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Some remarks on Toeplitz multipliers and Hankel matrices
by
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Abstract. Consider the set of all Toeplitz—Schur multipliers sending every upper
triangular matrix from the trace class into a matrix with absolutely summable entries.
We show that this set admits a description completely analogous to that of the set of all
Fourier multipliers from H; into ¢;. We characterize the set of all Schur multipliers sending
matrices representing bounded operators on ¢» into matrices with absolutely summable
entries. Next, we present a result (due to G. Pisier) that the upper triangular parts of
such Schur multipliers are precisely the Schur multipliers sending upper triangular parts
of matrices representing bounded linear operators on {5 into matrices with absolutely
summable entries. Finally, we complement solutions of Mazur’s Problems 8 and 88 in the
Scottish Book concerning Hankel matrices.

Introduction. In the present paper, we consider a few loosely connected
questions concerning Toeplitz and Hankel matrices and a description of cer-
tain Schur multipliers acting on matrix representations of Schatten—von Neu-
mann classes and their upper triangular subspaces. A Schur multiplier is a
scalar matrix which acts by entrywise multiplication on some distinguished
space of matrices. We are mainly interested in Schur multipliers with range
consisting of matrices with absolutely summable entries. We show that (cf.
Theorem 3.4) descriptions of certain classes of Schur multipliers, in partic-
ular, those induced by Toeplitz matrices are similar to the corresponding
descriptions of Fourier multipliers. In Section 3, we show that Schur mul-
tipliers induced by Toeplitz matrices which map the upper triangular trace
class 7 into absolutely summable matrices are determined by the same class
of scalar sequences as the Fourier multipliers from the Hardy space H; into £
described by Ch. Fefferman ([SISt], [SzW]). Fefferman’s description plays an
important role in our argument. The paradigm for Theorem 3.4 is the result
of A. Shields [Sh] who proved the result in the case of the upper triangular
part of the Hilbert matrix.
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Sections 4 and 5 deal with Schur multipliers from B({2) and from the
upper triangular part of B({2) respectively. Theorem 4.1 says that the space
of Schur multipliers which map B(¢2) into absolutely summable matrices is
dual to the space of matrices which, when multiplied by a suitable matrix
of signs, represent a bounded linear operator on f5. Our result is a rela-
tively easy consequence of a deep result of Lust-Piquard [Lu] which is a
non-commutative analogue of the result of [KKL] on Fourier coefficients of
continuous functions. Theorem 5.1 (due to Pisier) says that the upper trian-
gular subspace of the space of multipliers described in Theorem 4.1 consists
of all Schur multipliers from the upper triangular subspace of B(/3) into
the space of absolutely summable matrices. The proof is based on Pisier’s
theory of C*-summing operators and on one of his interpolation theorems.
Theorems 4.2 and 5.1 are in full analogy with the classical descriptions of
Fourier multipliers from the space of continuous functions and from the disc
algebra to /5.

Section 6 deals with Hankel matrices. We present sharp quantitative an-
swers to Mazur’s Problems 8 and 88 from the Scottish Book. The problems
have been solved independently by Eggermont and Leung, and by Kwapieri
and the first named author [EL|, [KwP].

Acknowledgements. The authors are grateful to Professor Gilles Pisier
for his permission to publish Theorem 5.1 in this paper. We are indebted
to Professor Frangoise Lust-Piquard who read earlier versions of the paper
and suggested many improvements. Also we would like to thank Professor
Stanistaw Kwapieri who allowed us to use an idea from the unpublished
lecture [KwP].

1. Preliminaries and notation. M stands for the space of all com-
plex-valued matrices a = (a(j,k))(jrez, xz,, where Zy = NU {0} denotes
the non-negative integers. My stands for the space of all matrices a € M
with finite support, where suppa = {(j,k) : a(j, k) # 0}. We consider the
(quasi) Banach spaces of matrices

My = {a € M: Jlallu, < o},
where
(X Gmezsxz, 1, E)P)YP for 0 < p < oo,
SUP(j k)ezy xz, 120, k)] for p = oo.

B(¢3) denotes the algebra of all bounded operators on ¢y = lo(Z4 ), with
the usual multiplication of matrices ¢ = ab, where

c(G k) =Y al(j,s)b(s,k) for j ke Zy.

SEZLy

lalla, = llalle,zyxzy) = {

Hence
B(l2) = {a € M : |la|| ) < oo},
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where
1/2

lallsen =lla: s~ 6= s (3] S aGiwa|)"

L lE?=1 Y ez kez,
K (¢3) denotes the subspace of B(¢3) of all compact operators, hence
K(ty) ={a € B(l) : %im a(j, k) = 0}.
—00

)

We set
Sp={aeM:|al, <oo} for0<p< oo,

where ||a||, = (Tr(la*alP/2))'/P, a* is the adjoint of a, i.e. a*(j, k) = a(k, )
for j k € Z,. By |a| = (a*a)'/? we denote the modulus of a, and Tr stands
for the usual trace, i.e. Tr(a) = }_;c7, a(j,J)-
The spaces S, are called the Schatten classes; S1 can be identified with
the nuclear operators on ¢2, and Sy with the Hilbert—Schmidt operators.
Besides |a| and a*, we also consider the matrix of absolute values a? and
the transposed matrix ‘a defined by

ah(.]vk): |CL(]7k‘)|, ta(jak):a(k’]) ((],kﬁ)EZJ,_ XZ+)
We write £ = 1 whenever € € M satisfies |¢(j, k)| =1 for all (j, k) € Zy x Z.
An element a € M is upper triangular (resp. lower triangular), in sym-

bols a € UT (resp. a € LT), provided that a(j,k) = 0 for j > k (resp.
a(j, k) =0 for j < k). If X is a space of matrices then we put

UTX ={aeX:aclUT}, LTX:={acX:a€eLlT}.

A matrix b € M is an extension of an a € UT (resp. a € LT) provided that
a(j, k) = b(j,k) for j <k (resp. a(j,k) = b(j,k) for j > k).

A matrix which is constant on all the diagonals parallel to the main
diagonal is called a Toeplitz matriz, i.e. a € M is Toeplitz if and only if
there exists a sequence (my)sez such that a(j, k) = my_; for j,k € Z,. If
a € UT is Toeplitz then it is determined by the sequence (m;)gez, -

The Schur product of a,b € M is the matrix a ¢ b defined by

aob(j,k) = a(j,k)b(j, k) for j,k € Zy.

The Schur multiplier induced by an a € M is the operator S, : M — M
defined by S, (b) = a©b. A Toeplitz multiplier is a Schur multiplier induced
by a Toeplitz matrix. If @ is a Toeplitz matrix determined by a sequence m
then the induced Toeplitz multiplier is usually denoted by T;,. Clearly Schur
multipliers preserve the class of upper triangular (resp. lower triangular)
matrices. If X and Y are spaces of matrices then the space of all Schur
multipliers X into Y is denoted by S(X,Y).
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The trace duality is determined by the bilinear form
(a,b) = Tr(ba) = > a(j, k)b(k, 5)
J.k€EL4
defined whenever the right hand side makes sense.

2. Schur multipliers from U7 S; into M;. In Proposition 2.1 below,
we describe the Schur multipliers from Sp into M. This is a folklore result,
e.g. it is implicitly stated without proof in [DLuQ)].

