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Operator spaces which are one-sided M-ideals in their bidual

by

Sonia Sharma (Houston, TX)

Abstract. We generalize an important class of Banach spaces, the M -embedded
Banach spaces, to the non-commutative setting of operator spaces. The one-sided M -
embedded operator spaces are the operator spaces which are one-sided M -ideals in their
second dual. We show that several properties from the classical setting, like the stability
under taking subspaces and quotients, unique extension property, Radon–Nikodým prop-
erty and many more, are retained in the non-commutative setting. We also discuss the
dual setting of one-sided L-embedded operator spaces.

1. Introduction. The notion of M -ideals in a Banach space was in-
troduced by Alfsen and Effros in their seminal paper [AE], in 1972. They
defined the concept solely in terms of the norm of the Banach space, de-
liberately avoiding any extra structure. Over the years the M -ideals have
been extensively studied, resulting in a vast theory. They are an important
tool in functional analysis. For a comprehensive treatment and for refer-
ences to the extensive literature on the subject one may refer to the book
by P. Harmand, D. Werner and W. Werner [HWW]. Recently, the classical
theory of M -ideals was generalized to the non-commutative setting of op-
erator spaces. First, Effros and Ruan studied the “complete” M -ideals of
operator spaces in [ER1]. Later, Blecher, Effros, and Zarikian defined two
varieties of M -ideals for the non-commutative setting, the “left M -ideals”
and the “right M -ideals”, and developed the one-sided M -ideal theory in a
series of papers (see e.g. [BEZ, BZ1, BZ2] and [BSZ] with Smith). The in-
tention was to create a tool for “non-commutative functional analysis”. For
example, one-sided M -ideal theory has yielded several deep general results
in the theory of operator bimodules (see e.g. [BEZ, B3, BLM]).

In this paper, we generalize to the non-commutative setting the classical
theory of an important and special class of M -ideals, called M -embedded
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spaces, namely Banach spaces which are M -ideals in their second dual. The
study of M -embedded spaces marked a significant point in the develop-
ment of M -ideal theory of Banach spaces. These spaces have a rich theory
because of their stability behaviour and a natural L-decomposition of the
third dual. These spaces have several other nice properties like the unique
extension property, Radon–Nikodým property of the dual, and many more.
We will study the one-sided variant of the classical theory, namely the one-
sided M -embedded spaces. Our main aim is to begin to import some of the
rich theory of these spaces, which comprises Chapters 3 and 4 of [HWW],
from the classical setting to the non-commutative setting. Another moti-
vation comes from the fact that the one-sided M -embedded C∗-algebras
are nothing but a very nice and simple class of C∗-algebras, Kaplansky’s
“dual C∗-algebras”. These are just the C∗-algebras of the form

⊕0
i K(Hi),

but what is more important is that this class has many strong properties
and very many interesting characterizations; see e.g. Exercise 4.7.20 from
[Dix] and references therein. We may thus try to generalize these proper-
ties and characterizations to the bigger and much more complicated class
of one-sided M -ideals. One-sided M -embedded spaces also form a subclass
of the u-ideals of Godefroy, Kalton and Saphar [GKS], and so we are able
to use the latter theory. We end the paper with a discussion of one-sided
L-embedded spaces.

We will use standard operator space notations and facts. The reader is re-
ferred to the standard sources (see e.g. [BLM, ER2]). We will also frequently
use results and arguments from the one-sided M -ideal theory for which one
can refer to [BEZ, BSZ, BZ2]. A (concrete) operator space is a closed sub-
space of B(H), where H is some Hilbert space. Every operator space is
completely isometrically embedded in its second dual X∗∗, via the canonical
map iX : X ↪→ X∗∗. The canonical map πX∗ := iX∗ ◦ iX∗ : X∗∗∗ → X∗∗∗

is a completely contractive projection onto iX∗(X∗) with kernel (iX(X))⊥.
Throughout,

^

⊗ and
_

⊗ will denote the operator space injective and the oper-
ator space projective tensor products, respectively. We denote the Haagerup
tensor product by ⊗h.

Let X ⊂ A be an operator space, where A is a C∗-algebra. For each
x ∈ X we denote the adjoint of x in A by x?, and the adjoint of X is
X? = {x? : x ∈ X}.

If X is an operator space then a complete left M-projection is a linear
idempotent map P : X → X such that the map

νcP : X → C2(X) : x 7→

[
P (x)

x− P (x)

]
is a completely isometric injection. There are several equivalent character-
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izations of a complete left M -projection which can be found, for instance,
in [BLM, BEZ, BSZ, BZ2]. A subspace J of an operator space X is a right
M-summand if it is the range of a complete left M -projection. A closed
subspace J of X is a right M-ideal if J⊥⊥ is a right M -summand in X∗∗.
Similarly one may define the notion of complete right M -projections and
left M -summands and ideals using row matrices R2(X), instead of column
matrices, C2(X). A right M -ideal which is not a right M -summand is called
a proper right M -ideal. Mostly, we will only state the right handed version
of a result since the left handed version can be proved analogously. Define
C2[X] to be the operator space projective tensor product C2

_

⊗X. We say
P : X → X is a complete right L-projection if the map

νcP : X → C2[X] : x 7→

[
P (x)

x− P (x)

]
is a completely isometric injection. A subspace J of X is a left L-summand
if J is the range of a complete right L-projection, and J is a left L-ideal if
J⊥ is a right M -summand in X∗. Also, a closed subspace J of X is a right
M -ideal if and only if J⊥ is a left L-summand in X∗. Since a subspace J of
X is a left L-ideal if and only if it is a left L-summand (see e.g. [BEZ]), we
need only talk about left L-summands.

The one-sided multipliers, which were introduced by D. P. Blecher in
[B2], are closely related to the one-sided M -ideals. These will be an impor-
tant tool for the study of the one-sided M -embedded spaces. A projection
P is a complete left M -projection if and only if P is an orthogonal pro-
jection in A`(X), where A`(X) is a unital C∗-algebra consisting of all left
adjointable multipliers of X. If X is a dual operator space, then A`(X) is a
von Neumann algebra (see e.g. [BEZ, BLM]).

We now give some definitions and terminology from u-ideal theory which
will be used in Section 3. If X is a Banach space, then J ⊂ X is called a
u-summand if there is a contractive projection P on X, mapping onto J ,
such that ‖I − 2P‖ = 1. This norm condition is equivalent to the condition,

‖(I − P )(x) + P (x)‖ = ‖(I − P )(x)− P (x)‖ for all x ∈ X.

We call such a projection P a u-projection. A subspace J of X is an h-
summand if there is a contractive projection P from X onto J such that
‖(I − P ) − λP‖ = 1 for all scalars λ with |λ|= 1. This norm condition is
equivalent to the condition

‖(I − P )(x)− λP (x)‖ = ‖(I − P )(x) + P (x)‖ for all x ∈ X.

Such a projection is called an h-projection. Clearly every h-projection is a
u-projection and hence every h-summand is a u-summand.
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The norm condition for an h-summand is equivalent to saying that P
is hermitian in B(X), that is, ‖eitP ‖ = 1 for all t ∈ R. We say that J is
a u-ideal in X if J⊥ is a u-summand in X∗, and J is an h-ideal if J⊥ is
an h-summand in X∗. So clearly every h-summand (resp. u-summand) is
an h-ideal (resp. u-ideal). It follows from [BSZ, Lemma 4.4] that one-sided
M -summands (resp. M -ideals) and one-sided L-summands are h-summands
(resp. h-ideals). We refer the reader to [GKS] for further details on the above
topics.

