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Stable rank and real rank of
compact transformation group C*-algebras

by

ROBERT J. ARCHBOLD (Aberdeen) and
EBERHARD KANIUTH (Paderborn)

Abstract. Let (G, X) be a transformation group, where X is a locally compact Haus-
dorff space and G is a compact group. We investigate the stable rank and the real rank
of the transformation group C*-algebra Co(X) x G. Explicit formulae are given in the
case where X and G are second countable and X is locally of finite G-orbit type. As a
consequence, we calculate the ranks of the group C*-algebra C*(R"™ x G), where G is a
connected closed subgroup of SO(n) acting on R™ by rotation.

Introduction. For a C*-algebra A, the stable rank sr(A) was intro-
duced by Rieffel [24] with a view to applications in K-theory. In particular,
the condition that sr(A) < 2 is relevant for cancellation in Ky(A) [2, 25].
The real rank RR(A), defined by Brown and Pedersen [4], is somewhat re-
lated to the stable rank but also has some different properties. There are
some large classes of C*-algebras with real rank zero (see, e.g., [5, Sec-
tion V.7]). Both the stable rank and the real rank (in particular, the con-
dition RR(A) = 0) have played a significant role in the classification theory
of C*-algebras [14, 26].

For unital A, the stable rank sr(A) is either co or the smallest possi-
ble integer n such that each n-tuple in A™ can be approximated in norm
by n-tuples (b1, ...,by) such that > 1" ;| b¥b; is invertible. Similarly, the real
rank RR(A) is either oo or the smallest non-negative integer n such that each
(n + 1)-tuple of self-adjoint elements in A"™! can be approximated in norm
by (n+1)-tuples (bo, b1, ..., by) of self-adjoint elements such that > 1 b7 is
invertible. For non-unital A, these ranks are defined to be those of the uniti-
zation of A. For the algebra of continuous functions on a compact Hausdorff
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space X one has RR(C(X)) = dim X and sr(C(X)) = |(dim X)/2] + 1,
where dim X is the covering dimension of X (see [23]). Thus the real rank
and the stable rank can be considered as non-commutative analogues of the
real and complex dimension of topological spaces.

There is now an extensive literature on stable rank and real rank, es-
pecially for group C*-algebras (see [1, 6, 18, 29, 30] and the references
therein). It seems that less is known in general about transformation group
C*-algebras Cp(X) x G, although some important and difficult examples
have been calculated. For example, it is known that irrational rotation alge-
bras and Bunce-Deddens algebras have stable rank 1 and real rank 0 (see [5]
and the references therein). On the other hand, it has been claimed that if G
is a second countable, connected compact group, and X is a second count-
able locally compact Hausdorff space, then RR(Cp(X) x G) < dim(X/G)
[21, Theorem 2.1] and sr(Cp(X) x G) < 1+ |dim(X/G)/2] [21, Proposition
2.3]. However, as we shall point out at the end of Section 1, the proofs in
[21] contain serious errors. Nevertheless, the above inequality for the stable
rank follows from [27, Theorem 3.4 and Proposition 3.1] provided that G is
a compact Lie group and X is locally of finite G-orbit type.

In this paper, we establish explicit formulae for the stable rank and the
real rank of Cp(X) ¥ G when G is a second countable compact group, X is a
second countable locally compact Hausdorff space and X is locally of finite
G-orbit type (Theorems 2.3 and 2.4). Let H be a representative system of
the conjugacy classes of stability groups for the action of G on X and, for
H € H, let Xy denote the set of points in X with stability group equal to H
and let Ng(H) = {g € G : g"'Hg = H}, the normaliser of H in G. We then
show, for example, that RR(Cp(X) x G) = 0 if and only if dim(X/G) = 0,
and if 1 < dim(X/G) < oo, then

RR(Co(X) ¥ G) = max{l, glg?)i({ [dmzl[(gH;I]TCi(?))-‘ }};

where % is understood as 0. In Theorem 3.1 we apply the results of Section
2 to determine the ranks of Co(R"™) x G, where G is a connected closed
subgroup of SO(n) acting on R™ by rotation.

The authors are grateful to the referee for helpful comments which have
led to a number of clarifications.

1. Preliminaries: transformation groups and covering dimen-
sion. Let (G, X) be a topological transformation group. That is, G is a
topological group and X is a Hausdorff space together with a continuous
map G x X — X, (g,z) — g -z, such that e-z =z and h-(¢g-z) = (hg) - x
for all g,h € G and x € X. For z € X, let S, denote the stabiliser of x,
that is, S; = {g € G:g-x =z}, and let G- = {g-x : g € G} denote
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the orbit of 2. The quotient space X /G is always endowed with the quotient
topology. Note that the quotient map X — X/G is continuous and open. If
G is compact then the quotient map is also closed and proper, and X/G is
Hausdorff [3]. The transformation group (G, X) is said to be locally compact
if both G and X are locally compact.