For a scalar sequence x = (§;)jez, we put ¥ = (|¢j])jez,. For z =
(&5)jez. and y = (mk)kez, define the simple tensor 2®y € M by z®y(j, k) =
&ng for j, k € Z. We denote by (-,-) the usual scalar product in ¢5.

PRrROPOSITION 2.1. The Schur multiplier Sy is a bounded linear operator
from S; into My if and only if b* € B(fy). Moreover ||Sy : S; — M|
= [16%]| B(ey)-

Proof. Recall that the extreme points of the unit ball of S; are all the

simple tensors x ® y with ||z||s,||y|le, = 1; moreover, convex combinations of
the extreme points are norm dense in the unit ball of S;. Thus, we have

Sy : S1 — M| = sup 15 (z @ y) || my
lzlley =lylley=1
= sup  [lbox@ylm,

llzlley=llylle,=1
= sup  [Prort @y,
llzlley=llylle,=1
= sup (b (%), 4%) = [|t*] p(ey). =
llzlley=llylle,=1
The main result of this section (Proposition 2.2), which describes the
Schur multipliers from U7 Sy into My, is an easy consequence of the follow-
ing “Arveson Criterion” (cf. [A], [Ov]). For a € LT and s € Z, define
Qs(a) € LT by
. a(j, k) for0<k<s,5s<j<o0,
Qi) = {20 0= ’
0 otherwise.

ARVESON CRITERION. An element a € LT admits an extension to an
element ¢ € B({2) if and only if

(2.1) sup [|Qs(a)l p(ey) < o0-

SEZy
Moreover, if (2.1) holds, then there exists an extension ¢ € B({2) of a such
that

el e,y = sup [Qs(a)lpes)-
S€Z+

We are ready to state
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PROPOSITION 2.2. Let b € UT. The Schur multiplier S, takes UT Sy
into My if and only if

(2.2) sup [|Qs("0) || p(ey) < 0.
S€Z+

Moreover if (2.2) holds then Sy is a bounded linear operator from UT Sy into
M and
1S : UT Sy — Mu|| = sup [|Qs("0") | peea)-

SELy

Proof. Assume that S,(U7S1) € M. Since the matrices in U7 S; with
finitely many non-zero entries are dense in U7 Sy, a routine application of
the Banach—Steinhaus principle implies that S is a bounded linear operator
from UT Sy into My. Let us put

k
= Z th(j, k)x(j, k) for z = (x(j,k)) e UTS;.

k€Z, j=0

Clearly

Y Zlb 7 k) (G, k)| = [1Se(@)[[my < (196 : UT St — M| ||
keZy j=0

Thus a* is a bounded linear functional on U7S; with |a*|| < ||Sy :
UTS; — M. Let a* be the norm preserving extension of a* to a lin-
ear functional on S;. Then in the trace duality a* is represented by a matrix
c € B(fy) such that |[c||p,) < ||Sh: UT S — M| and c(k, j) = (4, k) for
0<j <k, ke€Z,s. Hence cis an extension of tp?. By the Arveson Criterion,
supsez, 1Qs(09)[pe) < ISy : UT S — Mull.

Conversely, assume (2.2). Fix ¢ € M with €% = 1. Note that

(2.3) sup [|Qs("(e 0 0))ll (i) < sup [Q(H)|p(es)
S€Z+ S€Z+

(because for every a € B(f3) one has |[e ¢ allg(,) < HahHB(@)). It follows
from (2.2) and (2.3) combined with the Arveson Criterion that there exists
cc which extends (e o b) and satisfies ||cc||p(,) < supsez, HQS(tbu)HB(&).
Thus

Y S GGG (@ = (k) SUTS,)

keZy j=0

Therefore, in view of the trace duality,

o), = sup| 3 S0 R)al, )| < s el e

& _1 k€Z+] 0 EhEl
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Hence

1S5 : UT S — Mu| < sup [lezllpe,) < sup [|Qs (D) (es)- m
eh=1 SEZ+

REMARK 2.3. A particular case of Proposition 2.2 is [Sh, Theorem 2b)]
on matrices with positive entries.

3. Toeplitz multipliers from U7 S; into M;. Our first result is well
known: it gives a satisfactory description of Toeplitz multipliers from &
into M. As we learned from Prof. F. Lust-Piquard, it goes back to [Dg, Bn]
(after reformulating it in the languague of the Fourier transform).

PROPOSITION 3.1. A Toeplitz multiplier T,,, is a bounded linear operator
from Sy into My if and only if m = (ms)sez € £1(Z). Moreover

[T+ St — Mal| = [|mlle, z)-

Proof. To prove that T,,, with m € ¢1(Z) is bounded it is enough to verify
its action on the extreme points of the unit ball Bs, of §;. Let a =z ® y
with © = (§)jez.,y = (M )rez, and [|z||s||ylle, = 1 be an extreme point
of Bs,. We have

1Tz @ y)llae = Y Iyl €] el

jkEZ+
—ZZMr£]||m+sr+z|ms|2|5k ol 17k
s>0 j=0 s<0
<Z|ms|(2m ) (k)
s>0 k=s
1/2 , & /
+Z!ms!(21@ ()"
Jj=-s k=0
< Imsll2llelyle, =D Ims| = [mlle @)
SEZL SEZ

Thus [|Ty, : St — M| < [[m]lg,(z)- Conversely, let a™ = (™ @ (™ where
2™ = ((n+1)" 1/2 L (n+17Y%0,0,...).

n+1

Then [|a™||; = 1 while

n+1—|s|
T (al™) | a1, = Z\ms\i-

S=—n

Thus
[T : S1 — My > liTILnHTm(a("))HMI = [Imll¢,z)
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Next, we discuss Toeplitz multipliers from U7 S; into M.
For a complex sequence m = (m;)secz, we put

r(g+1)

om) = (|mor2+rm1|2+sup2( > )

s=rq+1

We write m € FM if and only if o(m) < co. Here FM stands for “Fefferman
multipliers”; in [BP] they are called H;-¢1 multipliers. Recall that about 1975
Charles Fefferman discovered that the condition m € FM characterizes the
Fourier multipliers from the Hardy space Hj on the unit disc into ¢;. For
the proof see [SzW, SISt|. It was observed in [BP] that Fefferman’s result
generalizes to Sy-valued Hi as follows:

THEOREM 3.2. For a complex sequence m = (ms)scz. the following are
equivalent:

(i) m € FM,
(ii) there is a constant ¢ > 0 independent of m such that

D7 imal [1F(s)ll < co(m)@m) ™ | [[f(e)]adt  for f€ Hi(T;Sy).
By -7
Here, H,(T;S1) denotes the closure in the norm (27)~1 " || f(e™)]|s, dt
of the linear span of “monomials” {t — e*'a : s € Z,, a € S}, and the
Fourier coefficients are defined by f(s) = 2m)" 1" flet)e st dt for f €
Hl(T;Sl), s € Zy.
Our next result can be regarded as the non-commutative analogue of
the original Fefferman characterization of the Fourier multipliers from H;
into £7.

THEOREM 3.3. A complex sequence m = (my)sez, is in FM if and only
if the Toeplitz multiplier T,, maps UT Sy into M. Precisely, the following
inequality holds:

(3.1) (V3)Lo(m) < || Ty : UTS) — M| < co(m).

