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Stable rank and real rank of

compact transformation group C∗-algebras

by

Robert J. Archbold (Aberdeen) and
Eberhard Kaniuth (Paderborn)

Abstract. Let (G, X) be a transformation group, where X is a locally compact Haus-
dorff space and G is a compact group. We investigate the stable rank and the real rank
of the transformation group C∗-algebra C0(X) ⋊ G. Explicit formulae are given in the
case where X and G are second countable and X is locally of finite G-orbit type. As a
consequence, we calculate the ranks of the group C∗-algebra C∗(Rn

⋊ G), where G is a
connected closed subgroup of SO(n) acting on R

n by rotation.

Introduction. For a C∗-algebra A, the stable rank sr(A) was intro-
duced by Rieffel [24] with a view to applications in K-theory. In particular,
the condition that sr(A) ≤ 2 is relevant for cancellation in K0(A) [2, 25].
The real rank RR(A), defined by Brown and Pedersen [4], is somewhat re-
lated to the stable rank but also has some different properties. There are
some large classes of C∗-algebras with real rank zero (see, e.g., [5, Sec-
tion V.7]). Both the stable rank and the real rank (in particular, the con-
dition RR(A) = 0) have played a significant role in the classification theory
of C∗-algebras [14, 26].

For unital A, the stable rank sr(A) is either ∞ or the smallest possi-
ble integer n such that each n-tuple in An can be approximated in norm
by n-tuples (b1, . . . , bn) such that

∑n
i=1 b∗i bi is invertible. Similarly, the real

rank RR(A) is either ∞ or the smallest non-negative integer n such that each
(n + 1)-tuple of self-adjoint elements in An+1 can be approximated in norm
by (n+1)-tuples (b0, b1, . . . , bn) of self-adjoint elements such that

∑n
i=0 b2

i is
invertible. For non-unital A, these ranks are defined to be those of the uniti-
zation of A. For the algebra of continuous functions on a compact Hausdorff
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space X one has RR(C(X)) = dimX and sr(C(X)) = ⌊(dimX)/2⌋ + 1,
where dimX is the covering dimension of X (see [23]). Thus the real rank
and the stable rank can be considered as non-commutative analogues of the
real and complex dimension of topological spaces.

There is now an extensive literature on stable rank and real rank, es-
pecially for group C∗-algebras (see [1, 6, 18, 29, 30] and the references
therein). It seems that less is known in general about transformation group
C∗-algebras C0(X) ⋊ G, although some important and difficult examples
have been calculated. For example, it is known that irrational rotation alge-
bras and Bunce–Deddens algebras have stable rank 1 and real rank 0 (see [5]
and the references therein). On the other hand, it has been claimed that if G
is a second countable, connected compact group, and X is a second count-
able locally compact Hausdorff space, then RR(C0(X) ⋊ G) ≤ dim(X/G)
[21, Theorem 2.1] and sr(C0(X) ⋊ G) ≤ 1 + ⌊dim(X/G)/2⌋ [21, Proposition
2.3]. However, as we shall point out at the end of Section 1, the proofs in
[21] contain serious errors. Nevertheless, the above inequality for the stable
rank follows from [27, Theorem 3.4 and Proposition 3.1] provided that G is
a compact Lie group and X is locally of finite G-orbit type.

In this paper, we establish explicit formulae for the stable rank and the
real rank of C0(X)⋊G when G is a second countable compact group, X is a
second countable locally compact Hausdorff space and X is locally of finite
G-orbit type (Theorems 2.3 and 2.4). Let H be a representative system of
the conjugacy classes of stability groups for the action of G on X and, for
H ∈ H, let XH denote the set of points in X with stability group equal to H
and let NG(H) = {g ∈ G : g−1Hg = H}, the normaliser of H in G. We then
show, for example, that RR(C0(X) ⋊ G) = 0 if and only if dim(X/G) = 0,
and if 1 ≤ dim(X/G) < ∞, then

RR(C0(X) ⋊ G) = max

{
1, max

H∈H

{⌈
dim(XH/NG(H))

2[G : H] − 1

⌉}}
,

where d
∞ is understood as 0. In Theorem 3.1 we apply the results of Section

2 to determine the ranks of C0(R
n) ⋊ G, where G is a connected closed

subgroup of SO(n) acting on R
n by rotation.

The authors are grateful to the referee for helpful comments which have
led to a number of clarifications.

1. Preliminaries: transformation groups and covering dimen-

sion. Let (G, X) be a topological transformation group. That is, G is a
topological group and X is a Hausdorff space together with a continuous
map G×X → X, (g, x) 7→ g · x, such that e · x = x and h · (g · x) = (hg) · x
for all g, h ∈ G and x ∈ X. For x ∈ X, let Sx denote the stabiliser of x,
that is, Sx = {g ∈ G : g · x = x}, and let G · x = {g · x : g ∈ G} denote
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the orbit of x. The quotient space X/G is always endowed with the quotient
topology. Note that the quotient map X → X/G is continuous and open. If
G is compact then the quotient map is also closed and proper, and X/G is
Hausdorff [3]. The transformation group (G, X) is said to be locally compact

if both G and X are locally compact.
A subgroup S of G is called a principal stability group if there exists a

dense subset D of X such that Sx is conjugate to S for every x ∈ D. The
space X is of finite G-orbit type if there exist subgroups H1, . . . , Hn of G
such that for each x ∈ X, Sx is conjugate to one of the Hj . Moreover, X is
said to be locally of finite G-orbit type if every point in X has a (G-invariant)
neighbourhood which is of finite G-orbit type. If G is a compact Lie group
and X is a topological manifold, then X is locally of finite G-orbit type [3,
Remark after IV.1.2], and if in addition X/G is connected, then there exists
a principal stability group [15].