2. One-sided M-embedded spaces

Definition 2.1. Let X be an operator space. Then X is a right M -
embedded operator space if X is a right M -ideal in X∗∗. We say X is left
L-embedded if X is a left L-summand in X∗∗. Similarly we can define right
L-embedded and left M -embedded spaces. If X is both right and left M -
embedded, then X is called completely M -embedded. An operator space X
is completely L-embedded if X is both a right and a left L-embedded operator
space.

Remark. 1) X is completely M -embedded if and only if X is a complete
M -ideal (in the sense of [ER1]) in its bidual (see e.g. [BEZ, Lemma 3.1] and
[BZ2, Chapter 7]).

2) Reflexive spaces are automatically completely M -embedded. Let X
be a right M-summand in X∗∗. Since X∗∗ is a dual operator space, X is w∗-
closed (see [BZ2, p. 8]). So X = X∗∗. Hence a non-reflexive operator space
cannot be a non-trivial one-sided M -summand in its second dual. So non-
reflexive right M -embedded spaces are proper right M -ideals. Henceforth
we will assume all our operator spaces to be non-reflexive.

We state an observation of David Blecher which provides an alterna-
tive definition of completely L-embedded operator spaces. To explain the
notation here, Mn(X∗)∗ is the “obvious” predual of Mn(X∗), namely the
operator space projective tensor product of the predual of Mn and X.

Lemma 2.2. Let X be an operator space. Then there exists a complete
L-projection from X∗∗ onto X if and only if for each n, there exists an
L-projection from Mn(X∗)∗ onto Mn(X∗)∗.

Proof. We are going to use the well known principle that if J is a sub-
space of X, then J is an L-summand (resp. left L-summand, complete L-
summand) of X iff J⊥ is an M -summand (resp. right M -summand, complete
M -summand) of X∗. See for example the proof of [BEZ, Proposition 3.9].

By the above principle, X is a complete L-summand of X∗∗ iff X⊥ is a
complete M -summand of X∗∗∗. By [ER1, Proposition 4.4], this happens iff
Mn(X⊥) is an M -summand of Mn(X∗∗∗) for each n. Now Mn(X∗∗∗) is the
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dual of the operator space projective tensor product of the predual of Mn

and X∗∗. Moreover, Mn(X⊥) is easily seen to be the “perp” of the operator
space projective tensor product of the predual of Mn and iX(X). That is,
Mn(X⊥) = (Mn(X∗)∗)⊥. (We are using facts from [ER2, Proposition 7.1.6].)
By the above principle, we deduce that X is a complete L-summand of X∗∗

iff Mn(X∗)∗ is an L-summand of Mn(X∗)∗ for each n.

Proposition 2.3. Let X be an operator space. Then the following are
equivalent:

(i) X is a right M -ideal in X∗∗.
(ii) The natural projection πX∗ is a complete right L-projection.

Proof. (i)⇒(ii). LetX ∼= iX(X) be a rightM -ideal inX∗∗. Then iX(X)⊥

is a complete left L-ideal in X∗∗∗. Let P be a complete right L-projection
onto iX(X)⊥. Then iX(X)⊥ is the kernel of the complementary right L-
projection I − P . Now Ker(πX∗) = (iX(X))⊥ = Ker(I − P ). So by [BEZ,
Theorem 3.10(b)], πX∗ = I−P . Hence πX∗ is a complete right L-projection.

(ii)⇒(i). If πX∗ is a complete right L-projection, then so is I−πX∗ . Now

Ran(I − πX∗) = Ker(πX∗) = (iX(X))⊥.

So (iX(X))⊥ is a left L-summand in X∗∗∗, and hence iX(X) is a right
M -ideal in X∗∗.

Corollary 2.4. If X is a right M -embedded operator space, then X∗

is a left L-embedded operator space.

Proof. Since iX∗(X∗) is the range of πX∗ , and by Proposition 2.3, πX∗
is a complete right L-projection on X∗∗∗, the result follows.

However, it is not true that if X is a left L-summmand in its bidual then
X∗ is a right M -summand in its bidual. For example, take X = S1(H), the
trace class operators on H. Then since K(H) is a complete M -ideal in B(H),
by Corollary 2.4, S1(H) is a complete L-summand in B(H)∗. But B(H) is
not a right (or left) M -summand in B(H)∗∗ since B(H) is non-reflexive.

Proposition 2.5. If X is an M -embedded Banach space, then Min(X) is
a completely M -embedded operator space. If X is L-embedded, then Max(X)
is completely L-embedded.

Proof. Let X be an M -ideal in X∗∗. Then Min(X) is a two-sided M -
ideal in Min(X∗∗). Indeed, if Z is a Banach space, then the right M -ideals, as
well as the left M -ideals, of Min(Z) coincide with the M -ideals of Z (see e.g.
[BEZ]). But Min(X∗∗) = Min(X)∗∗ completely isometrically. So Min(X) is a
right M -ideal in Min(X)∗∗, and hence Min(X) is M -embedded. The second
assertion follows similarly, using the fact that the L-ideals of any Banach
space Z coincide with the left, as well as the right, L-ideals of Max(Z).
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Theorem 2.6. Let X be a right M -embedded space and Y be a subspace
of X. Then both Y and X/Y are right M -embedded.

Proof. We first show that Y is right M -embedded. By Proposition 2.3,
we need to show that πY ∗ is a complete right L-projection. Let i : Y → X
be the inclusion map. Then i∗∗∗ is a complete quotient map. So for every
[vij ] ∈ Mn(Y ∗∗∗) we can find [wij ] ∈ Mn(X∗∗∗) such that i∗∗∗n ([wij ]) = [vij ]
and ‖[wij ]‖ ≤ ‖[vij ]‖. Also note that πY ∗ ◦ i∗∗∗ = i∗∗∗ ◦ πX∗ . For [vij ] and
[wij ] as above, we have

‖[πY ∗(vij) vij − πY ∗(vij)]‖Mn(R2[Y ∗∗∗])

= ‖[πY ∗i∗∗∗(wij) i∗∗∗(wij)− πY ∗i∗∗∗(wij)]‖Mn(R2[Y ∗∗∗])

= ‖[i∗∗∗πX∗(wij) i∗∗∗(wij)− i∗∗∗πX∗(wij)]‖Mn(R2[Y ∗∗∗])

≤ ‖i∗∗∗‖cb‖[πX∗(wij) wij − πX∗(wij)]‖Mn(R2[X∗∗∗])

= ‖[wij ]‖ ≤ ‖[vij ]‖.

