse φ^{-1} . Obviously, $\sigma \pi = \pi \varphi$, where π is the continuous open map from Ω onto X defined by

$$\pi(x) = x_0 \quad \text{ for } x = (x_n)_{n \ge 0} \in \Omega.$$

REMARK. By [8], Ω with the homeomorphism φ is a Smale space, called the Smale space canonically associated with the expanding map σ ; moreover σ is topologically transitive (respectively, mixing) if and only if φ is. For general results on Smale spaces, we refer to [4, 8]. Throughout this paper let (Ω, d, φ) be the Smale space associated with an expanding dynamics (X, σ) . We assume that σ is topologically mixing, hence the Smale space (Ω, d, φ) is irreducible. By the definition of a Smale space, for every x in Ω , there are two subsets $V^{s}(x, \varepsilon)$ and $V^{u}(x, \varepsilon)$ of Ω such that $V^{u}(x, \varepsilon) \times V^{s}(x, \varepsilon)$ is homeomorphic to a neighborhood of x in Ω , where ε is some small positive parameter.

Consider the stable equivalence G_s on Ω and its semidirect product with \mathbb{Z} , as defined in [4, 6]. We recall from [4], [6] that

$$G_{\rm s} = \{(x,y) \in \Omega \times \Omega \mid d(\varphi^n(x),\varphi^n(y)) \to 0 \text{ as } n \to +\infty\},\$$

$$G_{\rm s} \times_{\alpha} \mathbb{Z} = \{(x,n,y) \in \Omega \times \mathbb{Z} \times \Omega \mid n \in \mathbb{Z}, \ (\varphi^n(x),y) \in G_{\rm s}\}.$$

Then G_s is a principal groupoid and $G_s \times_{\alpha} \mathbb{Z}$ is a groupoid with the range map, source map, inverse map and multiplication given respectively by

$$r(x, n, y) = x, \quad s(x, n, y) = y,$$

 $(x, n, y)^{-1} = (y, -n, x), \quad (x, m, y)(y, n, z) = (x, n + m, z).$

Under the maps $x \in \Omega \mapsto (x, x) \in G_s$ and $x \in \Omega \mapsto (x, 0, x) \in G_s \times_{\alpha} \mathbb{Z}$, we regard Ω as the unit space of G_s and $G_s \times_{\alpha} \mathbb{Z}$, respectively.

Let

$$G_{\rm s}^0 = \{(x,y) \in \Omega \times \Omega : y \in V^{\rm s}(x,\varepsilon_0)\}, \quad G_{\rm s}^n = (\varphi \times \varphi)^{-n}(G_{\rm s}^0)$$

for each $n = 1, 2, \ldots$, where $V^{s}(x, \varepsilon_0)$ is as in [4]. Then

$$G_{\rm s} = \bigcup_{n=1}^{\infty} G_{\rm s}^n.$$

If each $G_{\rm s}^n$ is given the relative topology of $\Omega \times \Omega$ and $G_{\rm s}$ is given the inductive limit topology, then $G_{\rm s}$, called the *stable equivalence*, is a second countable locally compact Hausdorff principal groupoid. To obtain a Haar system for $G_{\rm s}$, we proceed as follows. Let μ be the Bowen measure on the Smale space (Ω, φ) . Fix x in Ω , and restrict μ to the set $V^{\rm u}(x, \varepsilon) \times V^{\rm s}(x, \varepsilon)$ which can be identified with a neighborhood of x in Ω . Then the restriction of the measure μ to a neighborhood of x is a product measure $\mu_{\rm u}^x \times \mu_{\rm s}^x$. Here the measures $\mu_{\rm u}^x$ and $\mu_{\rm s}^x$ depend on x and satisfy some conditions. Fix $x \in \Omega$. Let δ_x denote the unit mass at x. We define a measure on $G_{\rm s}^0$ by $\delta_x \times \mu_{\rm s}^x$ and then on $G_{\rm s}^n$ by

$$\lambda^{-n}(\delta_{\varphi^n(x)} \times \mu_{\mathbf{s}}^{\varphi^n(x)}) \circ (\varphi \times \varphi)^n,$$

where $\lambda > 1$ and $\log(\lambda)$ is the topological entropy of (Ω, φ) . In this way, we obtain a measure $\widetilde{\mu_s^x}$ on G_s . By [4, 5], $\{\widetilde{\mu_s^x} : x \in G_s^{(0)}\}$ forms a Haar system for G_s .

The map η sending ((x, y), n) in $G_s \times \mathbb{Z}$ to $(x, n, \varphi^n(y))$ in $G_s \times_{\alpha} \mathbb{Z}$ is bijective, and we transfer the product topology from $G_s \times \mathbb{Z}$ over $G_s \times_{\alpha} \mathbb{Z}$ via this map. With this topology, $G_s \times_{\alpha} \mathbb{Z}$ is a second countable locally compact Hausdorff groupoid with a Haar system (see [5]).

