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Measure of non-compactness of operators
interpolated by the real method

by

RADOSEAW SZWEDEK (Poznan)

Abstract. We study the measure of non-compactness of operators between abstract
real interpolation spaces. We prove an estimate of this measure, depending on the funda-
mental function of the space. An application to the spectral theory of linear operators is
presented.

1. Introduction. The behavior of compact linear operators under in-
terpolation has been studied since the 1960s. First results were established
by Krasnosel’skii [11], who proved that under the hypothesis of the Riesz—
Thorin interpolation theorem, that is, T': L,, — Lg, is bounded for i = 0,1
where 1 < p;,q; < oo, and the additional assumption that 7' : L,, — Lg,
is compact, gy < oo, it follows that 7' : L, — L, is also compact, where
1/p=0-0)/po+0/p1,1/qg=(1—-0)/q0+60/q1 and 0 < 6 < 1.

His results lead to the question whether similar results hold in the ab-
stract interpolation case, when (Ly,, Ly, ) and (Lg,, Ly, ) are replaced by Ba-
nach pairs (Ag, A1) and (By, By), respectively. The complete answer is still
unknown.

The first results for the real interpolation method were obtained in 1964
by Lions—Peetre [12] for the case when Ay = A; or By = B; and by Pers-
son [14] for the general case Ay # A; and By # B; with an approximation
condition on the couple (Bp, Bi). In these cases, they showed that the oper-
ator T : K@q — Egg is compact for 0 < § < 1, 1 < g < oo. We refer to the
book [2] for a more detailed history of research.

In 1969 Hayakawa [10] gave the result for the real interpolation method
without the approximation hypothesis but with the assumption that T :
(Ao, A1) — (Bo, B1) and the restrictions T : Ay — By, T : A; — Bj are both
compact operators and 1 < g < oco. New approaches to Hayakawa’s result
can be found in the paper by Cobos and Peetre [7] and the references given
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there. Finally, in 1992 Cwikel [9] showed that the theorem holds whenever
T : Ay — By is compact and T : Ay — Bj is bounded.

Nowadays we search for quantitative versions of interpolating compact-
ness results. In 1999, Cobos, Fernandez-Martinez and Martinez in their re-
markable paper [6] obtained a logarithmic type inequality for the measure
of non-compactness 3(-), namely

B(T : Zaq — an) < Oﬁ(T : AO — Bo)l_aﬁ(T : A1 — Bl)e.

Based on some ideas from [6], we present a generalization of those results
to the abstract real method of interpolation.

2. Preliminaries and notation. We use the standard notation from
interpolation theory. Mostly, we follow [2] and [3], where more details are
given. Let A = (A, A1) be a Banach couple. As usual we let A(A) := AgNA;
and Y(A) := Ag + A;. For any t > 0 the K-functional is defined by

KtaA) = inf {llaolla,+tlarlla} forae S(A),

a=ap+a

and the J-functional by
J(t,a; A) = max{||al| a,, t||al|a,} for a € A(A).

A real sequence w = {wy, }pez is called a weight sequence if each w,, is
positive. If E is a Banach sequence lattice modelled on Z and w = {w,} is
a weight sequence, we define the weighted Banach sequence lattice E(w) by
setting [} p(u) = [ {zntwn} 5

Recall that if a Banach sequence lattice £ on Z is intermediate with
respect to (oo, loo(27™)) (resp., (¢1,¢1(27™))) then the K-method space
Ap.i = (Ao, A1) gk consists of all a € Ag+ A; such that {K(2",a; A)} € E
with the norm

lall = [{K (2", a; A)}e

while the J-method space KE;J consists of all a € Ag + A1 which can be
represented in the form
(o]
a= Z an (convergence in Ay + A;)

n=—oo

such that {J(2", an; A)}nez € E with the associated norm
oo
lall = inf {I[{(2", an; D}lpa= > an}.

