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Morita equivalence of groupoid C∗-algebras arising
from dynamical systems

by

Xiaoman Chen (Shanghai) and Chengjun Hou (Qufu)

Abstract. We show that the stable C∗-algebra and the related Ruelle algebra defined
by I. Putnam from the irreducible Smale space associated with a topologically mixing
expanding map of a compact metric space are strongly Morita equivalent to the groupoid
C∗-algebras defined directly from the expanding map by C. Anantharaman-Delaroche
and V. Deaconu. As an application, we calculate the K∗-group of the Ruelle algebra for
a solenoid.

1. Introduction. In [4, 5], Ian F. Putnam constructed C∗-algebras from
irreducible Smale spaces. These Smale spaces include subshifts of finite type,
solenoids and Anosov diffeomorphims. The corresponding C∗-algebras are
defined as the reduced groupoid C∗-algebras for various equivalence rela-
tions.

Let X be a compact metric space, and let σ be an expanding surjection
on X. It is well known that the system (X,σ) can give rise to a Smale space
(Ω,ϕ), as defined in [8]. For the Smale space (Ω,ϕ), one has the groupoid Gs

and its semidirect product Gs ×α Z given by the stable equivalence relation
on Ω (see [4]). Note that the groupoids Gs and Gs ×α Z are not r-discrete.
In [1] and [2], C. Anantharaman-Delaroche and V. Deaconu considered two
r-discrete groupoids R∞ and G(X,σ) defined directly from the dynamical
system (X,σ). Ian F. Putnam [5] conjectured that there should be an explicit
relation between the groupoids Gs ×α Z and G(X,σ). In this paper, using
the results on the correspondence of groupoids given by M. Stadler and
M. O’uchi [9], we show that these two groupoids are equivalent in the sense
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of Muhly–Renault–Williams [3]. Consequently, the reduced groupoid C∗-
algebras C∗r (Gs×αZ) and C∗r (G(X,σ)) are strongly Morita equivalent. Since
G(X,σ) is given directly by the dynamical system (X,σ), without using
the complicated process of inverse limit, and more importantly, it is also
r-discrete, it is more tractable than Gs ×α Z. As an application, we can
compute the K∗-group of C∗r (Gs ×α Z) for solenoids.

We recall some definitions and notions.
Let G be a second countable locally compact Hausdorff groupoid. We

denote by s (resp. r) the source (resp. range) map of G. The unit space is
denoted by G(0). Set Gx = s−1(x), Gx = r−1(x) for x ∈ G(0). We denote
by G(2) the set of composable pairs, and by C∗r (G) the reduced groupoid
C∗-algebra of G. For general results on groupoids and groupoid C∗-algebras,
we refer to [7].

Definition 1.1 (see [8]). Let X be a compact metric space, with metric
d, and σ a continuous surjective map of X. We say that σ is expanding
if there exist a positive number ε and λ ∈ (0, 1) such that the following
property holds:

If d(σ(x), y′) < 2ε, then there exists a unique y such that σ(y) = y′ and
d(x, y) < 2ε. Furthermore, d(x, y) ≤ λd(σ(x), σ(y)).

Remark. By the definition, d(σx, σy) ≥ λ−1d(x, y) whenever d(x, y)
< 2λε; and σ is expansive, i.e., there is a constant c > 0 such that x 6= y
implies d(σn(x), σn(y)) ≥ c for some integer n ≥ 0. In particular, σ is an
open map and a local homeomorphism.

Let σ be an expanding map of a compact metric space X. We define

Ω = {(xn)n≥0 | xn ∈ X, σ(xn+1) = xn, n = 0, 1, . . .}.
Then Ω is a compact metric space with respect to the metric

d(x, y) =
∑

n≥0

d(xn, yn)
2n

for x = (xn)n≥0, y = (yn)n≥0 ∈ Ω.