For a dynamical system (X, σ) , C. Anantharaman-Delaroche [1] and V. Deaconu [2] considered the following groupoid $G(X, \sigma)$:

 $G(X,\sigma) = \{(x,n,y) \in X \times \mathbb{Z} \times X \mid \exists k,l \geq 0, \ n = k-l, \ \sigma^k(x) = \sigma^l(y)\}$

with the range map, source map, inverse map and multiplication given respectively by

$$r(x, n, y) = x, \quad s(x, n, y) = y,$$

$$(x, n, y)^{-1} = (y, -n, x), \quad (x, m, y)(y, n, z) = (x, n + m, z).$$

Then the unit space X is embedded in $G(X, \sigma)$ by $x \mapsto (x, 0, x)$. Moreover $G(X, \sigma)$ is given the topology having as a basis of open sets those of the form

$$\Lambda(U,V,k,l) = \{(x,k-l,\sigma_V^{-l}\sigma^k(x)) \mid x \in U\},\$$

where U and V are open subsets of X, and $k, l \geq 0$ are such that $\sigma^k|_U$ and $\sigma^l|_V$ are homeomorphisms with the same range (and σ_V^{-l} is the inverse of σ_V^l). Then $G(X, \sigma)$ is a second countable locally compact Hausdorff rdiscrete groupoid and the counting measure is a Haar system.

We denote by $C_{\mathbf{r}}^*(G_{\mathbf{s}})$, $C_{\mathbf{r}}^*(G_{\mathbf{s}} \times_{\alpha} \mathbb{Z})$ and $C_{\mathbf{r}}^*(G(X, \sigma))$ the reduced groupoid C^* -algebra of the groupoid $G_{\mathbf{s}}$, $G_{\mathbf{s}} \times_{\alpha} \mathbb{Z}$ and $G(X, \sigma)$, respectively. In [4], the C^* -algebra $C_{\mathbf{r}}^*(G_{\mathbf{s}} \times_{\alpha} \mathbb{Z})$ is called the *Ruelle algebra* associated with the stable equivalence.

In the rest of this section, we recall some results on the correspondence and equivalence of groupoids. For i = 1, 2, let G_i be a second countable locally compact Hausdorff groupoid and let Z be a second countable locally compact Hausdorff space.

DEFINITION 1.2 (see [3, 9]). A left action of G_1 on Z is a pair of maps consisting of a continuous surjection $\varrho: Z \to G_1^{(0)}$ and a continuous map $(g, z) \mapsto g \cdot z$ from the space $G_1 * Z = \{(g, z) \in G_1 \times Z \mid s(g) = \varrho(z)\}$ of composable pairs into Z, having the following properties:

1. $\rho(g \cdot z) = r(g)$ for $(g, z) \in G_1 * Z$; 2. if $(g', g) \in G_1^{(2)}$, $(g, z) \in G_1 * Z$, then $g' \cdot (g \cdot z) = (g'g) \cdot z$; 3. $\rho(z) \cdot z = z$ for $z \in Z$.

We say that the left G_1 -action is *proper* if the map $(g, z) \in G_1 * Z \mapsto (g \cdot z, z) \in Z \times Z$ is proper, that is, the inverse images of compact sets are compact. We say that the left G_1 -action is *free* if $g \cdot z = z$ only when g is a unit, i.e., $g \in G_1^{(0)}$.

REMARK. A right action of G_2 on Z is defined by a pair of maps consisting of a continuous surjection $\tau : Z \to G_2^{(0)}$ and a continuous map $(z,g) \mapsto z \cdot g$ from the space $Z * G_2 = \{(z,g) \in Z \times G_2 \mid \tau(z) = r(g)\}$ of composable pairs into Z, with properties similar to those above. Similarly, we can also define proper and free actions of G_2 on Z.

DEFINITION 1.3 (see [9]). Let G_1 and G_2 be two second countable locally compact Hausdorff groupoids and let Z be a second countable locally compact Hausdorff space. The space Z is called a *correspondence* from G_1 to G_2 if it has the following properties:

(i) there exists a proper left action of G_1 on Z such that ρ is an open map;

(ii) there exists a proper right action of G_2 on Z;

(iii) the G_1 and G_2 actions commute;

(iv) the map ρ induces a bijection of Z/G_2 onto $G_1^{(0)}$.

DEFINITION 1.4 (see [3]). Let G_1 , G_2 and Z be as in Definition 1.3. We say that the space Z is a (G_1, G_2) -equivalence if it has the following properties:

(i) there exists a proper free left action of G_1 on Z such that ρ is an open map;

(ii) there exists a proper free right action of G_2 on Z such that τ is an open map;

(iii) the G_1 and G_2 actions commute;

(iv) the map ρ induces a bijection of Z/G_2 onto $G_1^{(0)}$;

(v) the map τ induces a bijection of $G_1 \setminus Z$ onto $G_2^{(0)}$.

Let G_1 and G_2 be two second countable locally compact Hausdorff groupoids. We say G_1 and G_2 are equivalent in the sense of Muhly-Renault-Williams if there exists a (G_1, G_2) -equivalence.

