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The rectifiable distance in the unitary Fredholm group

by

Esteban Andruchow and Gabriel Larotonda (Buenos Aires)

Abstract. Let Uc(H) = {u : u unitary and u − 1 compact} stand for the unitary
Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable
distance induced by the Finsler metric given by the operator norm in Uc(H). If u0, u1, u ∈
Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u, β) < π/2, then the
map f(s) = d∞(u, β(s)) is convex for s ∈ [0, 1]. In particular, the convexity radius of
the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten
unitary groups Up(H) = {u : u unitary and u − 1 in the p-Schatten class} for p an even
integer, p ≥ 4 (in this case, the distance is strictly convex). The same results hold in the
unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result
to establish the existence of curves of minimal length with given initial conditions, in
the unitary orbit of an operator, under the action of the Fredholm group. We characterize
self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H),
where K(H) = compact operators).

1. Introduction. As in the finite-dimensional setting, an infinite-dimen-
sional manifold with a Finsler metric (a continuous distribution of norms in
the tangent spaces) becomes a metric space. The reader can find the main
facts concerning Finsler structures on Banach manifolds in the books by H.
Upmeier [27] and D. Beltiţă [6]. The distance between two points is given by
the infimum of the lengths of the smooth curves which join these points. The
first problem one encounters is the existence of curves of minimal length, or
metric geodesics. In the finite-dimensional case, compactness of closed balls
is a key fact in the solution of this problem. For infinite-dimensional man-
ifolds, in the absence of compactness, convexity properties of the distance
can prove a useful substitute. In this paper we study manifolds which carry
a transitive action of the unitary Fredholm group (defined below), i.e. homo-
geneous spaces of the Fredholm group. We start by considering the metric
geometry of the group. It is well-known that with the Finsler metric given
by the usual operator norm, geodesics (starting at 1) are one-parameter uni-
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tary groups eitx with x∗ = x compact, and remain minimal if |t| ≤ π/‖x‖.
We prove a convexity property for the metric in the group: if three elements
u0, u1, u2 of the group lie close enough, the distance from u0 to the points
of the geodesic joining u1 and u2, is a convex map in the time parameter.
In particular, the radius of convexity of the geodesic balls in the unitary
group is π/4. With a slightly different proof, we obtain the same result for
the unitary group UA of a C∗-algebra A with a finite faithful trace.

These results are used to establish the existence of metric geodesics
with given initial conditions in certain homogeneous spaces of the Fred-
holm group, more precisely, in the orbits of operators under the inner action
of this group.

It is worth mentioning here that the rectifiable distance in the unitary
group of a C∗-algebra A (and in spaces of projections of A) is related to the
problem of factorization of operators on C∗-algebras (see the survey [22] by
N. C. Phillips).

Let H be a Hilbert space. Denote by B(H), K(H) and Bp(H) respectively
the Banach spaces of bounded, compact and p-Schatten operators. Let U(H)
be the unitary group of H. This paper is a sequel of [2], where we studied the
geometry of homogeneous spaces of the so called [18] classical Lie–Banach
groups of unitaries in H,

Up(H) = {u ∈ U(H) : u− 1 ∈ Bp(H)}.
The Lie algebra of Up(H) is the space Bp(H)ah of anti-hermitian operators in
Bp(H). Thus the natural Finsler metric to consider in Up(H) is the p-norm
‖x‖p = Tr(|x|p)1/p. We denote by ‖x‖ the usual supremum norm of x.

In this paper we shall focus on the (unitary) Fredholm group

Uc(H) = {u ∈ U(H) : u− 1 ∈ K(H)}.
Among the facts proved in [2], let us cite the following, which also hold

in the unitary group UA of a C∗-algebra A with a finite faithful trace [3]:

1. With the Finsler metric given by the p-norm, if p ≥ 2, the curves
of the form µ(t) = uetx (u ∈ Up(H), x ∈ Bp(H)ah, ‖x‖ ≤ π) have
minimal length (and are unique with this property if ‖x‖ < π) as
long as |t| ≤ 1. Any pair u0, u1 of elements in Up(H) can be joined by
a minimal geodesic, which is unique if ‖u0 − u1‖ < 2.

2. If p is an even integer, dp denotes the distance given by the Finsler
metric, u0 ∈ Up(H) and δ is a geodesic such that dp(u0, δ(t)) < π/4
for t in a certain interval I, then the function f(t) = dp(u0, δ(t))p is
strictly convex for t ∈ I.

Our first result establishes that the second cited result can be refined:
the function

g(t) = dp(u0, δ(t))
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is strictly convex in I for p even, p ≥ 4. As a consequence, if u, v ∈ Uc(H),
and x = −x∗ ∈ K(H), with ‖x‖ ≤ π/4, the function

g∞(t) = d∞(u, vetx), t ∈ [0, 1]

is convex, where d∞ is the rectifiable distance induced by the Finsler metric
given by the operator norm in Uc(H).

In order to obtain this result, we need the analogue to the first cited
result for the group Uc(H). This is perhaps well-known; we sketch a proof
at the beginning of the next section. With the same proof, the result holds
for C∗-algebras with a finite faithful trace.

We apply the convexity property of the metric to the geometric study of
the unitary orbits of an operator A under the Fredholm group,

OA = {uAu∗ : u ∈ Uc(H)}.
We deal more extensively with the case A∗ = A, though we also consider an
example of a non-self-adjoint operator. This orbit lies inside the affine space
A+K(H), and therefore its tangent spaces lie inside K(H). A natural Finsler
metric to consider here, following the ideas in [15], is the quotient metric
induced by the usual operator norm. We first prove that if A∗ = A, then OA
is a complemented submanifold of A + K(H) and a smooth homogeneous
space if and only if the spectrum of A is finite. Then we proceed to the
study of the existence of minimal curves in OA with given initial conditions.
If x = −x∗ ∈ K(H) and b ∈ OA, then xb− bx is a typical tangent vector of
OA at b. In the case when A has finite rank (or more generally, A has finite
spectrum with all but one of the eigenspaces of finite dimension) we prove
that there exists a compact anti-hermitian operator zc such that

1. xb− bx = zcb− bzc,
2. ‖zc‖ ≤ ‖x′‖ for all x′ ∈ K(H)ah such that x′b− bx′ = xb− bx,

and the curve ε(t) = etzcbe−tzc has minimal length up to |t| ≤ π/(4‖zc‖).
Such elements zc are called in [15] minimal liftings of the tangent vector
xb − bx because they achieve the quotient norm; they need not be unique.
They are found using a matrix completion technique developed by C. Davis,
W. M. Kahan and H. F. Weinberger [12], in their solution to M. G. Krein’s
extension problem. These minimal liftings provide, in a different but re-
lated framework [15], curves of minimal length in homogeneous spaces of
the unitary group of a von Neumann algebra.

The contents of the paper are as follows. In Section 2 we prove the
convexity results for the geodesic distance in Up(H) (p even, p ≥ 4) and
Uc(H). In Section 3 we show that this result holds in C∗-algebras with a
finite and faithful trace. In Section 4 we characterize self-adjoint operators
A such that OA is a submanifold of A+K(H). In Section 5 we introduce a
Finsler metric in OA, and show that if, for instance, A has finite rank, then
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one can find curves of minimal length (or metric geodesics) in OA with given
initial conditions (position and velocity). In Section 6 we further specialize
to the case of A = P an orthogonal projection, and show that in OP one
can find metric geodesics joining any given pair of points. In Section 7 we
consider the example of a non-self-adjoint operator, namely an order two
nilpotent N . We show that for certain special directions, called here anti-
symmetric tangent vectors, metric geodesics with these special vectors as
velocity vectors exist.

2. Convexity in the classical unitary groups. In this paper, we
consider piecewise smooth curves γ : [a, b] → X taking values in either a
unitary group, or a homogeneous space of a unitary group. By smooth we
mean C1 and with non-vanishing derivative. The rectifiable length of γ is
defined in the usual way,

L(γ) =
b�

a

‖γ̇‖γ ,

where ‖v‖x denotes the norm of a tangent vector v at x ∈ X. The rectifiable
distance is defined as the infimum of the lengths of smooth curves joining
given endpoints, that is,

d(x, y) = inf{L(γ) : γ is piecewise smooth, γ(a) = x, γ(b) = y}.

For p ≥ 1, we use dp to indicate the rectifiable distance in the group Up(H),
and d∞ to indicate the rectifiable distance in either the Fredholm group or
a given C∗-algebra (i.e. the distance obtained by measuring curves with the
uniform norm).