Let ϕ and ϕ−1 be two maps from Ω onto itself defined by

(ϕ(x))n = σxn, (ϕ−1(x))n = xn+1 for n ≥ 0 and x = (xk)k≥0 ∈ Ω.
Then ϕ is a homeomorphism of Ω with inverse ϕ−1. Obviously, σπ = πϕ,
where π is the continuous open map from Ω onto X defined by

π(x) = x0 for x = (xn)n≥0 ∈ Ω.
Remark. By [8], Ω with the homeomorphism ϕ is a Smale space, called

the Smale space canonically associated with the expanding map σ; moreover
σ is topologically transitive (respectively, mixing) if and only if ϕ is. For
general results on Smale spaces, we refer to [4, 8].
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Throughout this paper let (Ω, d, ϕ) be the Smale space associated with
an expanding dynamics (X,σ). We assume that σ is topologically mixing,
hence the Smale space (Ω, d, ϕ) is irreducible. By the definition of a Smale
space, for every x in Ω, there are two subsets V s(x, ε) and V u(x, ε) of Ω
such that V u(x, ε)×V s(x, ε) is homeomorphic to a neighborhood of x in Ω,
where ε is some small positive parameter.

Consider the stable equivalence Gs on Ω and its semidirect product with
Z, as defined in [4, 6]. We recall from [4], [6] that

Gs = {(x, y) ∈ Ω ×Ω | d(ϕn(x), ϕn(y))→ 0 as n→ +∞},
Gs ×α Z = {(x, n, y) ∈ Ω × Z×Ω | n ∈ Z, (ϕn(x), y) ∈ Gs}.

Then Gs is a principal groupoid and Gs ×α Z is a groupoid with the range
map, source map, inverse map and multiplication given respectively by

r(x, n, y) = x, s(x, n, y) = y,

(x, n, y)−1 = (y,−n, x), (x,m, y)(y, n, z) = (x, n+m, z).

Under the maps x ∈ Ω 7→ (x, x) ∈ Gs and x ∈ Ω 7→ (x, 0, x) ∈ Gs ×α Z, we
regard Ω as the unit space of Gs and Gs ×α Z, respectively.

Let

G0
s = {(x, y) ∈ Ω ×Ω : y ∈ V s(x, ε0)}, Gns = (ϕ× ϕ)−n(G0

s )

for each n = 1, 2, . . . , where V s(x, ε0) is as in [4]. Then

Gs =
∞⋃

n=1

Gns .

If each Gns is given the relative topology of Ω × Ω and Gs is given the
inductive limit topology, then Gs, called the stable equivalence, is a second
countable locally compact Hausdorff principal groupoid. To obtain a Haar
system for Gs, we proceed as follows. Let µ be the Bowen measure on the
Smale space (Ω,ϕ). Fix x in Ω, and restrict µ to the set V u(x, ε)× V s(x, ε)
which can be identified with a neighborhood of x in Ω. Then the restriction
of the measure µ to a neighborhood of x is a product measure µxu × µxs .
Here the measures µxu and µxs depend on x and satisfy some conditions. Fix
x ∈ Ω. Let δx denote the unit mass at x. We define a measure on G0

s by
δx × µxs and then on Gns by

λ−n(δϕn(x) × µϕ
n(x)

s ) ◦ (ϕ× ϕ)n,

where λ > 1 and log(λ) is the topological entropy of (Ω,ϕ). In this way, we
obtain a measure µ̃xs on Gs. By [4, 5], {µ̃xs : x ∈ G(0)

s } forms a Haar system
for Gs.

The map η sending ((x, y), n) in Gs × Z to (x, n, ϕn(y)) in Gs ×α Z is
bijective, and we transfer the product topology from Gs×Z over Gs×αZ via
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this map. With this topology, Gs×αZ is a second countable locally compact
Hausdorff groupoid with a Haar system (see [5]).

For a dynamical system (X,σ), C. Anantharaman-Delaroche [1] and
V. Deaconu [2] considered the following groupoid G(X,σ):

G(X,σ) = {(x, n, y) ∈ X × Z×X | ∃k, l ≥ 0, n = k − l, σk(x) = σl(y)}
with the range map, source map, inverse map and multiplication given re-
spectively by

r(x, n, y) = x, s(x, n, y) = y,

(x, n, y)−1 = (y,−n, x), (x,m, y)(y, n, z) = (x, n+m, z).

