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Uniqueness of measure extensions in Bana
h spa
esby
J. Rodŕiguez and G. Vera (Mur
ia)Abstra
t. Let X be a Bana
h spa
e, B ⊂ BX∗ a norming set and T(X, B) thetopology on X of pointwise 
onvergen
e on B. We study the following question: given two(non-negative, 
ountably additive and �nite) measures µ1 and µ2 on Baire(X, w) whi
h
oin
ide on Baire(X, T(X, B)), does it follow that µ1 = µ2? It turns out that this isnot true in general, although the answer is a�rmative provided that both µ1 and µ2 are
onvexly τ -additive (e.g. when X has the Pettis Integral Property). For a Bana
h spa
e Ynot 
ontaining isomorphi
 
opies of ℓ1, we show that Y ∗ has the Pettis Integral Propertyif and only if every measure on Baire(Y ∗, w∗) admits a unique extension to Baire(Y ∗, w).We also dis
uss the 
oin
iden
e of the two σ-algebras involved in su
h results. Some otherappli
ations are given.1. Introdu
tion. All the measures 
onsidered in this paper are non-negative, 
ountably additive and �nite. A basi
 question in measure theoryis the following: Given two σ-algebras Σ′ ⊂ Σ on a set Ω and two measures

µ1 and µ2 on Σ su
h that µ1|Σ′ = µ2|Σ′ , when does it follow that µ1 =µ2?The purpose of this paper is to dis
uss this problem in the setting of Baire
σ-algebras of weak topologies in Bana
h spa
es. More pre
isely, we are 
on-
erned with

Σ′ = Baire(X, T(X, B)) ⊂ Σ = Baire(X, w),where X is a Bana
h spa
e, B ⊂ BX∗ is a norming set and T(X, B) is thetopology on X of pointwise 
onvergen
e on B, whi
h is weaker than the weaktopology w = T(X, BX∗) (for all unexplained notation and terminology, werefer the reader to the end of this se
tion). We emphasize that the Baire σ-algebra of a lo
ally 
onvex spa
e endowed with its weak topology is exa
tlythe σ-algebra generated by all the elements of the topologi
al dual [7℄. Inparti
ular, Baire(X, T(X, B)) is the σ-algebra on X generated by B.2000 Mathemati
s Subje
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ation: 28A20, 28B05, 28C15, 46B26, 46G10.Key words and phrases: measure extension, Baire measure, Bana
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140 J. Rodríguez and G. VeraWe next summarize the 
ontent of this paper. Se
tion 2 plays an auxil-iary role and is devoted to providing, in a general measure-theoreti
 setting,a 
riterion for the uniqueness of measure extensions (Theorem 2.7) whi
h
an be applied su

essfully in Se
tion 3 within the framework of weak Bairemeasures in Bana
h spa
es. Our approa
h relies on Edgar's work [9℄ (goingba
k to [17℄) about the 
ontinuity of the integral over a uniformly integrableset of fun
tions endowed with the pointwise 
onvergen
e topology.In Se
tion 3 our main results are proved. It turns out that there is a 
loserelationship between the theory of the Pettis integral and the problems 
on-sidered in this work. Following [22℄, we say that a measure µ on Baire(X, w) is
onvexly τ -additive if for ea
h de
reasing net (Cα) of 
onvex 
losed elementsof Baire(X, w) with ⋂
α Cα = ∅, we have limα µ(Cα) = 0. It is well knownthat a s
alarly bounded fun
tion f de�ned on a measure spa
e (Λ,S, ν)with values in X is Pettis integrable if and only if the image measure νf−1on Baire(X, w) is 
onvexly τ -additive [26, 5-2-4℄. Thus, X has the Pettis In-tegral Property (PIP) if and only if every measure on Baire(X, w) is 
onvexly

τ -additive (Remark 3.3). As an immediate appli
ation of the results provedin Se
tion 2, we show that the question raised in the �rst paragraph has af-�rmative answer for Σ′ = Baire(X, T(X, B)) ⊂ Σ = Baire(X, w) providedthat both µ1 and µ2 are 
onvexly τ -additive (Theorem 3.2).Of 
ourse, the previous result is not of interest when
Baire(X, T(X, B)) = Baire(X, w).Remember that this equality holds, for instan
e, whenever (BX∗ , weak∗) isangeli
. In Subse
tion 3.1 we study the 
oin
iden
e of both σ-algebras, in-
luding examples of Bana
h spa
es with the PIP for whi
h Baire(X, T(X,B))

6= Baire(X, w). Our attention is mainly fo
used on the 
ase in whi
h X = Y ∗and B = BY , where Y is a Bana
h spa
e. (Note that w∗ = T(Y ∗, B) is justthe weak∗ topology on Y ∗.) We prove that Baire(Y ∗, w∗) = Baire(Y ∗, w) ifand only if Y is sequentially dense in (Y ∗∗, weak∗) (Proposition 3.9) and thatthese 
onditions are satis�ed whenever Y ∗ has property (C) (Corollary 3.10).The uniqueness of measure extensions in the setting of dual Bana
hspa
es is analyzed in Subse
tion 3.2. We 
onsider the following 
lass of spa
es.Definition 1.1. Let Y be a Bana
h spa
e. We say that Y ∗ has theUniqueness of Measure Extensions Property (UMEP for short) if for everypair of measures µ1 and µ2 on Baire(Y ∗, w) we have
µ1|Baire(Y ∗,w∗) = µ2|Baire(Y ∗,w∗) ⇒ µ1 = µ2.In view of the 
omments above, every dual Bana
h spa
e Y ∗ with thePIP has the UMEP. Furthermore, our Theorem 3.17 states that the 
onverseholds when Y does not 
ontain subspa
es isomorphi
 to ℓ1. We also show thatin general every dual Bana
h spa
e with the UMEP is real
ompa
t for its



Uniqueness of measure extensions 141weak topology (Proposition 3.18). The 
onverse is not true in general, sin
e
ℓ∞ fails the UMEP (Example 3.19).Notation and terminology. For all unexplained terminology and notationwe refer the reader to the standard referen
es [11℄ (Bana
h spa
es), [13℄(topologi
al measure theory) and [26℄ (Pettis integral).Given a set Ω, we write Tp(Ω) (or simply Tp) to denote the topologyon R