THEOREM 1.1 (see [9]). Let G_1 and G_2 be two second countable locally compact Hausdorff groupoids, let f be a continuous homomorphism of G_1 onto G_2 and let H be the kernel of f. Suppose that the following conditions are satisfied:

(C1) the range map $r: G_1 \to G_1^{(0)}$ is an open map;

(C2) the quotient map $q_1: G_1 \to G_1/H$ is an open map;

(C3) $(r,s)_H: H \to H^{(0)} \times H^{(0)}$ is a proper map;

(C4) $f(G_{1,x}) = G_{2,f(x)}$ for all $x \in G_1^{(0)}$;

(C5) f is an open map;

(C6) the restriction $f^{(0)}$ of f to the unit space $G_1^{(0)}$ is locally one-to-one, and maps onto $G_2^{(0)}$.

Then G_1/H is a correspondence from G_1 to G_2 .

2. Main results. Let X be a compact metric space, let σ be an expanding surjection on X, and let (Ω, φ) be the Smale space associated with the map σ . Let $G_s \times_{\alpha} \mathbb{Z}$ and $G(X, \sigma)$ be as in the Introduction. In this section we state and prove the following main result of this paper.

THEOREM 2.1. The groupoids $G_s \times_{\alpha} \mathbb{Z}$ and $G(X, \sigma)$ are equivalent in the sense of Muhly-Renault-Williams. Consequently, the reduced groupoid C^* -algebras $C^*_r(G_s \times_{\alpha} \mathbb{Z})$ and $C^*_r(G(X, \sigma))$ are Morita equivalent.

In order to prove Theorem 2.1, we need the following lemmas. Firstly, for the topology on the groupoid G_s , by the definitions of Ω and φ , we have the following reduction.

LEMMA 2.1. Let x and y be in Ω . Then $(x, y) \in G_s$ if and only if there exists an integer $k \geq 0$ such that $\sigma^k(\pi x) = \sigma^k(\pi y)$. Set $G_{s,k} = \{(x, y) \in \Omega \times \Omega \mid \sigma^k(\pi x) = \sigma^k(\pi y)\}$ for k = 0, 1, 2, ... and endow each $G_{s,k}$ with the relative topology of the product topology on $\Omega \times \Omega$, and $G_s = \bigcup_{k=1}^{\infty} G_{s,k}$ with the inductive limit topology. Then the inductive limit topology agrees with the one defined by Putnam in [4], hence in that topology, G_s is a second countable locally compact Hausdorff groupoid with a left Haar system λ .

Proof. Note that, for $x = (x_n)_{n \ge 0}$, $y = (y_n)_{n \ge 0}$ and l > 0,

$$d(\sigma^{l}(x_{0}), \sigma^{l}(y_{0})) \leq d(\varphi^{l}(x), \varphi^{l}(y)) = \sum_{n=0}^{l-1} \frac{d(\sigma^{l-n}(x_{0}), \sigma^{l-n}(y_{0}))}{2^{n}} + \frac{d(x, y)}{2^{l}}$$

If $(x, y) \in G_s$, then $\lim_{l\to\infty} d(\sigma^l(x_0), \sigma^l(y_0)) = 0$. Since σ is expansive, there is $k \ge 0$ such that $\sigma^k(x_0) = \sigma^k(y_0)$.

If there is $k \ge 0$ such that $\sigma^k(x_0) = \sigma^k(y_0)$, then for $l \ge k$,

$$d(\varphi^{l}(x),\varphi^{l}(y)) = \frac{1}{2^{l}}(d(x,y) + \ldots + 2^{k-1}d(\sigma^{k-1}(x_{0}),\sigma^{k-1}(y_{0}))).$$

So $\lim_{l\to\infty} d(\varphi^l(x), \varphi^l(y)) = 0.$

The rest of the proof is straightforward and we omit it.

We define

$$f: G_{\mathbf{s}} \times_{\alpha} \mathbb{Z} \to G(X, \sigma), \quad f(x, n, y) = (\pi(x), n, \pi(y)),$$

for $(x, n, y) \in G_s \times_{\alpha} \mathbb{Z}$, and prove that the statements (C1)–(C5) are true for $G_s \times_{\alpha} \mathbb{Z}$, $G(X, \sigma)$ and f.

REMARK. We show that f is well defined. Let $(x, n, y) \in G_s \times_{\alpha} \mathbb{Z}$. Then $(\varphi^n(x), y) \in G_s$. Choose $k_0 \geq 1$ such that $k_0 + n \geq 1$. Then $(\varphi^{k_0+n}(x), \varphi^{k_0}(y)) \in G_s$. It follows from Lemma 2.1 that there exists an integer $l_0 \geq 0$ such that

$$\sigma^{l_0}\pi\varphi^{k_0+n}(x) = \sigma^{l_0}\pi\varphi^{k_0}(y).$$

Consequently, $\sigma^{l_0+k_0+n}\pi(x) = \sigma^{l_0+k_0}\pi(y)$, hence $(\pi(x), n, \pi(y)) \in G(X, \sigma)$.

LEMMA 2.2. The map f is a continuous homomorphism of $G_s \times_{\alpha} \mathbb{Z}$ onto $G(X, \sigma)$. So $H = \ker(f)$ is an open and closed subgroupoid of $G_s \times_{\alpha} \mathbb{Z}$.