Then the unit space X is embedded in G(X,σ) by x 7→ (x, 0, x). Moreover
G(X,σ) is given the topology having as a basis of open sets those of the
form

Λ(U, V, k, l) = {(x, k − l, σ−lV σk(x)) | x ∈ U},
where U and V are open subsets of X, and k, l ≥ 0 are such that σk|U
and σl|V are homeomorphisms with the same range (and σ−lV is the inverse
of σlV ). Then G(X,σ) is a second countable locally compact Hausdorff r-
discrete groupoid and the counting measure is a Haar system.

We denote by C∗r (Gs), C∗r (Gs×αZ) and C∗r (G(X,σ)) the reduced group-
oid C∗-algebra of the groupoid Gs, Gs ×α Z and G(X,σ), respectively. In
[4], the C∗-algebra C∗r (Gs×α Z) is called the Ruelle algebra associated with
the stable equivalence.

In the rest of this section, we recall some results on the correspondence
and equivalence of groupoids. For i = 1, 2, let Gi be a second countable
locally compact Hausdorff groupoid and let Z be a second countable locally
compact Hausdorff space.

Definition 1.2 (see [3, 9]). A left action of G1 on Z is a pair of maps
consisting of a continuous surjection % : Z → G

(0)
1 and a continuous map

(g, z) 7→ g · z from the space G1 ∗ Z = {(g, z) ∈ G1 × Z | s(g) = %(z)} of
composable pairs into Z, having the following properties:

1. %(g · z) = r(g) for (g, z) ∈ G1 ∗ Z;
2. if (g′, g) ∈ G(2)

1 , (g, z) ∈ G1 ∗ Z, then g′ · (g · z) = (g′g) · z;
3. %(z) · z = z for z ∈ Z.

We say that the left G1-action is proper if the map (g, z) ∈ G1 ∗ Z 7→
(g · z, z) ∈ Z × Z is proper, that is, the inverse images of compact sets are
compact. We say that the left G1-action is free if g · z = z only when g is a
unit, i.e., g ∈ G(0)

1 .

Remark. A right action of G2 on Z is defined by a pair of maps con-
sisting of a continuous surjection τ : Z → G

(0)
2 and a continuous map
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(z, g) 7→ z · g from the space Z ∗ G2 = {(z, g) ∈ Z × G2 | τ(z) = r(g)} of
composable pairs into Z, with properties similar to those above. Similarly,
we can also define proper and free actions of G2 on Z.

Definition 1.3 (see [9]). Let G1 and G2 be two second countable lo-
cally compact Hausdorff groupoids and let Z be a second countable locally
compact Hausdorff space. The space Z is called a correspondence from G1

to G2 if it has the following properties:

(i) there exists a proper left action of G1 on Z such that % is an open
map;

(ii) there exists a proper right action of G2 on Z;
(iii) the G1 and G2 actions commute;
(iv) the map % induces a bijection of Z/G2 onto G(0)

1 .

Definition 1.4 (see [3]). Let G1, G2 and Z be as in Definition 1.3.
We say that the space Z is a (G1, G2)-equivalence if it has the following
properties:

(i) there exists a proper free left action of G1 on Z such that % is an
open map;

(ii) there exists a proper free right action of G2 on Z such that τ is an
open map;

(iii) the G1 and G2 actions commute;
(iv) the map % induces a bijection of Z/G2 onto G(0)

1 ;

(v) the map τ induces a bijection of G1 \ Z onto G(0)
2 .

Let G1 and G2 be two second countable locally compact Hausdorff
groupoids. We say G1 and G2 are equivalent in the sense of Muhly–Renault–
Williams if there exists a (G1, G2)-equivalence.

Theorem 1.1 (see [9]). Let G1 and G2 be two second countable locally
compact Hausdorff groupoids, let f be a continuous homomorphism of G1

onto G2 and let H be the kernel of f . Suppose that the following conditions
are satisfied :

(C1) the range map r : G1 → G
(0)
1 is an open map;

(C2) the quotient map q1 : G1 → G1/H is an open map;
(C3) (r, s)H : H → H(0) ×H(0) is a proper map;

(C4) f(G1,x) = G2,f(x) for all x ∈ G(0)
1 ;

(C5) f is an open map;
(C6) the restriction f (0) of f to the unit space G(0)

1 is locally one-to-one,
and maps onto G(0)

2 .