Ω of pointwise 
onvergen
e on Ω. We denote by σ(F) the σ-algebraon Ω generated by a family F ⊂ R
Ω (i.e. the smallest one for whi
h ea
helement of F is measurable). As usual, co(F) (resp. aco(F)) stands for the
onvex (resp. absolutely 
onvex) hull of F in R

Ω .Let (T, T) be a 
ompletely regular Hausdor� topologi
al spa
e. We de-note by Baire(T, T) (resp. Borel(T, T)) the σ-algebra on T generated bythe family of all real-valued 
ontinuous fun
tions on T (resp. 
losed sub-sets of T ). We write Mσ(T, T) to denote the family of all measures on
Baire(T, T). We say that µ ∈ Mσ(T, T) is tight if µ(T ) = sup{µ∗(K) :
K ⊂ T , K is 
ompa
t}, where µ∗ stands for the outer measure indu
ed by µ.A measure ν on Borel(T, T) is 
alled a Radon measure if ν(E) = sup{ν(K) :
K ⊂ E, K is 
ompa
t} for every E ∈ Borel(T, T). It is well known thatevery tight measure on Baire(T, T) 
an be extended (in a unique way) toa Radon measure on Borel(T, T). The σ-algebra made up of all universallymeasurable subsets of T (i.e. those whi
h are measurable with respe
t toea
h Radon measure on Borel(T, T)) will be denoted by Univ(T, T). Re
allthat (T, T) is 
alled angeli
 if ea
h relatively 
ountably 
ompa
t set A ⊂ Tis relatively 
ompa
t and for every t ∈ A there is a sequen
e in A 
onvergingto t.All our Bana
h spa
es Z are assumed to be real. We write BZ to denotethe 
losed unit ball of Z. As usual, Z∗ stands for the topologi
al dual of Z.Given z ∈ Z and z∗ ∈ Z∗, we sometimes write 〈z∗, z〉 instead of z∗(z). Weidentify Z as a 
losed subspa
e of Z∗∗ by means of the 
anoni
al isometry.A set B ⊂ BZ∗ is said to be norming if ‖z‖ = sup{|z∗(z)| : z∗ ∈ B}for every z ∈ Z. The topology T(Z, B) is the 
oarsest one for whi
h ea
helement of B is 
ontinuous. We write Z 6⊃ ℓ1 if Z does not 
ontain subspa
esisomorphi
 to ℓ1. Re
all that Z has property (C) (introdu
ed by Corson [3℄)if every family of 
losed 
onvex subsets of Z with empty interse
tion 
ontainsa 
ountable subfamily with empty interse
tion.Given a measure spa
e (Ω, Σ, µ), we write L1(µ) to denote the spa
e ofall Σ-measurable and µ-integrable real-valued fun
tions de�ned on Ω, and
L1(µ) for the 
orresponding Bana
h spa
e of equivalen
e 
lasses with itsusual norm ‖ · ‖1. A set H ⊂ L1(µ) is uniformly integrable if it is ‖ · ‖1-bounded and for ea
h ε > 0 there is δ > 0 su
h that suph∈H

T
E
|h| dµ ≤ εwhenever µ(E) ≤ δ. A fun
tion f : Ω → Z is said to be
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alarly measurable if the 
omposition 〈z∗, f〉 is Σ-measurable forevery z∗ ∈ Z∗;(ii) s
alarly bounded if it is s
alarly measurable and there is M > 0 su
hthat for every z∗ ∈ BZ∗ we have |〈z∗, f〉| ≤ M µ-a.e.;(iii) Pettis integrable if 〈z∗, f〉 ∈ L1(µ) for every z∗ ∈ Z∗ and for ea
h
E ∈ Σ there is zE ∈ Z su
h that T

E
〈z∗, f〉 dµ = z∗(zE) for every

z∗ ∈ Z∗.We say that Z has the µ-PIP if ea
h s
alarly bounded fun
tion from Ω to Zis Pettis integrable. The spa
e Z has the Pettis Integral Property if it hasthe µ-PIP for every measure spa
e (Ω, Σ, µ). It is known that
(BZ∗ , weak∗) angeli
 ⇒ Z has property (C) ⇒ Z has the PIP,and none of the reverse impli
ations holds in general (see [8, 23, 26℄).2. A 
riterion for the uniqueness of measure extensions. In orderto deal with Theorem 2.7 we need some preliminary work, whi
h we havedivided into a sequen
e of lemmas for the 
onvenien
e of the reader.Definition 2.1. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω.(1) Let M be a family of measures on Σ. We say that Σ′ has the unique-ness property with respe
t to M if for every pair µ1, µ2 ∈ M we have

µ1|Σ′ = µ2|Σ′ ⇒ µ1 = µ2.(2) We say that a measure µ on Σ is approximated by Σ′ if for every
E ∈ Σ there is B ∈ Σ′ su
h that µ(E △ B) = 0.Lemma 2.2. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω, and M a familyof measures on Σ su
h that µ1 + µ2 ∈ M for every µ1, µ2 ∈ M. Supposethat every element of M is approximated by Σ′. Then Σ′ has the uniquenessproperty with respe
t to M.Proof. Fix µ1, µ2 ∈ M su
h that µ1|Σ′ = µ2|Σ′ . Sin
e µ := µ1 + µ2belongs to M, for ea
h E ∈ Σ there is B ∈ Σ′ su
h that µ(E △ B) = 0,hen
e µ1(E△B) = µ2(E△B) = 0 and therefore µ1(E) = µ1(B) = µ2(B) =

µ2(E).It is worth pointing out that the 
onverse of Lemma 2.2 holds true under
ertain additional assumptions on the family of measures, as we show inCorollary 2.3 below. Given two σ-algebras Σ′ ⊂ Σ on a set Ω and a measure
µ′ on Σ′, we write ca(µ′, Σ) for the 
onvex set of all measures µ on Σ su
hthat µ|Σ′ = µ′. A well known result of R. G. Douglas (see [4, 21℄) states thata measure µ ∈ ca(µ′, Σ) is an extreme point of ca(µ′, Σ) if and only if µ isapproximated by Σ′.