Following the terminology of [13], the space F is said to be K-non-trivial
(resp., J-non-trivial) when foo N lo(27") C E (resp., E C {1+ ¢1(277)).
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It is well known from [13] that if E is a parameter of the real method
(ie., loo N loo(27™) C E C #1 + £1(27™)) then for any Banach couple A,
ZE;K — ZE;J
and the norm of the inclusion map is less than 4. If additionally the Calderdn
operator (2 defined on ¢1 + ¢1(27™) by

o
2{&) = { 3 min{1,277 g} for {&a} € 6+ 41(27")
k=—00

is bounded on F, then EE‘;J = ZE;K. In this case we write Ag for ZE;J
or ZE;K-

The classical interpolation spaces play an important role from the point of
view of applications. Let o be a function parameter, i.e., o : (0,00) — (0, 00)
is a quasi-concave function (¢ — p(t) increases and ¢ — o(t)/t decreases)

and
se(t) =o0(1) ast — 0 and sy(t) =o(t) as t — oo,

where s,(t) = sup{o(tu)/o(u) : u > 0} for every ¢ > 0. Now, if we take
E =14(1/0(2™)) with 1 < g < 00, then
(Aos A1)e,(1/02m));k = (Ao, A1), (17020 = (Aos A1) g q-

If o(t)=t%, 0€(0, 1), we get the classical real interpolation spaces (Ao, A1)oq
(see, e.5., 2] [3]).

Given any sequence { X, }mez of Banach spaces we denote by (D X)) e
the space of {@m tmez € [[ e oo Xm such that {||zn||x,, tmez € E. It is a
Banach space equipped with the norm

{zm = [{llzmllx,, H e

We will need the following useful vector-valued continuous inclusions

(with norms less than or equal to 1) proved in [5]:

PROPOSITION 2.1. Let { X, }mez be a sequence of Banach spaces.
(i) If E is K-non-trivial then
(DXt (BXm)en@-m)) B — (DXm)E-
(ii) If E is J-non-trivial then
(BXm)e = (DXm)ey, (BXm)e, 2-m)) B3
An immediate consequence is

COROLLARY 2.2. Let {X,,}mez be a sequence of Banach spaces. If the
J-method and the K-method generated by a parameter E of the real method
are equivalent then

(D Xm)eyy» (BXm)e,, 2-m))E = (DXm)E

forany1 <g; <oo (j=0,1).
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For a given Banach lattice ' on Z and a subset A C Z, the subspace of
all sequences supported on A is denoted by E|4. In particular, we may take
Atobelp,ql:={neZ:p<n<gq}withpqgeZ, p<gq.

Let w(Z) be the space of all real sequences modelled on Z. For any v € Z,
the shift operator 7, : w(Z) — w(Z) is defined by 7, {&m} = {&mav }-

Throughout the rest of the paper we consider Banach lattices £ on Z such
that the shift operator 7, is bounded in E for all v € Z. For such E we define
a function ¢g : (0,00) X (0,00) — (0,00) by ¢gr(2™,2") = 2"||Th—m|E-E
for m,n € Z and @p(s,t) = ep(2loezs] 2losat) for any s,¢ > 0, where []
denotes the greatest integer function.

We will also need the extension ¢g : [0,00) x [0,00) — [0,00] of ¢g,
defined by 1¢g(0,0) = 0, ¥g(s,0) = liminf, oy ¢r(s,v) for s > 0 and
YE(0,t) = liminf, ot pp(u,t) for t > 0.

We have the following technical lemma:

LEMMA 2.3. Let E be a Banach sequence lattice on Z such that the shift
operator T, is bounded in E for any n € N. Then the function Vg has the
following properties:

(a) YE(2™s,2"t) < Yp(2™,2")YE(s,t) for allm,n € Z and s,t > 0.
(b) There exists a constant C1 = C1(E) > 1 such that
VE(su, tv) < Ciyp(s, t)yp(u,v)  for all st u,v > 0.
(¢) If supgc(o1) VE(S,t) < 00, then there exists a constant Cy = C2(E)
> 1 such that
YE(s,t) < Cog(u,v)  for all0 <s<u,0<t<w.
Proof. Since ¢p(2mTF, 27+ < hp (2™, 2")Yp(2F,2!) and
logy 2%s] = k + [log, s,
[logy s] 4 [logy t] < [log, st] < [logy s] + [logy ] + 1,
for any m,k,n,l € Z and s,t > 0, we get (a) and (b) with a constant
Cl = maxm-:o,l 'lﬂE(Ql, 2]).
For (c), since sup; ;1) ¥E(s,t) < 0o, using the previously proved in-
equalities, we obtain

VYE(s,t) =vE (S u, % v) < Covp(u,v)

for all 0 < s <w,0 <t < v where Cy = C1supg ye(01] VE(S, 1) < 0. Recall-
ing that ¥g(0,t) = liminf,_ oy ¥E(s,t) and Yg(s,0) = liminf; o4 Yp(s,t)
completes the proof. m