Lemma 2.1. Let x ∈ K(H)ah with ‖x‖ ≤ π, and u ∈ Uc(H). Then the
curve ε(t) = uetx has minimal length for t ∈ [0, 1]. Any pair u, v ∈ Uc(H)
can be joined by such a curve.

Proof. Clearly we can suppose u = 1. Note that x2 ≤ 0, and since it is
compact, there exists a unit vector ξ ∈ H which is a norming eigenvector
for x2, i.e. x2ξ = −‖x‖2ξ. Consider the map

ρ : Uc(H)→ SH = {η ∈ H : ‖η‖ = 1}, ρ(u) = uξ.

Note that e(t) = ρ(ε(t)) is a geodesic of the sphere SH. Indeed, if k = ‖x‖
then

ë(t) = etxx2ξ = −k2etxξ = −k2e(t).

Moreover, since k ≤ π, it is a minimal geodesic of the sphere for t ∈ [0, 1].
Let γ(t), t ∈ [0, 1], be a curve in Uc(H) joining the same endpoints as ε.
Then ρ(γ) joins the same endpoints as e. Thus L(e) ≤ L(ρ(γ)). On the
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other hand,

L(ρ(γ)) =
1�

0

‖γ̇(t)ξ‖ dt ≤
1�

0

‖γ̇(t)‖ dt = L(γ).

Moreover,

‖ė‖2 = ‖xξ‖2 = 〈xξ, xξ〉 = −〈x2ξ, ξ〉 = ‖x2‖ = ‖x‖2,
and thus L(e) = L(ε). This completes the first part of the proof.

Given w ∈ Uc(H), there exists x ∈ K(H)ah such that w = ex [18].
Moreover, x can be chosen with ‖x‖ ≤ π.

Remark 2.2. The Hessian of the p-norms was studied by L. E. Mata-
Lorenzo and L. Recht in [4, 20]. We recall a few facts we will use in the proof
of the next theorem. Let a, b, c ∈ Bp(H)ah, and let Ha : Bp(H)ah × Bp(H)ah

→ R stand for the symmetric bilinear form given by

Ha(b, c) = (−1)p/2p
p−2∑
k=0

Tr(ap−2−kbakc).

Denote by Qa the quadratic form induced by Ha. Then (cf. Lemma 4.1 in [4]
and equation (3.1) in [20]):

1. Qa([b, a]) ≤ 4‖a‖2Qa(b).
2. Qa(b) = p‖bap/2−1‖22 +

p

2

∑
l+m=n−2

‖al(ab+ ba)am‖22.

In particular, Ha is positive definite for any a ∈ Bp(H)ah. These facts were
proved in the context of a C∗-algebra with a finite trace. They hold in our
context here, because they rely on the abstract properties of the trace, and
on the following facts, which are elementary:

‖xy‖p ≤ ‖x‖ ‖y‖p, ‖ |x|y‖p = ‖xy‖p, x ∈ B(H), y ∈ Bp(H).

Our convexity results follow. If u ∈ Up(H), denote by

Bp(u, r) = {w ∈ Up(H) : dp(u,w) < r}
the ball of radius r around u in Up(H). First we prove a refinement of a
result from [2, Theorem 3.6]. Let g(r) = sinc(r) = r−1 sin(r), which is a
strictly decreasing function in [0, π] with g(0) = 1 and g(π) = 0.

Theorem 2.3. Let p be an even integer, p ≥ 4. Let u ∈ Up(H) and let
β : [0, 1]→ Up(H) be a non-constant geodesic contained in the geodesic ball
of radius rp = 1

2g
−1(1/(p− 1)), β ⊂ Bp(u, rp). Assume further that u does

not belong to any prolongation of β. Then fp(s) = dp(u, β(s))p satisfies

(p− 1)f ′p(s)
2 ≤ pfp(s)f ′′p (s)

1
g(2‖ws‖p)

≤ p(p− 1)fp(s)f ′′p (s)

for any s ∈ [0, 1], and equality holds in the last term if and only if f ′′p (s) = 0.
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Proof. We may assume that u = 1 since the action of unitary elements
is isometric. Let v, z ∈ Bp(H)ah be such that β(s) = evesz. Since

‖β(s)− 1‖ ≤ ‖β(s)− 1‖p ≤ dp(β(s), 1) < rp < 1,

the curve β has analytic logarithm given by the smooth curve of (anti-
hermitian) operators ws = log(β(s)) ∈ Bp(H)ah. Let γs(t) = etws . Since
‖ws‖ ≤ ‖ws‖p < rp < π/4 (p ≥ 4), γs is a short geodesic joining 1 and
β(s), of length ‖ws‖p = dp(1, β(s)). Then fp(s) = ‖ws‖pp = Tr((−w2

s)
p/2) =

(−1)p/2Tr(wps), hence

f ′p(s) = (−1)p/2pTr(wp−1
s ẇs) =

1
p− 1

Hws(ẇs, ws).

For x, y ∈ Bp(H)ah, we have the well-known formula

d expx(y) =
1�

0

e(1−t)xyetx dt

(cf. [2, Lemma 3.3]). Since ews = evesz, we have e−wsd expws
(ẇs) = z, so

that

(1) z =
1�

0

e−twsẇse
tws dt.

Thus Tr(wp−1
s ẇs) =

	1
0 Tr(wp−1

s e−twsẇse
tws) dt = Tr(zwp−1

s ). Hence

f ′′p (s) = (−1)p/2p
p−2∑
k=0

Tr(wp−2−k
s ẇsw

k
sz) = Hws(ẇs, z),

and again by (1) above,

f ′′p (s) =
1�

0

Hws(δs(0), δs(t)) dt

where δs(t) = e−twsẇse
tws . Suppose that for this value of s ∈ [0, 1], R2

s :=
Qws(ẇs) 6= 0, where Qws is the quadratic form associated to Hws . Then,
if Ks ⊂ Bp(H)ah is the null space of Hws , consider the quotient space
Bp(H)ah/Ks equipped with the inner product Hws(·, ·). An elementary com-
putation shows that δs lives in a sphere of radius Rs of this pre-Hilbert
space, hence

Hw(δs(0), δs(t)) = R2
s cosαs(t),

where αs(t) is the angle subtended by δs(0) and δs(t).
Note that

d

dt
δs(t) = e−tws [ws, ẇs]etws ,
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and that Qs is Ade−tws -invariant:

Qs(e−twsaetws) = Qs(a).

Then, reasoning in the sphere, we have

Rsαs(t) ≤ Lt0(δs) =
t�

0

Qws(e−tws [ws, ẇs]etws)1/2 dt

=
t�

0

Qws([ws, ẇs])1/2 dt = tQws([ws, ẇs])1/2.

By property 1 of Remark 2.2,

Rsαs(t) ≤ t 2‖ws‖Rs ≤ t 2‖ws‖pRs
for any t ∈ [0, 1]. Hence, since ‖ws‖p < π/2, it follows that

cos(αs(t)) ≥ cos(2t‖ws‖p),
and we obtain

f ′′p (s) ≥ R2
s

sin(2‖ws‖p)
2‖ws‖p

> 0

integrating the expression for f ′′p (s) above. Note that the Cauchy–Schwarz
inequality for Hws implies that

(p− 1)2f ′p(s)
2 = Hws(ws, ẇs)2 ≤ Qws(ws)Qws(ẇs) = p(p− 1)fp(s)R2

s,

and therefore
(p− 1)f ′p(s)

2 ≤ pfp(s)f ′′p (s)
1

g(2‖ws‖p)
.

For the chosen value of rp = 1
2g
−1(1/(p− 1)), one has
1

g(2‖ws‖p)
< p− 1,

and therefore the right hand inequality of the theorem follows. Note also
that since we are supposing Rs 6= 0, clearly f ′′p (s) 6= 0, and thus for such s
the second inequality is strict.

Suppose now that Rs = Qws(ẇs) = 0 Then, again by the Cauchy–
Schwarz inequality for the form Hws ,

0 ≤ f ′′p (s) = Hws(ẇs, z) ≤ Qs(ẇs)1/2Qs(z)1/2 = 0,

and similarly

|f ′p(s)| =
1

p− 1
|Hws(ẇs, ws)| ≤

1
p− 1

Qs(ẇs)1/2Qs(ws)1/2 = 0,

which concludes the proof.