A subgroup S of G is called a principal stability group if there exists a
dense subset D of X such that S, is conjugate to S for every x € D. The
space X is of finite G-orbit type if there exist subgroups Hi,...,H, of G
such that for each x € X, S, is conjugate to one of the H;. Moreover, X is
said to be locally of finite G-orbit type if every point in X has a (G-invariant)
neighbourhood which is of finite G-orbit type. If G is a compact Lie group
and X is a topological manifold, then X is locally of finite G-orbit type [3,
Remark after IV.1.2], and if in addition X /G is connected, then there exists
a principal stability group [15].

For every closed subgroup H of G, let X = {x € X : S, = H}. We
shall several times use the fact that if G is compact and g~ 'Hg C H for
some g € G, then actually g~'Hg = H so that g € Ng(H). This can be seen
as follows. The closed subsemigroup of G generated by g is already a group
(see [11, (9.28)(a)]). Hence there exists a sequence (n;); of natural numbers
such that g — e. Since

g "Hg"Cg "M Hy"'C---CH
for all n € N, it follows that g~'Hg = H.
LEMMA 1.1. Let (G, X) be a topological transformation group where G

is compact and X is of finite G-orbit type. Then, for some stability group
S, the set {x € X : S, is conjugate to S} is open in X.

Proof. Let Hq,...,H, be representatives of the different conjugacy clas-
ses of stability groups. Towards a contradiction, assume that for each 1 <
k < n, there exist j € {1,...,n} and hy € G such that jp # k and
thjkhlzl C Hy. Then, with jo = 1, we find sequences (jx)r C {1,...,n}
and (gx)r C G such that ji # jr—1 and

Hj, 2 ngjlgfl D2 ngjkg;.Zl D
for all k € N. There must exist [,k € {1,...,n} with [ < k and j; = jx. Then
H; 2 gl_lngjlgk_lgl_l, which in turn implies that ngjlgl_1 = gk.ijgk_l.
Since ji # jk—1, we have | < k — 1 and hence

gl 2 g1 Hj 91 2 9kHjg;
This shows that H;, and Hj, , are conjugate, a contradiction.

Thus Hy, say, has the property that gng_l & Hy for any 2 < 7 < n
and g € G. Let

C ={z € X : S, contains a conjugate of H; for some 2 < j < n}.
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Then C' is closed in X. Indeed, let (), be a net in C' converging to some

z € X and let gy € G and j) € {2,...,n} be such that S;, D g,\Hjxg)fl.

After passing to a subnet if necessary, we can assume that jy = j for all A

and gy — g for some g € G. It follows that gH;g~! C S,, whence z € C.
Finally, observe that

X\C={xe€ X :S, is conjugate to H;}.

Clearly, if z € X \ C, then S, is not conjugate to any of Ha,...,H, and
hence must be conjugate to Hy. On the other hand, if S, is conjugate to Hy
then, for each j > 2, S, cannot contain a conjugate of H; because H; does
not. m

Of course, in the setting of Lemma 1.1, if there exists a principal stability
group, then the subgroup S must be one. Note, however, that a principal
stability group need not exist when X is of finite G-orbit type. A simple
example is provided by G = SO(n) x SO(m) acting by rotation on X =
(R™ x {0}) U ({0} x R™) C R™ x R™ for m,n > 3.

Let IC(G) denote the set of all closed subgroups of G endowed with Fell’s
topology [9]. Recall that a base for this topology is formed by the sets

UC,F)={H e K(G): HNC =0, HNV # ) for all V € F},

where C is a compact subset of G and F is a finite family of non-empty
open subsets of G. The following lemma might well be known. We include
the short proof for the reader’s convenience.

LEMMA 1.2. Let (G, X) be a topological transformation group with G
compact. Suppose there exists a closed subgroup H of G such that the sta-
biliser of every point in X is conjugate to H. Then the stabiliser map x — S,
from X into K(QG) is continuous.

Proof. It suffices to show that if (z)y is any net in X converging to
some z € X, then for some subnet of (x))y, the stability groups converge
to S in I(G). Choose g) € G and g € G such that S;, = g;ngA for all A
and S, = gHg~". Since G is compact, after passing to a subnet if necessary,
we can assume that gy — gg for some gy € G. Then, since H is compact,
g)legA — go_lﬂgg by definition of the topology on K(G). On the other
hand, for h € H, (g/(lhg)\) -\ = x) — . It follows that (gog) ' Hgog C H,

and this implies that go_ngo =gHg ' = S5,, as was to be shown. =

Similar arguments show that if G has a principal stability subgroup S
(for example if G is a closed subgroup of SO(n) acting on R™ \ {0} by
rotation) then continuity of the stabiliser map implies that every stability
subgroup is conjugate to S.

COROLLARY 1.3. Suppose that (G, X) is a locally compact transforma-
tion group where G is compact and X 1is locally of finite G-orbit type. Then
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for any closed subgroup H of G, the space Xy (with the relative topology)
1s locally compact.

Proof. Suppose first of all that X is of finite G-orbit type. By Lemma
1.1 there is a representative system Hj,..., H, of the conjugacy classes of
stability groups such that the G-invariant sets

Vi ={x € X : 5, is conjugate to H;}

have the property that Vj is open in X (and hence is locally compact) and
for 1 <j<r—1, Vji1isopenin X \ _; Vi Since X \ }_; Vi is closed
in X, it follows that Vi1 is locally compact. For 1 < j < r, the stabiliser
map x — S is continuous on V; by Lemma 1.2. Therefore Xy, is closed in
V; and hence locally compact.