LEMMA 2.4. Let A= (Ag, A1) and B = (By, B1) be Banach couples and
let T : A— B be a bounded operator.
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(i) If E is K-non-trivial, then

1T - B < 20E(IT ) 20-B0o: | T 4,8, )-
(ii) If E is J-non-trivial, then

IT5, )50y < 2080 a0 0 1T 415,

Proof. (i) Since the case ||T||49—B, = ||T]|4,—B, = 0 is obvious, we may
assume that [|T'||4,—p, > 0 for ¢ = 0ori = 1. Fix ,§ > 0 with ¢ = 0
if and only if ||T||a,—B, > 0, and 6 = 0 if and only if | T|a,—5, > 0.
Now take ko, k1 € Z such that 2k0~1 < ||T|| 4,5, + & < 2F and 2M -1 <
Tl a,—B, +8 < 2%. Let v = k1 — ko. Then for any a € A, ;¢ we have

K@"Te;B) < int {|[Taolls, +2"[Tar]ls, s ao € Ao, a1 € A}

< inf {QkOHa()HAO + 2m+k1Ha1HA1 tap € AQ, a1 € Al}

a=aop+ai

=2k K (2mF q; A),
and hence
|Tallg,,, = {K@™, Ta; B)}|p < 2% {K (2™, a; A)} ||
=29 {K(2", a; A)} g < 2%|n |l p— s |{K (2™, a; A)} ||
=20 e-vllE—pllall g, = 206207 28 Y la] 5,
= 20517 a0—80 + & 1Tl 41—, +9)llallz,, .-

If £,0 = 0 then the above estimate gives the required inequality. If either
g > 0 or § > 0 then the inequality follows by taking the relevant limits. This
completes the proof of (i).

(ii) Let a € JZE;J and take any series ) °__ u,, convergent in Ag+ A;
to a, where {u,,} C AgNA; is such that {J(2™,u,,)} € E. Since E is J-non-
trivial, the series Y~y is absolutely summable in Ay + A;. Therefore,
for any v € Z we have a = ) °_  Umy, (convergence in Ag+ A;) and

J (2™, Ttgn; B) < max{2%|[um | ags 2™ o || 4y }
= 2k0 J(2MFY i A).
This implies
ITallz,,, < H{J@™, Tumsw; B)HiE < 2°1{T Q@™ umsv; A}l e
= 22|17 {J (2", um; DYE < 2|70 |l 5B I{T (27 um; D}

=20 i 1oy =B I (27 s A) Y -
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[e9]

me—oo Um of a, we get

Taking the infimum over all representations a =

ko—
ITallz,,, <2 imy 1o lle—£lall 1,
=20p(ITla0-8, + & [T A,~B, +0)llall 7,
which completes the proof as above. u

COROLLARY 2.5. Let {X,,} and {Y,,} be sequences of Banach spaces, let
FE be a parameter of the real method, and assume that the Calderdn operator
2 is bounded on E. Then there exists a constant C = C(E) > 0 such that
for any bounded operator

T: ((@X )517 (@X )Zl 2—m ) - ((@Ym)&xﬂ (@Ym)foo(Z*m))v

we have

I @ x) 5 (@Yim)
S CwE(HT‘|(®Xm)Zl_’(@Ym)ZOO ? HTH(@Xm)gl(Qfm)_>(®ym)goo(27m) )

Proof. Use Proposition 2.1 and Lemma 2.4. u

Let A = (Ag, A1) be a Banach couple. For m € Z define the Banach
spaces

A (A) = (AgN Ay, J(2™, - A)),
Ym(A) = (Ag + A1, K(2™,; A)).
We note that for any sequence

{an} € (DAn(A)e, + ( DBAn(A)yy2-m) = (B An(A)ey 40,2-m)
the series Zn_f o n is absolutely convergent in Ag + A;. This allows us to
define a bounded operator 7 : (DA (A))e,, (BA(A))s, 2-m)) — (Ao, A1)

by
m{an} = Z .

n=—oo

Clearly ||7|| < 1. Moreover if E is J-non-trivial, then 7 : (DA (A))r —
Ag.j is a metric surjection.
We will also need the diagonal operator

J+ (Bo, Bt) = (BZm(B)) e, (B Zm(B))es 2-m))
defined by
jbz{...,b,b,b,...} for b € By + Bj.