The constant ¢ in (3.1) is the same as in Theorem 3.2 as well as in the
original Fefferman inequality for scalar-valued functions.

Proof. Since the eventually zero matrices are dense in UTS;, the
Banach—Steinhaus theorem implies that if 7,,(U7S;) C M; then T, is
a bounded operator. Thus, it is enough to establish (3.1) for eventually zero
matrices.
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The right hand inequality of (3.1). For a € UTS; and s € Z, define the
“s-diagonal” matrix ds(a) by

(3.2 du(a)(j, k) = {g"’ k)

Clearly ds(a) € Si and ||ds(a)||1 = > |a(k—s, k)|. Consider the S;-valued

function

for k — j = s,

otherwise.

Zd a)exp(ist) (—m <t <m).

We have the identity (cf. [DoS])
(3.3) fe® =u_tau; (—w <t <),
where u; is the unitary diagonal matrix defined by

(oK) {exp(ijt) for j =k,
U ) = .
1 0 for j # k.

Remembering that wu; is unitary, it follows from (3.3) that

1£ (€)1 = lluell ey lallillu—tll B,y = llalls.

Thus,

(3.4) (2m)” S £ (™)l dt = Jlal1.

—T

Hence, f € Hi(T;S&1); obviously f(s) = ds(a) for s € Z,. Thus, by Theo-
rem 3.2,

YN @)hlms| < cotmy@m) ™ | [L£(e™)]h dt.
s=0 r

Hence, invoking (3.4), we obtain

||T HMl ZZ|CL Jik mk j|_Z|ms|Z’a — 8, k

k= 0] 0
—Z!msHld )l < co(m)|als-

Therefore, ||T), : UTS; — M| < co(m), which completes the proof of the
right hand inequality of (3.1) .

The left hand inequality of (3.1). Assume that ||T,, : UT S — M| < oc.
Without loss of generality we may assume that ms; > 0 for s € Z,. Fix a
positive integer 7 and an eventually zero non-negative sequence (oy)qez.,
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with zq —0 aq = 1. Define upper triangular matrices a, a1, as by

a = a1+ ag,
=y, z=1(1,0,0,...),y=(ap,1,0,0,...),

as =uRv, U= (r*1/2,...,r*1/2,0,0,...), v = (Vk)keZs »
54,_/
where
0 for0 <k <r,
v = r_1/2a2 forr+1 <k <2r,
12 max(ag, agr1) forrg+1<k<r(qg+1) (¢=2,3,...).

Put t = a2 + of. Clearly ||z|ls, = 1 and ||y|ls, = vt. Thus |jai]1 = V2.
Similarly [|ulls, = 1 and

g 1/2 NN
lolles = (a3 + 3 max(ogir, aq02)?) - <v2(302) " = V21,
q=1 q=2
Thus, ||az|1 < +/2(1 —t). Hence,

lall < flatlls + llazl < VE+V2(1 =) < V3,

because the function ¢ +— v/t ++/2(1 — t) for 0 <t < 1 attains its maximum
at t = 1/3. Therefore

(3.5) V3T :UTS — M|l = [|Tn(a)l| sy -
Clearly, the entries of a satisfy
(3.6)
g for j =0, k=0,
a for j=0,k=1,
a(j, k) = { as/r for0<j<r,r+1<k<2r
max(ag, ag+1)/r for0<j<r,rg+1<k<r(g+1) (¢>2),
0 otherwise.

Obviously, T, (a) satisfies
Tm(a)(j, k) =a(j,k)my—; for0<j<FkandkecZ,.
Let
A={{,k):0<j<r k>r+1},
By={(G.k):0<j<r—Lrg<k-(G+1)<r(@+1} (¢=1),

B=|JB,

q>1
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Clearly, A D B. It follows from (3.6) that
(3.7) if (4,k) € By then a(j, k) > agy1/r for ¢ > 1.
Applying (3.6) and (3.7), we get

[T (a) My = como + arma + Z k)ymy._;
(5,k)eA
> agmg + aymq + Z )mk j
(4,k)eB
—a0m0+a1m1+z Z k)ymy_;
q>1 (j,k)€By

> agmg 4+ aymy + 1 E E Qg+1Mk—j-
921 (j,k)eBq

Note that, for a fixed ¢ > 1,

r(g+1)+j r(g+1)
E T aq+1mk —5 = E E r Oéq+1mk —j= E E r aquS
(4,k)€Byq 0<j<r k=rqg+j 0<j<r s=rq+1
r(g+1)
= Qqg+1 § Mms.
s=rq+1
Thus,
(g+1)r
(3.8) T (@)l at, > aomo + armi+ > ager Y ms
qg>1 s=rq+1

Recall that a depends only on a fixed r. Taking in (3.8) the supremum over
all eventually zero, non-negative (cg)gez, With 3 o7 a2 =1, we obtain

(g+1)r

Tl = (md i+ 3 (Y m)’)"

q>1  s=rg+l1

Thus, taking the supremum over r > 1 and invoking (3.5), we obtain the left
hand inequality of (3.1). =

Recall that the multiplier (1/(s+ 1))sez, corresponds to the classical
Hardy inequality > o7 |f(s)|/(s+1) <oofor f € H!(T). Thus

COROLLARY 3.4 ([Sh]). If a € L{781 then

!CLJ,
Sy

7>0 k:>]
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REMARK 3.5. Let

N 1/2
eo(m) = sup (V172 (s +1)2m,f?) ",
s=0

NeZy

where m = (ms)sezJr is a scalar sequence. A classical result of Paley,
and Hardy and Littlewood (cf. [Pa 1, HL], [Du, Ch. 6, Theorem 6.7])
asserts that m is a Fourier multiplier from H; to ¢3(Z.) if and only if
02(m) < co. More generally it follows from [BP], Theorem 3.3 and Proposi-
tion 3.1 that

(x) There is ¢ > 0 such that for every scalar sequence m,
Y ImsPUFEIE < Eoa(m)? | fll7y s,y f € Hi(T; S1).
SEZy

Thus, with the same constant ¢, we have

PROPOSITION 3.6. For any scalar sequence m = (ms)scz, one has

39 om< s (X mPld@l) " < corlm),

llafl1 <1 SEZ 4
where dg(a) is defined by (3.2).

Proof. The proof of the right hand inequality of (3.9) is almost the same
as the proof of the right hand inequality of (3.1) with Theorem 3.2 replaced
by (*). To establish the left hand inequality of (3.9) for fixed N € Z, define
a™N) e UT S by

a(N)(j,k):{(N+1)1 for0<j< Nand N+1<k<2N+1,

otherwise.

Then [[a™)]|; = 1 and [|ds(a™)]||; = $4% for s =0,1,...,N. Thus,

N

(N+1)72 (s +1)*|m|* = ZHd IImsl? < Y llds(@™) [ ms?.

s=0 SEZy
Letting N — oo, we get

02(m) = sup (N + 1)_1( Z (s+ 1)2]ms]2) 2

NEZ+ SEZLy

1/2
< sw (3 llds(a) Plmsf?)
||ClH1 S€EZ 4

which is equivalent to the left hand inequality of (3.9). m
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It was observed by Prof. F. Lust-Piquard that ||T;, : UTS1 — Ms| =
|lm||oc because UT Sy C UT Sy = UT Ms. Thus in contrast to the result of
Paley and Hardy and Littlewood mentioned above, the norms g2(m) and
| T : UT Sy — Ms|| are not equivalent.