The following elementary lemma will simplify the proof of the next corol-
laries.
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Lemma 2.4. Let C, ε > 0, and let f : (−ε, 1 + ε)→ R be a non-constant
real analytic function such that f ′(s)2 ≤ Cf ′′(s) for any s ∈ [0, 1]. Then f
is strictly convex in (0, 1) and moreover there is at most one α ∈ (0, 1) with
f ′′(α) = 0.

Proof. By the mean value theorem, the condition on f implies that for
each pair of roots of f ′, there is another root in between. Since f is analytic
and non-constant, C0(f ′), the set of zeros of f ′, is an empty set or has one
point α ∈ (−ε, 1 + ε). If C0(f ′) does not meet (0, 1), then f ′′ > 0 there and
we are done. We now assume that there exists α in (0, 1) such that f ′(α) = 0.
Note that −f ′(x) = f ′(α)− f ′(x) =

	α
x f
′′(s) ds > 0 for any x ∈ (−ε, α] and

f ′(y) = f ′(y) − f ′p(α) =
	y
α f
′′(s) ds > 0 for any y ∈ [α, 1 + ε), hence f ′ is

strictly negative in (−ε, α) and strictly positive in (α, 1 + ε), so f is strictly
convex in each interval. If f(α) < [f(1)− f(0)]α+ f(0), we are done. If not,
by the mean value theorem there exist x ∈ (0, α) and y ∈ (α, 1) such that

f(1)− f(0) =
f(α)− f(0)

α
= f ′(x) < 0

and

f(1)− f(0) =
f(1)− f(α)

1− α
= f ′(y) > 0,

a contradiction.

Corollary 2.5. If u, β are as in Theorem 2.3, then fp is strictly convex.

Proof. Since fp is analytic and f ′p(s)
2 ≤ Cf ′′(s), if fp is non-constant

then fp is strictly convex by Lemma 2.4. Assume now that fp is constant
with fp(s) = fp(0) = ‖v‖p for any s ∈ [0, 1]. Note that Rs ≡ 0, and then
by property 2 of Remark 2.2, wp/2−1

s z = 0 and an elementary computa-
tion involving the functional calculus of anti-hermitian operators shows that
wsz = 0. In particular, vz = 0 which implies ws = v + sz by the Baker–
Campbell–Hausdorff formula. But since the norm of Bp(H) is strictly convex,
ws cannot have constant norm unless v is a multiple of z, and in that case,
u and β are aligned, contradicting the assumption of the theorem.

Corollary 2.6. Let u, β be as in Theorem 2.3. Then gp(s) = dp(u, β(s))
= fp(s)1/p is strictly convex.

Proof. Computing g′′p(s), we obtain

g′′p(s) =
1
p2
fp(s)1/p−2[pfp(s)f ′′p (s)− (p− 1)f ′p(s)

2],

which is positive by the previous theorem. Moreover, it is strictly positive
if and only if f ′′p (s) 6= 0. By Lemma 2.4, there is at most one α ∈ (0, 1)
where f ′′p (s) = 0, and arguing as in the proof of that lemma shows that gp
is strictly convex.
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Remark 2.7. Note that for p = 2 the above statements are incomplete:
f2 is certainly strictly convex if β and u are as above, but it is not clear
whether g2 is convex. This last assertion is equivalent to

|Tr(wsz)| ≤ |Tr(ẇsz)|1/2‖ws‖2 = µs‖ws‖2‖ẇs‖2
where µs =

	1
0 cosαs(t) dt ≤ 1 is a positive constant, so it is easy to check

that g2 is convex if v and z commute.

Our main result on the convexity of the rectifiable distance in the Fred-
holm group follows.

Theorem 2.8. Let u ∈ Uc(H), and let β : [0, 1] → Uc(H) be a geodesic
such that d∞(u, β)<π/2. Then for s ∈ [0, 1], the function g(s) = d∞(u, β(s))
is convex.

Proof. We assume that u = 1, β(s) = evesz as before; here v and z
are compact. Since d∞(u, β(s)) < π/2, ws = log(β(s)) is a compact anti-
hermitian operator with ‖ws‖ = d(1, β(s)) = g(s). Let qn be an increasing
sequence of finite rank projections which converge strongly to 1, and consider
vn = qnvqn and zn = qnzqn. Note that since v, z are compact, vn → v and
zn → z in norm, and therefore evneszn → evesz in norm for all s ∈ [0, 1].
Therefore there exists n0 such that for all n ≥ n0, ‖evneszn − 1‖ < π/4 for
all s ∈ [0, 1]. Let wn,s = log(evneszn). It follows that the map

gn,p(s) = dp(1, evneszn) = ‖wn,s‖p
is convex in [0, 1]. Note that wn,s is a finite rank operator, thus

lim
p→∞

‖wn,s‖p = ‖wn,s‖ =: gn,∞(s).

Thus gn,∞ is convex. Finally, by continuity of the functional calculus,

g(s) = ‖ws‖ = lim
n→∞

‖wn,s‖ = lim
n→∞

gn,∞(s)

is convex for s ∈ [0, 1].

Corollary 2.9. The radius of convexity of the geodesic balls in Uc(H)
is π/4.

Remark 2.10. There is another relevant result concerning convexity of
distance maps in the context of operator algebras [10, 11]. Namely, the man-
ifold P of positive invertible elements in H, with a natural Finsler metric,
is a space of non-positive curvature in the sense of Busemann. This in turn
implies that a global convexity result like the one stated in Theorem 2.8
above holds in P; the non-positive curvature plays a significant role there.
In finite-dimensions, in the Riemannian case, the unitary group has non-
negative curvature. See also Theorem 5.1 in [2] for a result regarding the
distance between geodesics in unitary groups.
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3. Convexity in the unitary group of a C∗-algebra with a finite
trace. Several results in the previous section remain valid when properly
rephrased in the context of a finite C∗-algebra A with a faithful and finite
trace τ . To begin with, Remark 2.2 was originally stated in this context [20].
Denote by UA the unitary group of A. Then the one-parameter groups with
skew-adjoint exponent x with ‖x‖ < π are the short curves in UA, when we
measure them with the p-norms induced by the trace (see [3, Theorem 5.4]
for a proof). That the same assertion holds if we measure curves with the
uniform norm of A is perhaps well-known; we include a proof of it.

Lemma 3.1. Let x ∈ A be skew-adjoint with ‖x‖ < π, and u ∈ UA. Then
the curve ε(t) = uetx has minimal length for t ∈ [0, 1]. Any pair u, v ∈ UA
such that ‖u− v‖ < 2 can be joined by such a curve.

Proof. Let ϕ be a state of A such that ϕ(x) = −‖x‖2. Let Hϕ be the
Hilbert space associated to the Gelfand–Naimark–Segal representation of
A induced by ϕ. Consider the unit sphere of the Hilbert space Hϕ, and
represent elements u ∈ UA as elements in the sphere by means of a cyclic
and separating vector ξϕ ∈ Hϕ,

πϕ(u)ξϕ.

The argument carries on as in Lemma 2.1, because etx is mapped to e(t) =
etπϕ(x)ξϕ, which is a minimal geodesic in the sphere since

ë(t) = etπϕ(x)πϕ(x2)ξϕ = −etπϕ(x)‖x‖2ξϕ = −‖x‖2e(t).
See [23] for a similar argument. If ‖u−v‖ < 2 then there exists a skew-adjoint
element x ∈ A with ‖x‖ < π such that v = uex, and one can consider the
curve ε(t) = uetx.

Let us now state the analogue of Theorem 2.3.

Theorem 3.2. Let p be a positive even integer, p ≥ 4. Let u ∈ UA and
let β : [0, 1] → UA be a non-constant geodesic contained in the geodesic
(uniform) ball of radius rp = 1

2g
−1(1/(p− 1)), that is, β ⊂ B∞(u, rp).

Assume further that u does not belong to any prolongation of β. Then
fp(s) = dp(u, β(s))p satisfies

(p− 1)f ′p(s)
2 ≤ pfp(s)f ′′p (s)

1
g(2‖ws‖)

≤ p(p− 1)fp(s)f ′′p (s)

for any s ∈ [0, 1], and equality holds in the last term if and only if f ′′p (s) = 0.

Proof. One only needs to review the proof of Theorem 2.3, and note that
the result follows using the inequalities with the operator norm ‖ ‖. Notice
that by Remark 3.7 in [2], the condition ‖ws‖ < π/2 guarantees that fp is
convex.