For the general case, suppose that H is a closed subgroup of G and that
x € Xp. Let U be a relatively compact, G-invariant open neighbourhood of
x in X. Then U is of finite orbit type, and hence Xz NU = Uy is a locally
compact space. So there is a compact set N which is a neighbourhood of x
in the space Xy NU. Since U is open in X, N is a neighbourhood of x in
the space Xg7.

For any topological space X, let C(X) denote the set of all compact
subsets of X. Our general reference for the covering dimension dim X of X
is [23].

LEMMA 1.4. Let X be a locally compact Hausdorff space andY a discrete

space. Let G be a compact group acting on X andY and hence on the product
space X XY . Then

sup{dimC : C € C((X xY)/G)} =sup{dim K : K € C(X/G)}.

Proof. Since Y is discrete, (X xY)/G is a disjoint union of open subsets
(X xG-y)/G, y € Y. Hence, for any C € C((X x Y)/G), since C' meets
only finitely many of the disjoint sets (X x G -y)/G,

dim C = max{dim(CN(X xG-y)/G):y € Y}.

To prove the lemma, we can therefore assume that ¥ = G-y for some y € Y.
Since G is compact, Y is finite and the normal subgroup H of G defined by

H={geG:g-z=zforallzeY}

has finite index in G. Now, since the action of H on Y is trivial, the spaces
(X xY)/H and (X/H) x Y are canonically homeomorphic. We conclude
that, replacing X with X/H and G with G/H, it suffices to prove the lemma
in the case of a finite group G.

Let gx : X — X/G and gxxy : X XY — (X xY)/G denote the quotient
maps. Both ¢x and gx«y are continuous, open, proper surjections. Now, if
K € C(X/G) then ¢y'(K) is a compact space and ¢ (t) is finite for every
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t € X/G. Since compact spaces are paracompact, dim K = dim q)_(l(K ) by
23, Chapter 9, Proposition 2.16]. Let C' = gxxy (g5 (K) x V). Then using
[23, 9.2.16] again, we obtain

dim C' = dim(gy' (K) x Y) = dim(gy" (K)).

Conversely, let C' € C((X x Y))/G) be given. Then gy~ (C) is compact and
hence equals U?:l X; x {y;j}, where yi,...,y, are distinct elements of ¥
and Xi,..., X, are compact subsets of X. Since the sets X x {y}, y € Y,
are disjoint and clopen,
dim gy .y (C) = max dim(X; x {y;}) = dim X,
1<j<n
say. Let K = qx(X},); then applying [23, 9.2.16] twice more, we get
dim C = dim gy, (C) = dim X, < dimgy'(K) = dim K,
as required. m

LEMMA 1.5. Let (G, X) be a locally compact transformation group where
G is compact, and let H be a closed subgroup of G. Then

(i) Xg/Ng(H) is homeomorphic to G - Xy /G,
(ii) if X/G is second countable and X is locally of finite G-orbit type,
then dim(X g /Ne(H)) < dim(X/G).

Proof. (i) Define a map ¢ from Xy /Ng(H) into X/G by ¢(Na(H)-x) =
G - z. Then ¢ is continuous since the quotient map X — X /G is continuous
and the quotient map Xy — Xy /Ng(H) is open. If x1,x9 € Xp are such
that xo = ¢g - 21 for some g € G, then

H =S, =9Sng ' =gHg™

and hence g € Ng(H). Thus ¢ is injective and its range is the subspace
G- Xp/G of X/G. To prove that ¢ : Xg/Ng(H) — G- Xg/G is open, let
U be an open subset of Xy /Ng(H), and let ¢1 : Xg — Xpg/Ng(H) and
g2 : G- Xy — G- Xpg/G denote the quotient maps. Let = € q2_1(¢(U)) and
let (z4)o be any net in G - Xp converging to x. For each o, o = go * Yo
where g, € G, yo € Xpg. Also, there exists y € ¢, '(U) € Xp such that
@2(z) = ¢(q1(y)) = ¢2(y), and so x = go - y for some gy € G. Passing to a
subnet of (ga)q and to the corresponding subnet of (z4)q, We may assume
that g, — g1 € G. Then y, — (g7 "go) - y and therefore

H C Sty = (9190)Sy(91 ' 90) ™" = (91 90) H (97 '90) "

This implies that H = (gl_lgo)H(gl_lgo)_l, whence gl_lgo € Ng(H). Even-
tually (g5 '91) Ya € ¢; *(U) and so eventually g2(70) = ¢2(ya) € ¢(U). Thus
the original net (24)q is frequently in g; ' (¢(U)). This shows that g, *(¢(U))
is open, and hence so is ¢(U).



