Beurling algebras and uniform norms

by

S. J. BHATT and H. V. DEDANIA (Vallabh Vidyanagar)

Abstract. Given a locally compact abelian group G with a measurable weight ω , it is shown that the Beurling algebra $L^1(G, \omega)$ admits either exactly one uniform norm or infinitely many uniform norms, and that $L^1(G, \omega)$ admits exactly one uniform norm iff it admits a minimum uniform norm.

A uniform norm on a Banach algebra \mathcal{A} is a (not necessarily complete) algebra norm $|\cdot|$ satisfying the square property $|a^2| = |a|^2$ $(a \in \mathcal{A})$. It is easy to see that any two equivalent uniform norms on a Banach algebra are identical. Thus two uniform norms are either identical or different. A Banach algebra \mathcal{A} has the unique uniform norm property (UUNP) if it admits exactly one uniform norm; in this case, the spectral radius on \mathcal{A} is the only uniform norm. Every regular, semisimple, commutative Banach algebra has UUNP: in particular, the uniform algebra C(X) on a compact Hausdorff space X and the group algebra $L^1(G)$ on a LCA group G have UUNP. On the other hand, the disc algebra $\mathcal{A}(\mathcal{D})$ has infinitely many uniform norms [BhDe1]. Banach algebras with unique uniform norm have been investigated in [BhDe2], where it is shown that the Beurling algebra $L^1(G, \omega)$ (which is always semisimple [BhDe3]) has UUNP iff $L^1(G, \omega)$ is regular. In this paper we prove that $L^1(G,\omega)$ has either exactly one uniform norm or infinitely many uniform norms; and that it has UUNP if and only if it has a minimum uniform norm. This leads to the following question that remains open: Does there exist a (necessarily commutative and semisimple) Banach algebra \mathcal{A} which admits finitely many distinct uniform norms?

Throughout let G be a locally compact abelian (LCA) group, let λ be a Haar measure, and let ω be a *weight* on G, i.e., a strictly positive measurable function ω on G such that $\omega(s+t) \leq \omega(s)\omega(t)$ ($s, t \in G$). Then the *Beurling algebra* $L^1(G, \omega)$ consists of all complex-valued measurable functions f on G

²⁰⁰⁰ Mathematics Subject Classification: 43A20, 46J05.

Key words and phrases: commutative semisimple Banach algebra, $\omega\text{-}\mathrm{bounded}$ generalized character, Beurling algebra.

such that $f\omega \in L^1(G)$ is a semisimple commutative Banach algebra with the convolution product and the norm $||f||_{\omega} := \int_G |f(s)|\omega(s) \, d\lambda(s)$ [BhDe3]. An ω -bounded generalized character on G is a continuous group homomorphism $\alpha : G \to (\mathbb{C} \setminus \{0\}, \times)$ such that $|\alpha(s)| \leq \omega(s) \, (s \in G)$. Let $H(G, \omega)$ denote the set of all ω -bounded generalized characters on G equipped with the compact-open topology. For $\alpha \in H(G, \omega)$, define

$$\varphi_{\alpha}(f) = \widehat{f}(\alpha) = \int_{G} f(s)\alpha(s) \, d\lambda(s) \quad (f \in L^{1}(G,\omega)).$$

Then the map $T : H(G, \omega) \to \Delta(L^1(G, \omega))$ defined as $T(\alpha) = \varphi_\alpha$ is a homeomorphism [BhDe4]. Let \widehat{G} denote the dual group of G. Then it is easy to see that $\widehat{G} \subseteq H(G, \omega)$ iff $\omega \ge 1$ on G. However it is always true that $\theta \alpha \in H(G, \omega)$ ($\theta \in \widehat{G}$ and $\alpha \in H(G, \omega)$). For $F \subseteq H(G, \omega)$, define

$$|f|_F = \sup\{|\widehat{f}(\alpha)| : \alpha \in F\} \quad (f \in L^1(G, \omega)).$$

Then $|\cdot|_F$ is a uniform seminorm on $L^1(G, \omega)$; the set F is a set of uniqueness for $L^1(G, \omega)$ if $|\cdot|_F$ is a norm. For example, $\alpha \widehat{G}$ is a set of uniqueness for any $\alpha \in H(G, \omega)$. For $\alpha \in H(G, \omega)$, the uniform norm $|\cdot|_{\alpha \widehat{G}}$ on $L^1(G, \omega)$ will be denoted by $|\cdot|_{\alpha}$.