For every closed subgroup H of G, let XH = {x ∈ X : Sx = H}. We
shall several times use the fact that if G is compact and g−1Hg ⊆ H for
some g ∈ G, then actually g−1Hg = H so that g ∈ NG(H). This can be seen
as follows. The closed subsemigroup of G generated by g is already a group
(see [11, (9.28)(a)]). Hence there exists a sequence (nj)j of natural numbers
such that gnj → e. Since

g−nHgn ⊆ g−n+1Hgn−1 ⊆ · · · ⊆ H

for all n ∈ N, it follows that g−1Hg = H.

Lemma 1.1. Let (G, X) be a topological transformation group where G
is compact and X is of finite G-orbit type. Then, for some stability group

S, the set {x ∈ X : Sx is conjugate toS} is open in X.

Proof. Let H1, . . . , Hn be representatives of the different conjugacy clas-
ses of stability groups. Towards a contradiction, assume that for each 1 ≤
k ≤ n, there exist jk ∈ {1, . . . , n} and hk ∈ G such that jk 6= k and
hkHjk

h−1
k ⊆ Hk. Then, with j0 = 1, we find sequences (jk)k ⊆ {1, . . . , n}

and (gk)k ⊆ G such that jk 6= jk−1 and

Hj0 ⊇ g1Hj1g
−1
1 ⊇ · · · ⊇ gkHjk

g−1
k ⊇ · · ·

for all k ∈ N. There must exist l, k ∈ {1, . . . , n} with l < k and jl = jk. Then
Hjl

⊇ g−1
l gkHjl

g−1
k g−1

l , which in turn implies that glHjl
g−1
l = gkHjk

g−1
k .

Since jk 6= jk−1, we have l < k − 1 and hence

glHjl
g−1
l ⊇ gk−1Hjk−1

g−1
k−1 ⊇ gkHjk

g−1
k .

This shows that Hjk
and Hjk−1

are conjugate, a contradiction.
Thus H1, say, has the property that gHjg

−1 6⊆ H1 for any 2 ≤ j ≤ n
and g ∈ G. Let

C = {x ∈ X : Sx contains a conjugate of Hj for some 2 ≤ j ≤ n}.
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Then C is closed in X. Indeed, let (xλ)λ be a net in C converging to some
x ∈ X and let gλ ∈ G and jλ ∈ {2, . . . , n} be such that Sxλ

⊇ gλHjλ
g−1
λ .

After passing to a subnet if necessary, we can assume that jλ = j for all λ
and gλ → g for some g ∈ G. It follows that gHjg

−1 ⊆ Sx, whence x ∈ C.
Finally, observe that

X \ C = {x ∈ X : Sx is conjugate to H1}.

Clearly, if x ∈ X \ C, then Sx is not conjugate to any of H2, . . . , Hn and
hence must be conjugate to H1. On the other hand, if Sx is conjugate to H1

then, for each j ≥ 2, Sx cannot contain a conjugate of Hj because H1 does
not.

Of course, in the setting of Lemma 1.1, if there exists a principal stability
group, then the subgroup S must be one. Note, however, that a principal
stability group need not exist when X is of finite G-orbit type. A simple
example is provided by G = SO(n) × SO(m) acting by rotation on X =
(Rn × {0}) ∪ ({0} × R

m) ⊆ R
n × R

m for m, n ≥ 3.
Let K(G) denote the set of all closed subgroups of G endowed with Fell’s

topology [9]. Recall that a base for this topology is formed by the sets

U(C,F) = {H ∈ K(G) : H ∩ C = ∅, H ∩ V 6= ∅ for all V ∈ F},

where C is a compact subset of G and F is a finite family of non-empty
open subsets of G. The following lemma might well be known. We include
the short proof for the reader’s convenience.

Lemma 1.2. Let (G, X) be a topological transformation group with G
compact. Suppose there exists a closed subgroup H of G such that the sta-

biliser of every point in X is conjugate to H. Then the stabiliser map x 7→ Sx

from X into K(G) is continuous.

Proof. It suffices to show that if (xλ)λ is any net in X converging to
some x ∈ X, then for some subnet of (xλ)λ, the stability groups converge
to Sx in K(G). Choose gλ ∈ G and g ∈ G such that Sxλ

= g−1
λ Hgλ for all λ

and Sx = gHg−1. Since G is compact, after passing to a subnet if necessary,
we can assume that gλ → g0 for some g0 ∈ G. Then, since H is compact,
g−1
λ Hgλ → g−1

0 Hg0 by definition of the topology on K(G). On the other

hand, for h ∈ H, (g−1
λ hgλ) · xλ = xλ → x. It follows that (g0g)−1Hg0g ⊆ H,

and this implies that g−1
0 Hg0 = gHg−1 = Sx, as was to be shown.

Similar arguments show that if G has a principal stability subgroup S
(for example if G is a closed subgroup of SO(n) acting on R

n \ {0} by
rotation) then continuity of the stabiliser map implies that every stability
subgroup is conjugate to S.

Corollary 1.3. Suppose that (G, X) is a locally compact transforma-

tion group where G is compact and X is locally of finite G-orbit type. Then
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for any closed subgroup H of G, the space XH (with the relative topology)
is locally compact.

Proof. Suppose first of all that X is of finite G-orbit type. By Lemma
1.1 there is a representative system H1, . . . , Hr of the conjugacy classes of
stability groups such that the G-invariant sets

Vj = {x ∈ X : Sx is conjugate to Hj}

have the property that V1 is open in X (and hence is locally compact) and

for 1 ≤ j ≤ r − 1, Vj+1 is open in X \
⋃j

k=1 Vk. Since X \
⋃j

k=1 Vk is closed
in X, it follows that Vj+1 is locally compact. For 1 ≤ j ≤ r, the stabiliser
map x 7→ Sx is continuous on Vj by Lemma 1.2. Therefore XHj

is closed in
Vj and hence locally compact.