Stable rank and real rank 109

(ii) Recall that a second countable, locally compact Hausdorff space Y
is normal [23, Chapter 1, Lemma 4.7] and every locally compact subspace Z
of such a space Y is an Fi-set in Y and hence dim Z < dimY [23, Chapter
3, Corollary 6.3]. By (i) and Corollary 1.3, we obtain

dim(Xgy/Ng(H)) = dim(G - Xp/G) < dim(X/G),
as required. m

REMARK 1.6. (i) Let X be a second countable locally compact Hausdorff
space. Then dim X = sup{dim C : C € C(X)}. Indeed, each such C'is closed
and hence dimC < dim X. On the other hand, since X is normal and o-
compact, dim X < sup{dimC : C € C(X)} by the countable sum theorem
[23, Chapter 3, Theorem 2.5].

(ii) Let X be a second countable locally compact Hausdorff space, and
let X;, 1 < j <n, be pairwise disjoint subsets of X such that X = U?:l X
and (Jj_;, X is closed in X for every 2 < k < n. Then

dim X = max{dim X, : 1 < j <n}.
This follows from n — 1 applications of the fact that
dim X = max{dimY,dim(X \Y)}

for any closed subset Y of a second countable, locally compact Hausdorff
space X [23, 3.5.8, 3.6.7, 2.2.9].

Finally, as promised in the introduction, we point out the errors in the
proof of [21, Theorem 2.1]. The first one is the claim that, if F' is the set of
fixed points in X, then Cy(X \ F') X G is isomorphic to Co((X \ F)/G) @ K,
where K is the algebra of compact operators on a separable Hilbert space.
But this would imply that Cy(X \ F') x G was a continuous trace C*-algebra,
which need not be the case (see the example below). The second problem
concerns the application of [21, Proposition 1.10] to the short exact sequence
which begins 0 — Co(X \ F') x G — Cp(X) x G — ---. In fact, neither
Co(X \ F) x G nor Cy(X) G need satisfy the hypotheses of [21, Proposition
1.10]. In particular, in the example below, neither of these algebras has
Hausdorff spectrum. In addition, this example illustrates the sets Xg.

ExXAMPLE 1.7. Let X = R" x R™, n,m > 3, and let G = SO(n) x
SO(m) act on X in the obvious manner. Then F = X = {(0,0)}. Let
v =(1,0,...,0) € R" and w = (1,0,...,0) € R™, and embed SO(n — 1)
into SO(n) as the subgroup fixing v and SO(m — 1) into SO(m) as the
subgroup fixing w. Then for every non-zero x € X there exist s,t # 0
such that x belongs to the G-orbit of one of the vectors (tv,sw), (tv,0)
and (0, sw). Thus, apart from G itself, there are three conjugacy classes of
stability subgroups, with representatives
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H, = S(tv,sw) = SO(TL — 1) X SO(m — 1),
Hy; = S(tv,O) = SO(n — 1) X SO(m),
Hy = S(g.qw) = SO(n) x SO(m — 1).

Then Ng(Hj;) = Hj for 1 < j < 3 and Xy, = {(tv,sw) : t,s # 0},
Xp, = {(tv,0) : t # 0} and Xy, = {(0,sw) : s # 0}.
The fact that S,y = SO(n — 1) x SO(m — 1) for all ¢ # 0 shows that

the map x +— S, is not continuous at (0, w). It follows from [7, Corollary 2]
that neither Cy(X \ F') x G nor Cy(X) x G has Hausdorff spectrum.

2. The ranks of compact transformation group C*-algebras. We
note here that if J is a closed ideal of a C*-algebra A, then sr(J),sr(A/J) <
sr(A) [24, Section 4] and similarly for the real rank [8, Théoreme 1.4]. Also,
recall that, for a non-negative real number ¢, [t| denotes the greatest integer
n such that n <t and [¢] is the least integer m such that m > t¢.

Let (G, X) be a locally compact transformation group and let Co(X) x G
denote the associated crossed product C*-algebra. We shall frequently use
the fact that if U is an open G-invariant subset of X then Cy(U) x G
embeds in Cyp(X) x G as a closed ideal with quotient canonically isomorphic
to Co(X \U) xG. This is a well known consequence of the universal property
of (full) crossed products (see, for example, [13]).

For x € X and a representation 7 of S, in the Hilbert space H(7), let 7, -
be the *-representation of Co(X) in H(7) defined by 7, -(f) = f(2)idy(r),
f € Co(X). Then (my,,7) is a covariant representation of (Cy(X), Sz, @),
where a denotes the action of G on Cy(X). If 7 is irreducible, then the in-
duced representation indgz (7g,r, 7) of Co(X)xG is irreducible. If o and 7 are
two irreducible representations of S, then indgx (Tg,0,0) and indgx (T, T)
are equivalent if and only if o and 7 are equivalent. Moreover, if G is com-
pact, then every irreducible representation of Cy(X) x G is obtained in this
way as an induced representation.

PROPOSITION 2.1. Let (G,X) be a transformation group, where X is
a locally compact Hausdorff space and G is a compact group. Suppose that
there exists a subgroup H of G such that the stabiliser of every point in X
is conjugate to H.