4. Schur multipliers from B(¢3) into M;. We describe the space
S := S(B(¥2), M) of all Schur multipliers from B(¢3) into M;. Note that
the zero matrix is the only Toeplitz multiplier from B(¢3) into M;. To for-
mulate the main result of this section we define the following norms for

a € M:

1/2
(4.1) lalleyeny = | ( 32 laCm) |, a<p <o),
keZ+ i
(4.2) Bla) = a:iaf,lJfra,,{Ha/Hﬁl(zz) + %0 lley (o)}
/
=, {2 (X wewr)”
B JEZL kEZ4
1/2
+ 3 (X eGRR) T
keZy  jEL
(4.3) ala) = sup |leoall.
ei=1

THEOREM 4.1. For every a € M we have a(a) < oo if and only if
B(a) < oco. Moreover

(4.4) |Sa : B(l2) — M| = a(a);
and there is an absolute constant C' < oo such that
(4.5) ala) < fBla) < Cala) Yae M.

The essential part of Theorem 4.1 is the inequality (4.5). It follows from
results in [Lu| and extends to the non-commutative setting Nazarov’s [N] gen-
eralization of the Kahane-Katznelson—-de Leeuw [KKL] theorem on Fourier
coefficients. The shortest way to get (4.5) is to use the characterization of
multipliers from c¢o(Z4+ x Z4) into S [Lu, p. 373] and dualize it. However
we derive (4.5) from the central statement [Lu, Theorem 2]:

(LP) There is an absolute constant K > 0 such that if ¢ € M satisfies

max(||dlle. es), [IDllew (22) < 1,

then there exists a vy € B({2) such that ||[¢| e,y < K and |¢(j, k)|
< |¢(.77 k)’ fO’I” (]7 k) € Z+ X Z+'



Toeplitz multipliers and Hankel matrices 187

Proof of Theorem J.1. The trace duality between S; and B(¢3) yields
the equality (4.4):

I1Sa : B(ls) — My|| =  sup > lal k)b, k)l
16l Be0)=1 (j kyez 4 x 2

= sup sup Z (g, k)a(j, k)b(j, k)
16l Ben) =1 " =1 ( 1yez x 7y

=sup sup Tr(*(eoa)b)
ei=1 bl p(ey)=1

sup ||t(.€<>a)H1 = sup |le ¢ al|;.
ei=1 ei=1

The left hand inequality of (4.5) is easy. Fix a € M with ((a) < co. For
n > 0 pick @’ and a” so that a = a’ + a” and

HG’IH&(ZQ) + ”ta”H&(b) < B(a) + 7.

Let 7a’ denote the jth row of a’. Since a(’a’) = (X kez, la'(J, k)|?)Y/2, the
triangle inequality for a yields a(a’) < [|a’||¢, (s,)- The same argument applied
to the columns of a” gives a(a”) < [|*a”||, (¢,)- Adding these two inequalities
together, taking into account that a(a) < a(a’) + a(a”) and letting n — 0,
we get the left hand inequality of (4.5).

For the right hand inequality of (4.5) we need the following known fact:

LEMMA 4.2. Let 3*(¢) := supg(q)<1 Tr(ag) for ¢ € M. Then
(4.6) B3(¢) = max([|@ll e 62> Bl e (t2))-

For the sake of completeness we give the proof of Lemma 4.2 after we
finish the proof of Theorem 4.1.

Let us consider the spaces and balls
(M,B")={ae M:p"(a) <o}, (M,B)={aeM:[(a)< o},
By ={a e M:afa) <1}, Bg ={aec M:p(a) <1}.
It follows from Lemma 4.2 that (M, (3*) is the dual of (M, ) in the trace
duality.
Pick a € M with (a) > 1. Since Bg is a balanced closed (in the norm f3)

convex set, the separation theorem yields the existence of a functional ¢ such
that

(4.7) Tr(ag) >
(4.8) B*(9) <
(4.8) implies that there exists ¢ as in (LP). Hence, there exist ¢ € M and

L,
1.
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b € M such that
=1, b(,k)>1 for (j,k) € Zy x Zy,
Yp=cobo¢d with ||V] e < K.

Define 0 € M by

e(J, k) sign(o(j, k)a(k, j))

(4.9)

o(j,k) = for (j,k) € Zy x Zy and ¢(j, k)a(k,j) # 0,
1 otherwise.
Clearly ¢ = 1. Thus, invoking (LP), (4.7) and (4.9), we get
Mol =| > vkl kalk,)

(4.k)EL4 XLy

=| X G RbG RIS R)EGR) sign(@(, K)a(k, §))alk, j)

(J,k)EL1 XLy

= Y b RIeGRalk ) = D | k)a(k, )]

(j’k)€Z+XZ+ (j:k)€Z+><Z+

> > e kak,g)| = ITe(ga)] = 1.

(J,k)ELL X T+
Invoking (4.3) and the trace duality between B(¢3) and S1, by (4.9), we get
1< |Tr((¢o0)a)| = Tr(y - (‘o 0a)| < [Ullpey "o o alli < Ka(a).

Hence, we have shown that 3(a) > 1 yields a(a) > K~!, which implies the
right hand inequality of (4.5) fora € M with C =K. =

Proof of Lemma 4.2. Put
Bb.c) = [blleyer) + I elleyes)  ((b¢) € M@ M).

Consider the space

E = {(b,c) e M@ M :B(b,c) < co}.
equipped with the norm B
Define the map ¢ : £ — M by ¢q(b,c) = b+ c. Obviously kerq =
{(b,¢) : b= —c}. A moment’s reflection shows that ¢ is a contractive surjec-
tion from E onto (M, 3), hence the Banach space (M, ) can be identified
with the quotient E/ker q. Thus the dual space of (M, 3) can be identified
with the annihilator of ker g in the space

E* ={(¢,¥) e MO M : (B)* < oo}

Clearly (6)*(¢,%¢) = max(||dlle(e), [I"¥lle.o (e))- The annihilator of kerg
is {(¢,v) € E* : ¢ = 1}. Indeed, the duality is given by (¢,v)(b,c) =
Tr(ag) + Tr(by). Putting b = —¢, we obtain ¢ = 1. This yields (4.6). =
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5. Schur multipliers from U7 B(¢3) into M;. The main result of
this section, Theorem 5.1, is due to G. Pisier and is published here with his
permission. It can be stated as the formula S(UT B(¢2), M1) = UTS. Recall
that S = S(B(f2), M) stands for the space of Schur multipliers from B(/3)
into My characterized in Theorem 4.1. Precisely, we shall prove

THEOREM 5.1. An element a € UT M induces a Schur multiplier S, :
UT B(ls) — My if and only if a € UTS. Equivalently, there is an absolute
constant K, > 0 such that

(5.1) K,;'a(a) <v(a) < ala), where ~(a)=|Sq:UTB(ls) — M.
Note that in this section we use S, to denote Schur multipliers induced
by elements a € UT M or a € M acting on the space UT B({3), while Schur
multipliers induced by elements a € M acting on B({2) are denoted by S,.
We begin with
LEMMA 5.2. UT M is dense in UTS in the norm (-).