Proof. It is clear that, by the definition of the topology on $G_s \times_{\alpha} \mathbb{Z}$, we only need to check that the map

 $F=f\eta:G_{\rm s}\times\mathbb{Z}\to G(X,\sigma), \quad \ F((x,y),n)=(\pi(x),n,\pi(\varphi^n(y))),$

is continuous.

Fix ((x, y), n) in $G_s \times \mathbb{Z}$, and assume $n \ge 0$. Then there exists k > n such that $(x, y) \in G_{s,k}$. If we let $\pi(x) = x_0$ and $\pi(y) = y_0$, then $F((x, y), n) = (x_0, n, \sigma^n(y_0))$ and $\sigma^k(x_0) = \sigma^k(y_0)$. Set n = k - l. For every open neighborhood Λ of $(x_0, n, \sigma^n(y_0))$ in $G(X, \sigma)$, noting that $\sigma^k(x_0) = \sigma^l \sigma^n(y_0)$, we take two open subsets U and V of X such that $\sigma^k|_U$ and $\sigma^l|_V$ are homeomorphisms with the same range and $\Lambda(U, V, k, l)$ is a base neighborhood, contained in Λ , of $(x_0, n, \sigma^n(y_0))$ in $G(X, \sigma)$, where

$$\Lambda(U,V,k,l) = \{(u,k-l,\sigma_V^{-l}\sigma^k(u)) \mid u \in U\}.$$

Obviously, $x_0 \in U$, $\sigma^n(y_0) = \sigma_V^{-l} \sigma^k(x_0) \in V$. Since the map $\Phi(p,q) = (\pi(p), \pi(\varphi^n(q)))$, from $\Omega \times \Omega$ onto $X \times X$, is continuous, it follows that $\Phi^{-1}(U \times V)$ is an open subset of $\Omega \times \Omega$. Noting that $(x, y) \in \Phi^{-1}(U \times V)$, one finds that $W = \Phi^{-1}(U \times V) \cap G_{s,k}$ is a neighborhood of (x, y) in G_s , and therefore, that $W \times \{n\}$ is a neighborhood of ((x, y), n) in $G_s \times \mathbb{Z}$. In order to establish the claim, we only need to prove that $F(W \times \{n\}) \subseteq \Lambda(U, V, k, l)$.

In fact, let $((p,q),n) \in W \times \{n\}$ with $p = (p_n)_{n \ge 0}$ and $q = (q_n)_{n \ge 0}$. Then $(p_0, \sigma^n(q_0)) \in U \times V$ and $\sigma^k(p_0) = \sigma^k(q_0)$. Therefore $\sigma^k(p_0) = \sigma^k(q_0) = \sigma^{n+l}(q_0)$. Since $\sigma^n(q_0) \in V$ and $p_0 \in U$, we have $\sigma^n(q_0) = \sigma_V^{-l}(\sigma^k(p_0))$, which implies that $F((p,q),n) = (p_0, n, \sigma^n(q_0)) \in \Lambda(U, V, k, l)$.

For the case n < 0, noting that $\pi \varphi^n(y) = y_{-n}$ and $\sigma^{-n}(y_{-n}) = y_0$, we can prove that F is continuous at ((x, y), n) in a similar way.

Since $G(X, \sigma)$ is r-discrete, the unit space $G(X, \sigma)^{(0)}$ is an open and closed subset of $G(X, \sigma)$. Therefore H is an open and closed subgroupoid of $G_s \times_{\alpha} \mathbb{Z}$ by the continuity of f.

LEMMA 2.3 (see [10]). Let G be a locally compact groupoid with a left Haar system $\lambda = \{\lambda^u \mid u \in G^{(0)}\}$. Let G' be an open subgroupoid of G with an induced measure system $\lambda' = \{\lambda^u|_{G'} \mid u \in G'^{(0)}\}$, where $G'^{(0)} = G' \cap G^{(0)}$. Then $\lambda' = \{\lambda^u|_{G'} \mid u \in G'^{(0)}\}$ is a left Haar system of G'.

LEMMA 2.4 (see [7]). Let G be a locally compact groupoid with a left Haar system λ and H a closed subgroupoid of G containing $G^{(0)}$ and admitting a Haar system λ_H . Consider the relation on G defined by $x \sim y$ if and only if r(x) = r(y) and $x^{-1}y \in H$. Then

(1) the range map $r: G \to G^{(0)}$ is an open map;

(2) the quotient space G/H defined by the above equivalence relation is locally compact and Hausdorff in the quotient topology, and the quotient map $G \rightarrow G/H$ is a continuous open map.

From Lemmas 2.3 and 2.4, we have the following corollary.

COROLLARY 2.1. Let $H = \ker(f)$. Then

(1) the quotient map $q_1 : G_s \times_{\alpha} \mathbb{Z} \to (G_s \times_{\alpha} \mathbb{Z})/H$ is continuous and open;

(2) the range map $r: G_s \times_{\alpha} \mathbb{Z} \to (G_s \times_{\alpha} \mathbb{Z})^{(0)}$ is open.