This shows that the map µrπY ∗ : Y ∗∗∗ → R2[Y ∗∗∗] given by

µrπY ∗ (y) = [πY ∗(y) y − πY ∗(y)]

is a complete contraction. Now since
_

⊗ is projective, and i∗∗∗ is a complete
quotient map, then so is i∗∗∗⊗Id : R2[X∗∗∗]→ R2[Y ∗∗∗]. For each [yij y′ij ] ∈
R2[Y ∗∗∗] we can find [xij x′ij ] ∈ R2[X∗∗∗] such that (i∗∗∗⊗ Id)([xij x′ij ]) =
[yij y′ij ] and ‖[xij x′ij ]‖ ≤ ‖[yij y′ij ]‖. Consider

‖[πY ∗(yij) + y′ij − πY ∗(y′ij)]‖Mn([Y ∗∗∗])

= ‖[πY ∗(i∗∗∗(xij)) + i∗∗∗(x′ij)− πY ∗(i∗∗∗(x′ij))]‖Mn([Y ∗∗∗])

= ‖[i∗∗∗πX∗(xij) + i∗∗∗(x′ij)− i∗∗∗πX∗(x′ij)]‖Mn([Y ∗∗∗])

≤ ‖[πX∗(xij) + (x′ij)− πX∗(x′ij)]‖Mn([X∗∗∗])

≤ ‖[xij x′ij ]‖Mn(R2[X∗∗∗]) ≤ ‖[yij y′ij ]‖Mn(R2[Y ∗∗∗]).

This shows that the map νrπY ∗ : R2[Y ∗∗∗]→ Y ∗∗∗ given by

νrπY ∗ ([y y′]) = πY ∗(y) + y′ − πY ∗(y′)

is a complete contraction. Hence by [BEZ, Proposition 3.4], πY ∗ is a complete
right L-projection.

Consider the canonical complete quotient map q : X → X/Y . Then q∗∗∗ :
(X/Y )∗∗∗ → X∗∗∗ is a complete isometry. We also have π(X/Y )∗◦q∗∗∗ = q∗∗∗◦
π(X/Y )∗ . Since R2[(X/Y )∗∗∗] = R2⊗h (X/Y )∗∗∗ and R2[X∗∗∗] = R2⊗hX

∗∗∗,
and ⊗h is injective, the map Id ⊗ q∗∗∗ : R2[(X/Y )∗∗∗] → R2[X∗∗∗] will be
a complete isometry. We need to show that π(X/Y )∗ is a complete right
L-projection on (X/Y )∗∗∗. For convenience we will write π for π(X/Y )∗ . Let
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[vij ] ∈Mn((X/Y )∗∗∗). Then by using the above facts we get

‖[π(vij) vij − π(vij)]‖Mn(R2[(X/Y )∗∗∗])

= ‖[(q∗∗∗ ◦ π)(vij) q∗∗∗(vij)− (q∗∗∗ ◦ π)(vij)]‖Mn(R2[X∗∗∗])

= ‖[(π ◦ q∗∗∗)(vij) q∗∗∗(vij)− (π ◦ q∗∗∗)(vij)]‖Mn(R2[X∗∗∗])

= ‖[q∗∗∗(vij)]‖Mn(X∗∗∗) = ‖[vij ]‖Mn((X/Y )∗∗∗).

This shows that π(X/Y )∗ is a complete right L-projection. Since Ran(π(X/Y )∗)
= (X/Y )∗, X/Y is right M -embedded.

Remark. The property of one-sided “M -embeddedness” of subspaces
and quotients does not pass to extensions, i.e., if Y is a subspace of X such
that Y and X/Y are right M -embedded spaces, then X need not be right
M -embedded. Consider X = c0 ⊕1 c0 and Y = c0 × {0}, both with minimal
operator space structure. Since Y and X/Y are M -embedded, Min(Y ) and
Min(X/Y ) are completely M -embedded. Let P be the contractive projection
from X onto Y . Then I−P is completely contractive, and hence a complete
quotient map, from Min(Y ) onto Min(Ran(I−P )). Thus Min(Y )/Ker(P ) ∼=
Min(Ran(I−P )), completely isometrically. But Ran(I−P ) = Y/X isomet-
rically, so Min(X)/Min(Y ) ∼= Min(X/Y ) completely isometrically. Now if
Min(X)∗∗ has a non-trivial right M -ideal, then since Min(X)∗∗ = Min(X∗∗),
X∗∗ has a non-trivial M -ideal. But this is not possible, since X∗∗ has a non-
trivial L-summand, and by [HWW, Theorem I.1.8], a Banach space cannot
contain non-trivial M -ideals and non-trivial L-summands simultaneously,
unless it is two-dimensional.

Proposition 2.7. Let X be a left (resp. right) M -embedded space, then

(i) Mm,n(X) is left (resp. right) M -embedded for all m and n. In par-
ticular, Cn(X) (resp. Rn(X)) is left (resp. right) M -embedded in
Cn(X∗∗) (resp. Rn(X∗∗)).

(ii) C∞(X) (resp. R∞(X)) is a left (resp. right) M -ideal in C∞(X∗∗)
(resp. R∞(X∗∗)).

Proof. (i) If J ⊂ X is a right M -ideal then Mm,n(J) is a right M -ideal
in Mm,n(X) (see e.g. [BEZ]). Now the result follows from the fact that
Mm,n(X∗∗) = Mm,n(X)∗∗ completely isometrically.

(ii) If X is a left M -ideal in X∗∗, then by the left-handed version of
Theorem 5.38 from [BZ2], C∞ ⊗h X is a left M -ideal in C∞ ⊗h X

∗∗. But
C∞⊗hX = C∞

^

⊗X = C∞(X) and C∞⊗hX
∗∗ = C∞

^

⊗X∗∗ = C∞(X∗∗). For
the second assertion, use [BZ2, Theorem 5.38] and the equality Y ⊗h R∞ =
R∞(Y ), for any operator space Y .

It would be interesting to know when C∞(X) is a right M -embedded
space, that is, whether one can replace C∞(X∗∗) by C∞(X)∗∗ = Cw∞(X∗∗)
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in Proposition 2.7(ii). We will see in the remark after Proposition 2.12 that
this is true in case of TROs. Also note that if X is a WTRO then a routine
argument shows that C∞(X) is a right M -ideal in Cw∞(X).

Proposition 2.8. Every right M -embedded C∗-algebra is also left M -
embedded.

Proof. Suppose A is a right M -ideal in A∗∗. Then A is a closed right
ideal in A∗∗ and A? is a closed left ideal in A∗∗. But A is self-adjoint, i.e.,
A = A?, hence A is a two-sided M -ideal in A∗∗ (see e.g. [BZ2, Section
4.4]).

Remark. A complete M -ideal in an operator space is an M -ideal in
the underlying Banach space. So by the above proposition, a one-sided M -
embedded C∗-algebra is an M -embedded C∗-algebra in the classical sense.
Hence by [HWW, Proposition III.2.9], it has to be ∗-isomorphic to

⊕0
i K(Hi)

(a c0-sum), for Hilbert spaces Hi. These are Kaplansky’s dual C∗-algebras;
consequently, one-sided M -embedded C∗-algebras satisfy a long list of equiv-
alent conditions which can be found for instance in the works of Dixmier
and Kaplansky (see e.g. Exercise 4.7.20 from [Dix]). To mention a few:

(i) Every closed right ideal J in A is of the form eA for a projection e
in the multiplier algebra of A.

(ii) There is a faithful ∗-representation π : A → K(H) as compact
operators on some Hilbert space H.

(iii) The sum of all minimal right ideals in A is dense in A.

We think that several of these have variants that are valid for general
one-sided M -embedded spaces (see e.g. Theorem 3.4).

Note that in contrast to the fact that every one-sided M -embedded
C∗-algebra is completely M -embedded, we give examples in [ABS] of non-
selfadjoint left M -embedded algebras which are not right M -embedded.