Analogously the other results follow:
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Corollary 3.3. Let u, β be as in the above theorem. Then the function

gp(s) = dp(u, β(s)) = fp(s)1/p

is strictly convex.

Corollary 3.4. Let u ∈ UA, and let β : [0, 1] → UA be a geodesic
such that d∞(u, β) < π/2. Then g(s) = d∞(u, β(s)), s ∈ [0, 1], is a convex
function.

Corollary 3.5. The radius of convexity of the geodesic balls in UA is
π/4.

4. Smooth structure of unitary orbits of the Fredholm group.
In this section we shall investigate the geometric structure of the unitary
orbit of a fixed operator. To simplify our exposition, we shall consider the
case of a bounded self-adjoint operator A ∈ B(H), and its orbit

OA = {uAu∗ : u ∈ Uc(H)}.
Note that OA ⊂ A+K(H)h (and clearly OA ⊂ K(H)h if A is compact). First
we characterize the operators A such that OA is a submanifold of the affine
Banach space A + K(H). The argument is analogous to the one developed
in [2] for the orbit of the group U2(H). We shall use the following lemma,
which is an elementary consequence of the Inverse Function Theorem. Its
proof can be found in the Appendix of [25].

Lemma 4.1. Let G be a Banach–Lie group acting smoothly on a Banach
space X. For a fixed x ∈ X, denote by πx : G → X the smooth map
πx(g) = g · x. Suppose that

1. πx is an open mapping, when regarded as a map from G onto the orbit
{g · x : g ∈ G} of x (with the relative topology of X).

2. The differential d(πx)1 : (TG)1 → X splits: its kernel and range are
closed complemented subspaces.

Then the orbit {g · x : g ∈ G} is a smooth submanifold of X, and the map
πx : G→ {g · x : g ∈ G} is a smooth submersion.

In our case, we must consider the map

πA : Uc(H)→ OA ⊂ A+K(H), πA(u) = uAu∗,

whose differential at 1 is the inner derivation

δA : K(H)ah → K(H)h, δA(x) = xA−Ax.
There are many results on the spectral properties of elementary operators,
in particular of inner derivations. One can find an extensive survey on this
subject in the book [5] by C. Apostol et al. Specifically related to our context,
where the inner derivation is restricted to the compact operators, is the
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paper [16] by L. Fialkow. We transcribe a result from that paper. Denote
by τAB the operator τAB(x) = Ax− xB. Let J be any Schatten ideal.

Theorem 4.2 (Fialkow [16]). The following are equivalent:

1. τAB : B(H)→ B(H) is bounded below.
2. τAB : J → J is bounded below for some J .
3. τAB : J → J is bounded below for any J .
4. σl(A) ∩ σr(B) = ∅.
Here σl(A) (resp. σr(B)) denote the left (resp. right) spectrum of A

(resp. B). In our particular case, we deal with τAA = δA and J = K(H).
In view of the lemma above, we must show that δA splits, that is, its range
and kernel are closed and complemented.

Theorem 4.3. The map δA : K(H)ah → K(H)h has closed range if and
only if the spectrum of A is finite. In this case, the map δA splits.

Proof. Define the map δC
A : K(H) → K(H) by the same formula as δA.

Clearly

K(H) = K(H)h ⊕K(H)ah,

δC
A(K(H)h) ⊂ K(H)ah and δC

A(K(H)ah) ⊂ K(H)h.

Therefore it is apparent that δA has closed range (resp. splits) if and only if
δC
A does. Let us denote this latter map also by δA to lighten notation.

Suppose first that δA has closed range. The Hilbert space H has a de-
composition H = Hc ⊕Hpp into two orthogonal subspaces which reduce A,
such that Ac = A|Hc ∈ B(Hc) has continuous spectrum, and the spectrum
of App = A|Hpp has a dense subset of eigenvectors. We claim that both δAc

and δApp have closed range. Suppose xn ∈ B(Hc) are such that δAc(xn)→ y.
Then yn = xn ⊕ 0 ∈ B(H) satisfies

δA(yn) = δAc(xn)⊕ 0→ y ⊕ 0

in B(H), and thus y ⊕ 0 = δA(x). If one writes this equality in matrix form
(in terms of the decomposition H = Hc ⊕Hpp), one has(

y 0
0 0

)
=
(
x11Ac −Acx11 x12App −Acx12

x21Ac −Appx21 x22App −Appx22

)
,

and therefore y = δAc(x11). Analogously one proves that the range of δApp

is closed. To prove our claim (that the spectrum of A is finite), we must
show first that Hc is trivial. First note that δAc : K(Hc)→ K(Hc) has trivial
kernel. Indeed, if x 6= 0 is a compact operator commuting with Ac, then since
also x+x∗ commutes with Ac, by the spectral decomposition of compact self-
adjoint operators, one can find a non-trivial (finite rank) spectral projection
of x+ x∗ which commutes with Ac, and thus Ac would have an eigenvalue,
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leading to a contradiction. It follows that δAc : K(Hc)→ K(Hc) is bounded
from below. Thus, by Fialkow’s theorem above, σl(Ac) ∩ σr(Ac) = ∅. Since
for self-adjoint operators, right and left spectra coincide, this implies that
the spectrum of Ac is empty, and therefore Hc is trivial.

It follows that the spectrum of A has a dense subset of eigenvalues.
Suppose that there are infinitely many eigenvalues. By adding a multiple of
the identity to A (a change that does not affect δA), we may suppose that
0 is an accumulation point of the set of eigenvalues of A. From this infinite
set one can select a square summable sequence {λn : n ≥ 1} of (different)
eigenvalues. For each n ≥ 1 pick a unit eigenvector en, let H0 be the closed
linear span of these eigenvectors, and denote A0 = A|H0 ∈ B(H0). Note that
A0 is a Hilbert–Schmidt operator. It is apparent that since δA : K(H) →
K(H) has closed range, so too does δA0 : K(H0)→ K(H0). Let us show that
the kernel is complemented. Note that A0, written in the orthogonal basis
{en : n ≥ 1}, is an infinite diagonal matrix, with different entries an the
diagonal. Thus the kernel of δA0 , which is formed by the compact operators
in H0 which commute with A0, also consists of diagonal matrices. Therefore
ker δA0 is complemented, and one can choose the projection P onto ker δA0

given by

P :


x11 x12 x13 . . .

x21 x22 x23 . . .

x31 x32 x33 . . .

. . .

 7→

x11 0 0 . . .

0 x22 0 . . .

0 0 x33 . . .

. . .

 .

Then K(H0) = ker δA0 ⊕ L with L = kerP , and

δA0 |L : L→ R(δA0)

is an isomorphism between Banach spaces. It follows that there exists a
constant C > 0 such that

‖xA0 −A0x‖ ≥ C‖x− P (x)‖ for all x ∈ K(H0).

For each k ≥ 1, consider the k× k matrix bk with 1/k in all entries, and let
xk be the operator in H0 whose matrix has bk in the upper left k× k corner
and zero elsewhere. Note that xk is a rank one orthogonal projection and
thus ‖xk‖ = 1. Also note that ‖P (xk)‖ = 1/k. It follows that

‖xk − P (xk)‖ → 1

as k →∞. On the other hand, xkA0 −A0xk is a Hilbert–Schmidt operator
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whose 2-norm squared is

‖xkA0 −A0xk‖22 =
1
k2

k∑
i,j=1

(λ2
j + λ2

i − 2λjλi) =
2
k2

{
k

k∑
i=1

λ2
i −

( k∑
i=1

λi

)2}

≤ 2
k

k∑
i=1

λ2
i ≤

2
k
‖A0‖22.

Thus ‖xkA0 −A0xk‖ ≤ ‖xkA0 −A0xk‖2 → 0, leading to a contradiction. It
follows that the spectrum of A is finite.

The other implication is straightforward. We outline its proof. Suppose
that the spectrum of A is finite. Then A =

∑n
i=1 λipi for pairwise orthog-

onal self-adjoint projections pi which sum to 1. One can write operators in
K(H) as n × n matrices in terms of the decomposition H =

∑n
i=1R(pi).

A straightforward computation shows that if x ∈ K(H) with matrix (xi,j),
then

δA(x)

=


0 (λ2 − λ1)x1,2 (λ3 − λ1)x1,3 . . . (λn − λ1)x1,n

(λ1 − λ2)x2,1 0 (λ3 − λ2)x2,3 . . . (λn − λ2)x2,n

. . . . . . . . . . . . . . .