Uniqueness of measure extensions 143Corollary 2.3. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω and M afamily of measures on Σ with the following properties:
• µ1 + µ2 ∈ M for every µ1, µ2 ∈ M;
• if ν ∈ M and µ is a measure on Σ su
h that µ ≤ ν, then µ ∈ M.Then Σ′ has the uniqueness property with respe
t to M if and only if everyelement of M is approximated by Σ′.Proof. It only remains to show the only if part. So assume that Σ′ hasthe uniqueness property with respe
t to M and �x µ ∈ M. We 
laim that

µ is an extreme point of ca(µ|Σ′ , Σ). Indeed, write µ = (µ1 + µ2)/2, where
µ1, µ2 ∈ ca(µ|Σ′ , Σ). Sin
e µi ≤ µ1 + µ2 = µ + µ ∈ M for i = 1, 2, we inferthat µ1, µ2 ∈ M and therefore µ1 = µ2. This proves the 
laim. An appeal toDouglas' aforementioned result now ensures that µ is approximated by Σ′.The following lemma provides a useful su�
ient 
ondition for a measureto be approximated by a sub-σ-algebra.Lemma 2.4. Let Ω be a set , F ′ ⊂ F ⊂ R

Ω two families, and µ a measureon σ(F). Suppose that for ea
h f ∈ F there is a sequen
e (fn) in F ′ that
onverges to f µ-a.e. Then µ is approximated by σ(F ′).Proof. It is easy to 
he
k that the family
A = {E ∈ σ(F) : there is B ∈ σ(F ′) su
h that µ(E △ B) = 0}is a σ-algebra on Ω 
ontained in σ(F). Therefore, in order to show that

A = σ(F) it su�
es to prove that ea
h f ∈ F is A-measurable. To this end,�x f ∈ F , t ∈ R and de�ne H := {ω ∈ Ω : f(ω) > t}. By the assumption,there is a sequen
e (fn) in F ′ that 
onverges to f µ-a.e. Fix F ∈ Σ su
hthat µ(Ω \ F ) = 0 and limn fn(ω) = f(ω) for every ω ∈ F . The set
B :=

∞⋃

n=1

∞⋃

m=1

⋂

k≥m

{ω ∈ Ω : fk(ω) > t + 1/n}

belongs to σ(F ′) and satis�es B ∩ F = H ∩ F , hen
e µ(H△B) = 0 andtherefore H ∈ A. As t ∈ R is arbitrary, f is A-measurable. The proof is�nished.The notion of F -smooth measure de�ned below in
ludes as parti
ular
ases the 
onvexly τ -additive weak Baire measures on Bana
h spa
es (seeLemma 3.1 in Se
tion 3) as well as the τ -additive Baire measures on 
om-pletely regular Hausdor� topologi
al spa
es.Definition 2.5. Let (Ω, Σ) be a measurable spa
e and F ⊂ R
Ω a familyof Σ-measurable fun
tions. Denote by ZF the 
olle
tion of all �nite inter-se
tions of sets of the form {ω ∈ Ω : f(ω) ≤ g(ω) + t}, where f, g ∈ F and
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t ∈ R. A measure µ on Σ is said to be F -smooth if for ea
h de
reasing net
(Zα) of elements of ZF with ⋂

α Zα = ∅, we have limα µ(Zα) = 0.Our interest in 
onsidering F -smooth measures is motivated by the �sep-aration property� isolated in Lemma 2.6, whi
h will allow us to use a resultof Edgar [9℄ regarding the 
ontinuity of the �identity� mapping
I : (F , Tp) → (L1(µ), weak)(that sends ea
h fun
tion to its equivalen
e 
lass) when F is a Tp-
ountably
ompa
t, 
onvex and uniformly integrable subset of L1(µ).Lemma 2.6. Let (Ω, Σ) be a measurable spa
e, F ⊂ R

Ω a family of
Σ-measurable fun
tions and µ an F-smooth measure on Σ. Let S :=⋂
{Z ∈ ZF : µ(Ω \ Z) = 0}. Then for every pair f, g ∈ F we have

f |S = g|S ⇔ f = g µ-a.e.Proof. Noti
e that the family C := {Z ∈ ZF : µ(Ω \ Z) = 0} is non-empty and 
losed under �nite interse
tions. Fix f, g ∈ F . If f = g µ-a.e.,then Z := {ω ∈ Ω : f(ω) = g(ω)} ∈ C, so S ⊂ Z and therefore f |S = g|S.Conversely, suppose that f |S = g|S and �x n ∈ N. De�ne
Cn := {ω ∈ Ω : f(ω) ≥ g(ω) + 1/n} ∈ ZF .Sin
e the family Cn := {Z ∩ Cn : Z ∈ C} ⊂ ZF is 
losed under �niteinterse
tions and ⋂

Cn = S ∩ Cn = ∅, we 
an apply the F -smoothness of µto dedu
e that µ(Cn) = inf{µ(Z ∩ Cn) : Z ∈ C} = 0. As n ∈ N is arbitrary,
f ≤ g µ-a.e. A similar argument yields f ≥ g µ-a.e., 
ompleting the proof.Given a measure spa
e (Ω, Σ, µ) and A ∈ Σ, we write µA to denote themeasure on Σ de�ned by µA(E) := µ(E ∩ A).Theorem 2.7. Let Ω be a set and F ′ ⊂ F ⊂ R

Ω two families of fun
-tions su
h that
• F is 
onvex and Tp-
ountably 
ompa
t ;
• F ′ is Tp-dense in F .Then σ(F ′) has the uniqueness property with respe
t to the family of all

F-smooth measures on σ(F).Proof. Sin
e the sum of any two F -smooth measures on σ(F) is again
F -smooth, Lemmas 2.2 and 2.4 say that in order to prove the result it suf-�
es to 
he
k that ea
h F -smooth measure µ on σ(F) satis�es the following
ondition: for every f ∈ F there is a sequen
e (fn) in F ′ that 
onverges to f
µ-a.e. We divide the proof into two steps.
Step 1. Suppose that F is a uniformly integrable subset of L1(µ). Sin
e

µ is F -smooth, Lemma 2.6 ensures that there is a set S ⊂ Ω su
h that for
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f |S = g|S ⇔ f = g µ-a.e.By the assumption, F is 
onvex and Tp-
ountably 
ompa
t, so we 
an apply[9, Proposition 3℄ to dedu
e that the �identity� mapping
I : (F , Tp) → (L1(µ), weak)(that sends ea
h fun
tion to its equivalen
e 
lass) is 
ontinuous. Sin
e F is
onvex, F ′ ⊂ co(F ′) ⊂ F and we 
an suppose without loss of generality that

F ′ is 
onvex as well. Bearing in mind that F ′ is Tp-dense in F , the 
ontinuityof I yields
I(F) ⊂ I(F ′)

weak
= I(F ′)