Theorem 2.9. Let Y be a non-reflexive operator space which is right
M -embedded. If X is any finite-dimensional operator space, then Y ⊗hX is
right M -embedded. Further, if Z(Y (4) ⊗h X) ∼= CI then Y ⊗h X is not left
M -embedded, where Z(X) denotes the centralizer algebra of X.

Proof. Since Y is a right M -ideal in Y ∗∗, by [BZ2, Proposition 5.38],
Y ⊗h X is a right M -ideal in Y ∗∗ ⊗h X. Since X is finite-dimensional, we
have (Y ⊗hX)∗∗ = Y ∗∗⊗hX (see e.g. [BLM, 1.5.9]). Hence Y ⊗hX is a right
M -ideal in its bidual. Suppose that Y ⊗hX is also left M -embedded and let
P be a projection in Z(Y (4) ⊗h X) such that (Y ⊗h X)⊥⊥ = P (Y (4) ⊗h X).
Since Z(Y (4)⊗hX) ∼= CI, we have (Y ⊗hX)⊥⊥ = Y (4)⊗hX. Now note that
for any operator space X, if E = iX(X) ⊂ X∗∗, then by basic functional
analysis, iX∗∗(X∗∗)∩E⊥⊥ = iX∗∗(E). So if iX(X)⊥⊥ = X(4), then iX∗∗(E) =



Operator spaces 129

iX∗∗(X∗∗), hence X∗∗ = E = iX(X). This implies that Y ∗∗ ⊗h X ∼= Y ⊗X,
which is not possible since Y is non-reflexive.

As a result, we can generate many more concrete examples of right M -
embedded spaces which are not left M -embedded. If A is any algebra of com-
pact operators, e.g. a nest algebra of compact operators, then we know that
it is two-sided M -embedded. Hence, Z = A⊗hX is right M -embedded for all
finite-dimensional operator spaces X, as are all subspaces of Z. Almost all of
these will, surely, not be left M -embedded. We show in [ABS] that if A and
B are approximately unital operator algebras, then A`(A⊗h B) ∼= ∆(M(A))
if ∆(A) is not one-dimensional. As a consequence, using a similar argument
to that for Theorem 2.9, we can show that if A and B are approximately
unital operator algebras such that A is completely M -embedded and B is
finite-dimensional with B 6= C1, then A⊗h B is a right M -embedded oper-
ator space which is not left M -embedded.

For an operator space X, the density character of X is the least cardinal
m such that there exists a dense subset Y ofX with cardinalitym. We denote
the density character by dens(X). So if X is separable, then dens(X) = ℵ0.
A Banach space X is an Asplund space if every separable subspace has a
separable dual. Also X is an Asplund space if and only if X∗ has the RNP.
For more details see [Bou, pp. 91, 132], [DU, pp. 82, 195, 213] and [Phe,
pp. 34, 75]. Using an identical argument to the classical case (see [HWW,
Theorem III.3.1]), we can show the following. Note that the proof uses a
couple of ideas from Section 3 such as the notion of a norming subspace and
Corollary 3.12.

Theorem 2.10. If X is right M -embedded and Y is a subspace of X,
then dens(Y ) = dens(Y ∗). In particular, separable subspaces of X have a
separable dual. So right M -embedded spaces are Asplund spaces, and X∗ has
the Radon–Nikodým property.

Proof. By Proposition 2.6, we can assume that Y = X. Suppose that K
is a dense subset of X. For each x ∈ K choose x∗ ∈ X∗ such that ‖x∗‖ = 1
and x∗(x) = ‖x‖. Then N = span{x∗ : x ∈ K} is norming for X∗, but
by Corollary 3.12, X∗ has no non-trivial norming subsets. So N = X∗ and
hence dens(X∗) = dens(X).

A TRO is a closed subspace X of a C∗-algebra such that XX?X ⊂ X,
and a WTRO is a w∗-closed subspace of a von Neumann algebra with
XX?X ⊂ X. A TRO is essentially the same as a Hilbert C∗-module (see
e.g. [BLM, 8.1.19]). If X is a TRO, then X is a Hilbert C∗-bimodule over
XX?-X?X (see e.g. [BLM, 8.1.2]).

Lemma 2.11. IfZ is a TRO which is isometrically isomorphic toK(H,K),
then Z is completely isometrically isomorphic to either K(H,K) or K(K,H).
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Proof. Let θ : Z → K(H,K) be an isometric isomorphism. Then θ∗∗ :
Z∗∗ → B(H,K) is an isometric isomorphism. We use [Sol, Theorem 2.1] to
prove this result. Take M = B(K⊕H) and N = L(Z)∗∗, where L(Z) denotes
the linking C∗-algebra of Z. Then by Lemma 3.1 from [Sol], there exists a
projection q ∈ L(Z)∗∗ such that both q and I−q have central support equal
to I, and qN(I−q) ∼= Z∗∗. Let p = PK ∈ B(K). Then pM(I−p) ∼= B(H,K).
Thus by [Sol, Theorem 2.1], there exist central projections e1, e2 in M
and f1, f2 in N with e1 + e2 = IK⊕H and f1 + f2 = IL(Z)∗∗ . Since there
are no central projections in B(K ⊕ H), either e1 = IK⊕H or e1 = 0. By
[Sol, Theorem 2.1], either there exists a ∗-isomorphism ψ : B(K ⊕ H) →
f1Nf1 such that (θ∗∗)−1 = ψ|B(H,K), or there exists a ∗-“anti”-isomorphism
φ : B(K ⊕ H) → f2Nf2 such that (θ∗∗)−1 = φ|B(H,K). In the first case,
ψ is a complete isometry and hence so is (θ∗∗)−1. Thus Z is completely
isometrically isomorphic to K(H,K). We claim that the second case implies
that Z is completely isometrically isomorphic to K(K,H). Let {ei} and
{fj} be orthonormal bases for K and H resp. Then S = {ei} ∪ {fj} is an
orthonormal basis forK⊕H. For each T ∈ B(K⊕H), define T̃ ∈ B(K⊕H)op

to be the transpose of T given by T̃ η =
∑

i 〈Tei, η〉 ei +
∑

j 〈Tfj , η〉 fj for
every η ∈ S. Then t : B(K ⊕ H) → B(K ⊕ H)op defined as t(T ) = T̃
is a ∗-“anti”-isomorphism and t(B(K,H)) = B(H,K). So φ̃ = φ ◦ t is a
∗-isomorphism, and hence a complete isometry, such that φ̃(B(K,H)) =
φ(B(H,K)) = (θ∗∗)−1(B(H,K)). Thus the restriction of φ̃ to B(K,H) is a
complete isometry onto Z∗∗.

Proposition 2.12. A one-sided M -embedded TRO is completely iso-
metrically isomorphic to the c0-sum of compact operators on some Hilbert
spaces.