It is obvious that j is bounded with ||j|| < 1 and j : Bg.x — (@Xm(B))E
is a metric injection whenever E is K-non-trivial.
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Let n € N. Following [6] we define operators P,, Q;", @, on the Banach
couple ((DAm(A))e,, (DAm(A)),2-m)) by
Poum}t =4 ..,0,0,u_p, u—pi1,...,Un—1,Upn,0,0,...},
Q {um} =1{...,0,0, upy1, Uns2, ...},
Q. {um}t=A{ .., u—pn_2,u_pn_1,0,0,...}.
The following properties of the above operators are obvious:

o [ =P, —|— Q" + Q,,;, where I denotes the identity operator on

(DAR(A))e, (EBA (A)) e, 2-m)-
e The operators P, QF, Q. Q+ + Q,;, have norm 1 on (PA,(A))e,,

(DAR(A)) g, 2-m) and (D An(A))5.
e The followmg equahtles hold:
+ _ _ _ - _ _
19 @ 20 ()6, ~ @ 2 (A, g-m) = 1@ (@ 20D, (3~ @ Am (AN,
— 2*(n+1)7

||PnH(@Am(z))glﬁ(@Am(Z))Zlm,m) = ”PTL||(@Am(z))él(2,m>—>(@Am(z))gl
= 2",

In a similar way, we define the operators R,, S;", S, on the Banach

couple (BXm(B))en, (B Em(B))s.. (2-m))-

We recall that if T': X — Y is an operator, then the nth entropy number
en(T) :=en(T: X —-Y), n €N, is defined by

en(T) = 1nf{5>0 T(Bx) UBY Vi e yiEY},

where for a given Banach space Z and ¢ > 0, we set Bz(z,¢) :={y € Z :
lx —yllz < e} and Bz = Bz(0,1).

We refer to [4] for the fundamental properties of the entropy numbers.
The following facts are needed in what follows:
en(T) >0 forany 0 #7T € L(X,Y),
IT|| = e1(T) > ea(T) > --- > 0 for any T € L(X,Y),
Ein(T1 +To) < e (T1) 4 en(T) for any Ty, Tr € L(X,Y),
exn(RS) < ex(R)en(S) for any S € L(X,Y), Re L(Y, Z),
en(TQ)=en(T) for T€ L(X,Y) and any metric surjection Q : X — X,
en(T) < 26, (JT) for T € L(X,Y) and any metric injection J : Y — Y,

where XY, Z, )?, Y are arbitrary Banach spaces and n, k € N.

3. Main results. In this section, we prove our main results on estimates
of the measure of non-compactness for special operators defined on Banach
spaces and operators between Banach couples. We recall that the measure
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of non-compactness 3(T) := B(T : X — Y) is defined for any bounded
operator T' between Banach spaces by

B(T) = nh_)lgo en(T).

In what follows, without further comment, we will use C' to denote posi-
tive constants (C' may depend on objects that are regarded as fixed).

THEOREM 3.1. Let A = (Ap, A1) and B = (By, B1) be Banach couples
and let T : A — B be a bounded operator. Assume that E is a parameter of
the real method such that the Calderon operator {2 is bounded on E. Assume
that

Jim yp(s,1) = lim ¥p(1,) =0.

Then there ezists a constant C = C(E) > 0 such that for any ¢ > 0 and
ko, k1 € N, there exists N € N such that for alln > N,

B(Sy +8)iTm(Qn + Qr) + (BAR(A)E — (DEn(B))r)
< Ci/JE(EkO(T : Ag — Bo) + €,€k1(T : A1 — By) +e).

Proof. Since for any n € N, we have

(Sy +8,)iTm(Qy +Qy)
= S iTrQ;)} + St jTnQ,, + S, jTrQ} + S, iTrQ,,,
it suffices to estimate the measure of non-compactness for each term.
First, note that for all n € N,

||S:J'T7TQE”(@Am(,@))el_)(@zm(é))ew < Tl 49— Bo>
HS,;jTﬂQ;fH(@AM(Z))ZI(Q_m)ﬂ(@zm(g))loo@_m) < |7 a,-B-

Using the factorizations

Qn l Chs

(@BAn(@)e, T (DEa(B)e.
and
Qil s

(B2 D)p@m L (BEn(B)) @
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we obtain
ISHiTmQ,, || A (A (@ (B oS 2_2(n+l)HTHAo—>Bo>
(D Am(A)y, 2-my=(BZm(B)) g, 2—m)