Outline of proof. Let e;, denote the unit (j, k)-entry matrix. Let UT Sy
denote the closure of Y7 M in the norm ~(-). All infinite sums of matrices
are regarded in entrywise convergence. Fix b € UTS. Note that

(1) (R 00, K)eji) = (R, b0, K)P)V? for 0 < j <m < co.
(ii) Let bs = 377 ¢ > pe; 0(j, k)ejk for s € Zi. Then by, € UTSy and
limg v(bs) = (b).

(iii) limg ||(b — bs) © al|pmq, = O for every a € B({2).
Assume to the contrary that there exists b € UTS\UT Sp. Then there exists
d > 0 such that v(b—1¥') > § for every b’ € UTSy. This allows constructing
inductively an increasing sequence (5,,)1,62+ of indices with ng = 0 and a
sequence (a,),ez, of matrices in U7 My such that

||aVHB(€2) =1, suppa, C{(j,k) €Zy XLy :8, <j<k<syu1},
[(b=bs,. 1) 0 avlla, < 27(1&2)57
,y(b - bsu) > ||(b - bsu) <>a’V||M1 = ”(b5u+1 - bSy) ¢ al/”Ml > (]- - 2_(V+2))6

Put a = ), ja,. Since the supports of the a,’s are contained in the con-
secutive rectangles whose projections onto the j-axis and k-axis are disjoint,
lallpees) = sup, llav||p(e,) = 1. We have b = bs, + 3272 (bs, ., — bs, ). Hence

oo
b0 allpy = [1bsy © @y + Y [1(Bs,ey — bs,) © allag,
v=0

S )
= Hbso <>a0||M1 + Z ||(b3u+1 - bsu) <>aV+1||M1 > 25/2 = 00.
v=0 v=0

A contradiction. =
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Since S, extends Sa, the right hand inequality of (5.1) is obvious. To prove
the left hand inequality we need more notation. Let |z|s = (z*z + z2*)'/?
for # € B({3). Call a matrix d a diagonal state provided that d(j,k)=0
for (j,k) € Zy x Zy with j # k, and d; := d(j,j) > 0 for j € Zy,
and Trd = Z]’eer d; = 1. Our proof essentially uses the concept of p-C*-
summing operator introduced by G. Pisier [Pi 1, M, PiX, p. 1488]. For our
purpose, in the case of Schur upper triangular multipliers, it can be defined
as follows:

DEFINITION 5.3. Let 1 < p < oo and let a € UT My. The multiplier
Sa : UT B(ly) — My is p-C*-summing provided that there exist a diagonal
state d and a non-negative constant Cy(a, d) such that

(5.2) laoz|m, < Cpla,d) Te(d|zP)YP  for & € UT B(fy).

Define the p-C*-summing constant by Cp(a) = inf{Cp(a,d) : d satisfies
(5.2)}. The symbol S, stands for the multiplier from B(f) into M. The
multiplier S, : B(fy) — My is p-C*-summing provided it satisfies (5.2) for
2 € B(ly); the p-C*-summing constant of S, is denoted by C~’p(a).

REMARK 5.4. (i) p-C*-summing operators can be defined in terms
of domination by states which play the role of Pietsch measures (cf.
[PiX, pp. 1488-1489]). The definition extends to subspaces of C*-algebras.
Prof. G. Pisier observed (oral communication) that for Schur multipliers
from UT B(l2) and B({2) general states can be replaced by diagonal ones.
This justifies Definition 5.3.

(ii) If a € UT My then Cp(a,d) < oo for every diagonal state d (enough
to check for matrices with only one entry different from zero).

(iii) Let 1 < p; < p2 < oo. If (5.2) is satisfied for some diagonal state d for
p1 with Cp, (a,d) then it is satisfied for p, with the same constant C,, (a, d).
Hence Cp,(a) < Cyp, (a).

PROPOSITION 5.5. Let [(-) be defined by (4.2). If S, : UT B(l3) — My
is 2-C*-summing then 3(a) < 2v/2 Ca(a).

Proof. By Lemma 5.2, it is enough to establish the assertion for a €
UT My. Fix a diagonal state d. Put A = {(j,k) € Zy xZy : j <k}, A' =
{(J,k)e A:dj >dy}, A" =A\A. Let o/ =1y 0aand a’ =1 v 0a.

It is sufficient to show that
(5.3) lalle, () < V2Ca(a) and  [a”|gy1,) < V2Ca(a).

We shall prove only the first inequality, since the proof of the second is
similar. To this end, we first show that

(5.4) |d=Y2d" o x| pq, < V2Cs(a)||zlls (2 € UT My).
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The linearity and commutativity of the trace imply
1Sazl| pm, < Cala,d)(Tr(d]z|?))Y? = Cy(a, d)(Tr(dz*z + za*d)) /2.
Thus

|Sarzl|amy = |Sa(1ar © 2) || Ay

< Calad)(T( Y GleGRP+ falGibPa))

(4,k)eA’
1/2
< Cy(a, d) (Tr( 3 24, k)]2>) " (by definition of A)
(4,k)eA’
= Cy(a,d)V2||d"?x||2.

Replacing = by d~'/2z, we obtain (5.4). On the other hand, remembering

that > ez, d; = 1 and applying the Schwarz inequality, we get

65 e =3 (X 1WGHE)"

JE€Zy ke,

= S 4 ( X G pE)

j€Z+ kEZ+

<(Ta)"( T aeenr)”

JEZy (j,k)EA

- (X ahenr)”

(J,k)eA

Since 3 (; kyea ]dj_l/ d (4, k)x(j, k)| = ||d"Y2d’ ox| a4, , taking the supremum
in (5.4) over all z € UT Mo with 37 1y 4 [2(], k)2 =1 we get

( Z d; Ya' (5, k )1 < Cy(a, d)V2.

(j,k)eA
Combining the latter inequality with (5.5) we obtain
(5.6) la'lley (e2) < V2Ca(a, d).

Taking in (5.6) the infimum over all diagonal states d we obtain the first
inequality in (5.3). =

The proof of the next proposition heavily depends on interpolation the-
ory.

PROPOSITION 5.6. There exists Ly > 0 such that, for every a € UT My,
(5.7) Cy(a) < Lu\/Ca(a)v(a).
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Proof. Fix a diagonal state d. Since a € UT My, we may assume that
C3(a,d) < co. Define a’ and a” as in the proof of Proposition 5.5. We shall
work first with a’. Assume that © € U7 M. From the definition of ~(a),
noting that ||’ ¢ z|| s, < |la© z|| sy, and applying (5.4), we have
(5.8) la" o 2]l am, < v(a)lzllBe),

(5.9) ld"%a" o 2| pa, < V2Ca(a, d)|]|o-

Since |d(-_1/2)iy| = 1 for every real y and for every j € Z,, it follows from
(5.8) and (5.9) that

1427 o 2| pay < ()2l 5(es) for Rz = 0,

1d= V220" o & g, < V2Ch(a,d)||zlla for Rz = 1.
It follows from a result of Pisier [Pi 2] (see also Remark (i) after Lem-
ma 8.5 in [PiX]) that the couple (UT B({2),UT S>) is K-closed in the couple
(B(¢2),S2). Now, applying the interpolation result of [GK, Ch. III, §5], we
obtain, for § = 1/2,
(5.10) || dTYD A2 o 2| g, < L/v(a)Co(a, d)||z|s  for 2 € UT Mo,

where the constant L depends only on the couple.
Let P : My — Mg be the main triangular projection, namely Py = 10y
for y € Mp. Recall that (cf. e.g. [GK, Ch. III, §6, Theorem 6.2])

(5.11)  there is K4 > 0 such that
Tr(|Py|Y) < KiTr(ly|*) for every y € M.
Combining (5.10) and (5.11) yields

|44 o yllag, = 1440 Pyllas, < Ly/4(@)Ca(a )| Pylls
< LE4\/7(a)Ca(a,d)|ylla,  for y € M.
Substituting d'/*y in place of y, we obtain
(512) |l o ylls, < LEKav/A(a) - Co(a, d)(Tr(|d*y[H* for y € Mo.