‖·‖1

.It follows that for ea
h f ∈ F there is a sequen
e (fn) in F ′ su
h that
limn ‖fn − f‖1 = 0, and thus we 
an �nd a subsequen
e (fnk

) 
onverging to
f µ-a.e.
Step 2. Sin
e F is a pointwise bounded (be
ause it is Tp-
ountably
ompa
t) family of σ(F)-measurable fun
tions, there is a non-negative σ(F)-measurable fun
tion h ∈ R

Ω su
h that for ea
h f ∈ F we have |f | ≤ h µ-a.e.(see e.g. [10, 4.1.1℄). Therefore, we 
an �nd a sequen
e (Ak)
∞
k=1 in σ(F) su
hthat for every k ∈ N,

• F is a uniformly integrable subset of L1(µAk
);

• µ(Ω \ Ak) ≤ 1/2k.Given k ∈ N, in view of Step 1 (noti
e that µAk
is F -smooth) there isa sequen
e (fk

n)∞n=1 in F ′ 
onverging to f µAk
-a.e. By Egorov's theorem,there exist Ek ∈ σ(F) with µAk

(Ω \ Ek) ≤ 1/2k and n(k) ∈ N su
h that
supω∈Ek

|fk
n(k)(ω) − f(ω)| ≤ 1/k. Fix s ∈ N. We have

Ns :=
∞⋂

l=1

∞⋃

k=l

{ω ∈ Ω : |fk
n(k)(ω) − f(ω)| > 1/s} ⊂

∞⋂

l=s

∞⋃

k=l

(Ω \ Ek),hen
e Ns ∈ σ(F) satis�es
µ(Ns) ≤

∞∑

k=l

µ(Ω\Ek) ≤
∞∑

k=l

µAk
(Ω\Ek)+

∞∑

k=l

µ(Ω\Ak) ≤
∞∑

k=l

1

2k−1
= 2−l+2

for every l ≥ s and therefore µ(Ns) = 0. Finally, noti
e that (fk
n(k))

∞
k=1 
on-verges to f pointwise on Ω \

⋃∞
s=1 Ns, and so µ-a.e. The proof is 
omplete.We mention that some other known fa
ts 
on
erning the 
ontinuity ofthe �identity� mapping J : (F , Tp) → (L1(µ), ‖ · ‖1) (see [9℄ and the surveypaper [28℄ for a thorough study on this subje
t) 
ould be applied in a similarway to dedu
e results along the line of Theorem 2.7 without the assumptionof 
onvexity on F .



146 J. Rodríguez and G. Vera3. Uniqueness of extensions in Bana
h spa
es. Theorem 3.2 belowis now an easy 
onsequen
e of Theorem 2.7. We �rst need to re
all thefollowing well known fa
t whi
h we do not �nd in print.Lemma 3.1. Let X be a Bana
h spa
e and µ ∈ Mσ(X, w). Then µ is
onvexly τ -additive if and only if it is BX∗-smooth (in the sense of De�ni-tion 2.5).Proof. Sin
e ZBX∗ is made up of 
losed 
onvex elements of Baire(X, w),we only have to 
he
k the if part. To this end, we begin with the following
laim.
Claim. Let C ⊂ X be 
losed and 
onvex. Then there is DC ⊂ ZBX∗ su
hthat C =

⋂
DC .Indeed, let us 
onsider the family DC of all elements of ZBX∗ of the form

{x ∈ X : x∗(x) ≤ sup(x∗(C))}, where x∗ ∈ BX∗ and sup(x∗(C)) < ∞. TheHahn�Bana
h separation theorem ensures that C =
⋂

DC and the Claim isproved.Assume now that µ is BX∗-smooth and �x a de
reasing net (Cα) of
onvex 
losed elements of Baire(X, w) with ⋂
α Cα = ∅. By the Claim above,for ea
h α we 
an �nd Dα ⊂ ZBX∗ su
h that Cα =

⋂
Dα. Consider now thefamily Z ⊂ ZBX∗ of all �nite interse
tions of elements of ⋃

α Dα. Sin
e Zis 
losed under �nite interse
tions and ⋂
Z =

⋂
α(

⋂
Dα) =

⋂
α Cα = ∅, we
an apply the fa
t that µ is BX∗-smooth to dedu
e that inf{µ(Z) : Z ∈ Z}

= 0. In order to �nish the proof noti
e that, given Z ∈ Z, there exist
α1, . . . , αn and Di ∈ Dαi

su
h that Z =
⋂n

i=1 Di ⊃
⋂n

i=1 Cαi
. Sin
e (Cα) isde
reasing, there is some α su
h that Cα ⊂

⋂n
i=1 Cαi

⊂ Z. It follows that
limα µ(Cα) = 0 and the proof is 
omplete.Theorem 3.2. Let X be a Bana
h spa
e and B ⊂ BX∗ a norming set.Then Baire(X, T(X, B)) has the uniqueness property with respe
t to the fam-ily of all 
onvexly τ -additive measures on Baire(X, w).Proof. Sin
e B is norming, the Hahn�Bana
h separation theorem ensuresthat aco(B) is weak∗-dense in BX∗ , that is, aco(B) is a Tp(X)-dense subsetof the family BX∗ ⊂ R

X . Bearing in mind that BX∗ is 
onvex and Tp(X)-
ompa
t (by Alaoglu's theorem), we 
an apply Theorem 2.7 to 
on
lude that
σ(aco(B)) = Baire(X, T(X, B)) has the uniqueness property with respe
t tothe family of all BX∗-smooth measures on σ(BX∗) = Baire(X, w).Remark 3.3. A Bana
h spa
e X has the PIP if and only if every measureon Baire(X, w) is 
onvexly τ -additive. Indeed, this is a 
onsequen
e of thefa
t that a s
alarly bounded X-valued fun
tion f is Pettis integrable if andonly if the image measure indu
ed by f on Baire(X, w) is 
onvexly τ -additive(see [26, 5-2-4℄). Noti
e that, given a measure µ on Baire(X, w), there is a



Uniqueness of measure extensions 147non-de
reasing sequen
e (An) in Baire(X, w) with union X su
h that theidentity fun
tion I : X → X is s
alarly bounded with respe
t to ea
h µAn(see Step 2 of the proof of Theorem 2.7). Thus µ is 
onvexly τ -additive ifand only if I is Pettis integrable with respe
t to ea
h µAn
.The previous remark and Theorem 3.2 have the followingCorollary 3.4. Let X be a Bana
h spa
e with the PIP and B ⊂ BX∗a norming set. Then Baire(X, T(X, B)) has the uniqueness property withrespe
t to Mσ(X, w).3.1. Coin
iden
e of Baire(X, T(X, B)) and Baire(X, w). It is 
lear that,for a Bana
h spa
e X su
h that (BX∗ , weak∗) is angeli
, the equality