Proof. Let X be a right M -embedded TRO. Then by Theorem 2.10, X∗

has the RNP. Also since X is a TRO, it is a JB∗-triple. From [BG] we know
that if X is a JB∗-triple and X∗ has the Radon–Nikodým property, then X∗∗

is isometrically an `∞-sum of type-I triple factors, i.e., X∗∗ ∼=
⊕∞

i B(Hi,Ki)
isometrically for some Hilbert spacesHi andKi. By Proposition 3.3(ii), there
exists a surjective isometry ρ : X →

⊕0
i K(Hi,Ki). Let Ki = K(Hi,Ki),

ρi = ρ−1|Ki and Zi = ρi(Ki). Then X ∼=
⊕0

i Zi isometrically. So each Zi
is an M -summand in X. Every M -summand in a TRO is a complete M -
summand, and hence each Zi is a sub-TRO of X (see e.g. [BLM, 8.5.20]).
Also since the Zi are orthogonal, there is a ternary isomorphism between⊕0

i Zi and X, given by (xi) 7→
∑

i xi. Hence X ∼=
⊕0

i Zi completely iso-
metrically (see e.g. [BLM, Lemma 8.3.2]). Thus by Lemma 2.11, for each
i, either ρ−1

i is a complete isometry or there exists a complete isometry
ρ̃i : Zi → K(Ki, Hi). Define θ =

⊕
πi :

⊕∞
i Z∗∗i →

⊕∞
i Bi, where πi is
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either (ρ−1
i )∗∗ or (ρ̃i)∗∗ and Bi is either B(Hi,Ki) or B(Ki, Hi). Since each

Zi is a WTRO, and each πi a complete isometry, θ is a complete isometry.
So X∗∗ is completely isometrically isomorphic to

⊕∞
i Bi. Hence by Propo-

sition 3.3(ii), X is completely isometrically isomorphic to
⊕0

i Ki where Ki
is either K(Hi,Ki) or K(Ki, Hi).

Remark. As we stated earlier, if X is a right M -embedded TRO then
C∞(X) is also right M -embedded. Indeed, by Proposition 2.12, X is com-
pletely isometrically isomorphic to

⊕0
i K(Hi,Ki), which implies that C∞(X)

is completely isometrically isomorphic to
⊕0

i K(Hi,K
∞
i ), and the latter is a

complete M -ideal in its bidual. More generally, if X is a right M -embedded
TRO, then every KI,J(X) is completely M -embedded.

3. More properties of one-sided M-embedded spaces. In this
section we show that one-sided M -embedded spaces retain a number of
properties of the classical M -embedded spaces. We start by stating two
theorems from u-ideal theory which will allow us to draw some useful con-
clusions about one-sided M -embedded spaces. For proof of these theorems
see [GKS, Theorem 6.6] and [GKS, Theorem 5.7], respectively. A u-ideal J
of X is a strict u-ideal if Ker(P ) is a norming subspace in X∗, where P is a
u-projection onto J⊥. By a norming subspace of X∗ we mean a subspace N
of X∗ such that for each x ∈ X, ‖x‖ = sup{|φ(x)|: φ ∈ N, ‖φ‖ ≤ 1}.

Theorem 3.1. Let X be a Banach space which is an h-ideal in its bidual.
Then the following are equivalent:

(a) X is a strict h-ideal.
(b) X∗ is an h-ideal.
(c) X contains no copy of `1.

Theorem 3.2. Let X be a Banach space which contains no copy of `1

and is a strict u-ideal. Then:

(a) If T : X∗∗ → X∗∗ is a surjective isometry, then T = S∗∗ for some
surjective isometry S : X → X.

(b) X is the unique isometric predual of X∗ which is a strict u-ideal.

Proposition 3.3. Let X be a non-reflexive right M-ideal in its bidual.
Then:

(i) X does not contain a copy of `1 and X is a strict u-ideal.
(ii) If T : X∗∗ → X∗∗ is a (completely) isometric surjection, then T is

a bitranspose of some (completely) isometric surjective map on X.
(iii) X is the unique isometric predual of X∗.

Proof. (i) Suppose that X is a right M -ideal in X∗∗. Then being the
range of a complete right L-projection, X∗ is a right L-summand. So X and
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X∗ are both h-ideals (see Section 1). Hence, by Theorem 3.1, X is a strict
u-ideal and X does not contain a copy of `1.

(ii) By Theorem 3.2 and (i), T = S∗∗ for some isometric surjection S
on X. Further, if T is a complete isometry then it is not difficult to see that
S is also a complete isometry.

(iii) This follows from Theorem 3.2 and (i).

Theorem 3.4. Suppose that X is a left M -embedded operator space.
Then:

(i) Every right M -ideal of X is a right M -summand.
(ii) Every complete left M -projection in X∗∗ is the bitranspose of a com-

plete left M -projection on X.
(iii) Suppose X is also a right M -embedded operator space and it has

no non-trivial right M -summands. Then for every non-trivial right
M -ideal J of X∗∗, either J contains X or J ∩X = {0}.

(iv) A`(X) ∼= A`(X∗∗).
(v) If X is a completely M -embedded space, then Z(X) = Z(X∗∗), where

Z(X) is the centralizer algebra ofX, in the sense of [BZ2, Chapter 7].

Proof. (i) Let J be a right M -ideal of X and suppose that P is a projec-
tion in Ball(M`(X∗∗)) such that P (X∗∗) = J⊥⊥. Since X is a left M -ideal in
X∗∗ and P ∈M`(X∗∗), by [BZ2, Proposition 4.8] we know that P (X) ⊂ X.
Then Q := P |X ∈ M`(X) and ‖Q‖ = ‖P |X‖M`(X) ≤ 1. Also J⊥⊥ ∩X = J
is the range of Q. Hence by [BEZ, Theorem 5.1], J is a complete right
M -summand.

(ii) If P is a complete left M -projection in X∗∗, then T := 2P−IdX∗∗ is a
complete isometric surjection on X∗∗. Hence by Proposition 3.3, T = S∗∗ for
some complete surjective isometry on X. So, 2P = T +IdX∗∗ = (S+IdX)∗∗,
and since by [BZ2, Section 5.3], A`(X) ⊂ A`(X∗∗), S + IdX must be a
complete left M -projection in X.

(iii) Let P be a complete two-sided M -projection from X(4) onto X⊥⊥

and Q be a complete left M -projection from X(4) onto J⊥⊥. Then by [BEZ,
Theorem 5.1], P ∈ Ball(M`(X(4))) and Q ∈ Ball(Mr(X(4))), which implies
that PQ = QP . Hence by [BZ2, Theorem 5.30(ii)], J ∩X is a right M -ideal
in X∗∗. But J ∩X ⊂ X, so by [BZ2, Theorem 5.3], J ∩X is a right M -ideal
in X. Hence by (i), J ∩X is a right M -summand. By the hypothesis, either
J ∩X = {0} or J ∩X = X, i.e., J ∩X = {0} or X ⊂ J .

(iv) We know that A`(X) ⊂ A`(X∗∗) completely isometrically, via the
map φ : T 7→ T ∗∗ (see e.g. [BZ2, Section 5.3]). By (ii), φ is surjective and
maps onto the set of complete left M -projections. But the left M -projections
are exactly the contractive projections in A`(X∗∗), and since A`(X∗∗) is a
von Neumann algebra, the span of these projections is dense in it. So φ maps
onto A`(X∗∗).
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(v) If X is right M -embedded then we can show similarly to (iv) that
Ar(X) ∼= Ar(X∗∗). By definition, Z(X) = A`(X) ∩ Ar(X), hence it follows
that Z(X) = Z(X∗∗).

We will see in [ABS] that we can improve (i) and (iii) in the above
theorem, in certain cases.