Then G1/H is a correspondence from G1 to G2.
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2. Main results. Let X be a compact metric space, let σ be an expand-
ing surjection on X, and let (Ω,ϕ) be the Smale space associated with the
map σ. Let Gs ×α Z and G(X,σ) be as in the Introduction. In this section
we state and prove the following main result of this paper.

Theorem 2.1. The groupoids Gs ×α Z and G(X,σ) are equivalent in
the sense of Muhly–Renault–Williams. Consequently , the reduced groupoid
C∗-algebras C∗r (Gs ×α Z) and C∗r (G(X,σ)) are Morita equivalent.

In order to prove Theorem 2.1, we need the following lemmas. Firstly,
for the topology on the groupoid Gs, by the definitions of Ω and ϕ, we have
the following reduction.

Lemma 2.1. Let x and y be in Ω. Then (x, y) ∈ Gs if and only if there
exists an integer k ≥ 0 such that σk(πx) = σk(πy). Set Gs,k = {(x, y) ∈
Ω ×Ω | σk(πx) = σk(πy)} for k = 0, 1, 2, . . . and endow each Gs,k with the
relative topology of the product topology on Ω×Ω, and Gs =

⋃∞
k=1 Gs,k with

the inductive limit topology. Then the inductive limit topology agrees with
the one defined by Putnam in [4], hence in that topology , Gs is a second
countable locally compact Hausdorff groupoid with a left Haar system λ.

Proof. Note that, for x = (xn)n≥0, y = (yn)n≥0 and l > 0,

d(σl(x0), σl(y0)) ≤ d(ϕl(x), ϕl(y)) =
l−1∑

n=0

d(σl−n(x0), σl−n(y0))
2n

+
d(x, y)

2l
.

If (x, y) ∈ Gs, then liml→∞ d(σl(x0), σl(y0)) = 0. Since σ is expansive,
there is k ≥ 0 such that σk(x0) = σk(y0).

If there is k ≥ 0 such that σk(x0) = σk(y0), then for l ≥ k,

d(ϕl(x), ϕl(y)) =
1
2l

(d(x, y) + . . .+ 2k−1d(σk−1(x0), σk−1(y0))).

So liml→∞ d(ϕl(x), ϕl(y)) = 0.
The rest of the proof is straightforward and we omit it.

We define

f : Gs ×α Z→ G(X,σ), f(x, n, y) = (π(x), n, π(y)),

for (x, n, y) ∈ Gs ×α Z, and prove that the statements (C1)–(C5) are true
for Gs ×α Z, G(X,σ) and f .

Remark. We show that f is well defined. Let (x, n, y) ∈ Gs×α Z. Then
(ϕn(x), y) ∈ Gs. Choose k0 ≥ 1 such that k0+n≥1. Then (ϕk0+n(x), ϕk0(y))
∈ Gs. It follows from Lemma 2.1 that there exists an integer l0 ≥ 0 such
that

σl0πϕk0+n(x) = σl0πϕk0(y).

Consequently, σl0+k0+nπ(x) = σl0+k0π(y), hence (π(x), n, π(y)) ∈ G(X,σ).
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Lemma 2.2. The map f is a continuous homomorphism of Gs×αZ onto
G(X,σ). So H = ker(f) is an open and closed subgroupoid of Gs ×α Z.

Proof. It is clear that, by the definition of the topology on Gs ×α Z, we
only need to check that the map

F = fη : Gs × Z→ G(X,σ), F ((x, y), n) = (π(x), n, π(ϕn(y))),

is continuous.
Fix ((x, y), n) in Gs×Z, and assume n ≥ 0. Then there exists k > n such

that (x, y) ∈ Gs,k. If we let π(x) = x0 and π(y) = y0, then F ((x, y), n) =
(x0, n, σ

n(y0)) and σk(x0) = σk(y0). Set n = k − l. For every open neigh-
borhood Λ of (x0, n, σ

n(y0)) in G(X,σ), noting that σk(x0) = σlσn(y0), we
take two open subsets U and V of X such that σk|U and σl|V are hom-
eomorphisms with the same range and Λ(U, V, k, l) is a base neighborhood,
contained in Λ, of (x0, n, σ