(λ1 − λn)xn,1 (λ2 − λn)xn,2 (λ2 − λ1)x1,2 . . . 0

 .

Since λi 6= λj if i 6= j, it follows that the set {xA−Ax : x ∈ K(H)} consists
of the operators in K(H) whose n× n matrices have zeros on the diagonal,
i.e.

{xA−Ax : x ∈ K(H)} = {z ∈ K(H) : pizpi = 0, i = 1, . . . , n},

which is clearly closed in K(H). The kernel of δA consists of the elements
x ∈ K(H) which are diagonal matrices, with an arbitrary compact operator
of the range of pi in the i, i-entry. This space is clearly complemented, for
instance, by the closed linear space of compact operators whose matrices
have zeros on the diagonal.

We may combine the above results to obtain the following:

Theorem 4.4. The orbit OA ⊂ A + K(H)h is a differentiable comple-
mented submanifold and the map πA : Uc(H) → OA is a submersion if and
only if the spectrum of A is finite.

Proof. Suppose first that the orbit is a complemented submanifold and
the map πA is a submersion. Then the differential

(dπA)1 = δA : (TUc(H))1 = K(H)ah → (TOa)A ⊂ K(H)h
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splits. In particular, this implies that (TOa)A = δA(K(H)ah) and therefore
by the above theorem, A has finite spectrum.

Suppose that A has finite spectrum, A =
∑n

i=1 λipi, with pi pairwise
orthogonal projections with

∑n
i=1 pi = 1. In order to apply Lemma 4.1, we

need to show that πA is open (regarded as a map from Uc(H) onto OA).
Let us show that it has a continuous local cross section. The construction
proceeds as in [2]. Denote by PA the map PA(x) =

∑n
i=1 pixpi. Then PA

projects onto the commutant of A, and it has the following expectation
property: if y, z commute with A, then PA(yxz) = yPA(x)z. Moreover, by
the argument above, there exists a constant C > 0 such that

C‖x− PA(x)‖ ≤ ‖xA−Ax‖
for all x ∈ K(H). Consider the open ball B = {b ∈ OA : ‖b− A‖ < C}. We
define the following map on B:

θ : B → Uc(H), θ(b) = uΩ(PA(u∗)) if b = uAu∗,

where Ω is the unitary part in the polar decomposition of an (invertible)
operator, g = Ω(g)|g|. Note that Ω(g) = g|g|−1 = g(g∗g)−1/2 is a smooth
map of g, and takes values in Uc(H) if g is an invertible element in the
C∗-algebra C1 + K(H). In order to verify that θ is well defined, let us first
check that PA(u∗) is invertible and lies in C1 +K(H). Since b = uAu∗ with
u = 1 + k, k ∈ K(H),

C‖u− PA(u)‖ = C‖k − PA(k)‖
≤ ‖kA−Ak‖ = ‖uA−Au‖
= ‖uAu∗ −A‖ < C.

Then ‖1 − PA(u)u∗‖ = ‖u − PA(u)‖ < 1, and thus PA(u) and PA(u)∗ =
PA(u∗) are invertible. Also PA(u) − 1 = PA(u − 1) = PA(k) ∈ K(H). Next
note that θ(b) depends on b and not on the choice of the unitary u. If also
b = wAw∗, then v = u∗w commutes with A. By uniqueness properties of
the polar decomposition, Ω(v∗PA(u∗)) = v∗Ω(PA(u∗)), and thus

wΩ(PA(w∗)) = uvΩ(v∗PA(w∗)) = uΩ(PA(u∗)).

Let us prove that θ is continuous. It suffices to show that it is continuous
at A. Suppose that unAu∗n → A. Then as above, ‖unA − Aun‖ → 0, and
therefore ‖un − PA(un)‖ → 0, or equivalently,

‖1− unPA(u∗n)‖ = ‖1− PA(un)u∗n‖ = ‖un − PA(un)‖ → 0.

Therefore (since Ω is continuous),

θ(unAu∗n) = unΩ(PA(u∗n)) = Ω(unPA(u∗n))→ 1.

Finally, θ is a cross section: if b = uAu∗, then

θ(b)Aθ(b)∗ = uΩ(PA(u∗))AΩ(PA(u∗))∗u∗ = uAu∗ = b,
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because the fact that PA(u∗) commutes with A, implies that also Ω(PA(u∗))
commutes with A.

Remark 4.5. A construction of local cross sections under the hypothesis
that A is a finite-rank operator has been carried out in a more general setting
(symmetrically normed ideals in B(H)) by D. Beltiţă and T. S. Ratiu [7].

5. Finsler metric in the unitary orbit. Our next step will be to
introduce a Finsler metric in OA. To do this, we shall follow ideas in [15],
and consider a quotient metric in the tangent spaces of OA as follows. For
any b ∈ OA, the map πb : Uc(H)→ OA, πb(u) = ubu∗, is clearly a submersion
(note that if b = wAw∗, then πb(u) = πA ◦ ad(w)). Therefore

(dπb)1 = δb : K(H)ah → (TOa)b = R(δb)

is surjective (here δb(y) = yb− by). Thus if x ∈ R(δb), then

(2) ‖x‖b = inf{‖y‖ : y ∈ K(H)ah such that δb(y) = x}.
Let us recall two relevant facts from [15]:

1. The metric is invariant under the action of the group: if x ∈ R(δb)
and u ∈ Uc(H), then

‖x‖b = ‖uxu∗‖uau∗ .
This is a straightforward verification.

2. There exists z ∈ B(H)ah such that δb(z) = y which realizes the infi-
mum: ‖z‖ = ‖x‖b. Such an element z is called a minimal lifting for x.
We remark that it may not be unique, and more relevant to our partic-
ular situation, it may not be compact. Indeed, it is obtained as a weak
limit point of a minimizing sequence, as follows. Let y∗n = −yn with
δb(yn) = x such that ‖yn‖ → ‖x‖b. The sequence {yn} is bounded,
therefore there exists a subsequence, still denoted yn, which is conver-
gent in the weak operator topology, 〈ynξ, η〉 → 〈zξ, η〉 for all ξ, η ∈ H.
Note that

x = δb(yn) = ynb− byn
wot−−→ zb− bz = δb(z),

and thus δb(z) = x. Also it is clear that z∗ = −z. For ε > 0, fix a unit
vector ξ such that |〈zξ, ξ〉| ≥ ‖z‖ − ε. Then

‖yn‖ ≥ |〈ynξ, ξ〉| → |〈zξ, ξ〉| ≥ ‖z‖ − ε,
and therefore taking limits ‖z‖ ≥ ‖x‖b ≥ ‖z‖ − ε. It is not clear
however if there is a compact minimal lifting.

The interest in minimal liftings is that they provide curves of minimal length
for the Finsler metric just defined in the homogeneous space OA. We shall
prove here the existence of compact minimal liftings in a special situation,
when the operator A has finite rank.
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Proposition 5.1. Suppose that A has finite rank. Then for any b ∈ OA
and any tangent vector x ∈ R(δb) there exists a minimal lifting z ∈ K(H)ah,
i.e. an element that satisfies

δb(z) = x and ‖z‖ = ‖x‖b = inf{‖y‖ : y ∈ K(H)ah and δb(y) = x}.

Proof. We may suppose b = A. Since A has finite rank, there exist
pairwise orthogonal projections p0, p1, . . . , pn such that A =

∑n
i=1 λipi, with

p1, . . . , pn of finite rank and p0 = 1−
∑n

i=1 pi, the projection onto the kernel
of A. Let z ∈ K(H)ah be an arbitrary lifting of x, x = zA−Az. As remarked
above, there exists z0 ∈ B(H)ah such that x = z0A−Az0 and ‖z0‖ = ‖x‖A.
Consider the anti-hermitian element z1 = z0 − p0z0p0. It is clearly also a
lifting of x, and moreover, it is of finite rank. Indeed,

z1 = p⊥0 z0 + p0z0p
⊥
0 ,

with p⊥0 =
∑n

i=1 pi of finite rank.
Recall Krein’s solution [19] to the extension problem for a self-adjoint

operator. Given an incomplete 2× 2 hermitian block operator matrix of the
form (

X Y

Y ∗

)
,

find a completion (i.e. a self-adjoint operator Z completing the 2, 2 entry)
such that the completed matrix has minimal norm. Krein proved that there
is always a solution, and that it may not be unique. More recently, Davis,
Kahane and Weinberger [12] gave explicit formulas for Z, and in particular,
in [12, Corollary 1.3] proved that if the initial operator matrix is compact,
then one can always find a compact solution Z.