_ . —2(n+1
||Sn']T,]TQ:||(@Am(z))él—’(@2m(§))eoo S 2 (n+ )||T||A1—>Bl.
Combining the above estimates with Corollary 2.5 and Lemma 2.3, we find
that there exists a constant D = D(FE) such that the measures of non-
compactness of the operators S, jT7Q,, : (DAn(A))r — (BXm(B))E and
SoiTrQt - (DAN(A)E — (X (B))E satisfy the following estimates:
B(Sy iTrQy) < |57 3T Q|| < DYp(IT a—50, 272"V T)| 4g—10)
< D|[T|ag—5otp(1,272),
and
ﬁ(‘S;jTﬂQ:’z_) < Dyp(2” 2nt1) HTHAI—>317 1T 4~ B1)
< D|T || ay—pp(272Y,1).
Now fix ¢ > 0 and ko, k1 € N, and put ey, (T') = ey, (T : A; — B;) fori =0, 1.
Note that there exists Ng € N such that
B(Sn JTTQy + Sy JT7Qy) < Dib(ery(T) + &, 6k, (T) + )

for all n > Ng.
In order to estimate the measures of non-compactness of the remaining
two operators S,f jTwQ;} and S, jT7Q,, , we first observe that the operators

JT7Qy + (DAm(A)e, = (BZm(B))en
JT7Qy + (BAm(A)) 1y 2-m) = (B Zm(B))en 2-m)

are bounded and the sequences {|jT7Q; [|}°2,, {ll7T7Q; ||}, of their
norms are non-increasing. Let

Ao = lim [|jT7Q ], A = lim [5T7Q, ],

be sequences such

and let {U }GB(EBA (A) and {U }GB(EBAm(A)
that

)y 2=m)
Ao = lim. HJTﬂQiUgLH(@Zm(E))Zm?
Ar = lim ||J'T7TQEU711||(@Em(E))gw(Q_m)'
The properties of entropy numbers yield
ek (T : (DAm(A))ey = (DXm(B))e)
< Eko(Tﬁ : @A ( )51 — By) < Eko(T)7
e (JT7 : (DAm(A))ey2-my = (BZm(B)) e 2-m))
< €k (T7T (DAn(A))ey 2-m) — B1) < ex, (T).
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From the definition of entropy numbers there exist sets {b9,..., bgo} C By
and {b},...,b; } C By such that
ko
Tn(B (DAn(A)), U Bp,( bj7€k0 T) +¢/2),
7=1

k1
T?T(B@Am@))zla—m) - U1 B0y e (1) +2/2),
J:

Thus, for some b;i, 1 < j; < k;, and for some subsequences {nﬁg}zozl with
1= 0,1, we obtain

T7TQ+ uoo € Bi, (b}, €ko(T) +€/2),
T7Q, u ni € BBl(bjl,skl(T) +¢/2).
This implies
K (2™, bjy; B) < [0, = TnQ ool sy + 2" IT7Q 5 o 3,

’]0’
< T 2) 4+ 2™ ||T 2(”k+1 0 -
< (e (T) +/2) + 2| T )| 4y— 13, 1 1l @ 4,0 ()0,
< (e (T) +£/2) + 2| T|| 4y — 1,
K(2",0),;: B) < | TrQuly |5, +2"110), = T@Qyuhy 1,
(” +1) _ m
< Tl ag—mo 27 ||“nt||<eaam<A>>e1<2—m)+2 (En (1) +e/2)

1
<27 || T ag— By + 2™ (eky (T) +€/2),
and hence

1389l @ . (B = ng(zm, b B) < epo(T) + /2,

.71 _ _ -m m 11
1985, @ 21 B -y = 0B 2 E(2", 85 B) < 00 (1) 422
Consequently,
)\0 = hm ||jT7TQ+OUOO”(@2m(E))ZOO
< S“P(”JT”Q 0nt = IVl @ 2@, + 1% @50 (B).)
< Q(Eko( ) +¢/2)
and
TR -1 _
A= kli)rglo HJTﬂQniuni H(GBEm(B))zOo(z*m)

. — 1 1 . 71 _
< 21611131(HJT7TQ”]16UH}€ —]bj1||(@2m(3))zoo(2,m) + ||ij1\|(@2m(3))éoo(2,m))

< 2(e, (T) +€/2).
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Hence, there is N, € N such that for n > N,,

IN

+ - —+ _ —
1Sy JT7Q;, H(@Am(A))ll—%@Zm(B))loo

2(eR, (1) + ),
157 3 T7Qy |l A, () 2

(er: (T) +€)-

IN

t12=m) = (@ Zm(B)) gy (2-m)
With previously chosen € > 0, there exist sets {u[l), . ,ugo} - B(EBA (D))
m 1
1 1 _
and {uy, ..., up, } C Biga, ) y such that

£1(2—m)

ko
ITm(B(g a,,.(A)),,) C LJlB(EBEm(B))Z (jT7uj, 2e1,(T) +£/3),
P

Jj=

Set &; = ¢/(||T||a,—B,; +¢€) for i =0, 1. There exists N. € N such that

0 _
max [P, up, — Wil @an (), < %0/3;

1
12}522 | Pn. Uk uk”(@A (A))g, (2—m) < 61/3.