n(y0)) in G(X,σ), where

Λ(U, V, k, l) = {(u, k − l, σ−lV σk(u)) | u ∈ U}.
Obviously, x0 ∈ U , σn(y0) = σ−lV σk(x0) ∈ V . Since the map Φ(p, q) =
(π(p), π(ϕn(q))), from Ω × Ω onto X × X, is continuous, it follows that
Φ−1(U × V ) is an open subset of Ω ×Ω. Noting that (x, y) ∈ Φ−1(U × V ),
one finds that W = Φ−1(U×V )∩Gs,k is a neighborhood of (x, y) in Gs, and
therefore, that W×{n} is a neighborhood of ((x, y), n) in Gs×Z. In order to
establish the claim, we only need to prove that F (W × {n}) ⊆ Λ(U, V, k, l).

In fact, let ((p, q), n) ∈W×{n} with p = (pn)n≥0 and q = (qn)n≥0. Then
(p0, σ

n(q0)) ∈ U × V and σk(p0) = σk(q0). Therefore σk(p0) = σk(q0) =
σn+l(q0). Since σn(q0) ∈ V and p0 ∈ U , we have σn(q0) = σ−lV (σk(p0)),
which implies that F ((p, q), n) = (p0, n, σ

n(q0)) ∈ Λ(U, V, k, l).
For the case n < 0, noting that πϕn(y) = y−n and σ−n(y−n) = y0, we

can prove that F is continuous at ((x, y), n) in a similar way.
Since G(X,σ) is r-discrete, the unit space G(X,σ)(0) is an open and

closed subset of G(X,σ). Therefore H is an open and closed subgroupoid of
Gs ×α Z by the continuity of f .

Lemma 2.3 (see [10]). Let G be a locally compact groupoid with a left
Haar system λ = {λu | u ∈ G(0)}. Let G′ be an open subgroupoid of G with
an induced measure system λ′ = {λu|G′ | u ∈ G′(0)}, where G′(0) = G′∩G(0).
Then λ′ = {λu|G′ | u ∈ G′(0)} is a left Haar system of G′.

Lemma 2.4 (see [7]). Let G be a locally compact groupoid with a left Haar
system λ and H a closed subgroupoid of G containing G(0) and admitting a
Haar system λH . Consider the relation on G defined by x ∼ y if and only if
r(x) = r(y) and x−1y ∈ H. Then

(1) the range map r : G→ G(0) is an open map;
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(2) the quotient space G/H defined by the above equivalence relation is
locally compact and Hausdorff in the quotient topology , and the quotient map
G→ G/H is a continuous open map.

From Lemmas 2.3 and 2.4, we have the following corollary.

Corollary 2.1. Let H = ker(f). Then

(1) the quotient map q1 : Gs ×α Z → (Gs ×α Z)/H is continuous and
open;

(2) the range map r : Gs ×α Z→ (Gs ×α Z)(0) is open.

Proof. Since H is an open and closed subgroupoid of Gs ×α Z by Lem-
ma 2.2, and also since Gs ×α Z is a locally compact groupoid with a left
Haar system, one sees that H has a left Haar system by Lemma 2.3. Hence
Lemma 2.4 implies (1) and (2).

Lemma 2.5. The map (r, s)H : H → H(0) ×H(0) is a proper map.

Proof. It is clear that H = {(x, 0, y) ∈ Gs ×α Z | π(x) = π(y)}. Then
η−1(H) = {((x, y), 0) ∈ Gs × Z | π(x) = π(y)}, which is homeomorphic to
{(x, y) ∈ Gs | π(x) = π(y)} = Gs,0. Noting that Gs,0 is a compact subset of
Gs in the inductive limit topology defined in Lemma 2.1, we deduce that H
is compact in Gs ×α Z, and hence (r, s)H is a proper map.

Lemma 2.6. f((Gs×α Z)x) = G(X,σ)f(x) for all x ∈ Ω ∼= (Gs×α Z)(0).

Proof. Straightforward.

Lemma 2.7. The homomorphism f is an open map.

Proof. It is clear that we need to prove that the map F = fη from Gs×Z
to G(X,σ) defined by F ((x, y), n) = (π(x), n, πϕn(y)) is an open map.