For the general case, suppose that H is a closed subgroup of G and that
x ∈ XH . Let U be a relatively compact, G-invariant open neighbourhood of
x in X. Then U is of finite orbit type, and hence XH ∩ U = UH is a locally
compact space. So there is a compact set N which is a neighbourhood of x
in the space XH ∩ U . Since U is open in X, N is a neighbourhood of x in
the space XH .

For any topological space X, let C(X) denote the set of all compact
subsets of X. Our general reference for the covering dimension dimX of X
is [23].

Lemma 1.4. Let X be a locally compact Hausdorff space and Y a discrete

space. Let G be a compact group acting on X and Y and hence on the product

space X × Y . Then

sup{dim C : C ∈ C((X × Y )/G)} = sup{dim K : K ∈ C(X/G)}.

Proof. Since Y is discrete, (X×Y )/G is a disjoint union of open subsets
(X × G · y)/G, y ∈ Y . Hence, for any C ∈ C((X × Y )/G), since C meets
only finitely many of the disjoint sets (X × G · y)/G,

dimC = max{dim(C ∩ (X × G · y)/G) : y ∈ Y }.

To prove the lemma, we can therefore assume that Y = G ·y for some y ∈ Y .
Since G is compact, Y is finite and the normal subgroup H of G defined by

H = {g ∈ G : g · z = z for all z ∈ Y }

has finite index in G. Now, since the action of H on Y is trivial, the spaces
(X × Y )/H and (X/H) × Y are canonically homeomorphic. We conclude
that, replacing X with X/H and G with G/H, it suffices to prove the lemma
in the case of a finite group G.

Let qX : X → X/G and qX×Y : X×Y → (X×Y )/G denote the quotient
maps. Both qX and qX×Y are continuous, open, proper surjections. Now, if
K ∈ C(X/G) then q−1

X (K) is a compact space and q−1
X (t) is finite for every



108 R. J. Archbold and E. Kaniuth

t ∈ X/G. Since compact spaces are paracompact, dimK = dim q−1
X (K) by

[23, Chapter 9, Proposition 2.16]. Let C = qX×Y (q−1
X (K) × Y ). Then using

[23, 9.2.16] again, we obtain

dim C = dim(q−1
X (K) × Y ) = dim(q−1

X (K)).

Conversely, let C ∈ C((X ×Y )/G) be given. Then q−1
X×Y (C) is compact and

hence equals
⋃n

j=1 Xj × {yj}, where y1, . . . , yn are distinct elements of Y
and X1, . . . , Xn are compact subsets of X. Since the sets X × {y}, y ∈ Y ,
are disjoint and clopen,

dim q−1
X×Y (C) = max

1≤j≤n
dim(Xj × {yj}) = dimXj0 ,

say. Let K = qX(Xj0); then applying [23, 9.2.16] twice more, we get

dimC = dim q−1
X×Y (C) = dim Xj0 ≤ dim q−1

X (K) = dimK,

as required.

Lemma 1.5. Let (G, X) be a locally compact transformation group where

G is compact , and let H be a closed subgroup of G. Then

(i) XH/NG(H) is homeomorphic to G · XH/G;
(ii) if X/G is second countable and X is locally of finite G-orbit type,

then
dim(XH/NG(H)) ≤ dim(X/G).

Proof. (i) Define a map φ from XH/NG(H) into X/G by φ(NG(H) ·x) =
G · x. Then φ is continuous since the quotient map X → X/G is continuous
and the quotient map XH → XH/NG(H) is open. If x1, x2 ∈ XH are such
that x2 = g · x1 for some g ∈ G, then

H = Sx2
= gSx1

g−1 = gHg−1

and hence g ∈ NG(H). Thus φ is injective and its range is the subspace
G · XH/G of X/G. To prove that φ : XH/NG(H) → G · XH/G is open, let
U be an open subset of XH/NG(H), and let q1 : XH → XH/NG(H) and
q2 : G · XH → G · XH/G denote the quotient maps. Let x ∈ q−1

2 (φ(U)) and
let (xα)α be any net in G · XH converging to x. For each α, xα = gα · yα

where gα ∈ G, yα ∈ XH . Also, there exists y ∈ q−1
1 (U) ⊆ XH such that

q2(x) = φ(q1(y)) = q2(y), and so x = g0 · y for some g0 ∈ G. Passing to a
subnet of (gα)α and to the corresponding subnet of (xα)α, we may assume
that gα → g1 ∈ G. Then yα → (g−1

1 g0) · y and therefore

H ⊆ S(g−1

1
g0)·y

= (g−1
1 g0)Sy(g

−1
1 g0)

−1 = (g−1
1 g0)H(g−1

1 g0)
−1.

This implies that H = (g−1
1 g0)H(g−1

1 g0)
−1, whence g−1

1 g0 ∈ NG(H). Even-
tually (g−1

0 g1) ·yα ∈ q−1
1 (U) and so eventually q2(xα) = q2(yα) ∈ φ(U). Thus

the original net (xα)α is frequently in q−1
2 (φ(U)). This shows that q−1

2 (φ(U))
is open, and hence so is φ(U).
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(ii) Recall that a second countable, locally compact Hausdorff space Y
is normal [23, Chapter 1, Lemma 4.7] and every locally compact subspace Z
of such a space Y is an Fσ-set in Y and hence dimZ ≤ dimY [23, Chapter
3, Corollary 6.3]. By (i) and Corollary 1.3, we obtain

dim(XH/NG(H)) = dim(G · XH/G) ≤ dim(X/G),

as required.