Proof. Since H is an open and closed subgroupoid of $G_s \times_{\alpha} \mathbb{Z}$ by Lemma 2.2, and also since $G_s \times_{\alpha} \mathbb{Z}$ is a locally compact groupoid with a left Haar system, one sees that H has a left Haar system by Lemma 2.3. Hence Lemma 2.4 implies (1) and (2).

LEMMA 2.5. The map $(r, s)_H : H \to H^{(0)} \times H^{(0)}$ is a proper map.

Proof. It is clear that $H = \{(x, 0, y) \in G_s \times_{\alpha} \mathbb{Z} \mid \pi(x) = \pi(y)\}$. Then $\eta^{-1}(H) = \{((x, y), 0) \in G_s \times \mathbb{Z} \mid \pi(x) = \pi(y)\}$, which is homeomorphic to $\{(x, y) \in G_s \mid \pi(x) = \pi(y)\} = G_{s,0}$. Noting that $G_{s,0}$ is a compact subset of G_s in the inductive limit topology defined in Lemma 2.1, we deduce that H is compact in $G_s \times_{\alpha} \mathbb{Z}$, and hence $(r, s)_H$ is a proper map.

LEMMA 2.6. $f((G_s \times_{\alpha} \mathbb{Z})_x) = G(X, \sigma)_{f(x)}$ for all $x \in \Omega \cong (G_s \times_{\alpha} \mathbb{Z})^{(0)}$.

Proof. Straightforward.

LEMMA 2.7. The homomorphism f is an open map.

Proof. It is clear that we need to prove that the map $F = f\eta$ from $G_s \times \mathbb{Z}$ to $G(X, \sigma)$ defined by $F((x, y), n) = (\pi(x), n, \pi \varphi^n(y))$ is an open map.

By Lemma 2.1, $G_{\rm s}$ has the topology having as a basis of open sets the sets

$$\Lambda(U,V,k) = \{(x,y) \in U \times V \mid \pi \varphi^k(x) = \pi \varphi^k(y)\},\$$

where U, V are open subsets of Ω , and k is a positive integer; hence we only need to show that $F(\Lambda(U, V, k) \times \{n\})$ is an open subset of $G(X, \sigma)$ for all $n \in \mathbb{Z}$. Without loss generality, we assume that $n \geq 0$.

Fix $(x_0, n, u_0) \in F(\Lambda(U, V, k) \times \{n\})$. Then there exists $(x, y) \in \Lambda(U, V, k)$ such that $F((x, y), n) = (x_0, n, u_0)$. Hence $x \in U, y \in V, \pi(x) = x_0,$ $\pi \varphi^n(y) = u_0$ and $\pi \varphi^k(x) = \pi \varphi^k(y)$. If we set $\pi(y) = y_0$, then $\sigma^n(y_0) =$ $\pi \varphi^n(y) = u_0, \ \sigma^k(x_0) = \sigma^k(y_0)$. Since π is an open map and σ is a local homeomorphism, we can choose neighborhoods V_{x_0} and V_{y_0} of x_0 and y_0 respectively in X such that the following conditions hold:

- (i) $V_{x_0} \subseteq \pi(U), V_{y_0} \subseteq \pi(V);$
- (ii) $\sigma^k|_{V_{x_0}}$ and $\sigma^k|_{V_{y_0}}$ are homeomorphisms with the same open range; (iii) $\sigma^n|_{V_{y_0}}$ is a homeomorphism;

(iv) $\sigma^n|_{\sigma^k(V_{x_0})} (= \sigma^n|_{\sigma^k(V_{y_0})})$ and $\sigma^k|_{\sigma^n(V_{y_0})}$ are homeomorphisms with the same open range.

By (iv), we have $(x_0, n, u_0) = (x_0, n, \sigma_{V_{u_0}}^{-k}(\sigma^{k+n}(x_0)))$, which belongs to $\Lambda(V_{x_0}, V_{u_0}, k+n, k)$, where $V_{u_0} = \sigma^n(V_{y_0})$, a neighborhood of u_0 . So the claim will follow from $\Lambda(V_{x_0}, V_{u_0}, k+n, k) \subseteq F(\Lambda(U, V, k) \times \{n\})$.

Fix (s_0, n, t_0) in $\Lambda(V_{x_0}, V_{u_0}, k+n, k)$. Then $s_0 \in V_{x_0}, t_0 = \sigma_{V_{u_0}}^{-k}(\sigma^{k+n}(s_0)) \in V_{u_0}$, and hence $\sigma^{k+n}(s_0) = \sigma^k(t_0)$. Choose $s \in U$ and $r \in V$ such that $\pi(s) = s_0, \pi(r) = r_0 \in V_{y_0}$ and $t_0 = \sigma^n(r_0)$. Then we have $(s_0, n, t_0) = F((s, r), n)$. Since $\sigma^n(\sigma^k(s_0)) = \sigma^{k+n}(s_0) = \sigma^k(t_0) = \sigma^k(\sigma^n(r_0)) = \sigma^n(\sigma^k(r_0))$ and both $\sigma^k(r_0)$ and $\sigma^k(s_0)$ are in $\sigma^k(V_{x_0})$ from (ii), condition (iv) implies that $\sigma^k(s_0) = \sigma^k(r_0)$ and so $((s, r), n) \in \Lambda(U, V, k) \times \{n\}$. Consequently, $(s_0, n, t_0) = F((s, r), n) \in F(\Lambda(U, V, k) \times \{n\})$, which implies that $\Lambda(V_{x_0}, V_{u_0}, k+n, k) \subseteq F(\Lambda(U, V, k) \times \{n\})$.