By Lemma 2.1, Gs has the topology having as a basis of open sets the
sets

Λ(U, V, k) = {(x, y) ∈ U × V | πϕk(x) = πϕk(y)},
where U, V are open subsets of Ω, and k is a positive integer; hence we only
need to show that F (Λ(U, V, k)× {n}) is an open subset of G(X,σ) for all
n ∈ Z. Without loss generality, we assume that n ≥ 0.

Fix (x0, n, u0) ∈ F (Λ(U, V, k)×{n}). Then there exists (x, y) ∈ Λ(U, V, k)
such that F ((x, y), n) = (x0, n, u0). Hence x ∈ U , y ∈ V , π(x) = x0,
πϕn(y) = u0 and πϕk(x) = πϕk(y). If we set π(y) = y0, then σn(y0) =
πϕn(y) = u0, σk(x0) = σk(y0). Since π is an open map and σ is a local
homeomorphism, we can choose neighborhoods Vx0 and Vy0 of x0 and y0

respectively in X such that the following conditions hold:

(i) Vx0 ⊆ π(U), Vy0 ⊆ π(V );
(ii) σk|Vx0

and σk|Vy0 are homeomorphisms with the same open range;
(iii) σn|Vy0 is a homeomorphism;
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(iv) σn|σk(Vx0 ) (= σn|σk(Vy0 )) and σk|σn(Vy0 ) are homeomorphisms with
the same open range.

By (iv), we have (x0, n, u0) = (x0, n, σ
−k
Vu0

(σk+n(x0))), which belongs to
Λ(Vx0 , Vu0 , k + n, k), where Vu0 = σn(Vy0), a neighborhood of u0. So the
claim will follow from Λ(Vx0 , Vu0 , k + n, k) ⊆ F (Λ(U, V, k)× {n}).

Fix (s0, n, t0) in Λ(Vx0 , Vu0 , k+n, k). Then s0 ∈ Vx0 , t0 = σ−kVu0
(σk+n(s0))

∈ Vu0 , and hence σk+n(s0) = σk(t0). Choose s ∈ U and r ∈ V such that
π(s) = s0, π(r) = r0 ∈ Vy0 and t0 = σn(r0). Then we have (s0, n, t0) =
F ((s, r), n). Since σn(σk(s0))=σk+n(s0)=σk(t0)=σk(σn(r0))=σn(σk(r0))
and both σk(r0) and σk(s0) are in σk(Vx0) from (ii), condition (iv) im-
plies that σk(s0) = σk(r0) and so ((s, r), n) ∈ Λ(U, V, k) × {n}. Conse-
quently, (s0, n, t0) = F ((s, r), n) ∈ F (Λ(U, V, k) × {n}), which implies that
Λ(Vx0 , Vu0 , k + n, k) ⊆ F (Λ(U, V, k)× {n}).

Remark. From Corollary 2.1 and Lemmas 2.5–2.7, conditions (C1)–
(C5) in Theorem 1.1 hold for Gs ×α Z, G(X,σ) and f , but (C6) does not
hold. However, by inspecting the proof of Theorem 1.1 in [9], we find that
condition (C6) is only used to prove that the right action of G2 on Z is
continuous. In our case, without (C6), we can still prove the continuity of
the right action.

We recall from [9] the left and right actions on Z = (Gs ×α Z)/H. Let
% : Z → (Gs ×α Z)(0) be defined by %(q1(x, n, y)) = r(x, n, y) = x, where
q1 is the quotient map of Corollary 2.1. Then we have (Gs ×α Z) ∗ Z =
{((x, n, y), q1(y,m, z)) ∈ (Gs ×α Z) × Z} and the left action of Gs ×α Z on
Z is defined as follows:

(x, n, y)q1(y,m, z) = q1(x, n+m, z)

for ((x, n, y), q1(y,m, z)) ∈ (Gs ×α Z) ∗ Z.
Let τ : Z → G(X,σ)(0) be defined by τ(q1(x, n, y)) = sf(x, n, y) = π(y).

Then we have the right action, denoted by α2, of G(X,σ) on Z:

α2(q1(x, n, y), (π(y),m, p0)) = q1(x, n+m, p)

for (q1(x, n, y), (π(y),m, p0)) ∈ Z ∗G(X,σ), where p is an arbitrary element
in Ω such that π(p) = p0.