Remark 1.6. (i) Let X be a second countable locally compact Hausdorff
space. Then dimX = sup{dim C : C ∈ C(X)}. Indeed, each such C is closed
and hence dimC ≤ dimX. On the other hand, since X is normal and σ-
compact, dimX ≤ sup{dimC : C ∈ C(X)} by the countable sum theorem
[23, Chapter 3, Theorem 2.5].

(ii) Let X be a second countable locally compact Hausdorff space, and
let Xj, 1 ≤ j ≤ n, be pairwise disjoint subsets of X such that X =

⋃n
j=1 Xj

and
⋃n

j=k Xj is closed in X for every 2 ≤ k ≤ n. Then

dimX = max{dimXj : 1 ≤ j ≤ n}.

This follows from n − 1 applications of the fact that

dimX = max{dimY, dim(X \ Y )}

for any closed subset Y of a second countable, locally compact Hausdorff
space X [23, 3.5.8, 3.6.7, 2.2.9].

Finally, as promised in the introduction, we point out the errors in the
proof of [21, Theorem 2.1]. The first one is the claim that, if F is the set of
fixed points in X, then C0(X \F ) ⋊ G is isomorphic to C0((X \F )/G)⊗K,
where K is the algebra of compact operators on a separable Hilbert space.
But this would imply that C0(X \F )⋊G was a continuous trace C∗-algebra,
which need not be the case (see the example below). The second problem
concerns the application of [21, Proposition 1.10] to the short exact sequence
which begins 0 → C0(X \ F ) ⋊ G → C0(X) ⋊ G → · · · . In fact, neither
C0(X \ F ) ⋊ G nor C0(X)⋊G need satisfy the hypotheses of [21, Proposition
1.10]. In particular, in the example below, neither of these algebras has
Hausdorff spectrum. In addition, this example illustrates the sets XH .

Example 1.7. Let X = R
n × R

m, n, m ≥ 3, and let G = SO(n) ×
SO(m) act on X in the obvious manner. Then F = XG = {(0, 0)}. Let
v = (1, 0, . . . , 0) ∈ R

n and w = (1, 0, . . . , 0) ∈ R
m, and embed SO(n − 1)

into SO(n) as the subgroup fixing v and SO(m − 1) into SO(m) as the
subgroup fixing w. Then for every non-zero x ∈ X there exist s, t 6= 0
such that x belongs to the G-orbit of one of the vectors (tv, sw), (tv, 0)
and (0, sw). Thus, apart from G itself, there are three conjugacy classes of
stability subgroups, with representatives
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H1 = S(tv,sw) = SO(n − 1) × SO(m − 1),

H2 = S(tv,0) = SO(n − 1) × SO(m),

H3 = S(0,sw) = SO(n) × SO(m − 1).

Then NG(Hj) = Hj for 1 ≤ j ≤ 3 and XH1
= {(tv, sw) : t, s 6= 0},

XH2
= {(tv, 0) : t 6= 0} and XH3

= {(0, sw) : s 6= 0}.

The fact that S(tv,w) = SO(n − 1) × SO(m − 1) for all t 6= 0 shows that
the map x 7→ Sx is not continuous at (0, w). It follows from [7, Corollary 2]
that neither C0(X \ F ) ⋊ G nor C0(X) ⋊ G has Hausdorff spectrum.

2. The ranks of compact transformation group C∗-algebras. We
note here that if J is a closed ideal of a C∗-algebra A, then sr(J), sr(A/J) ≤
sr(A) [24, Section 4] and similarly for the real rank [8, Théorème 1.4]. Also,
recall that, for a non-negative real number t, ⌊t⌋ denotes the greatest integer
n such that n ≤ t and ⌈t⌉ is the least integer m such that m ≥ t.

Let (G, X) be a locally compact transformation group and let C0(X)⋊G
denote the associated crossed product C∗-algebra. We shall frequently use
the fact that if U is an open G-invariant subset of X then C0(U) ⋊ G
embeds in C0(X)⋊G as a closed ideal with quotient canonically isomorphic
to C0(X \U)⋊G. This is a well known consequence of the universal property
of (full) crossed products (see, for example, [13]).

For x ∈ X and a representation τ of Sx in the Hilbert space H(τ), let πx,τ

be the ∗-representation of C0(X) in H(τ) defined by πx,τ (f) = f(x)idH(τ),
f ∈ C0(X). Then (πx,τ , τ) is a covariant representation of (C0(X), Sx, α),
where α denotes the action of G on C0(X). If τ is irreducible, then the in-
duced representation indG

Sx
(πx,τ , τ) of C0(X)⋊G is irreducible. If σ and τ are

two irreducible representations of Sx, then indG
Sx

(πx,σ, σ) and indG
Sx

(πx,τ , τ)
are equivalent if and only if σ and τ are equivalent. Moreover, if G is com-
pact, then every irreducible representation of C0(X) ⋊ G is obtained in this
way as an induced representation.

Proposition 2.1. Let (G, X) be a transformation group, where X is

a locally compact Hausdorff space and G is a compact group. Suppose that

there exists a subgroup H of G such that the stabiliser of every point in X
is conjugate to H.

(a) Suppose that H has finite index in G. Then

(i) sr(C0(X) ⋊ G)

= sup

{
1 +

⌈
1

[G : H]

⌊
1
2 dimC

⌋⌉
: C ∈ C(XH/NG(H))

}
;

(ii) RR(C0(X) ⋊ G) = sup

{⌈
dimC

2[G : H] − 1

⌉
: C ∈ C(XH/NG(H))

}
.
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Suppose, in addition, that X is second countable. Then

(iii) sr(C0(X) ⋊ G) = 1 +

⌈
1

[G : H]

⌊
1
2 dim(XH/NG(H))

⌋⌉

= 1 +

⌈
1

[G : H]

⌊
1
2 dim(X/G)

⌋⌉
;

(iv) RR(C0(X) ⋊ G) =

⌈
dim(XH/NG(H))

2[G : H] − 1

⌉
=

⌈
dim(X/G)

2[G : H] − 1

⌉
.