REMARK. From Corollary 2.1 and Lemmas 2.5–2.7, conditions (C1)– (C5) in Theorem 1.1 hold for $G_s \times_{\alpha} \mathbb{Z}$, $G(X, \sigma)$ and f, but (C6) does not hold. However, by inspecting the proof of Theorem 1.1 in [9], we find that condition (C6) is only used to prove that the right action of G_2 on Z is continuous. In our case, without (C6), we can still prove the continuity of the right action.

We recall from [9] the left and right actions on $Z = (G_s \times_{\alpha} \mathbb{Z})/H$. Let $\varrho : Z \to (G_s \times_{\alpha} \mathbb{Z})^{(0)}$ be defined by $\varrho(q_1(x, n, y)) = r(x, n, y) = x$, where q_1 is the quotient map of Corollary 2.1. Then we have $(G_s \times_{\alpha} \mathbb{Z}) * Z = \{((x, n, y), q_1(y, m, z)) \in (G_s \times_{\alpha} \mathbb{Z}) \times Z\}$ and the left action of $G_s \times_{\alpha} \mathbb{Z}$ on Z is defined as follows:

$$(x, n, y)q_1(y, m, z) = q_1(x, n + m, z)$$

for $((x, n, y), q_1(y, m, z)) \in (G_s \times_{\alpha} \mathbb{Z}) * Z$.

Let $\tau: Z \to G(X, \sigma)^{(0)}$ be defined by $\tau(q_1(x, n, y)) = sf(x, n, y) = \pi(y)$. Then we have the right action, denoted by α_2 , of $G(X, \sigma)$ on Z:

$$\alpha_2(q_1(x, n, y), (\pi(y), m, p_0)) = q_1(x, n + m, p)$$

for $(q_1(x, n, y), (\pi(y), m, p_0)) \in Z * G(X, \sigma)$, where p is an arbitrary element in Ω such that $\pi(p) = p_0$.

LEMMA 2.8. The right action α_2 of $G(X, \sigma)$ on Z is continuous.

Proof. We first observe that α_2 is well defined.

Let $(q_1(x, n, y), (\pi(y), m, p_0))$ be an element in $Z * G(X, \sigma)$ and let $p \in \Omega$ satisfy $\pi(p) = p_0$. Since $(x, n, y) \in G_s \times_\alpha \mathbb{Z}$, we have $(\varphi^n(x), y) \in G_s$ and so $(\varphi^{n+m}(x), \varphi^m(y))$ is in G_s . Also since $(\pi(y), m, p_0) \in G(X, \sigma)$, there are integers $k, l \ge 0$ such that m = k - l and $\sigma^k \pi(y) = \sigma^l \pi(p) (= \sigma^l(p_0))$. Hence, $\pi \varphi^k(y) = \pi \varphi^l(p)$, and so $(\varphi^k(y), \varphi^l(p)) \in G_s$, which implies $(\varphi^m(y), p) \in G_s$. Consequently, $(\varphi^{m+n}(x), p) \in G_s$, hence $(x, n + m, p) \in G_s \times_\alpha \mathbb{Z}$. On the other hand, if we have another element $p' \in \Omega$ such that $\pi(p') = \pi(p) = p_0$, then by the definition of Z, it is clear that $q_1(x, n+m, p) = q_1(x, n+m, p')$ in Z. This establishes the observation.

We denote by β_1 the multiplication from $(G_s \times_{\alpha} \mathbb{Z})^{(2)}$, the set of composable pairs, into $G_s \times_{\alpha} \mathbb{Z}$ defined by $\beta_1(\gamma, \gamma') = \gamma \gamma'$. Fix an element $(q_1(x, n, y), (\pi(y), m, p_0)) \in \mathbb{Z} * G(X, \sigma)$. We show that α_2 is continuous at $(q_1(x, n, y), (\pi(y), m, p_0))$.