Lemma 2.8. The right action α2 of G(X,σ) on Z is continuous.

Proof. We first observe that α2 is well defined.
Let (q1(x, n, y), (π(y),m, p0)) be an element in Z ∗G(X,σ) and let p ∈ Ω

satisfy π(p) = p0. Since (x, n, y) ∈ Gs ×α Z, we have (ϕn(x), y) ∈ Gs and
so (ϕn+m(x), ϕm(y)) is in Gs. Also since (π(y),m, p0) ∈ G(X,σ), there are
integers k, l ≥ 0 such that m = k−l and σkπ(y) = σlπ(p) (= σl(p0)). Hence,
πϕk(y) = πϕl(p), and so (ϕk(y), ϕl(p)) ∈ Gs, which implies (ϕm(y), p) ∈ Gs.
Consequently, (ϕm+n(x), p) ∈ Gs, hence (x, n + m, p) ∈ Gs ×α Z. On the
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other hand, if we have another element p′ ∈ Ω such that π(p′) = π(p) = p0,
then by the definition of Z, it is clear that q1(x, n+m, p) = q1(x, n+m, p′)
in Z. This establishes the observation.

We denote by β1 the multiplication from (Gs ×α Z)(2), the set of com-
posable pairs, into Gs ×α Z defined by β1(γ, γ′) = γγ′. Fix an element
(q1(x, n, y), (π(y),m, p0)) ∈ Z ∗G(X,σ). We show that α2 is continuous at
(q1(x, n, y), (π(y),m, p0)).

Let V be an open neighborhood of q1(x, n + m, p) in Z, where
q1(x, n+m, p) = α2(q1(x, n, y), (π(y),m, p0)), p ∈ Ω and π(p) = p0. Corol-
lary 2.1 implies that q−1

1 (V ) is an open neighborhood of (x, n + m, p) =
β1((x, n, y), (y,m, p)) (note that if (π(y),m, π(p)) ∈ G(X,σ) then (y,m, p) ∈
Gs ×α Z). Since β1 is continuous, there exist an open neighborhood U of
(x, n, y) and an open neighborhood W of (y,m, p) in Gs ×α Z such that
β1((U ×W )∩ (Gs ×α Z)(2)) ⊆ q−1

1 (V ). By the definition of the topology on
Gs ×α Z and Lemma 2.1, we can suppose that

U = η(Ũ × {n}), W = η(W̃ × {m}),
where

Ũ = Λ(Vx, ϕ−n(Vy), k) = {(u, v) ∈ Vx × ϕ−n(Vy) | σkπ(u) = σkπ(v)},
W̃ = Λ(Vy, ϕ−m(Vp), k) = {(u, v) ∈ Vy × ϕ−m(Vp) | σkπ(u) = σkπ(v)},

Vx, Vy and Vp are neighborhoods of x, y and p respectively in Ω and k ≥ 0.
Let U ′ = q1(U) and W ′ = f(W ). From Corollary 2.1 and Lemma 2.7, one
sees that U ′ and W ′ are open neighborhoods of q1(x, n, y) and f(y,m, p) =
(π(y),m, π(p)) = (π(y),m, p0) in Z and G(X,σ), respectively. We only need
to show that α2((U ′ ×W ′) ∩ (Z ∗G(X,σ))) is contained in V .

For, let (a, n, b) ∈ U, (b′,m, q) ∈ W be such that (q1(a, n, b), f(b′,m, q))
belongs to (U ′ ×W ′) ∩ (Z ∗G(X,σ)). Then

π(b) = π(b′), α2(q1(a, n, b), f(b′,m, q)) = q1(a, n+m, q).

By the choice of U and W , we have a ∈ Vx, b ∈ Vy, σkπ(a) = σkπϕ−n(b) and
also b′ ∈ Vy, q ∈ Vp, σkπ(b′) = σkπϕ−m(q). Therefore σkπ(b) = σkπ(b′) =
σkπϕ−m(q), which implies that (b, ϕ−m(q)) ∈ W̃ . Consequently, (b,m, q) =
η((b, ϕ−m(q)),m), which belongs to W . Also since

α2(q1(a, n, b), f(b′,m, q)) = q1(a, n+m, q) = q1β1((a, n, b), (b,m, q)),

we have α2(q1(a, n, b), f(b′,m, q)) ∈ q1β1((U×W )∩ (Gs×αZ)(2)) ⊆ V . This
completes the proof.