Baire(X, T(X, B)) = Baire(X, w)holds for any norming set B ⊂ BX∗ (sin
e BX∗ = aco(B)
weak∗). In fa
t,the same 
on
lusion 
an be obtained if we only assume that B separates thepoints of X (see [15℄). In parti
ular, for this 
lass of Bana
h spa
es (whi
h
ontains all weakly 
ompa
tly generated and, more generally, all weaklyLindelöf determined spa
es, see e.g. [11, Chapters 7 and 8℄) the result isolatedin Corollary 3.4 is futile.In this subse
tion we dis
uss the 
oin
iden
e of Baire(X, T(X, B)) and

Baire(X, w) in some parti
ular 
ases of spe
ial interest. We will need thefollowing lemma, whi
h might be folklore and is in
luded here for the 
on-venien
e of the reader.Lemma 3.5. Let X be a Bana
h spa
e and F a subset of X∗. If x∗ ∈ X∗is σ(F )-measurable, then there is a 
ountable set C ⊂ F su
h that
x∗ ∈ span(C)

weak∗

.Proof. Sin
e x∗ is σ(F )-measurable, there is a 
ountable set C ⊂ F su
hthat x∗ is σ(C)-measurable. Let Σ be the family of all elements A ∈ σ(C)su
h that ⋂

y∗∈C

ker y∗ ⊂

{
A if 0 ∈ A,

X \ A if 0 6∈ A.It is easy to 
he
k that Σ is a σ-algebra on X for whi
h ea
h y∗ ∈ C is
Σ-measurable, hen
e Σ = σ(C). It follows that kerx∗ ∈ Σ and therefore⋂

y∗∈C ker y∗ ⊂ kerx∗. From the last in
lusion and the Hahn�Bana
h sep-aration theorem we infer that x∗ belongs to the weak∗-
losure of span(C).The proof is 
omplete.Given a 
ompa
t Hausdor� topologi
al spa
e K, we write C(K) to denotethe Bana
h spa
e of all real-valued 
ontinuous fun
tions on K endowed withthe supremum norm. Note that the set B = {δt : t ∈ K} ⊂ BC(K)∗ of �pointmasses� (i.e. δt(h) := h(t)) is norming and that T(C(K), B) = Tp(K). We



148 J. Rodríguez and G. Veranext study the Baire(C(K), Tp(K))-measurability of the �integral� fun
tional
ι(µ) ∈ C(K)∗, ι(µ)(f) :=

T
K

f dµ, asso
iated to a Radon measure µ on K.Proposition 3.6. Let K be a 
ompa
t Hausdor� topologi
al spa
e and
µ a Radon measure on K. If ι(µ) is Baire(C(K), Tp(K))-measurable, thenthere is a 
losed separable set F ⊂ K su
h that µ(K \ F ) = 0.Proof. In view of Lemma 3.5, there is a 
ountable set D ⊂ K su
h that

ι(µ) ∈ span{δt : t ∈ D}
weak∗

.De�ne F := D and �x t ∈ K \F . By Urysohn's lemma, there is a 
ontinuousfun
tion f : K → [0, 1] su
h that f(t) = 1 and f(s) = 0 for every s ∈ F .Given ε > 0, there exist t1, . . . , tn ∈ D and a1, . . . , an ∈ R su
h that\
K

f dµ =
∣∣∣
\
K

f dµ −
n∑

i=1

aif(ti)
∣∣∣ =

∣∣∣〈ι(µ), f〉 −
〈 n∑

i=1

aiδti , f
〉∣∣∣ ≤ ε.As ε > 0 is arbitrary, the open set Gt := {s ∈ K : f(s) > 0} satis�es

µ(Gt) = 0. Sin
e K \ F =
⋃
{Gt : t ∈ K \ F} and µ is a Radon measure, we
on
lude that µ(K \ F ) = 0. This 
ompletes the proof.Corollary 3.7. Let K be a 
ompa
t Hausdor� topologi
al spa
e su
hthat

Baire(C(K), Tp(K)) = Baire(C(K), w).Then for ea
h Radon measure µ on K there is a 
losed separable set F ⊂ Ksu
h that µ(K \ F ) = 0.Example 3.8. Under the 
ontinuum hypothesis, there exists a 
om-pa
t Hausdor� topologi
al spa
e K (the so-
alled Kunen�Haydon�Talagrandspa
e) with the following properties (see [19, �5℄): (i) K is �rst-
ountable;(ii) K is not separable; (iii) there is a Radon measure µ on K su
h that
µ(G) > 0 for every non-empty open set G ⊂ K. On the one hand, (i) impliesthat C(K) has the PIP (see [22, Theorem 3℄). On the other hand, in view of(ii) and (iii), an appeal to Corollary 3.7 establishes that Baire(C(K), Tp(K))
6= Baire(C(K), w).A well known theorem due to Odell and Rosenthal [20℄ (
f. [5, Theo-rem 4.1℄) states that a separable Bana
h spa
e Y is weak∗-sequentially densein Y ∗∗ if and only if Y 6⊃ ℓ1. In Proposition 3.9 below we apply this result toanalyze the 
oin
iden
e of Baire(Y ∗, w∗) and Baire(Y ∗, w) for a not ne
essar-ily separable Bana
h spa
e Y . Re
all �rst (Haydon [16℄, 
f. [5, Theorem 6.8℄)that Y 6⊃ ℓ1 if and only if ea
h y∗∗ ∈ Y ∗∗ is Univ(Y ∗, w∗)-measurable, thatis, if and only if Baire(Y ∗, w) ⊂ Univ(Y ∗, w∗).Proposition 3.9. Let Y be a Bana
h spa
e. The following 
onditionsare equivalent :



Uniqueness of measure extensions 149(i) Y is weak∗-sequentially dense in Y ∗∗;(ii) Baire(Y ∗, w∗) = Baire(Y ∗, w);(iii) Y 6⊃ ℓ1 and for ea
h y∗∗ ∈ Y ∗∗ there is a 
ountable set D ⊂ Y su
hthat y∗∗ ∈ D
weak∗ .Proof. (i)⇒(ii) is obvious. Let us turn to the proof of (ii)⇒(iii). Sin
e