(b) Suppose that H has infinite index in G and that both X and G are

second countable and dim(X/G) < ∞. Then

(i) sr(C0(X) ⋊ G) = min
{
2, 1 +

⌊
1
2 dim(XH/NG(H))

⌋}

= min
{
2, 1 +

⌊
1
2 dim(X/G)

⌋}
;

(ii) RR(C0(X) ⋊ G) = min{1, dim(XH/NG(H))}
= min{1, dim(X/G)}.

Proof. Let A = C0(X) ⋊ G and note that, since the stabiliser map
x 7→ Sx from X into K(G) is continuous (Lemma 1.2) and G is compact,
A has continuous trace [7, Corollary 2]. By hypothesis, for each x ∈ X
there exists gx ∈ G such that Sx = gxHg−1

x . Thus there is a well defined
G-equivariant map π from X to the left coset space G/NG(H) given by
π(x) = gxNG(H). Clearly, π−1({eH}) = XH . An argument similar to (but
simpler than) the proof of Lemma 1.2 shows that π is continuous. Hence, by
[10, Theorem 17] the two C∗-algebras A and C0(XH) ⋊ NG(H) are Morita
equivalent and hence their spectra are homeomorphic. On the other hand,
since (NG(H), XH) is a compact transformation group for which all of the
stability subgroups are equal to H, it follows from [32, Corollary 5.12] that
the continuous trace C∗-algebra C0(XH)⋊NG(H) has spectrum homeomor-

phic to the quotient space (XH × Ĥ)/NG(H). Indeed, elements of XH × Ĥ
induce irreducible representations of C0(XH) ⋊ NG(H) as described above,

and for g ∈ NG(H), x ∈ X and τ ∈ Ĥ, the representation induced from
(x, τ) is equivalent to the one induced from g · (x, τ) = (g · x, g · τ).

Assume first that G, H and X satisfy the hypotheses of (b). Then, since
X and G are second countable, A is separable and dimπ = ℵ0 for every
π ∈ Â. Moreover, A has continuous trace. By Lemmas 1.4 and 1.5, for every
compact subset C of (XH × Ĥ)/NG(H),

dimC ≤ sup{dimK : K ∈ C(XH/NG(H))}

≤ dim(XH/NG(H)) ≤ dim(X/G).

Since Â is a second countable, locally compact Hausdorff space and is hom-
eomorphic to (XH × Ĥ)/NG(H), Lemmas 1.4 and 1.5 and Remark 1.6(i)

show that dim Â ≤ dim(X/G) < ∞. The following formulae are given in [1,
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Proposition 1.2(b)]:

RR(A) = min{1, sup{dim C : C ∈ C(Â)}},

sr(A) = min
{
2, 1 +

⌊
1
2 sup{dim C : C ∈ C(Â)}

⌋}
.

The statements in (b) now follow from Lemmas 1.4 and 1.5 together with
Remark 1.6(i) again.

Now suppose that H has finite index in G. For d ∈ N, define Ĥd =
{τ ∈ Ĥ : dim τ = d}. Then XH × Ĥ is the disjoint union of the open and

closed sets XH × Ĥd, d ∈ N, and each XH × Ĥd is NG(H)-invariant. It

therefore follows that (XH × Ĥ)/NG(H) is the disjoint union of open and

closed sets (XH × Ĥd)/NG(H), d ∈ N.

Let Ad denote the closed ideal of A with Âd = (XH × Ĥd)/NG(H). Note

that points of (XH × Ĥd)/NG(H) give rise to irreducible representations of
A, with dimension d[G : H], by the induction process described at the start

of this section. Hence each Ad is d[G : H]-homogeneous. Since the sets Âd

are open and closed, A is isomorphic to the c0-direct sum of the Ad. Thus

RR(A) = sup
d∈N

{RR(Ad)}, sr(A) = sup
d∈N

{sr(Ad)}.

Since Ad is d[G : H]-homogeneous, the formulae in [1, Proposition 1.2(a)]
for the real and stable ranks of an n-homogeneous C∗-algebra give

RR(Ad) = sup

{⌈
dimC

2d[G : H] − 1

⌉
: C ∈ C(Âd)

}
,

sr(Ad) = sup

{
1 +

⌈
1

d[G : H]

⌊
1
2 dimC

⌋⌉
: C ∈ C(Âd)

}
.

Since Ĥ is discrete and NG(H) is compact, for every d ∈ N with Ĥd 6= ∅,

sup{dimC : C ∈ C(Âd)} = sup{dimK : K ∈ C(XH/NG(H))}

by Lemma 1.4. The formulae in (a)(i),(ii) follow by taking d = 1, and the
formulae in (iii) and (iv) follow from Remark 1.6(i) and Lemma 1.5(i).

The following simple lemma, together with the countable sum theorem
for the covering dimension, will allow us to obtain results in Theorems 2.3
and 2.4 when X is only locally of finite G-orbit type.

Lemma 2.2. Let (G, X) be a transformation group, where G is a compact

group and X is a locally compact Hausdorff space. Then

(i) sr(C0(X) ⋊ G) = sup{sr(C(G · K) ⋊ G) : K ∈ C(X)};
(ii) RR(C0(X) ⋊ G) = sup{RR(C(G · K) ⋊ G) : K ∈ C(X)}.