From the above arguments and Theorem 1.1, we have the following corol-
lary.

Corollary 2.2. The space Z = (Gs×α Z)/H is a correspondence from
Gs ×α Z to G(X,σ).
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Lemma 2.9. The map τ : Gs ×α Z/H → G(X,σ)(0) is an open map.

Proof. By the definition of τ , it is clear that τq1 = sf . Note that s and
f are continuous open surjections. Then τq1 is a continuous open surjection.
Also since q1 is a continuous open surjection, τ is an open map.

Lemma 2.10. The left and right actions are free.

Proof. Let (x, n, y) ∈ Gs ×α Z and q1(y,m, q) ∈ Z be such that

(x, n, y)q1(y,m, q) = q1(y,m, q).

Then from the definition of the left action, q1(x, n + m, q) = q1(y,m, q) in
Z. It follows that x = y, n + m = m, and therefore (x, n, y) = (x, 0, x) ∈
(Gs ×α Z)(0). Consequently, the left action is free.

Let q1(x, n, y) ∈ Z and (π(y),m, p0) ∈ G(X,σ) be such that

q1(x, n, y)(π(y),m, p0) = q1(x, n, y).

Then from the definition of the right action, one has m = 0 and p0 = π(y),
which implies that (π(y),m, p0) = (π(y), 0, π(y)) ∈ G(X,σ)(0). So the right
action is free.

Lemma 2.11. The map τ induces a bijection τ ′ from Gs ×α Z \ Z onto
G(X,σ)(0).

Proof. We recall that τ ′ is defined as follows: τ ′([q1(x, n, y)]) = π(y),
where [q1(x, n, y)] denotes the equivalence class of q1(x, n, y) in Gs×αZ\Z.

Obviously, τ ′ is surjective. We have to prove its injectivity. Suppose
that τ ′([q1(x, n, y)]) = τ ′([q1(p,m, q)]), i.e., π(y) = π(q). Since (x, n, y) and
(p,m, q) belong to Gs ×α Z and π(y) = π(q), we have g = (p,m − n, x) ∈
Gs ×α Z and gq1(x, n, y) = q1(p,m, y). Also since q1(p,m, y) = q1(p,m, q)
in Z, we have gq1(x, n, y) = q1(p,m, q), which implies that [q1(x, n, y)] =
[q1(p,m, q)] in Gs ×α Z \ Z.

Proof of Theorem 2.1. Definition 1.4, Corollary 2.2 and Lemmas 2.9–2.11
complete the proof of the theorem.

Remark. In the same way, one can prove that Gs is equivalent to the
r-discrete groupoid R∞ defined as in [2]. Therefore, C∗r (Gs) is Morita equiv-
alent to C∗r (R∞).

3. Example. As an application of Theorem 2.1, we can calculate the
K∗-groups of the groupoid C∗-algebras in the case of solenoids.

Let X = S1, the unit circle in the complex plane, and let σ(x) = xp,
p ≥ 2. Define d(eiα1 , eiα2) = |α1 − α2| ≤ π as the metric on S1. Obviously,
σ is an expanding map. The dynamical system (S1, σ) gives rise to a Smale
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space (Ω,ϕ), which is called a solenoid. From [2], we know that

K0(C∗r (R∞)) ∼= Z[1/p], K1(C∗r (R∞)) ∼= Z,
K0(C∗r (G(S1, σ))) ∼= Z⊕ Zp−1, K1(C∗r (G(S1, σ))) ∼= Z.

Since C∗-algebras which are Morita equivalent have the same K∗-groups,
we have

K0(C∗r (Gs)) ∼= Z[1/p], K1(C∗r (Gs)) ∼= Z,
K0(C∗r (Gs ×α Z)) ∼= Z⊕ Zp−1, K1(C∗r (Gs ×α Z)) ∼= Z.
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