(a) Suppose that H has finite index in G. Then
(i) sr(Co(X) x G)

= sup {1 + {[G:;H]g dimCJ-‘ :C e C(XH/NG(H))}§

(i) RR(Cy(X) x G) = Sup{ [ﬁw .Ce C(XH/NG(H))}.
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Suppose, in addition, that X is second countable. Then

— 1t [ g b am(x/6)) |

dim(XH/Ng(H))—‘ _ { dim(X/G) —‘
2[G:H] -1 2[G:H|—-1|

(b) Suppose that H has infinite index in G and that both X and G are
second countable and dim(X/G) < co. Then
(i) sr(Co(X) x G) =min{2,1+ |1 dim(Xy/Ne(H))|}
=min{2,1+ |1 dim(X/G)|};
(ii) RR(CH(X) x G) = min{l,dim(Xg/Ng(H))}
= min{1,dim(X/G)}.
Proof. Let A = Cp(X) x G and note that, since the stabiliser map
x +— Sy from X into IC(G) is continuous (Lemma 1.2) and G is compact,
A has continuous trace [7, Corollary 2]. By hypothesis, for each z € X
there exists g, € G such that S, = g,Hg,!. Thus there is a well defined
G-equivariant map 7 from X to the left coset space G/Ng(H) given by
7(z) = g.Ng(H). Clearly, 771 ({eH}) = Xpg. An argument similar to (but
simpler than) the proof of Lemma 1.2 shows that 7 is continuous. Hence, by
[10, Theorem 17] the two C*-algebras A and Cy(Xp) x Ng(H) are Morita
equivalent and hence their spectra are homeomorphic. On the other hand,
since (Ng(H), Xp) is a compact transformation group for which all of the
stability subgroups are equal to H, it follows from [32, Corollary 5.12] that
the continuous trace C*-algebra Co(X ) x Ng(H ) has spectrum homeomor-
phic to the quotient space (Xpg x fI)/N(;(H) Indeed, elements of X x H
induce irreducible representations of Co(Xp) % Ng(H) as described above,
and for g € Ng(H), z € X and 7 € H , the representation induced from
(z,7) is equivalent to the one induced from g - (z,7) = (g-x,g9- 7).
Assume first that G, H and X satisfy the hypotheses of (b). Then, since
X and G are second countable, A is separable and dim7 = ¢ for every
m € A. Moreover, A has continuous trace. By Lemmas 1.4 and 1.5, for every
compact subset C' of (Xg x H)/Ng(H),

dimC <sup{dim K : K € C(Xyg/N¢(H))}
< dim(Xpg/Ng(H)) < dim(X/G).
Since A is a second countable, locally compact Hausdorff space and is hom-

eomorphic to (Xpg x ﬁ)/Ng(H), Lemmas 1.4 and 1.5 and Remark 1.6(i)
show that dim A < dim(X/G) < co. The following formulae are given in [1,

(iv) RR(Co(X) x G) = {
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Proposition 1.2(b)]:
RR(A) = min{1,sup{dim C : C € C(A)}},
sr(A) = min{2,1+ | sup{dimC: C € C(A)}J}

The statements in (b) now follow from Lemmas 1.4 and 1.5 together with
Remark 1.6(i) again.

Now suppose that H has ﬁmte index in G. For d € N, define Hd =
{r € H:dimr = d}. Then Xp x H is the disjoint union of the open and
closed sets Xpg x Hd, d € N, and each Xpg x Hd is Ng(H)-invariant. It
therefore follows that (Xp X H) /Na(H) is the disjoint union of open and
closed sets (X x Hy)/Ng(H), d € N.

Let Ay denote the closed ideal of A with Ay = (Xg x ﬁd)/Ng(H). Note
that points of (Xg x Hy)/Na(H) give rise to irreducible representations of
A, with dimension d[G : H], by the induction process described at the start
of this section. Hence each Ay is d[G : H]-homogeneous. Since the sets Ay
are open and closed, A is isomorphic to the ¢p-direct sum of the A4. Thus

RR(A) = ZEE{RR(Ad)}v sr(A) = ZEIN){ST(Ad)}-

Since Ag is d[G : H]-homogeneous, the formulae in [1, Proposition 1.2(a)]
for the real and stable ranks of an n-homogeneous C*-algebra give

RR(Aqg) = sup{ {ﬁw :Ce C(Ed)}

1 ~
Since H is discrete and N¢g(H) is compact, for every d € N with H, #0,

sup{dimC : C € C(Ay)} = sup{dim K : K € C(Xy/Ng(H))}

by Lemma 1.4. The formulae in (a)(i),(ii) follow by taking d = 1, and the
formulae in (iii) and (iv) follow from Remark 1.6(i) and Lemma 1.5(i). =

The following simple lemma, together with the countable sum theorem
for the covering dimension, will allow us to obtain results in Theorems 2.3
and 2.4 when X is only locally of finite G-orbit type.

LEMMA 2.2. Let (G, X) be a transformation group, where G is a compact
group and X is a locally compact Hausdorff space. Then

(i) sr(Co(X) x G) =sup{sr(C(G-K)xG): K € C(X)};

(ii) RR(Co(X) x G) = sup{RR(C(G- K) x G) : K € C(X)}.