Let V be an open neighborhood of $q_1(x, n + m, p)$ in Z, where $q_1(x, n + m, p) = \alpha_2(q_1(x, n, y), (\pi(y), m, p_0)), p \in \Omega$ and $\pi(p) = p_0$. Corollary 2.1 implies that $q_1^{-1}(V)$ is an open neighborhood of $(x, n + m, p) = \beta_1((x, n, y), (y, m, p))$ (note that if $(\pi(y), m, \pi(p)) \in G(X, \sigma)$ then $(y, m, p) \in G_s \times_\alpha \mathbb{Z}$). Since β_1 is continuous, there exist an open neighborhood U of (x, n, y) and an open neighborhood W of (y, m, p) in $G_s \times_\alpha \mathbb{Z}$ such that $\beta_1((U \times W) \cap (G_s \times_\alpha \mathbb{Z})^{(2)}) \subseteq q_1^{-1}(V)$. By the definition of the topology on $G_s \times_\alpha \mathbb{Z}$ and Lemma 2.1, we can suppose that

$$U = \eta(\widetilde{U} \times \{n\}), \quad W = \eta(\widetilde{W} \times \{m\}),$$

where

$$\widetilde{U} = \Lambda(V_x, \varphi^{-n}(V_y), k) = \{(u, v) \in V_x \times \varphi^{-n}(V_y) \mid \sigma^k \pi(u) = \sigma^k \pi(v)\},\\ \widetilde{W} = \Lambda(V_y, \varphi^{-m}(V_p), k) = \{(u, v) \in V_y \times \varphi^{-m}(V_p) \mid \sigma^k \pi(u) = \sigma^k \pi(v)\},$$

 V_x, V_y and V_p are neighborhoods of x, y and p respectively in Ω and $k \ge 0$. Let $U' = q_1(U)$ and W' = f(W). From Corollary 2.1 and Lemma 2.7, one sees that U' and W' are open neighborhoods of $q_1(x, n, y)$ and f(y, m, p) = $(\pi(y), m, \pi(p)) = (\pi(y), m, p_0)$ in Z and $G(X, \sigma)$, respectively. We only need to show that $\alpha_2((U' \times W') \cap (Z * G(X, \sigma)))$ is contained in V.

For, let $(a, n, b) \in U, (b', m, q) \in W$ be such that $(q_1(a, n, b), f(b', m, q))$ belongs to $(U' \times W') \cap (Z * G(X, \sigma))$. Then

$$\pi(b) = \pi(b'), \quad \alpha_2(q_1(a, n, b), f(b', m, q)) = q_1(a, n + m, q).$$

By the choice of U and W, we have $a \in V_x$, $b \in V_y$, $\sigma^k \pi(a) = \sigma^k \pi \varphi^{-n}(b)$ and also $b' \in V_y$, $q \in V_p$, $\sigma^k \pi(b') = \sigma^k \pi \varphi^{-m}(q)$. Therefore $\sigma^k \pi(b) = \sigma^k \pi(b') = \sigma^k \pi \varphi^{-m}(q)$, which implies that $(b, \varphi^{-m}(q)) \in \widetilde{W}$. Consequently, $(b, m, q) = \eta((b, \varphi^{-m}(q)), m)$, which belongs to W. Also since

$$\alpha_2(q_1(a, n, b), f(b', m, q)) = q_1(a, n + m, q) = q_1\beta_1((a, n, b), (b, m, q)),$$

we have $\alpha_2(q_1(a, n, b), f(b', m, q)) \in q_1\beta_1((U \times W) \cap (G_s \times_{\alpha} \mathbb{Z})^{(2)}) \subseteq V$. This completes the proof.

From the above arguments and Theorem 1.1, we have the following corollary.

COROLLARY 2.2. The space $Z = (G_s \times_{\alpha} \mathbb{Z})/H$ is a correspondence from $G_s \times_{\alpha} \mathbb{Z}$ to $G(X, \sigma)$.

LEMMA 2.9. The map $\tau: G_{s} \times_{\alpha} \mathbb{Z}/H \to G(X, \sigma)^{(0)}$ is an open map.

Proof. By the definition of τ , it is clear that $\tau q_1 = sf$. Note that s and f are continuous open surjections. Then τq_1 is a continuous open surjection. Also since q_1 is a continuous open surjection, τ is an open map.

LEMMA 2.10. The left and right actions are free.

Proof. Let $(x, n, y) \in G_s \times_{\alpha} \mathbb{Z}$ and $q_1(y, m, q) \in Z$ be such that

$$(x, n, y)q_1(y, m, q) = q_1(y, m, q).$$

Then from the definition of the left action, $q_1(x, n + m, q) = q_1(y, m, q)$ in Z. It follows that x = y, n + m = m, and therefore $(x, n, y) = (x, 0, x) \in (G_s \times_{\alpha} \mathbb{Z})^{(0)}$. Consequently, the left action is free.

Let $q_1(x, n, y) \in Z$ and $(\pi(y), m, p_0) \in G(X, \sigma)$ be such that

$$q_1(x, n, y)(\pi(y), m, p_0) = q_1(x, n, y).$$

Then from the definition of the right action, one has m = 0 and $p_0 = \pi(y)$, which implies that $(\pi(y), m, p_0) = (\pi(y), 0, \pi(y)) \in G(X, \sigma)^{(0)}$. So the right action is free.

LEMMA 2.11. The map τ induces a bijection τ' from $G_s \times_{\alpha} \mathbb{Z} \setminus Z$ onto $G(X, \sigma)^{(0)}$.