Using the commutativity of the trace several times, the fact that Tr(A-B) > 0
whenever A and B are positive matrices, and |y|? — |y*|> > 0, we get

Te(|d"*y|*) = Te(y*d'Pyy*d'/?y) = Te(d" 2|y 2d"2[y*|?)
< Te(d'2y*[2d'2|y|2) < Te(d?|y[2d"2|y|2)
= || lylsd"?|yls||3-

Notice that
Iylsd"2[ylsll3 < 11d"2[yl2]13 = Tr(lylsdlyl?) = Tr(dlyl2).

In the latter inequality we use the fact that if A and Z are positive hermitian
matrices in Mg then |AZAl|s < || ZA?||2. This is easy to see if we choose an
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orthonormal basis so that A is a diagonal matrix. Thus

la" o yllagy < LKsy/A(@)Co(a, d)(Tx(dly|E)"*  for y € Mo.

Similarly, we obtain

a0 yllan, < LEuy/A@0oa D(Te(dy)*  for y € My,
Hence, remembering that a = @’ + a” and using the triangle inequality, we
infer that

la oyl < 2L Kiy/y(a)Cola,d)(Tr(dly)"*  for y € Mo.
According to Definition 5.3, taking the infimum over all diagonal states, we
obtain (5.7). m

Proof of Theorem 5.1. We have proved in the proposition above that
there exists a constant L, > 0 such that

Cyu(a) < Ly/Ca(a)y(a) for a € UT My.

Now we use an observation of Pisier (cf. [M, Proposition 3|) that every
4-C*-summing operator from B({3) into a Banach space of cotype 2 (in
particular, into My = ¢1(Z4+ x Z4)) is 2-C*-summing. Hence, there is a
constant K > 0 independent of a such that Cy(a) < KCy(a). Since S,
extends S,, we have Cy(a) < Cs(a). Thus,

Co(a) < LK \/Cy(a)y(a) for a € UT M,
or, equivalently,
(5.13) Cs(a) < L2K?y(a)  for a € UT M.

Combining (5.13) with the assertion of Proposition 5.5, we find that there
exists a constant K, > 0 such that

(5.14) B(a) < Kyy(a) for a € UT Mo,

and combining this inequality with the left hand inequality of (4.5), we obtain
the left hand inequality of (5.1). =

REMARK 5.7. Theorem 5.1 can be regarded as a non-commutative ana-
logue of Paley’s theorem [Pa 2| which asserts that the space of Fourier
multipliers from H,, (resp. from the disc algebra) into ¢;(Z;) coincides
with ¢3(Z;). Theorem 4.1 corresponds to the well known fact that the
space of Fourier multipliers from Lo (T) (resp. from C(T)) into ¢1(Z) co-
incides with f2(Z). Thus, the Fourier multipliers from Ho, (resp. the disc
algebra) into ¢1(Z4) form a complemented subspace in the space of Fourier
multipliers from Lo (T) (resp. C(T)) into ¢1(Z) although Hs is not com-
plemented in Lo, (resp. the disc algebra is not complemented in C(T)).
Similarly, S(UT B(¢2), M1) = UTS is complemented in S = S(B(f2), M1),
although U7 B({2) is not complemented in B(¢3).
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6. Hankel matrices and Mazur’s problems. In this section we dis-
cuss some properties of Hankel matrices related to the problems of Stanistaw
Mazur (cf. [Scb, Problems 8 and 88]). The problems have been solved inde-
pendently by P. P. B. Eggermont and Y. J. Leung [EL| and by S. Kwapien
and the first named author of the present paper [KwP]. We discuss some
qualitative improvement of the solutions. We follow the approach of [KwP].

DEFINITION 6.1. An a € M is said to be a Hankel matriz (notation
a € H) provided that

a(j, k) =a(0,j + k) ((J,k) € Zy x Zy).
Let
Hp,=HNM, ={a€H:a(jk) =0 for max(j, k) >n} (n=0,1,...).
Note that

oo
(6.1) lallave =Y (k+Da(0. k)] (a€H).

k=0
For a € H the series ¢ ~ >~ a*) exp(ikt), where a*) = a(0, k) for k € Z,
is called the symbol of a. Conversely, given a series ¢ we denote by ajg) the
corresponding Hankel matrix whose symbol is ¢.

Let
lall, 0, =50 > | 3 aGiik)or|  (a€ M),

JET,  keZy

the supremum extending over all scalar sequences (o)rez, with |op| < 1;

G&l={aeM:|a|, -, <oo}

El@:@ﬁl
Let

ho= s el (R=01,...).

a€EHn; Ha||elée1 =1

Note that the quantities ||al| and h,, depend on the field of scalars.

0%
S. Mazur asked (cf. [Sch, Problem 88]) whether a € H N /¢; ® ¢1 implies
lallag, < oo
The negative answer is an immediate consequence of the next proposition
combined with the Banach—Steinhaus principle.

PROPOSITION 6.2. There is Cy > 0 such that
hn,>CiVn+1 (n=0,1,...).

In what follows, (-,-) denotes the usual scalar product in L?(—n,7),

s

(6,9 = (2m)~" | o(t)e(t) dt.

—T
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LEMMA 6.3. Let ¢(t) = S 3_,a® exp(ikt) be an analytic trigonometric
polynomial of degree n. Then

(6.2) el 3, < (n+ 1) sup 69

Proof. Pick (z(k))}_, with |z(k)] <1 for k=0,1,... so that

n n—j
loggill, a0, = D | D al0,4 + k)= (k)|

7=0 k=0

Define trigonometric polynomials

F(t) =Y z(k)exp(—ikt), g(t) =Y w;exp(ijt),
k=0 =0
where
w]—51gnz ¢(0,+k) (j=0,1,...,n).

Clearly o f = Zj:_n -exp(zgt), where in particular

—J
Z%} 0,j+k)z(k) (j=0,1,...,n).
k=0

Thus

(6f.9) zdw] Z\Zawowk 2(k)] = llagall, o,

7=0 k=0

On the other hand, using the Cauchy—Schwarz inequality, and taking into
account that (f, f) < n+1and (g,g) < n+1 (because deg f < n+1, degg <
n+1, |z(k)| <1, |w;| <1for j,k=0,1,...,n) we obtain

(o f, 9) < (of, 6f) /% (g, 9)"/* < sup o) |(f, £)V*(g, 9)"/?