THEOREM 1. $L^1(G, \omega)$ has UUNP iff it has a minimum uniform norm.

Proof. If $L^1(G, \omega)$ has UUNP, then clearly it has a minimum uniform norm. Conversely, assume that it has a minimum uniform norm, say $|\cdot|_0$. Define $F = \{\alpha \in H(G, \omega) : \varphi_\alpha \text{ is } |\cdot|_0\text{-continuous}\}$. By taking the completion \mathcal{A} of $(L^1(G, \omega), |\cdot|_0)$ and by using elementary Gelfand theory, one can see that for all $f \in L^1(G, \omega), |f|_0 = |f|_F = r_{\mathcal{A}}(f)$, the spectral radius in \mathcal{A} . Suppose that we have proved $F = H(G, \omega)$. This implies that $|\cdot|_0 = |\cdot|_F =$ the spectral radius on $L^1(G, \omega)$ and the result is proved. So we prove F = $H(G, \omega)$ in the following two steps.

STEP 1.
$$F = \widehat{G}F = \{\theta \alpha : \theta \in \widehat{G} \text{ and } \alpha \in F\}.$$

Fix $\theta \in \widehat{G}$. Define $|f|_{\theta F} = |\theta f|_F$ on $L^1(G, \omega)$. Then $|\cdot|_{\theta F}$ is a uniform norm on $L^1(G, \omega)$. Since $|\cdot|_F (= |\cdot|_0)$ is the minimum uniform norm on $L^1(G, \omega)$, we have

$$|f|_F \le |f|_{\theta F} \quad (f \in L^1(G, \omega)).$$

This holds for each $\theta \in \widehat{G}$. So for each $\theta \in \widehat{G}$ and $f \in L^1(G, \omega)$, we have $|f|_F \leq |f|_{\theta F}$, i.e., $|f|_F \leq |\theta f|_F$. The last inequality is true for each f. So replacing f by $\overline{\theta}f$, we get $|f|_{\overline{\theta}F} = |\overline{\theta}f|_F \leq |f|_F$. Thus for each $\alpha \in F$, the complex homomorphism $\varphi_{\overline{\theta}\alpha}$ is $|\cdot|_0$ -continuous, i.e., $\overline{\theta}F \subseteq F$. This is true for each $\theta \in \widehat{G}$. Hence $F = \widehat{G}F$.

Step 2. $F = H(G, \omega)$.

Suppose, if possible, $F \neq H(G, \omega)$. Choose $\alpha_1 \in F$ and $\beta_1 \in H(G, \omega) \setminus F$. Take $\alpha = |\alpha_1|$ and $\beta = |\beta_1|$. Then by Step 1, $\alpha \in F$ and $\beta \in H(G, \omega) \setminus F$. Choose $t \in G$ such that $\beta(t) < \alpha(t)$. Let U be an open neighbourhood of t in G such that its closure \overline{U} is compact and $\beta(s) < \alpha(s)$ ($s \in U$). Take $f = \chi_U \in L^1(G, \omega)$, the characteristic function of U. Now

$$\begin{split} |f|_{\beta} &= \sup\{|\widehat{f}(\beta\theta)| : \theta \in \widehat{G}\} = \sup\{\left|\int_{G} f(s)\beta(s)\theta(s) \, d\lambda(s)\right| : \theta \in \widehat{G}\} \\ &\leq \sup\{\int_{U} \beta(s)|\theta(s)| \, d\lambda(s) : \theta \in \widehat{G}\} \leq \int_{U} \beta(s) \, d\lambda(s) \\ &< \int_{U} \alpha(s) \, d\lambda(s) \leq \sup\{|\widehat{f}(\alpha\theta)| : \theta \in \widehat{G}\} = |f|_{\alpha} \leq |f|_{F}. \end{split}$$

Thus $|\cdot|_{\beta}$ is a uniform norm and $|f|_{\beta} < |f|_{F}$, which is a contradiction because the latter is the minimum uniform norm on $L^{1}(G, \omega)$. This proves Step 2 and the result is proved.