Proof. Let A = Cy(X) x G and let V denote the set of all relatively
compact open subsets of X, directed by inclusion. Then A is the inductive
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limit of the family of ideals Cy(G - V) x G, V € V, and hence
sr(A) < sup{sr(Co(G-V)xG)}, RR(A) < sup{RR(Co(G-V) xG)}
Vey Vey

(compare [24, Theorem 5.1] and [12, Lemma 4.1(i)]). On the other hand,
Co(G-V)xGisanideal of C(G-V)xG, and for every K € C(X), C(G-K)xG
is a quotient of A. It follows that
sr(A) < sup{sr(Co(G - V) x G)} < sup{sr(C(G - V) x G)}
Vey vey
< sup {sr(C(G-K)x@G)} <sr(A),

KeC(X)

and similarly for the real rank. =

In the following two theorems, H denotes a representative system of the
conjugacy classes of stability groups, and Hg, = {H € H: [G : H] < oo}.

THEOREM 2.3. Let (G, X) be a transformation group, where X is a lo-
cally compact Hausdorff space, G is a compact group and every stability
group has finite index in G.

(a) Suppose that X is of finite G-orbit type. Then

(i) sr(Co(X) % G)

1 .
= rélgﬁsup{l + {m |1 dlmCJ-‘ :C e C(XH/Ng(H))};
(ii) RR(Cp(X) x G)
dim C

(b) Suppose that X is second countable and locally of finite G-orbit type.

Then

(i) sr(Co(X) x G) = 131;%{1 + {[G ?H] 3 dim(XH/NG(H))JW };

) dim( X5/ No(H))

o 01 [ERE0Y |

Proof. (a) Let A = Cy(X) »xG. To prove (i), we proceed by induction on
the number of elements in H. Notice first that by Lemma 1.1 there exists
Hy € Hgy, such that the set U = {x € X : S, is conjugate to Hp} is open
in X. Then, as in the proof of Proposition 2.1(a), the ideal I = Cy(U) x G has
continuous trace and is isomorphic to a cg-direct sum of homogeneous C*-
algebras. It follows by [20, Lemma 5(a)] that sr(A) = max{sr(I),sr(A/I)}.

Now sr(I) is given by formula (a)(ii) of Proposition 2.1. Since H \ {Hp}
represents the conjugacy classes of stability groups for the action of G on
X \ U, the inductive hypothesis together with sr(A) = max{sr([),sr(A/I)}
yields the formula in (i).
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The argument for part (ii) is very similar, but requires the formula
RR(A) = max{RR(I),RR(A/I)} where the ideal I is as above. The proof
of this formula proceeds as in the case of stable rank [20, Lemma 5(a)], but
uses the fact that the real rank does not increase on passing to a closed ideal
and replaces the application of [28, Proposition 3.15] by [21, Lemma 1.9].
(Note that in the proof of [21, Lemma 1.9] there is sufficient surjectivity
for the argument of [21, Proposition 1.3] to be satisfactorily applied. A full
proof of [21, Proposition 1.3] has been given in [19, Proposition 1.6].)

(b) Since X is a o-compact, locally compact Hausdorff space, there exists
a sequence (Y),), of G-invariant compact subsets Y,, of X such that every
G-invariant compact subset K of X is contained in some Y,,. Then C(K)xG
is a quotient of C(Y;) x G, and hence Lemma 2.2 shows that

(1) sr(Co(X) xG) = ilég{sr(C(Yn) x G)},
(2) RR(Cy(X) x G) = Sgg{RR(C(Yn) x G)}.

On the other hand, for any H € H,
Xu/Na(H) = | (Ya)u/Na(H).
neN
Furthermore, each (Y;,)x is relatively closed in Xy and the quotient map is

closed. By Corollary 1.3, X /Ng(H) is a second countable, locally compact
Hausdorff space and hence is normal. By the countable sum theorem

(3) dim(Xy/Ng(H)) = ilég{dim«yn)H/NG(H))}’

The results now follow by applying part (a) to each Y,, and noting that
dim((Yy) g /Ng(H)) is the supremum of the dimensions of its compact sub-
sets (Remark 1.6(i)). =

THEOREM 2.4. Let (G, X) be a transformation group, where X is a sec-
ond countable, locally compact Hausdorff space and G is a second countable
compact group. In addition, suppose that dim(X/G) < oo, that X is locally
of finite G-orbit type and that Hg, # H. Then

(i) sr(Co(X) x G) =1 if and only if dim(X/G) < 1 and otherwise
sr(Co(X) X G)

1 .
= max{2, Hrg%)én{l + {[G ] E dlm(XH/N(;(H))J-‘ }},
where the right hand side is interpreted as 2 if Hgy = 0;
(i) RR(Co(X) x G) =0 if and only if dim(X/G) =0 and otherwise
_ dim(X#/Ne(H))
RR(Cy(X) x G) —max{l,Hnel%;{{ 3G H] -1 ,
where the right hand side is interpreted as 1 if Hg, = 0.
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Proof. Since X is a o-compact locally compact Hausdorff space, there
exists a sequence (Y;,), of G-invariant compact subsets Y,, of X such that
every G-invariant compact subset K of X is contained in some Y,,. As in the
proof of Theorem 2.3(b), we obtain the equations (1), (2) and (3) above. Fur-
thermore, by the countable sum theorem, dim(X/G) =sup,,cny{dim(Y;/G)}.
Therefore, to prove the formulae of the theorem, we can assume that X is
compact and hence of finite G-orbit type.