[t|<m
< (n+1)sup |p(t)]. =
[t|<m

Proof of Proposition 6.2. Let (p,)5>, be a sequence of analytic trigono-
metric polynomials such that

(i) degpp, =n (n=0,1,...);
(ii) the absolute values of the coefficients with indices < n of p, are

equal to 1;
(iii) there is a constant C' > 0 such that
(6.3) sup [p,(t)| < Cvn+1 (n=0,1,...).

|t|<m
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It follows from (6.3) and Lemma 6.3 that [[ap,,||
Thus, by (6.1) and (ii),

< (n+1)Cv/n+ 1.

fléfl

n

lap, oty =D (G +1) = (n+1)(n+2)/2.
=0

Therefore
o (n+1)(n +2)/2
"= Tapoil, o = Clu+ D72

>CvVn+1 n

REMARK 6.4. We present some examples of sequences of analytic trigono-
metric polynomials satisfying (i)—(iii).

(a) Let g for m = 0,1,... be the mth Rudin-Shapiro polynomial
(cf. [GrM, p. 33]). Then deg q,, = 2™ — 1, the jth coefficient of ¢,, equals +1,
and supjy <, [gm(t)] < 2m+D/2 Forn = 0,1,... let n+1=2"1 4 ... 4+ 2™
where 2™ < np < 2™+l _ 2 and m; > --- > my > 0. Put

r J
pn(t) = gm, (1) + Z Gmj4y €XD (Z Qm%'t).
j=1 r=1

Then degp, = n and

Tk
sup [p (1) < 3202 < OV F L

[t|<m

h

J=0

with some C' < 2+ /2.
(b) The van der Corput polynomials (cf. [Z, Ch. V, Theorem 4.7]) are
defined by

n
po=1, p,=1+ Zexp(ijclnj +ijz) (n=1,2,...), ¢ >0 fixed.
j=1
The sequence constructed from the Rudin—Shapiro polynomials has real co-
efficients, while the van der Corput polynomials have complex coefficients.
The latter have been used in a different way in [EL] to solve Mazur’s problem.
(¢) For polynomials with complex coefficients one can make the constant
C' appearing in (6.3) for large n arbitrarily close to 1. This follows from the
following deep result due to J.-P. Kahane [K]:
There exists a sequence

Ka(t) =Y aPexp(ijt), |d"]=1 (j=1,...,n;n=12..),
j=1
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and a sequence (,,) of positive numbers with e, = O(n~/17/Inn) such that
(1—e)Vn<K,(t) < (14e)vn (t|<mn=12,...).

REMARK 6.5. In fact, h, = O(y/n). The rate of growth is the same as
for the analogous quantity w, for all matrices in M,,. Precisely let

Up = sup el -

a€Mn; llall, &, =1

Obviously h,, < u,, for all n. The next fact is well known and essentially goes
back to Orlicz [O].

PROPOSITION 6.6.
(6.4) up, <CVn+1 (n=0,1,...),

where

(6.5) & { V2 for real scalars,

2/\/m  for complez scalars.

Proof. Let a € M,. Let (nx) be either a sequence of independent Ber-
noulli random variables (real case), or Steinhaus r.v. (complex case). Using
the Cauchy—Schwarz inequality and then the Khinchin type inequality we
get

Jallag, < VAT Y laik?)
§=0 k=0
< Zé\/n+ 1E‘ ana(j, k:)‘
j=0 k=0
< CvVn+1|a|

which proves (6.4). To get (6.5), we use the results of Szarek for Bernoulli
r.v. and of Sawa for Steinhaus r.v. on the best constants in Khinchin type
inequalities (cf. [KnKw| and references there). u

flé)fl’

Our next result strengthens the negative answer to Mazur’s Problem 88.
It is “almost sharp”.
Define the “critical broken line” ¥ : (0;00) — (—1;00) by
3
34 _ <
Lp(t):{2t 1 for0<t<2,
t for t > 2.
Forae HN ¥ é)ﬁl put

ve =1a(0,k)|  (k€Zy), Aa)= > vp(k+1)""  (0<t<o0).
k€Z+
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THEOREM 6.7.
(I) If B <W(t) then

Z v,’i(k—i—l)ﬁ <oo forallae HN¥ Q:@El.
kEZy
(IT) If B> ¥(t) then
Zv}i(k‘—i—l)ﬁ:oo forsomeaEHﬂ&é)El.
kEZ
(1) If 4/3 <t < oo then Ay(a) < 0o for all a € HN & 61

To prove (I) we need

LEMMA 6.8. Let C be defined by (6.5). Then for a € H N é)ﬁl,
2m_1
Y vk + 170 < (220 a|
fe=2m—1
Proof. CASE 1: 0 < t < 2. The Hoélder inequality for the exponent 2/t
yields

£®£1) (m=1,2,...; 0 <t < o0).

2m—1 2m—1
(6.6) ST vh(k+ 1P < 2. 2P Omo(—t/2)(m- 1( 3 vk> :
k=2om—1 =om—1

because if 2™~ 1 < k < 2™ — 1, then
g {20 nez2
22207 for 0 <t < 2/3.

Recall Littlewood’s inequality [L] and its consequence for Hankel matrices:

S (X laGmE)" < Clal, 5, (e M),

JEZy k€EZ4
(6.7) o 12
> (Xoet) " <Clal,z, (acn.
J€Zy  h=j
Thus,
2m—1 1/2 am-l_1  2Mm—1—j 1/2
(6.8) 2m—1( 3 vk) > ( 3 viﬂ) < Cllall, .-
k=2m—1 j=0  k=2m-1_j
Since ¥(t) = 3t — 1 for 0 < ¢ < 2, (6.8) combined with (6.6) yields
2m_1
Z Ui(k‘ﬂ-l) (t) <2. 247(t)m2(1 t/2)(m— 1)(21 mCHa’HE ®£)
k=2m-1 3/27
_ (2¥2Ca -, I)

This completes the proof of Lemma 6.8 in Case 1.
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CASE 2: 2 <t < 00. Since ¥(2) = 2, applying Case 1 for t = 2 we get

271 2m 1

t/2
S o0 < (3 k1)) < (220Nl )" n
k=2m—1 k=2m—1

Proof of Theorem 6.7. For (I) note that if 3 — ¥(t) < 0 then for m =
1,2,...,

21 om 1
S bk +1)7 <20 DEEO) S g4 1)PO
k=2m~—1 k—gm—1

< 2O /2 g, ., )"

Thus

om

Z(k+1 U+Z Z vi(k + 1)° < oo.

k‘EZ+ m=1 p=2m—1

To prove (II) observe that, by the Banach—Steinhaus principle, it suffices
to exhibit a sequence (a,) C H Ny & ¢4\ {0} for n € Z, such that

(6.9)  lim (flal| P> Jan(0, k)| (k+1)° =00 whenever 8 > W(t).

kEZ

{1 ®£1

Let 0 < t < 2. Put a, = ap,,] for n € Z, where (p,) is any sequence of
trigonometric polynomials described in Remark 6.4. Then for g > ¥ (t) > —1
there is C'= C(8) > 0 such that

n

S a0, B) [k + 1) =Y (k+1)7 > Cn* (nezy),
keZ k=0

while it follows from the proof of Proposition 6.2 that ||ay,, HZ B = O(n3t/2).
1 1

Thus we get (6.9) because if 3 > W(t) then nft1 > n3/2,
If t > 2 we define a,, € ‘H for n € Z by

) 1 for j+ k=n,
0 otherwise.
Then HanHZ = (n+1)" while 35, 5 |an(k,0)["(k+1)7 = (n+1)", which
1 1
yields (6.9) because if ¢ > 2 then 8 > ¥(t) =