Proof. Let A = C0(X) ⋊ G and let V denote the set of all relatively
compact open subsets of X, directed by inclusion. Then A is the inductive
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limit of the family of ideals C0(G · V ) ⋊ G, V ∈ V, and hence

sr(A) ≤ sup
V ∈V

{sr(C0(G · V ) ⋊ G)}, RR(A) ≤ sup
V ∈V

{RR(C0(G · V ) ⋊ G)}

(compare [24, Theorem 5.1] and [12, Lemma 4.1(i)]). On the other hand,
C0(G·V )⋊G is an ideal of C(G·V )⋊G, and for every K ∈ C(X), C(G·K)⋊G
is a quotient of A. It follows that

sr(A) ≤ sup
V ∈V

{sr(C0(G · V ) ⋊ G)} ≤ sup
V ∈V

{sr(C(G · V ) ⋊ G)}

≤ sup
K∈C(X)

{sr(C(G · K) ⋊ G)} ≤ sr(A),

and similarly for the real rank.

In the following two theorems, H denotes a representative system of the
conjugacy classes of stability groups, and Hfin = {H ∈ H : [G : H] < ∞}.

Theorem 2.3. Let (G, X) be a transformation group, where X is a lo-

cally compact Hausdorff space, G is a compact group and every stability

group has finite index in G.

(a) Suppose that X is of finite G-orbit type. Then

(i) sr(C0(X) ⋊ G)

= max
H∈H

sup

{
1 +

⌈
1

[G : H]

⌊
1
2 dimC

⌋⌉
: C ∈ C(XH/NG(H))

}
;

(ii) RR(C0(X) ⋊ G)

= max
H∈H

sup

{⌈
dim C

2[G : H] − 1

⌉
: C ∈ C(XH/NG(H))

}
.

(b) Suppose that X is second countable and locally of finite G-orbit type.

Then

(i) sr(C0(X) ⋊ G) = sup
H∈H

{
1 +

⌈
1

[G : H]

⌊
1
2 dim(XH/NG(H))

⌋⌉}
;

(ii) RR(C0(X) ⋊ G) = sup
H∈H

{⌈
dim(XH/NG(H))

2[G : H] − 1

⌉}
.

Proof. (a) Let A = C0(X)⋊G. To prove (i), we proceed by induction on
the number of elements in H. Notice first that by Lemma 1.1 there exists
H0 ∈ Hfin such that the set U = {x ∈ X : Sx is conjugate to H0} is open
in X. Then, as in the proof of Proposition 2.1(a), the ideal I = C0(U)⋊G has
continuous trace and is isomorphic to a c0-direct sum of homogeneous C∗-
algebras. It follows by [20, Lemma 5(a)] that sr(A) = max{sr(I), sr(A/I)}.

Now sr(I) is given by formula (a)(ii) of Proposition 2.1. Since H \ {H0}
represents the conjugacy classes of stability groups for the action of G on
X \ U , the inductive hypothesis together with sr(A) = max{sr(I), sr(A/I)}
yields the formula in (i).
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The argument for part (ii) is very similar, but requires the formula
RR(A) = max{RR(I), RR(A/I)} where the ideal I is as above. The proof
of this formula proceeds as in the case of stable rank [20, Lemma 5(a)], but
uses the fact that the real rank does not increase on passing to a closed ideal
and replaces the application of [28, Proposition 3.15] by [21, Lemma 1.9].
(Note that in the proof of [21, Lemma 1.9] there is sufficient surjectivity
for the argument of [21, Proposition 1.3] to be satisfactorily applied. A full
proof of [21, Proposition 1.3] has been given in [19, Proposition 1.6].)

(b) Since X is a σ-compact, locally compact Hausdorff space, there exists
a sequence (Yn)n of G-invariant compact subsets Yn of X such that every
G-invariant compact subset K of X is contained in some Yn. Then C(K)⋊G
is a quotient of C(Yn) ⋊ G, and hence Lemma 2.2 shows that

sr(C0(X) ⋊ G) = sup
n∈N

{sr(C(Yn) ⋊ G)},(1)

RR(C0(X) ⋊ G) = sup
n∈N

{RR(C(Yn) ⋊ G)}.(2)

On the other hand, for any H ∈ H,

XH/NG(H) =
⋃

n∈N

(Yn)H/NG(H).

Furthermore, each (Yn)H is relatively closed in XH and the quotient map is
closed. By Corollary 1.3, XH/NG(H) is a second countable, locally compact
Hausdorff space and hence is normal. By the countable sum theorem

dim(XH/NG(H)) = sup
n∈N

{dim((Yn)H/NG(H))}.(3)

The results now follow by applying part (a) to each Yn and noting that
dim((Yn)H/NG(H)) is the supremum of the dimensions of its compact sub-
sets (Remark 1.6(i)).

Theorem 2.4. Let (G, X) be a transformation group, where X is a sec-

ond countable, locally compact Hausdorff space and G is a second countable

compact group. In addition, suppose that dim(X/G) < ∞, that X is locally

of finite G-orbit type and that Hfin 6= H. Then

(i) sr(C0(X) ⋊ G) = 1 if and only if dim(X/G) ≤ 1 and otherwise

sr(C0(X) ⋊ G)

= max

{
2, max

H∈Hfin

{
1 +

⌈
1

[G : H]

⌊
1
2 dim(XH/NG(H))

⌋⌉}}
,

where the right hand side is interpreted as 2 if Hfin = ∅;
(ii) RR(C0(X) ⋊ G) = 0 if and only if dim(X/G) = 0 and otherwise

RR(C0(X) ⋊ G) = max

{
1, max

H∈Hfin

{⌈
dim(XH/NG(H))

2[G : H] − 1

⌉}}
,

where the right hand side is interpreted as 1 if Hfin = ∅.
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Proof. Since X is a σ-compact locally compact Hausdorff space, there
exists a sequence (Yn)n of G-invariant compact subsets Yn of X such that
every G-invariant compact subset K of X is contained in some Yn. As in the
proof of Theorem 2.3(b), we obtain the equations (1), (2) and (3) above. Fur-
thermore, by the countable sum theorem, dim(X/G)=supn∈N{dim(Yn/G)}.
Therefore, to prove the formulae of the theorem, we can assume that X is
compact and hence of finite G-orbit type.