The above result is not true in arbitrary semisimple commutative Banach algebras. For example, let G be a non-discrete LCA group. Then the measure algebra M(G) has a minimum uniform norm, namely $|\mu|_{\infty} =$ $\sup\{|\hat{\mu}(\theta)| : \theta \in \hat{G}\}$ ($\mu \in M(G)$) [BhDe2, Corollary 6.3]. But it does not have UUNP [BhDe2, p. 233]. Notice that both the disc algebra $A(\mathcal{D})$ and its variant $A_r(\mathcal{D}) = \{f \in C(\mathcal{D}) : f \text{ is analytic on } E_r\}$ (where 0 < r < 1 and $E_r = \{z : r < |z| < 1\}$) admit infinitely many uniform norms. However, $A(\mathcal{D})$ does not admit a minimum uniform norm, whereas $A_r(\mathcal{D})$ admits a minimum uniform norm, viz., $|f|_0 = \sup\{|f(z)| : |z| \le r\}$ ($f \in A_r(\mathcal{D})$).

THEOREM 2. $L^1(G, \omega)$ admits either exactly one uniform norm or infinitely many uniform norms.

Proof. Assume that $L^1(G, \omega)$ has more than one distinct uniform norm. If G is compact, then $L^1(G, \omega) \cong L^1(G)$ does have UUNP. Thus G must be non-compact, and so its dual group \widehat{G} is not discrete. Now choose $\alpha \in$ $H(G, \omega)$ and define $\widetilde{\omega}(s) = \omega(s)/|\alpha(s)| (s \in G)$. Then $\widetilde{\omega}$ is a weight and $\widetilde{\omega} \ge 1$ on G. It is easy to see that the map $T : L^1(G, \omega) \to L^1(G, \widetilde{\omega})$ defined as $T(f) = \alpha f$ is an isometric algebra isomorphism. Hence we may assume that $\omega \ge 1$ on G. Therefore $\widehat{G} \subseteq H(G, \omega)$. Now we define

 $H_{p}(G,\omega) = \{ \alpha \in H(G,\omega) : \alpha \text{ is strictly positive} \}.$

As in the proof of Theorem 1, any two distinct elements α and β in $H_p(G, \omega)$ will give distinct uniform norms on $L^1(G, \omega)$, namely $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$. Now consider the following two cases:

CASE (i): $H_p(G, \omega)$ is not a singleton. Choose α and β in $H_p(G, \omega)$ such that $\alpha \neq \beta$. Take $0 < \lambda < 1$. Define $\eta_{\lambda}(s) = \alpha(s)^{\lambda}\beta(s)^{1-\lambda}$ $(s \in G)$. Then

each $\eta_{\lambda} \in H_{p}(G, \omega)$. Now if $0 < \lambda \neq \lambda' < 1$, then $|\cdot|_{\eta_{\lambda}}$ and $|\cdot|_{\eta_{\lambda'}}$ are distinct uniform norms on $L^{1}(G, \omega)$. Thus $L^{1}(G, \omega)$ admits infinitely many uniform norms.