Let N be a closed normal subgroup of G of finite index in GG such that
N C H for all H € Hgy,. Then the set

={reX:[G:5;]<oo}={reX:5 DN}

is closed in X, and X \ Xg, is a non-empty, open, G-invariant set. Applying
Lemma 1.1 to X \ Xg,, we conclude that there exists S € H \ Hgy, such that
the set U = {x € X : S, is conjugate to S} is open in X. Let A = Cy(X)xG
and I = Cy(U) x G, and let V be the collection of all G-invariant, relatively
compact, open subsets V of U such that V C U, directed by inclusion. To
each V € V associate the ideals Iy = Co(V) x G and Jy = Cop(X \ V) x G.
Then Iy - Jy = {0} for each V, and since |J{Co(V) : V € V} is dense in
Co(U), it follows by standard arguments that I = (J{Iy : V € V}. Then

sr(A) = max{sr(A4/I), ‘s/lg)j{sr(A/JV)}}

by applying [28, Proposition 3.15] to the unitization of A, and
RR(A) = max{RR(A/I), sup{RR(A/Jv)}}
Vey
by [21, Lemma 1.9] (see the remarks in the proof of Theorem 2.3(a)).
Since A/Jy is isomorphic to C(V') x G, we obtain
sr(A) = max{sr(A4/I), sup{sr( (V) x G},

RR(4) = max{RR(4/1), sup {RR(C (V) % G)}}.

Since U is a countable union of sets V, Xg = Ug is a countable union of rela-
tively closed sets VN Xg = Vg, and hence the normal space Xg/Ng(S) (see
Corollary 1.3) is a countable union of closed subsets V g/Ng(.S). Proposition
2.1(b)(i) and the countable sum theorem then imply that

sr(A) = max{sr(A/I), sup{min{2, 1+ |3 dim(Vs/Na(S))|}}}
= max{sr(A4/I), m1n{2 1+ sup{[ dim(Vg/Na(S))]}}}

= max{sr(A4/I), min{2,1 + L dim(Xs/Na(9))]}}-
Similarly, using Proposition 2.1(b)(ii), we obtain
RR(A) = max{RR(A/I), min{1, dim(Xg/Ng(S))}}.
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Proceeding inductively, we find that sr(A) is the maximum of sr(C'(Xg,) XG)
and

o {min{2,1+4 |3 dim(Xp/Ng(H))|}}.

Similarly, RR(A) is the maximum of RR(C(Xj,) % G) and

Herglﬁﬁﬁn{min{l, dim(Xpg/Na(H))}}-

Now, by Theorem 2.3,

st(C(Xgn) ¥ G) = max {1 + [ﬁg dim(XH/Ng(H))J-‘ }

HeHan
RR(C(Xg,) % G) = HIE%X{ [dméfé( 7273(?”1 }

Recall that, by Lemma 1.5 and Remark 1.6(ii),
dim(X/G) = ?aﬁ{dim(XH/Ng(H))}.
€
The above formulae then immediately show that sr(A) = 1 if and only if
dim(X/G) <1, and RR(A) = 0 if and only if dim(X/G) = 0.
Now, assume that dim(X/G) > 2, so that dim(Xg/Ng(S)) > 2 for at
least one S € H. If this happens for some S € H \ Hay, then

sr(A) = max{2,sr(C(Xg,) x G)}.
Otherwise, dim(Xy/Ng(H)) <1 for all H € H \ Hgy, and hence
sr(A) = max{1,sr(C(Xgn) X G)} = max{2,sr(C(Xg,) X G)}.
Finally, if dim(X/G) > 1, the stated formula for RR(A) follows in the
same manner. m

Recall that X¢ is the set of fixed points in X under the action of G.

COROLLARY 2.5. Let (G,X) be a transformation group, where X is a
second countable locally compact Hausdorff space and G is a second countable
compact group. Suppose that X is locally of finite G-orbit type and that
dim(X/G) < co. Then

sr(Co(X) x G) <1+ |4 dim(X/G)]|.
Suppose, in addition, that G is connected. If dim(X/G) < 1 then we have
sr(Co(X) x G) =1, and if dim(X/G) > 2 then
st(Co(X) x G) = max{2,1+ L% dim(X¢)|},
unless Xg = 0, in which case sr(Co(X) x G) = 2.
Proof. The first inequality follows from Theorem 2.3(b)(i), Theorem

2.4(i) and Lemma 1.5(ii). When G is connected, Hg, is either empty or equal
to {G}. If the action is trivial then Theorem 2.3(b)(i) yields sr(Co(X) % G) =
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1+ |3 dim X | (which also follows from the fact that Cp(X) x G = Co(X) ®
C*(@G)). If the action is non-trivial then Theorem 2.4(i) yields the required
results. m

COROLLARY 2.6. Let G and X be as in Corollary 2.5. Then
RR(Cp(X) x G) < dim(X/G).