This implies

. 0 .
x|l Nt = IT7uR @z, 3y, < /3

. 1 _
 max |jT7 Py, uj, — ]TWUkH(EBEm(B))ZOO(Tm) <e/3.

Thus for any u° € B(@Am(ﬁ)) and any u' € B(@Am(’))

A))gy 2-m)

 fnin {IliTmu’ = JTr PN} @y 5, By b < 2600 (T) + 2/3,

1£1<1r1k {|jTmu! —]TWPNEukH (@ 5 (B o m)} < 2, (T) +2¢/3.

The diagrams

(BAn(A), I (P I(B))in
PNsl S
(B2 D)pem L ( BEB)) e
and
(B AN(A)) gy 2y 2L (D5, (B)) g ooy
PN{ St

@BAnA)y, T (BB
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imply that there exists N, € N such that for n > N,

 Jax {185 i TPyl gy 55, (B ) SE/3;

. <
Jax (ISPl @y, 5y, _pm)} < /3

Thus for some 1 < jg < kg and 1 < j; < k1, we obtain
HSEJ'TWUOH(@Em(E))ZOO <|IS,, jTmu’ — SﬁjTWPNSU?OH(@zm(E))[m
and

1S55T70 @ 5,0 B,y ) < ISTITTU" = STJTTPrc i |

Loo (27 @EW(E))ZOO(Q_m)
+ 2 1 _
+ IS, JTﬂ'PNgujlH(@Em(B))goo(Q_m)
<2, (T) +e.
This implies
150 3T Qu (@ A, (), ~(@ T By < 26k0(T) + €

+ + _ _
ST iTmQ; H(@Am(A))q(z—mﬁ(@Em(B))gw(g—m) < 2e,(T) +e.

Consequently, we obtain
B(Sy iTTQy + (DAn(A)E — (DZn(B))E)
< DwE(QeSkO(T) =+ 26, 2€k1 (T) + 28) < 2DwE(5k0(T) =+ E,Ek, (T) + 8),
B(S, iTrQy : (BAW(A)r — (BZm(B))r)
< 2D¢E(5ko (T) +e, 6 (T) + 5).

Finally, the combination of the estimates obtained yields the required
estimate

BUST + 8)iTm(Q + Q) : (DAR(A) g — (BXm(B))E)
< CYp(er(T) +e,61,(T) + )
for all n > N = max{ Ny, N;, Ny, Np}, where C = C(E) > 0.
THEOREM 3.2. Let A = (Ao, A1) and B = (By, B1) be Banach couples.

Let T : A — B be a bounded operator and E be a J-non-trivial Z-lattice.
Then for any € > 0 and n, ko, k1 € N,

BITP) (@A (A) 5~ B
< 4¢E(5ko(T : AO — Bo) +e&, Ekl(T : A1 — Bl) + E).

Proof. The space E||_, ) is finite-dimensional and E|_,, ) — E(QHH)’

where C'= C(n) > 0. Given any 7 > 0, by the compactness argument there
is a finite set {p1,...,us} C Bp_,,,, such that for any A € Bp|_ .
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min (A= prllpy b < 0/C

Take ¢ > 0 and kg, k1 € N. Let oli—1 < e, (T Aj — B;)+e < oli for § = 0,1
and let v =1y — lp. For any {u, }mez € B(@Am(Z))E’ we have

{27 umn), o TR un) gy, = [Padum bl (@ A, (2))

< [Humtl@an @), < 1-

Thus there exists a positive integer r < s such that

max {2 |[um | 4.} = J(2", um) < i, +n
=Y,

for m = —n, ..., n, where , = {4, }. From the definition of e, (T": A; — B;),
there exist finite sets {0, ..., b}%} C B;,i=0,1, such that form = —n,...,n,
min {||Tum — (up, + 05|15} < 277 (i, +1)2% = 175 .