Let N be a closed normal subgroup of G of finite index in G such that
N ⊆ H for all H ∈ Hfin. Then the set

Xfin = {x ∈ X : [G : Sx] < ∞} = {x ∈ X : Sx ⊇ N}

is closed in X, and X \Xfin is a non-empty, open, G-invariant set. Applying
Lemma 1.1 to X \Xfin, we conclude that there exists S ∈ H\Hfin such that
the set U = {x ∈ X : Sx is conjugate to S} is open in X. Let A = C0(X)⋊G
and I = C0(U) ⋊ G, and let V be the collection of all G-invariant, relatively
compact, open subsets V of U such that V ⊆ U , directed by inclusion. To
each V ∈ V associate the ideals IV = C0(V ) ⋊ G and JV = C0(X \ V ) ⋊ G.
Then IV · JV = {0} for each V , and since

⋃
{C0(V ) : V ∈ V} is dense in

C0(U), it follows by standard arguments that I =
⋃
{IV : V ∈ V}. Then

sr(A) = max{sr(A/I), sup
V ∈V

{sr(A/JV )}}

by applying [28, Proposition 3.15] to the unitization of A, and

RR(A) = max{RR(A/I), sup
V ∈V

{RR(A/JV )}}

by [21, Lemma 1.9] (see the remarks in the proof of Theorem 2.3(a)).
Since A/JV is isomorphic to C(V ) ⋊ G, we obtain

sr(A) = max{sr(A/I), sup
V ∈V

{sr(C(V ) ⋊ G)}},

RR(A) = max{RR(A/I), sup
V ∈V

{RR(C(V ) ⋊ G)}}.

Since U is a countable union of sets V , XS = US is a countable union of rela-
tively closed sets V ∩XS = V S , and hence the normal space XS/NG(S) (see
Corollary 1.3) is a countable union of closed subsets V S/NG(S). Proposition
2.1(b)(i) and the countable sum theorem then imply that

sr(A) = max
{
sr(A/I), sup

V ∈V

{
min

{
2, 1 +

⌊
1
2 dim(V S/NG(S))

⌋}}}

= max
{
sr(A/I), min

{
2, 1 + sup

V ∈V

{⌊
1
2 dim(V S/NG(S))

⌋}}}

= max
{
sr(A/I), min

{
2, 1 +

⌊
1
2 dim(XS/NG(S))

⌋}}
.

Similarly, using Proposition 2.1(b)(ii), we obtain

RR(A) = max{RR(A/I), min{1, dim(XS/NG(S))}}.
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Proceeding inductively, we find that sr(A) is the maximum of sr(C(Xfin)⋊G)
and

max
H∈H\Hfin

{min{2, 1 + ⌊1
2 dim(XH/NG(H))⌋}}.

Similarly, RR(A) is the maximum of RR(C(Xfin) ⋊ G) and

max
H∈H\Hfin

{min{1, dim(XH/NG(H))}}.

Now, by Theorem 2.3,

sr(C(Xfin) ⋊ G) = max
H∈Hfin

{
1 +

⌈
1

[G : H]

⌊
1
2 dim(XH/NG(H))

⌋⌉}
,

RR(C(Xfin) ⋊ G) = max
H∈Hfin

{⌈
dim(XH/NG(H))

2[G : H] − 1

⌉}
.

Recall that, by Lemma 1.5 and Remark 1.6(ii),

dim(X/G) = max
H∈H

{dim(XH/NG(H))}.

The above formulae then immediately show that sr(A) = 1 if and only if
dim(X/G) ≤ 1, and RR(A) = 0 if and only if dim(X/G) = 0.

Now, assume that dim(X/G) ≥ 2, so that dim(XS/NG(S)) ≥ 2 for at
least one S ∈ H. If this happens for some S ∈ H \ Hfin, then

sr(A) = max{2, sr(C(Xfin) ⋊ G)}.

Otherwise, dim(XH/NG(H)) ≤ 1 for all H ∈ H \ Hfin, and hence

sr(A) = max{1, sr(C(Xfin) ⋊ G)} = max{2, sr(C(Xfin) ⋊ G)}.

Finally, if dim(X/G) ≥ 1, the stated formula for RR(A) follows in the
same manner.

Recall that XG is the set of fixed points in X under the action of G.

Corollary 2.5. Let (G, X) be a transformation group, where X is a

second countable locally compact Hausdorff space and G is a second countable

compact group. Suppose that X is locally of finite G-orbit type and that

dim(X/G) < ∞. Then

sr(C0(X) ⋊ G) ≤ 1 +
⌊

1
2 dim(X/G)

⌋
.

Suppose, in addition, that G is connected. If dim(X/G) ≤ 1 then we have

sr(C0(X) ⋊ G) = 1, and if dim(X/G) ≥ 2 then

sr(C0(X) ⋊ G) = max
{
2, 1 +

⌊
1
2 dim(XG)

⌋}
,

unless XG = ∅, in which case sr(C0(X) ⋊ G) = 2.

Proof. The first inequality follows from Theorem 2.3(b)(i), Theorem
2.4(i) and Lemma 1.5(ii). When G is connected, Hfin is either empty or equal
to {G}. If the action is trivial then Theorem 2.3(b)(i) yields sr(C0(X)⋊G) =
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1 +
⌊

1
2 dim X

⌋
(which also follows from the fact that C0(X) ⋊ G ∼= C0(X)⊗

C∗(G)). If the action is non-trivial then Theorem 2.4(i) yields the required
results.