Suppose, in addition, that G is connected. If dim(X/G) = 0 then we have
RR(Cy(X) x G) =0, and if dim(X/G) > 1 then

RR(Cy(X) x G) = max{1,dim(Xq)},
unless X = 0, in which case RR(Co(X) x G) = 1.

Proof. The proof is similar to that of Corollary 2.5, using Theorem
2.3(b)(ii) and Theorem 2.4(ii). m

3. Motion group C*-algebras. In [1] we have investigated the real
and stable ranks for several classes of group C*-algebras. However, these
did not include C*-algebras of motion groups. We are now able to treat
some examples of motion groups as an application of Theorem 2.4.

For n > 2, let SO(n) act on R™ by rotation. Then Cy(R™) x SO(n) is
isomorphic to the group C*-algebra of the classical motion group R" xSO(n).
More generally, let K be any compact group and let a : £ — «; be an
injective homomorphism from K into the automorphism group GL(n,R)
of R™. Then, by replacing a given scalar product (-,-) on R™ by the scalar
product (-, ), defined by

(v, W) = S(ak(v),ak(w» dk, wv,weR",
K

we can always assume that K is a subgroup of SO(n).
In what follows, we consider SO(n — 1) as embedded into SO(n) as the
subgroup fixing the vector v = (1,0,...,0) € R™.

THEOREM 3.1. Let G be a connected closed subgroup of SO(n), where
n > 2, and let (R™)g be the set of points in R™ which are fized by G. Then
(i) st(Co(R™) x G) = 1 if and only if GaSO(n — 1)a=! = SO(n) for
some a € SO(n), and
st(Co(R") x G) = max{2,1 + L% dim((R")e)] }
otherwise;
(ii) RR(Cy(R™) x G) = max{1l,dim((R™)s)}.

Proof. Note that dim(R"/G) < n by [22, Theorem 3.16]. Define X =
R™\ {0} and let ¢ : X — X/G denote the quotient map. Since X/G is
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metrizable and ¢ is a closed surjection,
n = dim X < dim(X/G) + sup{dim(¢~*(¢(z))) : z € X}
= dim(X/G) + sup{dim(G - z) : x € X}
= dim(X/G) + sup{dim(G/S;) : z € X}
by [23, Chapter 9, Proposition 2.6]. For each z € X, S, = GNaSO(n—1)a~!

for some a € SO(n), and conversely every such subgroup of G occurs as a
stability group. Thus

n < dim(X/G) + sup{dim(G/(G NaSO(n — 1)a™ ")) : a € SO(n)}.
Suppose first that dim(G/(GNaSO(n—1)a~!)) < n—2 for all a € SO(n).
Then dim(R"/G) = dim(X/G) > 2 and Corollaries 2.5 and 2.6 show that
st(Co(R™) x G) = max{2,1+ |5 dim((R")¢)|}
and RR(Cp(R™) x G) = max{1, dim((R")qs)}.
Now suppose that dim(G/(G N aSO(n — 1)a™t)) > n — 1 for some a €
SO(n). Then, since Co(R™) x a~'Ga and Cy(R™) x G are isomorphic and
a G /(GNaSO(n —1)a Y]a=a"'Ga/(a"*GaNSO(n — 1)),
we can assume that a is the identity of SO(n). Let H = GNSO(n—1) and C =
GSO(n—1)/SO(n—1). Since gH +— gSO(n — 1) provides a homeomorphism
between G/H and the closed subspace C of SO(n)/SO(n—1), it follows that
n—1<dim(G/H)=dimC < dim(SO(n)/SO(n —1)) =n — 1.

Hence dim C' = n — 1. Since SO(n)/SO(n — 1) = S"~! is locally homeomor-
phic to R"~!, it follows from [17, Theorem IV.5] and a compactness argu-
ment that C' has non-empty interior. Then V = {g € G : gSO(n —1) € C°}
is a non-empty open subset of G. This implies that

C=Jgvson—-1)=|]gcC°
geG geG
is open (and closed) in S”~!, hence equal to S™~!. It follows that G-SO(n—1)
= SO(n) and hence G - v = S"~!. Therefore X/G = (0,00) and Corollar-
ies 2.5 and 2.6 imply that sr(Co(R") x G) = 1 and RR(Cp(R") x G) =
max{1l,dim((R")¢g)}. =

Regarding the proof above, note that G- SO(n — 1) = SO(n) if and only
if G acts transitively on the sphere S”~!. Actions with this property are
described in [16]. We are grateful to M. C. Crabb for drawing our attention
to this reference.

COROLLARY 3.2. For all n > 2, we have
st(C*(R™ x SO(n))) = RR(C*(R"™ x SO(n))) = 1.
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In [29], Sudo has obtained the comparable result sr(C*(R"™ x Spin(n)))

= 1, where Spin(n) is the simply connected covering group of SO(n).
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