1<j<k; ’
For m € {—n,...,n} and positive integers jo < ko, j1 < k1 and r < s choose
elements db, with p = p(r, jo, j1) depending on r, jo, j1, where

d, € By (i, + M)V 100n) 0 By (g + 0)bj 3 ).
provided that the intersection is not empty. All elements d}, are in By N By,
and their number may change with m (let us say it is w = w(m)), but it
is finite. Given any um € Bgy 4, (7)), We can find a sequence {di"}7__,,

where py,, € [1,w(m)], such that for m € {—n,...,n},
@, T — di) = max{ 2| T, - & |}

=0

= max{ 20" T, — (g, + )05, + (i + )5, — |3}

1=

< max{2n7,, 2772y} = 200,

1=

Let D be the collection of all sums > " dby. Notice that Dy is a

m=—n

finite subset of Bp.; and for any {u,} € Bga,,(4)), there exists one
n d¥ € Dy such that

m=-—n
n n
|rrPufum} = 32 @t = D2 (Tum - )|
m=—n Bes m=—n
< @™ Tumss — B

< 20+ e < 2Ol i + 0}

BE,j

n,n)

n
2+1p—1
< 2% <1+77H > em“E)lszl—l—lo+1|!E—>E-
m=-—n

Since € > 0 and 7 can be arbitrarily small the required estimate follows. =
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THEOREM 3.3. Let A = (Ao, A1) and B = (By, B1) be Banach couples.
Let T : A — B be a bounded operator and E be a K-non-trivial Z-lattice.
Then for any € > 0 and n, ko, k1 € N,

B(RnjT : Apx — (BXm(B))E)
< AYp(eg, (T : Ao — Bo) +¢,e5, (T : Ay — By) +¢€).

Proof. Fix e > 0and ko, k1 € N. Suppose that 2b~1 < ek, (T Ay — B;)+
e < 2l fori = 0,1 and let v = I; — ly. There exists a constant C' = C(n) > 0

C . .
such that E|_,4,n40] — ¢#nF1 Given any 7 > 0, there exists a finite set
{p1, - st C BE|_p1ynis Such that for any A€ Bgy,

i A = prllEl b < 1/C

For any a € BZE;K’ we have

HK @27, a), ..., K@, a)} g,y e < IHE@™ a)}le = llallz, , <1
Thus there is pu, = {u),}, where r < s, such that
K@2™", a) <ph ., +n forany me {-n,...,n}.
From the definition of the K-functional, there exist decompositions
a=al +al, whereal € Ay, al, € Ay,
which yields
llag 4o + 27 llan |4y < pigs +1
for m = —n, ..., n. By definition of ¢, (T : A; — B;), there exist finite sets

bi,...,bt } C B;,i=0,1, such that
1 ki

Jin {1Ta, = (i +mbyled < 270Gy, + 02 =t

Denote by D the collection of all vector-valued sequences {d;"} defined by

(g )b +011 ), 1<7 <5, 1<y <ko, 1<, < hy

dbm = for m € {—n,...,n},

0, otherwise,
where p,, = ppn(r, jgl,j%_l) depends on r, j9 and j!l . Notice that Dy is a
finite subset of (DX, (B))g. For any a € By_ , we can choose a sequence
{d%m} € Dyg with

HTa’:'n - (N:n+l/ + ﬂ)b;;n”Bz < n:;,m for i =0, 1.

Thus
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K2, Ta— (1)1, + b))
= K(2™, Tay, = (Hpy + Mo + Tag, — (1 + 1)b51))
< 2y = 200
Consequently,
| RadTa— {5 g, 3y = LK @™ Ta (e +m) (% +54 )My
< 20Nty + e

!
<2 OHTuHEﬁEII{Mm B i

l/
< 92+ho—1 (1 + nH emHE> 17 —1-t0+1 /| E— -
+

Since 7 is arbitrary, the estimate follows. m

THEOREM 3.4. Let A = (Ag, A1) and B = (By, By) be Banach couples.
Let T : A — B be a bounded operator and E be a parameter of the real
method such that the Calderén transform 2 is a bounded operator on E.
Assume that lims_o4 ¥p(s,1) = limy_o4 YE(1,t) = 0. Then there exists a
constant C = C(E) > 0 such that for any € > 0 and ko, k1 € N,