Corollary 3.5. Let X be a left M -embedded operator space. Suppose
that J is a complete right M -ideal of X, and ⊗β is any operator space tensor
product with the following properties:

(i) − ⊗β IdZ is functorial. That is, if T : X1 → X2 is completely
contractive, then T ⊗β IdZ : X1 ⊗β Z → X2 ⊗β Z is completely
contractive.

(ii) The canonical map C2(X)⊗Z → C2(X⊗Z) extends to a completely
isometric isomorphism C2(X)⊗β Z → C2(X ⊗β Z).

(iii) The span of the elementary tensors x⊗ z for x ∈ X, z ∈ Z is dense
in X ⊗β Z.

Then J⊗βE is a complete right M -summand of X⊗βE. In particular, J
^

⊗E
is a complete right M -summand of X

^

⊗ E.

Proof. Since J is a complete right M -ideal of X, by Theorem 3.4, it
is also a right M -summand. Hence by the argument in [BZ2, Section 5.6],
J⊗βE is a right M -summand of X⊗βE.

Following is a Banach space result stated for operator spaces. The proof
is along similar lines to the Banach space proof.

Proposition 3.6. Let X be an operator space and πX∗ be the canonical
projection from X∗∗∗ onto X∗. Then the following are equivalent:

(i) πX∗ is the only completely contractive projection on X∗∗∗ with ker-
nel X⊥.

(ii) The only completely contractive operator on X∗∗ which restricts to
the identity on X is IdX∗∗.

(iii) If U is a surjective complete isometry on X, then the only completely
contractive operator on X∗∗ which restricts to U on X is U∗∗.

The property in (ii) above is sometimes called the unique extension prop-
erty.

Corollary 3.7. Every right M -embedded space has the unique exten-
sion property.

Proof. If X is a right M -ideal in X∗∗, then by Proposition 2.3, πX∗ is
a complete right L-projection with kernel X⊥. By [BEZ, Theorem 3.10(b)],
it is the only completely contractive projection with kernel X⊥. Hence X
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satisfies all the equivalent conditions in Proposition 3.6. In particular, it has
the unique extension property.

An operator space X has the completely bounded approximation property
(respectively, completely contractive approximation property) if there exists
a net of finite rank mappings φν : X → X such that ‖φν‖cb ≤ K for some
constant K (respectively, ‖φν‖cb ≤ 1) and ‖φν(x)−x‖ → 0 for every x ∈ X.

Corollary 3.8. Let X be a right M -embedded operator space. If X has
the completely bounded approximation property then X∗ has the completely
bounded approximation property.

Proof. Let {Tλ} be a net of finite rank operators in CB(X) such that
‖Tλ‖cb ≤ K for some K > 0, and ‖Tλ(x) − x‖ → 0. We first show that
there exists a subnet of {T ∗λ} which converges to IdX∗ in the point-weak
topology. We know that CB(X∗∗) is a dual operator space with CB(X∗∗) =
(X∗

_

⊗X∗∗)∗, so the closed ball of radius K in CB(X∗∗), K Ball(CB(X∗∗)), is
w∗-compact. Since T ∗∗λ ∈ K Ball(CB(X∗∗)), there exists a subnet {T ∗∗λν } and

T in K Ball(CB(X∗∗)) such that T ∗∗λν
w∗→ T . That is, T ∗∗λν (φ)(f) → T (φ)(f)

for all φ ∈ X∗∗ and f ∈ X∗. In particular, for x̂ ∈ X ⊂ X∗∗, the latter
convergence implies that f(Tλνx) → T (x̂)(f) for all f ∈ X∗ and x ∈ X.
Now since Tλ → IdX in the point-norm topology, it also converges in the
point-weak topology. So f(Tλνx) → f(x) for all x ∈ X and f ∈ X∗. Hence
T |X = IdX . By Corollary 3.7, X has the unique extension property. Hence
T = IdX∗∗ , so (T ∗∗λνφ)(f) → φ(f). Equivalently, φ(T ∗λνf) → φ(f) for all
φ ∈ X∗∗ and f ∈ X∗, which proves the claim. Thus IdX∗ is in the point-
weak closure of the convex hull of {T ∗λ}. But since the norm and the weak
topologies coincide on a convex set [DS, p. 477], IdX∗ is in the point-norm
closure of the convex hull of {T ∗λ}.

Along similar lines, we can prove that if a right M -embedded space has
the completely contractive approximation property then so does its dual.
We are grateful to Z. J. Ruan for the following result. Since we could not
find this in the literature, we include his proof.

Lemma 3.9. SupposeX∗ has the completely bounded approximation prop-
erty and X is a locally reflexive (or C-locally reflexive) operator space. Then
X has the completely bounded approximation property.

Proof. We prove the locally reflexive case; the C-locally reflexive case
is similar. Suppose that X is locally reflexive. Since X∗ has the completely
bounded approximation property, there exists a net of finite rank maps
Tλ : X∗ → X∗ such that ‖Tλ‖cb ≤ K < ∞ and Tλ → Id in the point-norm
topology. Then φλ := (Tλ)∗|X : X → X∗∗ is a net of finite rank maps such
that 〈φλ(x)− x, f〉 → 0 for all x ∈ X and f ∈ X∗. Let Zλ = φλ(X) and ρλ



Operator spaces 135

be the inclusion map from Zλ to X∗∗. Since φλ(X) is a finite-dimensional
subspace of X∗∗ and X is locally reflexive, for each λ we can find a net
of completely contractive maps ρλt : Zλ → X such that ρλt converges to
ρλ in the point-weak∗ topology. Then the maps ψλ,t = ρλt ◦ φλ are finite
rank maps from X to X such that ‖ψλ,t‖cb ≤ K. Now using a reindexing
argument based on [B1, Lemma 2.1], we show that there exists a net γ such
that limγ 〈ψγ(x)− x, f〉 = 0 for all x ∈ X and f ∈ X∗. Define Γ to be the
set of 4-tuples (λ, t, Y, ε), where Y is a finite subset of X × X∗ and where
ε > 0 is such that |ψλ,t(x)(f) − φλ(x)(f)|< ε for all (x, f) ∈ Y . Then it is
easy to check that Γ is a directed set with ordering (λ, t, Y, ε) ≤ (λ′, t′, Y ′, ε′)
iff λ ≤ λ′, Y ⊂ Y ′ and ε′ ≤ ε. Let ψγ = ψλ,t if γ = (λ, t, Y, ε). If ε > 0 choose
λo such that for all λ ≥ λo we have |φλ(x)(f) − x̂(f)|< ε. Choose to such
that γo = (λo, to, {x, f}, ε) ∈ Γ . Now if γ = (λ, t, Y, ε′) ≥ γo then

|ψγ(x)(f)− x̂(f)| ≤ |ψλ,t(x)(f)− φλ(x)(f)|+|φλ(x)(f)− x̂(f)|
≤ ε′ + ε < 2ε.

Hence ψγ → IdX in the point-weak topology, and thus IdX is in the point-
weak closure of KBall (CB(X)). But the point-weak and the point-norm
closures of KBall (CB(X)) coincide [DS, p. 477], thus there exists a net
{ηp} ⊂ KBall (CB(X)) such that ηp → IdX in the point-norm topology.