In our case the operators are anti-hermitian, but clearly the result can
be translated. The compact operator z1, when regarded as a 2× 2 matrix in
terms of the decomposition H = R(p⊥0 )⊕R(p0), has a zero in the 2, 2 entry.
Thus it can be completed to a compact operator with minimal norm. That
is, there exists a compact operator c = p0cp0 such that zc := z1 + c satisfies

‖zc‖ ≤ ‖z1 + p0dp0‖

for any d ∈ B(H)ah. In particular, ‖zc‖ ≤ ‖z0‖. Clearly δA(zc) = δA(z1) =
δA(z0) = x, so in fact ‖zc‖ = ‖z0‖. Also it is apparent that zc is compact.

From minimal liftings one obtains curves with minimal length. First
recall that if γ(t), t ∈ [0, 1], is a smooth curve in OA, one measures its
length as usual,

L(γ) =
1�

0

‖γ̇(t)‖γ(t) dt.
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If b ∈ OA and x ∈ R(δb), then for any lifting z ∈ K(H)ah, the curve γ(t) =
etzbe−tz satisfies γ(0) = b and γ̇(0) = x. If additionally z = zc is a minimal
lifting, the curve γ has minimal length up to a critical value of t. This
could be proved using the techniques developed by Durán, Mata-Lorenzo
and Recht in [15]. We give here a different proof based on the convexity of
the distance function proved in the first section. First we need the following
result:

Proposition 5.2. Let a0, a1 in OA, with A of finite rank, and let d be
the rectifiable distance in OA. Then

d(a0, a1) = inf{L(Γ ) : Γ (t) ∈ Uc(H), πa0(Γ ) joins a0 and a1}.

The curves Γ considered are continuous and piecewise smooth.

Proof. Let γ(t) ∈ OA be a C1 curve joining γ(0) = a0 and γ(1) = a1.
Since πa : Uc(H) → OA are submersions for all a ∈ OA, there exists a
continuous piecewise smooth curve Γ in Uc(H) such that πa0(Γ (t)) = γ(t),
t ∈ [0, 1]. Differentiating this equality, one obtains γ̇ = (dπa0)Γ (Γ̇ ). Elemen-
tary calculations show that (dπa)u = δuau∗ ◦ ru∗ , where ru∗(x) = xu∗. It
follows that

δ̇ = δγ(Γ̇ Γ ∗).

Note that Γ̇ Γ ∗ belongs to K(H)ah, and therefore

‖γ̇‖γ ≤ ‖Γ̇ Γ ∗‖ = ‖Γ̇‖.

Thus L(γ) ≤ L(Γ ), and d(a0, a1) ≤ L(Γ ). To finish, we must prove that one
can arbitrarily approximate L(γ) with lengths of curves in Uc(H) joining the
fibers of a0 and a1. Fix ε > 0. Let 0 = t0 < t1 < · · · < tn = 1 be a uniform
partition of [0, 1] (∆ti = ti − ti−1 = 1/n) such that the following hold:

1. ‖γ̇(s)− γ̇(s′)‖ < ε/4 if s, s′ lie in the same interval [ti−1, ti].
2. |L(γ)−

∑n−1
i=0 ‖γ̇(ti)‖γ(ti)∆ti| < ε/2.

For each i = 0, . . . , n− 1, let zi ∈ K(H)ah be a minimal lifting for γ̇(ti), i.e.

δγ(ti)(zi) = γ̇(ti) and ‖γ̇(ti)‖γ(ti) = ‖zi‖.

Consider the following curve Ω in Uc(H):

Ω(t) =



etz0 t ∈ [0, t1),
e(t−t1)z1et1z0 t ∈ [t1, t2),
e(t−t2)z2e(t2−t1)z1et0z0 t ∈ [t2, t3),
· · · · · ·
e(t−tn−1)zn−1 . . . e(t2−t1)z1et0z0 t ∈ [tn−1, 1].
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Clearly Ω is continuous and piecewise smooth, Ω(0) = 1 and

L(Ω) =
n−1∑
i=1

‖zi‖∆ti =
n−1∑
i=0

‖γ̇(ti)‖γ(ti)∆ti.

Let us show that πa0(Ω(1)) lies close to a1. Indeed, first note that if we
denote α(t) = πa0(etz0) − γ(t), then α(0) = 0 and, by the mean value
theorem in Banach spaces [13],

‖πa0(et1z0)− γ(t1)‖ = ‖α(t1)− α(0)‖ ≤ ‖α̇(s1)‖∆t1
for some s1 ∈ [0, t1]. Explicitly,

‖πa0(et1z0)− γ(t1)‖ ≤ ‖es1z0δa0(z0)e−s1z0 − γ̇(s1)‖∆t1.
Note that δa0(z0) = γ̇(0), and

‖es1z0 γ̇(0)e−s1z0 − γ̇(s1)‖ ≤ ‖es1z0 γ̇(0)e−s1z0 − γ̇(0)‖+ ‖γ̇(0)− γ̇(s1)‖.
The second summand is bounded by ε/4. The first summand can be bounded
as follows:

‖es1z0 γ̇(0)e−s1z0 − γ̇(0)‖ = ‖z0(1− es1z0)a0 − a0(1− e−s1z0)z0‖
≤ 2‖z0‖ ‖a0‖ ‖1− es1z0‖ ≤ D∆t1,

where D is a constant which depends on γ. For instance,

‖zi‖ = ‖δγ(ti)(γ̇(ti))‖γ(ti) ≤ ‖Γ̇ (ti)‖ ≤ max
t∈[0,1]

‖Γ̇ (t)‖ = D.

It follows that

‖πa0(et1z0)− γ(t1)‖ ≤ (D∆t1 + ε/4)∆t1.

Next estimate ‖πa0(e(t2−t1)z1et1z0)−γ(t2)‖, which by the triangle inequality
is less than or equal to

‖e(t2−t1)z1et1z0a0e
−t1z0e−(t2−t1)z1 − e(t2−t1)z1γ(t1)e−(t2−t1)z1‖

+ ‖e(t2−t1)z1γ(t1)e−(t2−t1)z1 − γ(t2)‖.
The first summand is

‖e(t2−t1)z1et1z0a0e
−t1z0e−(t2−t1)z1 − e(t2−t1)z1γ(t1)e−(t2−t1)z1‖

= ‖e(t2−t1)z1(et1z0a0e
−t1z0 − γ(t1))e−(t2−t1)z1‖

= ‖(et1z0a0e
−t1z0 − γ(t1))‖ ≤ (D∆t1 + ε/4)∆t1.

The second can be treated analogously to the first difference above,

‖e(t2−t1)z1γ(t1)e−(t2−t1)z1 − γ(t2)‖ ≤ (D∆t2 + ε/4)∆t2.

Thus (as ∆ti = 1/n)

‖πa0(e(t2−t1)z1et1z0)− γ(t2)‖ ≤ (D/n+ ε/4)2/n.
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Inductively, one obtains

‖Ω(1)a0Ω(1)∗ − γ(1)‖ ≤ D/n+ ε/4 < ε/2,

choosing n appropriately. The assertion follows.

Theorem 5.3. Let A = A∗ be of finite rank, b ∈ OA and x ∈ R(δb) a
tangent vector with ‖x‖b < π/2. If zc is a (compact) minimal lifting of x,
then the curve δ(t) = etzcbe−tzc has minimal length up to |t| ≤ 1.