Baire(Y ∗, w) = Baire(Y ∗, w∗) ⊂ Borel(Y ∗, w∗) ⊂ Univ(Y ∗, w∗),the aforementioned Haydon's result ensures that Y 6⊃ ℓ1. On the otherhand, given y∗∗ ∈ Y ∗∗, Lemma 3.5 
an be applied to �nd a 
ountable set
C ⊂ Y su
h that y∗∗ ∈ span(C)

weak∗ . Clearly, the set D ⊂ Y of all linear
ombinations of elements of C with rational 
oe�
ients is 
ountable and
y∗∗ ∈ D

weak∗ . This establishes (ii)⇒(iii).The proof of (iii)⇒(i) is as follows. Fix y∗∗ ∈ Y ∗∗. Take a 
ountable set
D ⊂ Y su
h that y∗∗ ∈ D

weak∗ and de�ne Z := span(D)
‖·‖

⊂ Y . Sin
e
{y∗ ∈ Y ∗ : y∗(z) = 0 for every z ∈ Z} =

⋂

y∈D

ker y ⊂ ker y∗∗,there exists z∗∗ ∈ Z∗∗ su
h that y∗∗ = z∗∗ ◦ r, where r : Y ∗ → Z∗ is the�restri
tion� operator. Noti
e that Z is separable and Z 6⊃ ℓ1, so the Odell�Rosenthal theorem allows us to obtain a sequen
e (zn) in Z ⊂ Y that 
on-verges to z∗∗ in (Z∗∗, weak∗). Clearly, (zn) 
onverges to y∗∗ in (Y ∗∗, weak∗).The proof is 
omplete.The previous proposition 
an be applied to the 
lass of dual Bana
hspa
es with property (C). To this end, we use the following 
hara
terizationdue to Pol [23℄: a Bana
h spa
e X has property (C) if and only if for every
A ⊂ BX∗ and every x∗ ∈ A

weak∗ there is a 
ountable set E ⊂ A su
h that
x∗ ∈ co(E)

weak∗ .Corollary 3.10. Let Y be a Bana
h spa
e su
h that Y ∗ has prop-erty (C). Then
Baire(Y ∗, w∗) = Baire(Y ∗, w).Proof. We will 
he
k thatY meets the requirements of Proposition 3.9(iii).On the one hand, sin
e ℓ∞ fails property (C) and this property is 
learlyinherited by quotients, we infer that Y 6⊃ ℓ1. On the other hand, given y∗∗ ∈

BY ∗∗ = BY
weak∗ , the previous result of Pol says that there is a 
ountableset E ⊂ BY su
h that y∗∗ ∈ co(E)

weak∗ , and so the set D of all 
onvex
ombinations of elements of E with rational 
oe�
ients is 
ountable and
y∗∗ ∈ D

weak∗ .Remark 3.11. The 
onverse of the previous 
orollary holds true for
Y separable. Indeed, if Baire(Y ∗, w∗) = Baire(Y ∗, w), then Y is weak∗-



150 J. Rodríguez and G. Verasequentially dense in Y ∗∗. Thus (BY ∗∗ , weak∗) 
an be thought of as a sub-spa
e of the spa
e (B1(BY ∗ , w∗), Tp(BY ∗)) of all real-valued Baire-1 fun
tionson (BY ∗ , w∗), whi
h is angeli
 sin
e (BY ∗ , w∗) is a Polish spa
e (Bourgain,Fremlin and Talagrand [2℄, 
f. [5, Theorem 4.1℄). Hen
e (BY ∗∗ , weak∗) isangeli
 as well and so Y ∗ has property (C).Re
all that a 
ardinal κ is of measure zero (or measure-free) if there is noprobability measure µ on the power set of κ su
h that µ({α}) = 0 for every
α < κ. A well known theorem of Ulam (see e.g. [13, 438C℄) asserts that the�rst un
ountable ordinal, denoted by ω1, is of measure zero. We stress thatit is 
onsistent with ZFC to assume that every 
ardinal is of measure zero.For a detailed a

ount on this subje
t we refer the reader to [13, �438℄ andthe referen
es therein.Example 3.12. The spa
e ℓ1(ω1) = c0(ω1)

∗ has the PIP and
Baire(ℓ1(ω1), w

∗) 6= Baire(ℓ1(ω1), w).Proof. ℓ1(ω1) has the PIP be
ause ω1 is of measure zero (see [8, Theo-rem 5.10℄). On the other hand, sin
e c0(ω1) is not weak∗-sequentially densein its bidual c0(ω1)
∗∗ = ℓ∞(ω1), we 
an apply Proposition 3.9 to 
on
ludethat Baire(ℓ1(ω1), w
∗) and Baire(ℓ1(ω1), w) are di�erent.In fa
t, we have Baire(ℓ1(ω1), w) = Borel(ℓ1(ω1), ‖ · ‖) (see [12℄).Example 3.13. The spa
e C[0, 1]∗ satis�es

Baire(C[0, 1]∗, w∗) 6= Baire(C[0, 1]∗, w),and it has the PIP if and only if the 
ardinal of the 
ontinuum is of measurezero.Proof. The last assertion was proved in [8℄. On the other hand, sin
e
ℓ1 embeds in C[0, 1], we have Baire(C[0, 1]∗, w∗) 6= Baire(C[0, 1]∗, w), byProposition 3.9.3.2. Uniqueness of extensions in dual Bana
h spa
es. In this subse
-tion we fo
us our attention on the 
lass of dual Bana
h spa
es Y ∗ with theUMEP (in the sense of De�nition 1.1), that is, those for whi
h Baire(Y ∗, w∗)has the uniqueness property with respe
t to Mσ(Y ∗, w). As an immediate
onsequen
e of Corollary 3.4 we get the following result.Corollary 3.14. Let Y be a Bana
h spa
e. If Y ∗ has the PIP , then
Y ∗ has the UMEP.It turns out that the 
onverse of the previous 
orollary holds whenever
Y 6⊃ ℓ1 (Theorem 3.17 below). Re
all �rst that, for a Bana
h spa
e Y su
hthat Y 6⊃ ℓ1, we have