To prove (III) first observe that, by a result due to Littlewood [L], if
a € M and H?H&ézl < oo then 3 1z, «z, la(d; k)]4/3 < o0o. In particular,

ifa € MNe &0, then Ayjyla) =Yg, v (k+1) <
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Next, consider the case ¢ = 2. Then ¥(2) = 2. We have to prove that if
a € HN{ &L, then As(a) = > 72 gvi(k + 1) < co. Put

Vi = (ivg)m (k=0,1,...).

v=Ek
Note that

ViV 2 V2= vl (p=kk+1,...;k=01,..).
=p

Clearly we can write (6.7) as 6“0”’[1@61 > > kez, Vk- Squaring both sides,

we have
- 2 e
20 112 _ 2

Clalff g, 2 (W) = 30 (W2 32 vinp)

keZ, keZ, p=k+1

[e’s) k

>y (v,3+2 3 sz> =3 S @+ 1)} = 4s(a).
keZ, p=k+1 ke€Z, v=0

Next, let 4/3 < t < 2. Choose 0 so that t = 6-4/3+2(1—6). Then 0 < 0 < 1.
The numerical inequality a4+ 8 > o?8'=9 for a, f > 0 implies

Agja(a) + As(a) = 37 (0P (k+ 1) + o (k +1)%)
kEZ+

> Z Uz.4/3+2(1_9)(k)+ 1)9+2(179) _ At(a).

keZy
Finally, if ¢ > 2, then

Ag(a) = Y v (k+ 1) < ( > vk + 1)2)'5/2 = Ag(a)!/?. u

keZ keZ

REMARK 6.9. The behavior of the series Ai(a) = > jcz, vt (k + 1)¥®
seems to be unknown for 0 < ¢ < 4/3. Since the harmonic series diverges,

lim;_,9 A¢(a) = oo for any a € H N4 & 01 whose symbol has almost all
coefficients different from 0.

REMARK 6.10.

(i) If a € M and ||a|\£1(§£1 < oo then a € §; and ||al|1 < |a|
(ii) There exists a € S; N'H with ||al]

51<§51'
515951 -

Proof. Part (i) is known. Let b € M. Clearly 3, [b(t, k)2 < 15[ B(es)
for k € Z4. Thus, by the Schwarz inequality and by (6.7)

3
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ITr(ab)| :( > a(s,k)b(k,s)‘

kJEZ+ SEL 4

<3 (X tatew®) (X i)

k€Zy s€Zy teZy

1/2 -
<3 (3 tals. ) bl ey < Clal, 2, 1ol
kEZy s€ly
Since My is norm dense in K (¢3), the trace duality between K (¢2) and S;
implies that ||a|; < HaH&égl.
(ii) It is enough to show

sup [[all
aEMoNH; |la|[1<1

0&e o0
We need [Pe, Ch. VI, Lemma 1.3]: If F' is an analytic trigonometric polyno-

mial of degree n then
K

1
lagmll < (n+1) o RAGIK:2
7I' —7
Let F), be the n-shifted Fejér kernel,
1 n 2n
F, = — [kZO(IH_ 1) exp(zk)—l—kz;_l@n—i—l—k) exp(ik)| (n=1,2,...).
= =N

Peller’s lemma mentioned above and properties of Fejér kernels imply that
H ﬁa[pn] Hl = 1. Since the non-zero coefficients of F}, are positive, we have

1 1 2n 2n—j —_
Ur)| . = a4, k) = (n=1,2,...).

Next we consider Problem 8 of [Scb]. Let B : ¢ x ¢ — ¢ be the bilinear
form defined by

(6.10)  B((zn), (yn)) = (2n) where z,=(n—+1)"!

n

TpYn—k (N EZy),
k=0

where ¢ stands for the space of all convergent scalar sequences. Stanistaw

Mazur asked: “Does B map ¢ X ¢ onto ¢?”. The answer is negative:
PROPOSITION 6.11. B is not surjective.

Proof. Recall that every bounded bilinear form A: XxY — Z,
where X,Y, Z are Banach spaces, uniquely extends to a linear operator A :
X ®Y — Z (here ® denotes the projective tensor product) such that

Alz,y) =Alz®y) (reX,yeY),

moreover ||A|| = ||A| (cf. [DeF, Ch. 1, §3]).
Clearly if A is surjective then so is A.
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By [DnSc, Ch. VI, §6], if A : V' — Z (V,Z Banach spaces) is surjec-
tive then the adjoint operator A* : Z* — V* is an isomorphic embedding,
equivalently

(6.11) |A*(z%)|| > ~]|z*|| (2" € Z¥) for some v > 0.
We show that the linearization B of Mazur’s bilinear form B defined by
(6.10) violates (6.11).

Clearly ||B|| = ||B*|| = ||B|| = 1. Identify ¢* with ¢1(Z4+ U {oc0}). Let
(63 )kez,U{oc} be the unit vector basis of ¢*. An easy calculation gives

B*(6p)(r @y) = k+12 Tiyp—; (= (xp) €c,y=(yn) € k € Zy).

Put E, =span{é; : 0 <k <nforn=0,1,2,...} and let

1B*2* (| (g,
%Zo;é;PeE 4“ (n=0,1,...).

Let (pn)nez, be a sequence of analytic trigonometric polynomials satisfying
(1)-(iii) in the proof of Proposition 6.2. Fix n € Z,. Consider the functional
Y on ¢ ® c defined by

n

b =B (Y (k+ Dag, (0, k)o7 )
k=0
Then, remembering that degp, = n and qp, (j,k) =0 for j + k > n, we
have

[Pllege- = sup [Pz @y)|

zlle<1; ly[le<1

= sup ‘Z Z Alp,] Oj—i-k:)x]yk‘

lele<tllglle<1 | o= Gitan

= s SN G R = lapl, 5y,

e <1; lylle<1 ;kzzo aeh

Thus, by (6.2) and (6.3), we have ||||
(ii) gives

| 2+ V)lag, (0, 5)/5;
k=0

(@) < C(n+1)%/2. Similarly, invoking

=2 U+ Dlag, (0.k)] = w

k=0
Thus, appealing to the definition of ~,, we obtain

n

> (k+1)ag, (0, k)d;)

k=0
Therefore 7, = O(n~1/2); in particular lim,, 7,, = 0. Thus B violates (6.11). =

(n—i—l)(n—i—Q)‘

Cn+ D = [0 oy = .

= ’YTL
C*
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REMARK 6.12. The same proof shows that §(00 X ¢g) # c¢p. Clearly
B(Co X Co) D Cp.

REMARK 6.13. Recall (cf. [Pi 3, p. 61|, [MiP|) that the nth Gelfand
number of an operator T : V — Z is defined by

cn(T) = inf{[|Tjw || : W C V, codim W < nj}.

The Gelfand numbers measure “non-surjectivity” of 7. Our proof of 6.11
combined with a standard duality argument shows that ¢, (B) < 7,,—1. Hence
cn(B) = O(n~Y2). It is not hard to show that this is sharp, i.e. there is
C’ > 0 such that ¢,(B) > C'n~1/2 for all n.

(A]
i
[DLuQ]
[DeF]
[DoS|
[Dg]
[DnSc]|
o

[GK]

[GrM]
[HL]
(K]
[KKL]

[KnKw]
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