Corollary 2.6. Let G and X be as in Corollary 2.5. Then

RR(C0(X) ⋊ G) ≤ dim(X/G).

Suppose, in addition, that G is connected. If dim(X/G) = 0 then we have

RR(C0(X) ⋊ G) = 0, and if dim(X/G) ≥ 1 then

RR(C0(X) ⋊ G) = max{1, dim(XG)},

unless XG = ∅, in which case RR(C0(X) ⋊ G) = 1.

Proof. The proof is similar to that of Corollary 2.5, using Theorem
2.3(b)(ii) and Theorem 2.4(ii).

3. Motion group C∗-algebras. In [1] we have investigated the real
and stable ranks for several classes of group C∗-algebras. However, these
did not include C∗-algebras of motion groups. We are now able to treat
some examples of motion groups as an application of Theorem 2.4.

For n ≥ 2, let SO(n) act on R
n by rotation. Then C0(R

n) ⋊ SO(n) is
isomorphic to the group C∗-algebra of the classical motion group R

n
⋊SO(n).

More generally, let K be any compact group and let α : k 7→ αk be an
injective homomorphism from K into the automorphism group GL(n, R)
of R

n. Then, by replacing a given scalar product 〈·, ·〉 on R
n by the scalar

product 〈·, ·〉α defined by

〈v, w〉α =
\
K

〈αk(v), αk(w)〉 dk, v, w ∈ R
n,

we can always assume that K is a subgroup of SO(n).

In what follows, we consider SO(n − 1) as embedded into SO(n) as the
subgroup fixing the vector v = (1, 0, . . . , 0) ∈ R

n.

Theorem 3.1. Let G be a connected closed subgroup of SO(n), where

n ≥ 2, and let (Rn)G be the set of points in R
n which are fixed by G. Then

(i) sr(C0(R
n) ⋊ G) = 1 if and only if GaSO(n − 1)a−1 = SO(n) for

some a ∈ SO(n), and

sr(C0(R
n) ⋊ G) = max

{
2, 1 +

⌊
1
2 dim((Rn)G)

⌋}

otherwise;
(ii) RR(C0(R

n) ⋊ G) = max{1, dim((Rn)G)}.

Proof. Note that dim(Rn/G) ≤ n by [22, Theorem 3.16]. Define X =
R

n \ {0} and let q : X → X/G denote the quotient map. Since X/G is
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metrizable and q is a closed surjection,

n = dimX ≤ dim(X/G) + sup{dim(q−1(q(x))) : x ∈ X}

= dim(X/G) + sup{dim(G · x) : x ∈ X}

= dim(X/G) + sup{dim(G/Sx) : x ∈ X}

by [23, Chapter 9, Proposition 2.6]. For each x ∈ X, Sx = G∩aSO(n−1)a−1

for some a ∈ SO(n), and conversely every such subgroup of G occurs as a
stability group. Thus

n ≤ dim(X/G) + sup{dim(G/(G ∩ aSO(n − 1)a−1)) : a ∈ SO(n)}.

Suppose first that dim(G/(G∩aSO(n−1)a−1)) ≤ n−2 for all a ∈ SO(n).
Then dim(Rn/G) = dim(X/G) ≥ 2 and Corollaries 2.5 and 2.6 show that

sr(C0(R
n) ⋊ G) = max

{
2, 1 +

⌊
1
2 dim((Rn)G)

⌋}

and RR(C0(R
n) ⋊ G) = max{1, dim((Rn)G)}.

Now suppose that dim(G/(G ∩ aSO(n − 1)a−1)) ≥ n − 1 for some a ∈
SO(n). Then, since C0(R

n) ⋊ a−1Ga and C0(R
n) ⋊ G are isomorphic and

a−1[G/(G ∩ aSO(n − 1)a−1)]a = a−1Ga/(a−1Ga ∩ SO(n − 1)),

we can assume that a is the identity of SO(n). Let H = G∩SO(n−1) and C =
GSO(n−1)/SO(n−1). Since gH 7→ gSO(n−1) provides a homeomorphism
between G/H and the closed subspace C of SO(n)/SO(n−1), it follows that

n − 1 ≤ dim(G/H) = dim C ≤ dim(SO(n)/SO(n − 1)) = n − 1.

Hence dimC = n− 1. Since SO(n)/SO(n− 1) = Sn−1 is locally homeomor-
phic to R

n−1, it follows from [17, Theorem IV.5] and a compactness argu-
ment that C has non-empty interior. Then V = {g ∈ G : gSO(n − 1) ∈ C◦}
is a non-empty open subset of G. This implies that

C =
⋃

g∈G

gV SO(n − 1) =
⋃

g∈G

gC◦

is open (and closed) in Sn−1, hence equal to Sn−1. It follows that G·SO(n−1)
= SO(n) and hence G · v = Sn−1. Therefore X/G = (0,∞) and Corollar-
ies 2.5 and 2.6 imply that sr(C0(R

n) ⋊ G) = 1 and RR(C0(R
n) ⋊ G) =

max{1, dim((Rn)G)}.

Regarding the proof above, note that G · SO(n− 1) = SO(n) if and only
if G acts transitively on the sphere Sn−1. Actions with this property are
described in [16]. We are grateful to M. C. Crabb for drawing our attention
to this reference.

Corollary 3.2. For all n ≥ 2, we have

sr(C∗(Rn
⋊ SO(n))) = RR(C∗(Rn

⋊ SO(n))) = 1.
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In [29], Sudo has obtained the comparable result sr(C∗(Rn
⋊ Spin(n)))

= 1, where Spin(n) is the simply connected covering group of SO(n).
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