Baire(Y ∗, w) ⊂ Univ(Y ∗, w∗),
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ompletion ν̃ of ea
h Radon measure ν on Borel(Y ∗, w∗) 
an be re-stri
ted to Baire(Y ∗, w). We will use the notation ν0 = ν̃|Baire(Y ∗,w).Proposition 3.15. Let Y be a Bana
h spa
e su
h that Y 6⊃ ℓ1 and
µ ∈ Mσ(Y ∗, w). The following 
onditions are equivalent :(i) there is a Radon measure ν on Borel(Y ∗, w∗) su
h that ν0 = µ;(ii) µ is 
onvexly τ -additive.Proof. For (i)⇒(ii), �x n ∈ N and 
onsider the restri
tion νn of ν to

Borel(nBY ∗ , w∗) = {B ∩ nBY ∗ : B ∈ Borel(Y ∗, w∗)}.Sin
e Y 6⊃ ℓ1, a result of Haydon [16℄ (
f. [5, Theorem 6.8℄) ensures that theidentity mapping In : nBY ∗ → Y ∗ is Pettis integrable with respe
t to the
ompletion ν̃n of νn. Therefore, its image measure µn := ν̃nI−1
n ∈ Mσ(Y ∗, w)is 
onvexly τ -additive.To prove that µ is 
onvexly τ -additive, 
onsider a de
reasing net (Cα)of 
onvex 
losed elements of Baire(Y ∗, w) with ⋂

C = ∅. Fix ε > 0 and take
n ∈ N large enough su
h that ν(Y ∗ \ nBY ∗) ≤ ε/2. Sin
e µn is 
onvexly
τ -additive, we 
an �nd an α su
h that ν̃n(Cα ∩ nBY ∗) = µn(Cα) ≤ ε/2,hen
e

µ(Cα) = ν0(Cα) = ν̃(Cα ∩ nBY ∗) + ν̃(Cα \ nBY ∗)

= ν̃n(Cα ∩ nBY ∗) + ν̃(Cα \ nBY ∗) ≤ ε.As ε > 0 is arbitrary, limα µ(Cα) = 0. This proves that µ is 
onvexly τ -additive.Let us turn to the proof of (ii)⇒(i). Sin
e (Y ∗, w∗) is σ-
ompa
t (i.e.
Y ∗ 
an be expressed as a union of 
ountably many w∗-
ompa
t subsets),the restri
tion µ|Baire(Y ∗,w∗) is tight and therefore it 
an be extended to aunique Radon measure ν on Borel(Y ∗, w∗). Then both µ and ν0 are 
on-vexly τ -additive (bear in mind the impli
ation (i)⇒(ii)) and µ|Baire(Y ∗,w∗) =

ν0|Baire(Y ∗,w∗). An appeal to Theorem 3.2 now establishes that µ = ν0, andthe proof is 
omplete.The arguments of the proof of (ii)⇒(i) in Proposition 3.15 also allow usto dedu
e the following 
orollary.Corollary 3.16. Let Y be a Bana
h spa
e su
h that Y 6⊃ ℓ1. Then everymeasure on Baire(Y ∗, w∗) 
an be extended in a unique way to a 
onvexly
τ -additive measure on Baire(Y ∗, w). If , in addition, Y ∗ has the PIP , thenevery measure on Baire(Y ∗, w∗) 
an be extended in a unique way to a measureon Baire(Y ∗, w)Theorem 3.17. Let Y be a Bana
h spa
e su
h that Y 6⊃ ℓ1. Then Y ∗has the PIP if and only if it has the UMEP.



152 J. Rodríguez and G. VeraProof. It only remains to prove the if part. To this end, we will showthat ea
h µ ∈ Mσ(Y ∗, w) is 
onvexly τ -additive. Indeed, as in the proof ofthe impli
ation (ii)⇒(i) in Proposition 3.15, we 
an �nd a Radon measure νon Borel(Y ∗, w∗) su
h that µ|Baire(Y ∗,w∗) = ν0|Baire(Y ∗,w∗). Sin
e Y ∗ has theUMEP, we get µ = ν0 and an appeal to Proposition 3.15 establishes that µis 
onvexly τ -additive, as required.A 
ompletely regular Hausdor� topologi
al spa
e (T, T) is said to bereal
ompa
t if it is homeomorphi
 to a 
losed subset of R
I for some set I.A well known result of Hewitt and Shirota (see e.g. [27, Theorem 5, p. 218℄)states that (T, T) is real
ompa
t if and only if for ea
h {0, 1}-valued measure

µ on Baire(T, T) there exists t ∈ T su
h that µ(A) = 1 if t ∈ A and µ(A) = 0if t 6∈ A. This 
hara
terization was used in [8℄ (see [6℄ for a 
orre
ted proof)to show that every Bana
h spa
e X with the PIP is real
ompa
t for its weaktopology. We next obtain the same 
on
lusion for any dual Bana
h spa
ewith the UMEP.Proposition 3.18. Let Y be a Bana
h spa
e. If Y ∗ has the UMEP ,then (Y ∗, w) is real
ompa
t.Proof. Fix any µ ∈ Mσ(Y ∗, w) with µ(Baire(Y ∗, w)) = {0, 1}. Sin
e
µ|Baire(Y ∗,w∗) is tight and takes only the values 0 and 1, it is not di�
ult tosee that there exists y∗0 ∈ Y ∗ su
h that for every B ∈ Baire(Y ∗, w∗) we have
µ(B) = 1 if y∗0 ∈ B and µ(B) = 0 if y∗0 6∈ B. De�ne µ′ ∈ Mσ(Y ∗, w) by

µ′(A) =

{
1 if y∗0 ∈ A

0 if y∗0 6∈ A
for every A ∈ Baire(Y ∗, w).Sin
e µ|Baire(Y ∗,w∗) = µ′|Baire(Y ∗,w∗) and Y ∗ has the UMEP, we 
on
ludethat µ = µ′. An appeal to the aforementioned 
hara
terization of Hewittand Shirota establishes that (Y ∗, w) is real
ompa
t.The 
onverse of the previous proposition does not hold in general. Indeed,the spa
e ℓ∞ = (ℓ1)∗ is weakly real
ompa
t (see [3, Example 1℄) whereasit fails the UMEP, as we show in Example 3.19 below. This example waspointed out to us by D. H. Fremlin, who has kindly given his permission toin
lude it here.We �rst need to introdu
e the so-
alled Talagrand's measure [25℄ (see alsoe.g. [26, Se
tion 13℄ or [13, �464℄). We identify {0, 1}N with P(N) by means ofthe bije
tion ζ : {0, 1}N → P(N) de�ned by ζ((an)) := {n ∈ N : an = 1}. Let

({0, 1}N, Σ, λ) be the 
omplete probability spa
e obtained after 
ompletingthe usual produ
t probability measure on {0, 1}N. Re
all that Talagrand'smeasure, whi
h we denote by λ1, is a 
omplete extension of λ to a larger σ-algebra on {0, 1}N, say Σ1 ⊃ Σ, su
h that for every free ultra�lter U ⊂ P(N)we have ζ−1(U) ∈ Σ1 and λ1(ζ
−1(U)) = 1.