Remark. A natural question is whether right M -embedded or com-
pletely M -embedded spaces are locally reflexive. Also note that if X has
the completely bounded approximation property then by [ER2, Theorem
11.3.3], X has the strong operator space approximation property. Hence
by [ER2, Corollary 11.3.2], X has the slice map property for subspaces of
B(`2). There is some hope that the argument in [ER2, Theorem 14.6.6] can
be made to imply that X is 1-exact, and hence is locally reflexive.

The following lemma is a well known Banach space result (see [HWW,
Lemma III.2.14] for proof).

Lemma 3.10. For a Banach space X and x∗ ∈ X∗ with ‖x∗‖ = 1, the
following are equivalent:

(i) x∗ has a unique norm preserving extension to a functional on X∗∗.
(ii) The relative w- and w∗-topologies on the ball BX∗ agree at x∗, i.e.,

the map IdBX∗ : (BX∗ , w∗)→ (BX∗ , w) is continuous at x∗.

Corollary 3.11. If X is a one-sided M -ideal in its bidual, then the
relative w- and w∗-topologies on BX∗ agree on the unit sphere.

Proof. This is an immediate consequence of the fact that the one-sided
M -ideals are Hahn–Banach smooth (see e.g. [BZ2, Chapter 2]) and the above
lemma.
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The following result follows from Corollary 3.11 (see the argument in
[HWW, Corollary III.2.16]). For the definition of a norming subspace see
the beginning of this section.

Corollary 3.12. If X is a one-sided M -ideal in its bidual, then X∗

contains no proper norming subspace.

Remark. The above corollary combined with Proposition 2.5 in [GS]
immediately gives a second proof of the unique extension property for one-
sided M -embedded operator spaces. We note that Proposition 2.5 in [GS]
is proved for a real Banach space since it uses a lemma ([GS, Lemma
2.4]) on real Banach spaces. However, it is easy to see, using the fact that
(ER)∗ = (E∗)R isometrically (see [Li, Proposition 1.1.6]) that the lemma is
also true for any complex Banach space E. Here ER denotes the underlying
real Banach space.

Proposition 3.13. Let Y be a completely contractively complemented
operator space in Y ∗∗, i.e., Y ⊕ Z = Y ∗∗, and ‖[yij ]‖ ≤ ‖[φij ]‖ for all
φij = yij + zij where yij ∈ Y , zij ∈ Z and φij ∈ Y ∗∗ for all i,j. Then Y
cannot be a proper right M-ideal in any other operator space.

Proof. LetX be an operator space with Y a complete rightM -ideal inX.
Suppose that P is a complete left M -projection from X∗∗ onto Y ⊥⊥. By the
hypothesis, there is a completely contractive projection Q : Y ∗∗ → Y ∗∗

mapping onto Y . Let R be the restriction of (Q ◦ P ) to X. Then since
Y ∗∗ ∼= Y ⊥⊥ completely isometrically, R is a completely contractive projec-
tion onto Y . Hence by the uniqueness of a left M -projection (see e.g. [BEZ,
Theorem 3.10]), R has to be a complete left M -projection, and thus Y is a
right M -summand.

Proposition 3.14. Every non-reflexive rightM -embedded operator space
contains a copy of c0. Moreover, every subspace and every quotient of a right
M -embedded space, which is not reflexive, contains a copy of c0.

Proof. Suppose that X is a non-reflexive right M -ideal in its bidual, and
X does not contain a copy of c0. Since X is a u-ideal, by [GKS, Theorem
3.5] it is a u-summand. Since u-summands are contractively complemented,
X is the range of a contractive projection. But this implies that X is a right
M -summand (see the discussion at the end of [BZ2, Section 2.3]). Since X
is non-reflexive, it cannot be a non-trivial M -summand in X∗∗. Hence X
has to contain a copy of c0. The rest follows from Theorem 2.6.

Let X be an operator space. Then πX∗∗ := iX∗∗ ◦ (iX∗)
∗ is a completely

contractive projection onto X∗∗ with kernel (X∗)⊥. So X(4) = X∗∗⊕(X∗)⊥.
The following may be used to give an alternative proof of some results above.
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Proposition 3.15. If X is a right M -embedded operator space, then
πX∗∗ is the only contractive projection from X(4) onto X∗∗.

Proof. Since X is right M -embedded, Theorem 2.10 shows that X∗ has
the RNP, i.e., (X∗)R has the RNP, where XR denotes the underlying real
Banach space. Then by [DU, p. 202, Theorem 3], Ball (X∗)R is the closure
of the convex hull of its strongly exposed points. If ψ is a strongly exposed
point in Ball (X∗)R, then it is a denting point (see e.g. [JL]). Hence ψ is
a point of continuity of Id : ((X∗)R, w) → ((X∗)R, ‖ · ‖). Thus by [Gdf,
p. 144], (X∗R)∗R satisfies the assumptions of [Gdf, Theorem II.1]. Hence there
is a unique contractive R-linear projection from (X∗R)∗∗∗ onto (X∗R)∗. Since
(X∗)R = (XR)∗ ([Li, Proposition 1.1.6]), there is a unique R-linear con-
tractive projection from (X(4))R to (X∗∗)R, and hence a unique C-linear
contractive projection from X(4) onto X∗∗.

Remark. Note that the above result also holds for Banach spaces X
such that X∗ has the RNP, and in particular for h-ideals which are strict in
the sense of [GKS]. It also holds for separable strict u-ideals by the proof of
Theorem 5.5 from [GKS].

4. One-sided L-embedded spaces. We now talk about the dual no-
tion of L-embedded spaces. For the definition of a one-sided L-embedded
and a completely L-embedded operator space, see Section 2.

Examples. We list a few examples of right L-embedded spaces:

(a) Duals of left M -embedded spaces.
(b) Preduals of von Neumann algebras.
(c) Preduals of subdiagonal operator algebras, in the sense of Arveson

[Arv].

We have already noted (a) in Corollary 2.4. For (b), note that it is
well known that (M∗)⊥ is a w∗-closed two-sided ideal in M∗∗, for any von
Neumann algebra M. So (M∗)⊥ is a complete M -ideal in M∗∗. Hence by
[BZ2, p. 8] and [BEZ, Proposition 3.9],M∗ is a complete L-summand inM∗.
For (c), let A = H∞(M, τ), where M is a von Neumann algebra and τ a
faithful normal tracial state. Then by [Ued, Theorem 2], A has a unique
predual, namely A∗ = M∗/A⊥. Also, each Mn(A) is a subdiagonal operator
algebra, so applying [Ued, Corollary 2] to Mn(A)∗ we find that each Mn(A)∗
is an L-summand in Mn(A)∗. Thus by Lemma 2.2, A∗ is a complete L-
summand in A∗.

It is shown in [ABS] that if X is right but not left M -embedded, then X∗

is left but not right L-embedded. Thus the examples mentioned in Section 3
have duals which are left but not right L-embedded.
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Let X be left L-embedded. Then we say a closed subspace Y of X is
a left L-subspace if Y is left L-embedded and for the right L-projection Q
from Y ∗∗ onto Y , we have Ker(Q) = Ker(P ) ∩ Y ⊥⊥, where P is a right
L-projection from X∗∗ onto X.

Theorem 4.1. Let X be a left L-summand in X∗∗ and let Y be a sub-
space of X. Let P : X∗∗ → X∗∗ be a complete right L-projection onto X.
Then the following conditions are equivalent:

(i) Y is a left L-subspace of X.
(ii) P (Y w∗) = Y .