CASE (ii): $H_p(G, \omega)$ is a singleton. In this case $H_p(G, \omega) = \{1_G\}$, where 1_G is the identity of \widehat{G} , and $H(G, \omega) = \widehat{G}$. Since $L^1(G, \omega)$ does not have UUNP, there exists a proper closed subset F of \widehat{G} which is a set of uniqueness for $L^1(G, \omega)$. Since \widehat{G} is not discrete, $\widehat{G} \setminus F$ is infinite. Choose $\gamma_1, \gamma_2, \ldots$ to be different elements outside F. Set $F_0 = F$ and $F_n = F_{n-1} \cup \{\gamma_n\}$. For each $n \ge 0$, define $|f|_n := \sup\{|\widehat{f}(\gamma)| : \gamma \in F_n\}$ ($f \in L^1(G, \omega)$). Then each $|\cdot|_n$ is a uniform norm on $L^1(G, \omega)$. We show that they are distinct. It is enough to show that $|g|_0 < |g|_1$ for some $g \in L^1(G, \omega)$. Since $L^1(G)$ is regular, there exists $f \in L^1(G)$ such that $\widehat{f}(F) = \{0\}$ and $\widehat{f}(\gamma_1) = 1$. Fix $0 < \varepsilon < 1/2$. Then there exists $g \in C_c(G)$ such that $||f-g|| < \varepsilon$, where $||\cdot||$ is the L^1 -norm on $L^1(G)$. Then $g \in C_c(G) \subset L^1(G, \omega)$. Also

$$|\widehat{g}(\gamma)| = |\widehat{g}(\gamma) - \widehat{f}(\gamma)| \le \|\widehat{f} - \widehat{g}\|_{\widehat{G}} \le \|f - g\| < \varepsilon < 1/2 \quad (\gamma \in F).$$

Moreover,

$$\begin{aligned} |\widehat{g}(\gamma_1)| &= |\widehat{f}(\gamma_1) - \widehat{f}(\gamma_1) + \widehat{g}(\gamma_1)| \ge |\widehat{f}(\gamma_1)| - |\widehat{f}(\gamma_1) - \widehat{g}(\gamma_1)| \\ &\ge 1 - \|f - g\| > 1/2. \end{aligned}$$

Thus $|g|_0 \leq 1/2 < |g|_1$. This completes the proof.

Define $\omega_1(s) = \exp(|s|)$ and $\omega_2(s) = (1+|s|)^{1/2}$ on \mathbb{R} . By [D, Theorem 4.7.33], the Gelfand space of $L^1(\mathbb{R}, \omega_1)$ can be identified with the vertical strip $\Pi_{-1,1} := \{x + iy : -1 \le x \le 1\}$ in the complex plane. For $-1 \le x \le 1$, define $|f|_x = \sup\{|\widehat{f}(x+iy)| : y \in \mathbb{R}\}$ $(f \in L^1(\mathbb{R}, \omega_1))$. Then each $|\cdot|_x$ is a uniform norm on $L^1(\mathbb{R}, \omega_1)$. By the maximum modulus principle, all of them are distinct norms. On the other hand, $L^1(\mathbb{R}, \omega_2)$ has exactly one uniform norm because it is regular [D, Theorem 4.3.37].

REMARK. Assume that $\omega \geq 1$ on G. It follows from [BhDe2, Theorem 4.1] and [Do] that $L^1(G, \omega)$ has UUNP if and only if ω is non-quasi-analytic, i.e., $\sum_{n>1} (\log \omega(ns))/(1+n^2) < \infty$ for each $s \in G$.

References

- [BhDe1] S. J. Bhatt and H. V. Dedania, Banach algebras with unique uniform norm, Proc. Amer. Math. Soc. 124 (1996), 579–584.
- [BhDe2] —, —, Banach algebras with unique uniform norm II, Studia Math. 147 (2001), 211–235.
- [BhDe3] —, —, A Beurling algebra is semisimple: an elementary proof, Bull. Austral. Math. Soc. 66 (2002), 93–95.

- [BhDe4] S. J. Bhatt and H. V. Dedania, Generalized characters, weighted measure algebras and uniform norms, submitted.
- [D] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. 24, Clarendon Press, Oxford, 2000.
- [Do] Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1–66.

Department of Mathematics Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat, India E-mail: subhashbhaib@yahoo.co.in hvdedania@yahoo.com

> Received September 12, 2002 Revised version April 23, 2003

(5034)