Proof. We recall that τ' is defined as follows: $\tau'([q_1(x, n, y)]) = \pi(y)$, where $[q_1(x, n, y)]$ denotes the equivalence class of $q_1(x, n, y)$ in $G_s \times_{\alpha} \mathbb{Z} \setminus Z$.

Obviously, τ' is surjective. We have to prove its injectivity. Suppose that $\tau'([q_1(x, n, y)]) = \tau'([q_1(p, m, q)])$, i.e., $\pi(y) = \pi(q)$. Since (x, n, y) and (p, m, q) belong to $G_s \times_{\alpha} \mathbb{Z}$ and $\pi(y) = \pi(q)$, we have $g = (p, m - n, x) \in$ $G_s \times_{\alpha} \mathbb{Z}$ and $gq_1(x, n, y) = q_1(p, m, y)$. Also since $q_1(p, m, y) = q_1(p, m, q)$ in Z, we have $gq_1(x, n, y) = q_1(p, m, q)$, which implies that $[q_1(x, n, y)] =$ $[q_1(p, m, q)]$ in $G_s \times_{\alpha} \mathbb{Z} \setminus Z$.

Proof of Theorem 2.1. Definition 1.4, Corollary 2.2 and Lemmas 2.9–2.11 complete the proof of the theorem.

REMARK. In the same way, one can prove that G_s is equivalent to the r-discrete groupoid R_{∞} defined as in [2]. Therefore, $C_r^*(G_s)$ is Morita equivalent to $C_r^*(R_{\infty})$.

3. Example. As an application of Theorem 2.1, we can calculate the K_* -groups of the groupoid C^* -algebras in the case of solenoids.

Let $X = \mathbb{S}^1$, the unit circle in the complex plane, and let $\sigma(x) = x^p$, $p \ge 2$. Define $d(e^{i\alpha_1}, e^{i\alpha_2}) = |\alpha_1 - \alpha_2| \le \pi$ as the metric on \mathbb{S}^1 . Obviously, σ is an expanding map. The dynamical system (\mathbb{S}^1, σ) gives rise to a Smale

space (Ω, φ) , which is called a solenoid. From [2], we know that

$$K_0(C_{\mathbf{r}}^*(R_\infty)) \cong \mathbb{Z}[1/p], \qquad K_1(C_{\mathbf{r}}^*(R_\infty)) \cong \mathbb{Z},$$

$$K_0(C_{\mathbf{r}}^*(G(\mathbb{S}^1, \sigma))) \cong \mathbb{Z} \oplus \mathbb{Z}_{p-1}, \qquad K_1(C_{\mathbf{r}}^*(G(\mathbb{S}^1, \sigma))) \cong \mathbb{Z}.$$

Since C^* -algebras which are Morita equivalent have the same K_* -groups, we have

$$K_0(C_{\mathbf{r}}^*(G_{\mathbf{s}})) \cong \mathbb{Z}[1/p], \qquad K_1(C_{\mathbf{r}}^*(G_{\mathbf{s}})) \cong \mathbb{Z}, K_0(C_{\mathbf{r}}^*(G_{\mathbf{s}} \times_\alpha \mathbb{Z})) \cong \mathbb{Z} \oplus \mathbb{Z}_{p-1}, \qquad K_1(C_{\mathbf{r}}^*(G_{\mathbf{s}} \times_\alpha \mathbb{Z})) \cong \mathbb{Z}.$$

Acknowledgements. The authors are grateful to the referee for pointing out some mistakes and giving some helpful suggestions.

References

- C. Anantharaman-Delaroche, Purely infinite C^{*}-algebras arising from dynamical systems, Bull. Soc. Math. France 125 (1997), 199–225.
- [2] V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), 1779–1786.
- [3] P. S. Muhly, J. N. Renault and D. Williams, Equivalence and isomorphism for groupoid C^{*}-algebras, J. Oper. Theory 17 (1987), 3–23.
- [4] I. F. Putnam, C^{*}-algebras from Smale spaces, Canad. J. Math. 48 (1996), 175–195.
- [5] —, Hyperbolic systems and generalized Cuntz-Krieger algebras, in: Lecture Notes from the Summer School in Operator Algebras (Odense, 1996).
- [6] I. F. Putnam and J. Spielberg, The structure of C^{*}-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), 279–299.
- J. Renault, A Groupoid Approach to C*-Algebras, Lecture Notes in Math. 793, Springer, Berlin, 1980.
- [8] D. Ruelle, *Thermodynamic Formalism*, Encyclopedia Math. Appl. 5, Addison-Wesley, 1978.
- M. M. Stadler and M. O'uchi, Correspondence of groupoid C^{*}-algebras, J. Oper. Theory 42 (1999), 103–119.
- [10] X. L. Wang, On the C*-algebras of foliations in the plane, Lecture Notes in Math. 1257, Springer, Berlin, 1987.

Institute of Mathematics Fudan University Shanghai, 200433 P.R. China E-mail: xchen@fudan.edu.cn Department of Mathematics Qufu Normal University Qufu, 273165, Shandong P.R. China E-mail: hchengjun@etang.com

Received November 27, 2000 Revised version July 10, 2001