(iii) P (BY
w∗) = BY .

Proof. If Y is a left L-subspace then since, Y w∗ = Y ⊥⊥ = Y ⊕ (Y ⊥⊥ ∩
Ker(P )), it is clear that P (Y w∗) = Y . Hence (i) implies (ii). Also, since

BY = P (BY ) ⊂ P (BY
w∗) = P (BY ⊥⊥) = P (B

Y
w∗ ) ⊂ BY ,

it is clear that (ii) and (iii) are equivalent. We now show that (ii) implies
(i). Since P (Y ⊥⊥) = Y ⊂ Y ⊥⊥, the restriction of P to Y ⊥⊥ = Y ∗∗, say Q,
is a completely contractive projection from Y ∗∗ onto Y . Also P ∈ Cr(X∗∗)
(for notation see [BZ2, Chapter 2]) and P = P ?, and P (Y ⊥⊥) ⊂ Y ⊥⊥, so by
[BZ2, Corollary 5.12] we have Q ∈ Cr(Y ∗∗). Thus Q is a right L-projection
and clearly since Q = P |Y ⊥⊥ , we have Ker(Q) = Ker(P )∩Y ⊥⊥. Hence Y is
a left L-subspace of X.

Corollary 4.2. Let X be a left L-embedded operator space and Y be a
left L-subspace of X. Then X/Y is left L-embedded.

Proof. Let P : X∗∗ → X∗∗ be a complete right L-projection onto X.
Then by Theorem 4.1, P maps Y ⊥⊥ onto Y . Consider the map

P/Y ⊥⊥ : X∗∗/Y ⊥⊥ → X∗∗/Y ⊥⊥

given by (P/Y ⊥⊥)(x∗∗ + Y ⊥⊥) = P (x∗∗) + Y ⊥⊥. Then since P ∈ Cr(X∗∗)
(see [BZ2, Chapter 2] for the notation) with P (Y ⊥⊥) = P ?(Y ⊥⊥) ⊂ Y ⊥⊥, by
[BZ2, Corollary 5.12] we have P/Y ⊥⊥ ∈ Cr(X∗∗/Y ⊥⊥). So P/Y ⊥⊥ is a com-
plete right L-projection onto (X+Y ⊥⊥)/Y ⊥⊥. Since (X/Y )∗∗ is completely
isometrically isomorphic to X∗∗/Y ⊥⊥ and under this isomorphism X/Y is
mapped onto (X + Y ⊥⊥)/Y ⊥⊥, it is clear that X/Y is left L-embedded.

The following corollary can also be proved using Proposition 4.1 (see
[HWW, Proposition IV.1.6]).

Corollary 4.3. Let X be a left L-embedded space and let Y1, Y2, {Yi}i∈I
be left L-subspaces of X. Then

(i)
⋂
i∈I Yi is a left L-subspace.

(ii) Y1 + Y2 is closed if and only if Y1 + Y2 is a left L-subspace of X.
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We omit the proof of the proposition below, because it is identical to the
classical version (see [HWW, Proposition IV.1.12]).

Proposition 4.4. Let X be a left L-embedded space and let Y be a left L-
subspace of X. Then Y is proximinal in X and the set of best approximations
to x from Y is weakly compact for all x in X.

The following two results are non-commutative versions of some of Gode-
froy’s results.

Proposition 4.5. Let X be left L-embedded and let P be a complete
right L-projection from X∗∗ onto X. Then:

(i) There is at most one predual of X, up to complete isometric isomor-
phism, which is right M -embedded.

(ii) There is a predual of X which is a right M -ideal in its bidual if and
only if Ker(P ) is w∗-closed in X∗∗.

Proof. (i) Let Y1 and Y2 be two preduals of X, that is, Y ∗1 ∼= X ∼= Y ∗2
completely isometrically via a map I : Y ∗1 → Y ∗2 . Let P = I∗∗−1πY ∗2 I

∗∗.
Then P : Y ∗∗∗1 → Y ∗∗∗1 is a completely contractive projection onto Y ∗1 . Thus
by [BEZ, Theorem 3.10(a)], πY ∗1 = P = I∗∗−1πY ∗2 I

∗∗. By basic functional
analysis, this is equivalent to the w∗-continuity of I, which implies that
I = J∗ for some complete isometric isomorphism J : Y2 → Y1. Thus the
predual is unique up to complete isometry.

(ii) Suppose that Y is a right M -embedded operator space such Y ∗ = X.
Then πY ∗ is a complete right L-projection from Y ∗∗∗ onto Y ∗ = X, so
πY ∗ = P . The kernel of πY ∗ is iY (Y )⊥ ⊂ Y ∗∗∗, which is clearly w∗-closed
in X∗∗. Conversely, suppose that Ker(P ) is w∗-closed in X∗∗. Let Y =
(Ker(P ))⊥ ⊂ X∗. Then Y ⊥ = Ker(P )

w∗
= Ker(P ) = Ran(I − P ), which

means that Y ⊥ is a left L-summand. Hence Y is a right M -ideal in X∗. Since
P : X∗∗ → X∗∗ is a complete quotient map onto X, we have X∗∗/Ker(P )
∼= X. But X∗∗/Ker(P ) ∼= ((Ker(P ))⊥)∗, so X ∼= Y ∗.

Corollary 4.6. Let X be a right M -ideal in its bidual and Y be a
w∗-closed subspace of X∗. Then:

(i) Y is the dual of a space which is a right M -ideal in its bidual.
(ii) Y is a left L-summand in its bidual.

Proof. As Y is w∗-closed, we have Y = (X/Y⊥)∗. Now since X is right
M -embedded, by Theorem 2.6, X/Y⊥ is right M -embedded. This proves (i).
It is easy to see that (ii) follows from Corollary 2.4.

Analogues of many classical results about the RNP are also true for the
right L-embedded spaces. For instance, suppose that X is right L-embedded
and P is a left L-projection from X∗∗ onto X. Then, if the ball of Ker(P )
is w∗-dense in the ball of X∗∗, X fails to have the RNP. This is because the
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unit ball of X does not have any strongly exposed points (see e.g. [HWW,
Remark IV.2.10(a)]).

Proposition 4.7. Let X be a left L-embedded operator space and Y ⊂ X
be a left L-subspace. Let Z be an operator space such that Z∗ is an injective
Banach space (resp. injective operator space). Then for every contractive
(resp. completely contractive) operator T : Z → X/Y there exists a contrac-
tive (resp. completely contractive) map S : Z → X such that qS = T , where
q : X → X/Y is the canonical quotient map.

The above proposition can be proved by routine modifications to the
argument in [HWW, Proposition IV.2.12]. For the following corollaries see
arguments in [HWW, Corollary IV.2.13] and [HWW, Corollary IV.2.14],
respectively.

Corollary 4.8. If X is a right L-embedded space with Y a left L-
subspace of X, and if X/Y contains a subspace W isometric (resp. com-
pletely isometric) to L1(µ), then there is a subspace Z of X such that
q(Z) = W and q|Z is an isometric (resp. completely isometric) isomor-
phism. If also X/Y ∼= L1(µ), then there is a contractive (resp. completely
contractive) projection P on X with Y = Ker(P ).

Corollary 4.9. Let X be a right L-embedded space with Y a left L-
subspace of X. Then if X has the RNP then X/Y has the RNP.
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