B(T: Ap — Bg) < CYp(er, (T : Ag — By) +¢,ex, (T : Ay — By) +¢).
Proof. From the properties of the operators m and j we have
B(T: Ap,; — Bpx) = B(Tm : (@An(A))r — Brk)
< 28(jT7 : (DAm(A)r — (BZm(B))k).
We decompose the operator ;77 as
iTm = (R, + S; + S;,)jTn
= R, jTm + (S + S8,)iTn(P, + Q) + Q)
= Ry jTr + (S, + S, )iTnP, + (S + 5,)iTr(Q) + Q;,)

where n € N. Combining the results of Theorems 3.1 (with constant D), 3.2
and 3.3, we deduce that there exists N € N such that for n > N,

BUTT : (DAn(A))E — (BZm(B))E)
< 12/lp—eB(RnjT : Ap:x — (BZm(B))E)

+ 2 p—B(T7Py - (BAR(A))E — Bry)
+B((Sy +8,)iTm(Q + Q) + (DAn(A)E — (BZm(B))r)
< (D+8||2||g—p)YEe(ek, (T : Ay — By) +e,e, (T : Ay — By) +¢),
which yields the result with a constant C = C(E) > 0. =
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We finish with some applications of the results obtained. The following
is essentially a corollary of the properties of the measure of non-compactness
and the results obtained above.

COROLLARY 3.5. Under the assumptions of Theorem 3.4,
B(T: Ap — Bg) < Cyp(B(T : Ao — Bo), B(T : A1 — Bi)).

In particular, if T : Ag — By or T : Ay — By is compact then T : Ap — Bg,
s also compact.

The compactness statement in Corollary 3.5 has been proved in [5,
Thm. 5.4] via a direct proof without estimates of the measure of non-com-
pactness.

COROLLARY 3.6. Let A = (Ap, A1) and B = (By, By) be Banach couples
and let T : A — B be an operator. If ¢ is a function parameter, then there
exists a constant C > 0 such that whenever 3(T : Ay — Bp) > 0, we have

B B T:A, — B
B(T:Ay,q — Bog) <CB(T: Ay — BO)SQ(?ET . A(l) — B;;>'

Proof. It is easy to see that ||7,||g—r < s,(2") for n € Z, thus Corol-
lary 3.5 applies.

REMARK 3.7. After the completion of this paper we were kindly in-
formed by Fernando Cobos that the above estimate for the measure of non-
compactness for interpolation spaces generated by a function parameter was
proved independently by J. M. Cordeiro [8].

REMARK 3.8. We note that if o(t) = t with § € (0,1), then we re-

cover the logarithmic type estimate for classical real interpolation spaces
(Ao, A1)pq proved in [6]:

B(T: Ay, — Bpy) < CB(T: Ay — Bo)' B(T : Ay — By)’
for some C > 0.

REMARK 3.9. Let A be any Banach space and T be any bounded oper-
ator on A. It is well known (see, e.g., [4]) that the essential spectral radius
of T' can be expressed in terms of the measure of non-compactness:

Tess(T) = Tess(T : A — A) = lim B(T": A — A)Y/m,
The inequality
BTF : A — A) < p(T": A — A" for k,neN
allows us to write

lim B(T": A— A" = inf B(I":A— AY"<B(T:A— A).

n— o0 1<n<oco
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We conclude the paper with the following result which extends previous
results by Edmunds and Teixeira [15], Albrecht [1] and Cobos, Fernandez-
Martinez and Martinez [6].

COROLLARY 3.10. Let A = (Ag, A1) be a Banach couple of complex
spaces. Assume that T : A — A is a bounded operator and E is a parameter
of the real method such that the Calderon transform (2 is a bounded operator
on E and

81_1%1+ ¢E(57 1) - tl—lgl—i- ¢E(1at) =0.
Then

Tess(T: Ap — Ap) < CYp(ress(T 1 Ao — Ao), Tess(T 2 A1 — A1),
with C = C(E) > 0.
Proof. Applying Corollary 3.5, we obtain
B(T" : Ap — Ap) < CYp(B(T" : Ag — Ag), B(T™ : Ay — A1)
= CYp((B(T™ : Ag — Ag)" /™)™, (B(T™ : Ay — A))M/™)")
< OCCT Mp(B(T™: Ag — Ao)Y™, B(T™ : A1 — Ay)Y/™)"
for any n € N. Therefore
B(T" : Ap — ZE)I/"
< Ve MR (B(T™ : Ag — Ag)™, B(T™ = Ay — A)Y™),
which yields the result. »

Acknowledgments. We thank the referee for his comments.
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