Proof. We may suppose b = A. By the previous proposition, in order to
establish our result, it suffices to compare the lengths of ∆(t) = etzc and Γ ,
where Γ is a piecewise smooth curve in Uc(H) joining 1 and a unitary
in the fiber of δ(1). Indeed, note that ∆(t), which lifts δ, clearly has the
same length as δ. If L(Γ ) ≥ π/2, then Γ is longer than ∆ (whose length is
strictly less than ‖zc‖ < π/2). Otherwise, Γ (1) = ey, with y ∈ K(H)ah and
‖y‖ < π/2. Note that Γ and ∆ may have different endpoints, but Γ (1) = ey

and ∆(1) = ezc satisfy
eyAe−y = ezcAe−zc

and therefore ey = ezced with d ∈ K(H)ah commuting with A. Moreover,
the assumption on the lengths of ∆ and Γ implies that ‖d‖ ≤ π. Thus
β(t) = ezcetd, t ∈ [0, 1], is the minimal geodesic joining ezc and ey. Consider
the map

f(t) = d∞(1, β(t)) = ‖log(ezcetd)‖, t ∈ [−1, 1],

of the previous section. We claim that it has a minimum at t = 0. Since we
know that f is convex, it suffices to analyze the lateral derivatives at this
point. By the Baker–Campbell–Hausdorff formula, the linear approximation
of log(ezcetd) is given by

log(ezcetd) = zc + td+R2(zc, td),

where limt→0 ‖R2(zc, td)‖/t = 0. Consider first t > 0; then

‖zc + td‖ − ‖R2(zc, td)‖ ≤ ‖log(ezcetd)‖ ≤ ‖zc + td‖+ ‖R2(zc, td)‖,
and therefore

1
t
{‖zc + td‖ − ‖zc‖} −

1
t
‖R2(zc, td)‖

≤ 1
t
{‖ log(ezcetd)‖ − ‖zc‖} ≤

1
t
{‖zc + td‖ − ‖zc‖}+

1
t
‖R2(zc, td)‖.

Hence the right derivative limt→0+ t−1{‖zc + td‖ − ‖zc‖} of the norm at zc,
d (which exists due to the convexity of the norm, see for instance [21]),
coincides with the right derivative ∂+f(0) of f at t = 0. Indeed, note that in
the middle term of the above inequalities, ‖zc‖ = f(0). Since zc is a minimal
lifting, and d ∈ K(H)ah commutes with A, it follows that ‖zc + td‖ ≥ ‖zc‖,
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i.e. ∂+f(0) ≥ 0. Analogously one proves that ∂−f(0) ≤ 0. Thus f(0) ≤ f(t)
for all t ∈ [−1, 1]. In particular,

L(Γ ) ≥ ‖y‖ = f(1) ≥ f(0) = ‖zc‖ = L(∆).

Remark 5.4. In fact, with the same argument, it can be proved that if
A has finite spectrum, A =

∑n
i=1 λipi, and only one of the pi has infinite

rank, then there exist compact minimal liftings for any vector tangent to
the orbit of A.

This condition is not necessary, as is shown by the example of the fol-
lowing section.

6. The orbit of an infinite projection. In the special case when
A = P is a projection, more is known on the geometry of the unitary
orbit. For instance, for arbitrary C∗-algebras [8, 23], two projections at norm
distance strictly less than 1 can be joined by a minimal geodesic. What is
not known in the general case is whether two projections p1, p2 which are
unitarily equivalent and satisfy ‖p1 − p2‖ = 1, can be joined by a minimal
geodesic.

The case under study in this paper corresponds to the C∗-algebra C1 +
K(H), the unitization of the algebra of compact operators. Indeed, the
unitary group UC1+K(H) of this algebra consists of unitary operators of
the form u = λ1 + c with c compact and λ ∈ C with |λ| = 1. Clearly
Uc(H) ⊂ UC1+K(H). However, clearly the orbits coincide,

OP = {uPu∗ : u ∈ Uc(H)} = {uPu∗ : u ∈ UC1+K(H)}.
Let us prove that in OP , any pair of elements can be joined by a minimal
geodesic. Given a self-adjoint projection p, an operator x is p-codiagonal if
its 2×2 matrix in terms of p is codiagonal, i.e. pxp = (1−p)x(1−p) = 0. That
p-codiagonal elements provide minimal geodesics, was proved in [23]: namely
if x ∈ K(H) is p-codiagonal with ‖x‖ ≤ π/2, then the curve γ(t) = etxpe−tx

is minimal for t ∈ [0, 1].
Before we establish our result, we must recall certain facts on the orbit of

an infinite projection under the action of the Fredholm unitary group. In [26]
(see also [9, 1]), it was proved that this orbit fills the connected component of
p in the so called Sato Grassmannian of the decomposition H = R(p)⊕ker p,
also called the restricted Grassmannian of the decomposition [24]. It consists
of all projections q such that

q|R(p) : R(p)→ R(q) is a Fredholm operator and

q|ker p : ker p→ R(q) is compact.

Theorem 6.1. Let p0, p1 ∈ Op. Then there exists a minimal curve join-
ing them. In other words, there exists z ∈ K(H)ah such that ‖z‖ ≤ π/2, z is
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p0-codiagonal, and
p1 = ezp0e

−z.

Proof. If ‖p0 − p1‖ < 1, in [23] it was proved that there exists a unique
z which is p0-codiagonal and implements the geodesic. It is explicitly com-
puted in terms of p0 and p1: Consider the symmetries (self-adjoint uni-
tary operators) εi = 2pi − 1, i = 0, 1, which satisfy ‖ε0 − ε1‖ < 2. Thus
‖1− ε1ε0‖ < 2, and

z = 1
2 log(ε1ε0) ∈ B(H)ah.

Since pi ∈ Op, it follows that ε1ε0 ∈ 1 +K(H), and thus z ∈ K(H)ah.
Clearly it suffices to consider the case ‖p0 − p1‖ = 1.
Consider the following subspaces:

H00 = ker p0 ∩ ker p1, H01 = ker p0 ∩R(p1),
H10 = R(p0) ∩ ker p1, H11 = R(p0) ∩R(p1),

H0 = (H00 ⊕H01 ⊕H10 ⊕H11)⊥.

These are the usual subspaces to regard when considering the unitary equiv-
alence of two projections [14]. The spaceH0 is usually called the generic part
of p0 and p1. It is invariant for both p0 and p1. Also it is clear that H00 and
H11 are invariant for p0 and p1, and that p0 and p1 coincide there. Thus in
order to find a unitary operator ez conjugating p0 and p1, with z ∈ K(H)ah

which is p0-codiagonal and such that ‖z‖ ≤ π/2, one needs to focus on the
subspaces H0 and H01 ⊕H10.

Let us first treat H0, and denote by p′0 and p′1 the projections p0 and
p1 reduced to H0. These projections are in generic position [14, 17]. In
[17] Halmos showed that two projections in generic position are unitarily
equivalent, more specifically, there exists a unitary operator w : H0 → J×J
such that

wp′0w
∗ = p′′0 =

(
1 0
0 0

)
and wp′1w

∗ = p′′1 =
(
c2 cs

cs s2

)
,

where c, s are positive commuting contractions acting in J and satisfying
c2 + s2 = 1. We claim that there exists an anti-hermitian operator y acting
on J × J , which is a codiagonal matrix and eyp′′0e

−y = p′′1. In that case,
the element z0 = w∗yw is an anti-hermitian operator in H0 which satisfies
ez0p′0e

−z0 = p′1 and is codiagonal with respect to p′0. Moreover, we claim
that y is a compact operator in J × J with ‖y‖ ≤ π/2, so that z0 is also
a compact operator in H0 with ‖z0‖ ≤ π/2. Let us prove these claims. By
a functional calculus argument, there exists a positive element x in the C∗-
algebra generated by c, with ‖x‖ ≤ π/2, such that c = cos(x) and s = sin(x).
Since p′′1 lies in the restricted Grassmannian of p′′0, in particular p′′1|ker(p′′0 ) is
a compact operator. That is, the operator cos(x) sin(x) + sin2(x) is compact
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in J . By a straightforward functional calculus argument, x is a compact
operator. Consider the operator

y =
(

0 −x
x 0

)
.

Clearly y∗ = −y, ‖y‖ ≤ π/2. A straightforward computation shows that

eyp′′0e
−y = p′′1,

and our claims follow.
Let us now consider the space H01⊕H10. Recall [24] that with an equiv-

alent definition, if p1 lies in the connected component of p0 (in the restricted
Grassmannian) then

p0p1|R(p1) : R(p1)→ R(p0)

is a Fredholm operator of index 0. Note that H01 = ker(p0p1|R(p1)). Thus
in particular dimH01 < ∞. On the other hand, it is also apparent that
H10 ⊂ R(p0p1)⊥ ∩ R(p0), and therefore also dimH10 < ∞. Therefore, the
fact that p0p1|R(p1) has zero index implies that

dimH01 ≤ dimH10.

The fact that p1 lies in the connected component of p0 in the restricted
Grassmannian corresponding to the polarization given by p0, implies that,
reciprocally, p0 lies in the component of p1 in the Grassmannian correspond-
ing to the polarization given by p1. Thus, by symmetry,

dimH01 = dimH10.