Uniqueness of measure extensions 153Example 3.19. ℓ∞ does not have the UMEP.Proof. Fremlin and Talagrand [14℄ (
f. [26, 13-3-3℄) showed that the iden-tity mapping f : {0, 1}N → ℓ∞ is s
alarly measurable with respe
t to λ1.In fa
t, they proved that for every y∗∗ ∈ ℓ∗∞ there exist y ∈ ℓ1 and α ∈ Rsu
h that 〈y∗∗, f〉 = 〈f, y〉+α λ1-a.e. Therefore, we 
an 
onsider the indu
edimage measure µ1 := λ1f
−1 ∈ Mσ(ℓ∞, w).Let φ : {0, 1}N → {0, 1}N be the bije
tion given by φ(a) := ζ−1(N\ζ(a)).Then for every B ∈ Σ we have φ(B) ∈ Σ and λ(φ(B)) = λ(B). Moreover,it was shown in [25℄ that Σ1 = {φ(B) : B ∈ Σ1}. Clearly, the fun
tion λ2 :

Σ1 → [0, 1] given by λ2(A) := λ1(φ(A)) is a 
omplete measure extending λ.We 
laim that f is s
alarly measurable with respe
t to λ2. Indeed, given
y∗∗ ∈ ℓ∗∞, we already know that there exist y ∈ ℓ1, α ∈ R and B ∈ Σ1 with
λ1(B) = 1 su
h that 〈y∗∗, f(b)〉 = 〈y, f(b)〉 + α for every b ∈ B. A simple
omputation yields

〈y∗∗, f(a)〉 = 〈y∗∗,1〉 − 〈y,1〉 + 〈y, f(a)〉 − α for every a ∈ φ(B),where 1 = (1, 1, . . . ) ∈ ℓ∞. Sin
e λ2(φ(B)) = 1 and 〈y, f〉 is Σ-measurable(noti
e that f is w∗-
ontinuous), we infer that 〈y∗∗, f〉 is measurable withrespe
t to λ2, as 
laimed. So we 
an take the indu
ed image measure µ2 :=
λ2f

−1 ∈ Mσ(ℓ∞, w).On the one hand, sin
e f−1(B) ∈ Σ for every B ∈ Baire(ℓ∞, w∗) and
λ1|Σ = λ = λ2|Σ , we 
on
lude that µ1|Baire(ℓ∞,w∗) = µ2|Baire(ℓ∞,w∗).On the other hand, �x a free ultra�lter U ⊂ P(N) and 
onsider its as-so
iated fun
tional x∗∗

U ∈ ℓ∗∞ given by x∗∗
U ((an)) = limn→U an. It is 
learthat

H := {a ∈ ℓ∞ : x∗∗
U (a) = 1} ∈ Baire(ℓ∞, w)satis�es f−1(H) = ζ−1(U), so µ1(H) = λ1(ζ

−1(U)) = 1, whereas
µ2(H) = λ2(ζ

−1(U))

= λ1({a ∈ {0, 1}N : φ(a) ∈ ζ−1(U)}) = λ1({0, 1}N \ ζ−1(U)) = 0.Therefore, µ1 6= µ2. It follows that ℓ∞ does not have the UMEP.We �nish the paper with some further 
omments about the PIP and theUMEP in a dual Bana
h spa
e Y ∗.Bator asked in [1℄ whether a s
alarly bounded fun
tion f de�ned on ameasure spa
e (Λ,S, ν) with values in Y ∗ is Pettis integrable provided thatthe following 
ondition (ne
essary for Pettis integrability) holds:
(∗∗) for ea
h y∗∗ ∈ Y ∗∗ there exists a bounded sequen
e (yn) in Y su
hthat limn〈yn, f〉 = 〈y∗∗, f〉 ν-a.e.Musiaª and Plebanek [18℄ (assuming the existen
e of a two-valued measurable
ardinal) and Stefánsson [24℄ (without additional set-theoreti
 assumptions)gave examples showing that the answer to Bator's question is negative in



154 J. Rodríguez and G. Verageneral. However, Y ∗ has the ν-PIP if and only if every s
alarly boundedfun
tion f : Λ → Y ∗ satis�es (∗∗) (see [18℄).Next let us translate these fa
ts into the language of measures on
Baire(Y ∗, w). Observe �rst that 
ondition (∗∗) above is equivalent to sayingthat the image measure νf−1 on Baire(Y ∗, w) has the following property:Definition 3.20. Let Y be a Bana
h spa
e and µ ∈ Mσ(Y ∗, w). We saythat µ has the Bator property if for ea
h y∗∗ ∈ Y ∗∗ there exists a boundedsequen
e (yn) in Y 
onverging to y∗∗ µ-a.e.Every 
onvexly τ -additive measure on Baire(Y ∗, w) has the Bator prop-erty (see the proof of Theorem 2.7), but the 
onverse does not hold in general(
onsider the image measures of the fun
tions 
onstru
ted in [18℄ and [24℄).A

ording to the results above, we 
an now state that Y ∗ has the PIP if andonly if every measure on Baire(Y ∗, w) has the Bator property.Note that every measure on Baire(Y ∗, w) with the Bator property isapproximated by Baire(Y ∗, w∗) (apply Lemma 2.4). Bearing this in mind,the previous 
hara
terization of the PIP should now be 
ompared with thefollowing straightforward 
onsequen
e of Corollary 2.3:Corollary 3.21. Let Y be a Bana
h spa
e. Then Y ∗ has the UMEP ifand only if every measure on Baire(Y ∗, w) is approximated by Baire(Y ∗, w∗).One question still unanswered is whether the PIP and the UMEP areequivalent for arbitrary dual Bana
h spa
es.A
knowledgements. The authors are grateful to David Fremlin andMatías Raja for valuable dis
ussions on the subje
t of this paper.
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