Let v : H10 → H01 be a surjective isometry, and consider

w : H01 ⊕H10 → H01 ⊕H10, w(ξ′ + ξ′′) = v∗ξ′ + vξ′′.

In matrix form (in terms of the decomposition H01 ⊕H10),

w =
(

0 v

v∗ 0

)
.

Apparently, wp0|H01⊕H10w
∗ = p1|H01⊕H10 . Let

z2 = (π/2)
(

0 v

−v∗ 0

)
.

Note that z2 is an anti-hermitian operator in H01⊕H10, with norm equal to
π/2. A straightforward matrix computation shows that ez2 = w. Consider
now

z = z0 + z1 + z2,

where z1 = 0 in H00 ⊕ H11, and z0 is the anti-hermitian operator in the
generic part H0 of H found above. Then it is clear that z is anti-hermitian,
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compact (dim(H01 ⊕ H10) < ∞), p0-codiagonal, ‖z‖ = π/2, and ezp0e
−z

= p1.

7. The unitary orbit of a non-self-adjoint operator. In this section
we consider the orbit of the nilpotent operator N ∈ B(H), H = H0 ×H0,

N =
(

0 IH0

0 0

)
.

The isotropy group of the action of Uc(H) consists of the unitary operators
of this group which are of the form

v =
(
v0 0
0 v0

)
.

Note that v0 − IH0 is compact in H0. Let

πN : Uc(H)→ ON = {uNu∗ : u ∈ Uc(H)}, πN (u) = uNu∗,

and δN its differential at I,

δN : K(H)ah → K(H), δN (x) = xN −Nx.
It is apparent that the kernel of δN , which consists of the matrices of the
form

(3) y =
(
y0 0
0 y0

)
with y0∈K(H0)ah, is complemented in K(H)ah. The range of δN is given by

R(δN ) =
{(

a b

0 −a

)
: a ∈ K(H0), b ∈ K(H0)ah

}
.

This space is clearly complemented in K(H). For instance, a supplement is

S =
{(

a′ b′

c′ a′

)
: a′, c′ ∈ K(H0), b′ ∈ K(H0)h

}
.

We want to use again Lemma 4.1 to prove that ON is a differentiable sub-
manifold of K(H). To do this, it only remains to prove that πN is open.

Proposition 7.1. πN : Uc(H) → ON has continuous local cross sec-
tions.

Proof. If b ∈ ON consider s(b) = bb∗NN∗ + b∗N . Note that s : ON →
B(H) is continuous and that s(N) = NN∗ +N∗N = 1, therefore the set

UN = {b ∈ ON : s(b) is invertible}
is open in ON . Note that since b2 = 0 and bb∗b = b, one has

bs(b) = bb∗N = s(b)N, s(b)∗s(b)N = NN∗bb∗N = Ns(b)∗s(b).
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The second identity implies that the absolute value |s(b)| = (s(b)∗s(b))1/2

commutes with N . If b ∈ UN , the first identity implies that if µ(b) equals the
unitary part in the polar decomposition s(b) = µ(b)|s(b)|, then µ(b)Nµ(b)∗

= b. Thus one obtains a local cross section for πN on the open neighborhood
UN of N in ON . Moreover, it takes values in Uc(H). Indeed, if b = uNu∗ for
some u ∈ Uc(H) with u− 1 = k, then

s(b) = uNN∗u∗NN∗ + uN∗u∗N

= kNN∗(k∗NN∗ + 1) +NN∗k∗NN∗ + (kN∗ +N∗)k∗N
+ kN∗N +NN∗ +N∗N ∈ 1 +K(H),

because NN∗ + N∗N = 1. Therefore µ(b) is a unitary element in the C∗-
algebra C1 +K(H). Note that s(b) ∈ 1 +K(H), which implies that |s(b)| ∈
1 +K(H), and thus in fact µ(b) ∈ Uc(H).

Cross sections on neighborhoods around other points of ON are obtained
by translation with the group action.

Corollary 7.2. The unitary orbit ON ⊂ N + K(H) is a real analytic
submanifold, and the map πN : Uc(H)→ ON is a real analytic submersion.

Consider the following Finsler metric, which is analogous to the metric
in the orbit of a self-adjoint operator: if x = T (ON )b = δN (K(H)), then

‖x‖b = inf{‖z‖ : z ∈ K(H)ah with δb(z) = x},

where δb(a) = ab−ba as usual. Let us show that, for certain tangent vectors,
which we shall call anti-symmetric, one can find minimal geodesics of this
Finsler metric, having these symmetric vectors as initial velocities. A general
tangent vector at N is an operator of the form x = δN (z) with z∗ = −z. In
matrix form, it is

x =
(
x0 x1

0 x0

)
with x0, x1 ∈ K(H0), x∗1 = −x1. We shall say that x is anti-symmetric if x0

is also anti-hermitian. Equivalently, this condition means that x has liftings
z of the form

z =
(
z11 z12

−z12 z22

)
with all entries anti-hermitian. A vector x tangent at b = uNu∗ is called
anti-symmetric if u∗xu (which is tangent at N) is anti-symmetric in the
above sense. Note that this does not depend on the choice of u.

Let us show that anti-symmetric tangent vectors have compact minimal
liftings, and that they can be explicitly computed. It suffices to show this
fact at N .
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Lemma 7.3. Let x=δN (z) be anti-hermitian, z∈K(H)ah with z∗12 =−z12.
Then there exists z0∈K(H)ah which is a minimal lifting of x. Namely, if

z =
(
z11 z12

−z12 z22

)
,

then a minimal (compact) lifting is given by

z0 =
(1

2(z11 − z22) z12

−z12
1
2(z22 − z11)

)
.

Proof. The operators y, z here are anti-hermitian, thus of the form y =
iy′, z = iz′ with y′, z′ hermitian. In order to lighten notation we shall reason
with hermitian operators, and denote them by y, z. Denote ∆ = 1

2(z11−z22).
In order to prove that z0 is a minimal lifting, one has to show that

‖z0 + y‖ ≥ ‖z0‖
for all y = y∗ ∈ ker δN . Let ξ = (ξ1, ξ2) ∈ H0 ×H0 with ‖ξ‖ = 1. Then

〈z0ξ, ξ〉 = 〈∆ξ1, ξ1〉 − 〈∆ξ2, ξ2〉+ 2 Re〈z12ξ2, ξ1〉.
Note that if η = (−ξ2, ξ1), then ‖η‖ = 1, and

〈z0η, η〉 = −〈z0ξ, ξ〉.
The key fact here is that z∗12 = z12. It follows that both −‖z0‖ and +‖z0‖
belong to the spectrum of z0. Let ξn = (ξn1 , ξ

n
2 ) ∈ H0 × H0 with ‖ξn‖ = 1

be such that 〈z0ξn, ξn〉 → ‖z0‖. Taking ηn = (−ξn2 , ξn1 ) as above, one has
〈z0ηn, ηn〉 → −‖z0‖. If y ∈ ker δN , then by equation (3) above,

〈(z0 + y)ξn, ξn〉 = 〈z0ξn, ξn〉+ 〈y0ξ
n
1 , ξ

n
1 〉+ 〈y0ξ

n
2 , ξ

n
2 〉.

Also note that 〈yηn, ηn〉 = 〈yξn, ξn〉 = rn, which is a bounded sequence in R.
Consider a convergent subsequence, denoted again by rn, with rn → r0. Then

‖z0 + y‖ ≥ 〈(z0 + y)ξn, ξn〉 → ‖z0‖+ r0,

−‖z0 + y‖ ≤ 〈(z0 + y)ηn, ηn〉 → −‖z0‖+ r0.

Therefore if either r0 ≥ 0 or r0 < 0, then ‖z0 + y‖ ≥ ‖z0‖. It is apparent
that z0 is compact.

Theorem 7.4. Let b ∈ ON and x ∈ (TON )b be an anti-symmetric
tangent vector with ‖x‖b < π/2. Then there exists a curve of the form
γ(t) = etz0be−tz0 in ON , with z0 a minimal lifting of x, which satisfies

γ(0) = b, γ̇(0) = x

and which is minimal for |t| ≤ 1.

Proof. The proof proceeds as in the self-adjoint case. One reduces to
b = N , and uses the analogue of Proposition 5.2, which is proved similarly.
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The result thus rests on the local convexity property of the geodesic distance
of Uc(H).
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