STUDIA MATHEMATICA 196 (2) (2010)

Equivalence of measures of
smoothness in L,(S%1), 1 <p < oo

by

F. Da1 (Edmonton), Z. DiTziAN (Edmonton)
and HoONGWEI HuANG (Xiamen)

Abstract. Suppose A is the Laplace—Beltrami operator on the sphere S !, A’;f(ac)
= A,AN () and A, f(x) = f(pr) — f(x) where p € SO(d). Then

W™ (f, )L, (sa-1) = sup{[|AL fll L, (sa-1) : p € SO(d), max pr - > cost}
and

Kn(f,t™)p = mf{|f = gllp, sa-1) + " [(=2)"2gll 1, (sa-1y : g € DI(=A)""*)}

are equivalent for 1 < p < co. We note that for even m the relation was recently investi-
gated by the second author. The equivalence yields an extension of the results on sharp
Jackson inequalities on the sphere. A new strong converse inequality for Lp(Sdfl) given
in this paper plays a significant role in the proof.

1. Introduction. For a Banach space B of functions on the unit sphere
Si-l={x e R?: |z|> = 22 + - + 2% = 1}, the rth modulus of smoothness
(introduced in [Di-99]) is given for 0 < ¢t < /2 by
(1L1) @ (£.6)5 = sup{|ALf]l s : p € SO(d) and

px - x > cost for all z € S41}
where SO(d) is the group of d x d orthogonal matrices of determinant 1,
r € N, and A’;f(x) is given by
(12)  ALF(@) = Ap(ATT (@), Apf(e) = flpr) = f(2).

The main result of this paper is the equivalence between w"(f,t), =
w"(f, 1)1, (sa-1) and the K-functional K, (f,t), = K;(f, ), (ga-1), that is,
(13)  CTUE(f.t)y S (£,1)y < CK(f,17)p, 1<p < oo,
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which we denote by w"(f,t), ~ I?T(f, t")p. In this paper the symbol “ ~ "
signifies that a relation such as (1.3) holds, and f is always a real-valued
function on ST,

To define and describe K,.(f,t") g, we write

(L4) Ko (f,1)p = inf{||f — glp + " (=2) g5 : (-A)"*g € B}

where A is the Laplace Beltrami differential operator on S%~1. We recall
that

(1.5) Af(x) = AF(x), x€S8""  F(x) = f(x/x]),
0? 0?
A= o2 L ox3’

We now define (—A)® for a € R. The finite-dimensional space Hj, of eigen-
functions of A is given by

(1.6) Hy={¢o:Ap=—k(k+d—2)}, k=01,...,

and the projection Py f of f on Hy is given by

(1.7) Ppf = Z{ S Y)Yia(y )d?/}Yk,l

where Y}, ; is any real orthonormal basis of Hj,. For any Banach space satis-
fying B C Ly(S% 1), (1.7) is well defined and the expansion of f by P f is
denoted by f ~ > Py f. The operator (—A)®f is then given by

(1.8) (—A)*f ~ >k (k+d—2)"Pf

(defined for @ < 0 only when Pyf = 0), and (—A)*f € B when there
exists @ € B such that P,® = k:“(k +d— 2)“Pkf for all k. We note that
for a = r € N, (~A)" = (=1)" A" where A" is the rth iterate of A given

in (T3).

In Section [10] we apply the equivalence to obtain a generalization
of the sharp Jackson inequalities and of the lower estimates for functions in
Ly(S%1), 1 < p < oo (see [Da-Di-Ti]), and we believe other applications
will be given in the future. In Section [2] we present some additional required
notations. In Sections results needed to establish for r = 1 are
given. For odd d, the operator
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Aof(z)= | F@MQ'2)dQ, | dQ=1,

SO(d) 50(d)
sinf cos6
. O
(1.9) —cosf sinf
My = 0 sinf@ cosf
—cosf sinf
1

and for combinations of Ajgf, a strong converse inequality of type A (in
the terminology of [Di-Iv]) given in Sections [6] and [7] plays an important
role in the proof of . We prove the strong converse inequality and the
equivalence for a more general space than just L, (S d=1) "and we hope it will
be of use in the future as well.

In Section [8| we give an alternative description of w"(f,t)p by a different
K-functional, and in Section |§| we conclude the proof of .

2. Preliminaries. We introduce the operator

(2.1) DOf ~ ) (2k+d—2)"*Ppf

k=1
with Py f of (I.7), @ € R and D*f € L,(S%!) if there exists @ € L, (S 1)
such that Py® = (2k + d — 2)?* P, f for all k. We note that Df is related
to (—A)*f by
2.2) (=) fl, = |Df|l, for1<p<oo, acRand Pyf =0,

as can easily be verified using the Abel transformation. In fact, we have to
show that {(2k + d — 2)>*/(k(k + d — 2))®} is a bounded multiplier operator
on Ly(S%1) for all @ € R when Pyf = 0. Following [Da-Di-07, Section 4],
we have to show that {(4+(d — 2)2/(k(k + d — 2)))®} satisfies the condition
E(m) of [Da-Di-07, Definition 4.1]. This in turn follows from the obvious
estimate

(i)

Note that the conditions E(m) for positive and negative o are symmetric.
We can now follow the proof of Theorem 4.3 of [Da-Di-07] and in particular
of (4.7) there, which uses the Abel transformation (summation by parts).

For f € C*(S%™!) we can define the tangential gradient of f, grad,,, f,
by

(2.3) grad,, f = VF|ga-1, F(x)= f(x/|x]) forxeR\ {0}

<qz+1)7"L z>0,1=0,1,....
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where VF = grad F is the gradient of F, i.e. VF = (0F/0x1,...,0F/0xy).
In terms of spherical coordinates (see [Exl Chapter XI]) given by

.
r1 = rcosf,

T9 = 78in #q cos O,

(2.4)
Tg_1 =1rsinfy...sinf; o cosy,
Tg=rsinfy...sinfz s sin g,
0<60; <7 for1<i<d—2and0<p<2m,
we have

(2.5) grad,,,u = <

o1 ou Lo
001’ sinfy 003" " sinfy...sinfy_o dp )’

0 1
Vu = <6r’ ;gradtan u>,

(2.6) Au = (sin ;)42 8(21 (sin 6;)%2 3;‘1
+ (sin 0;) ~2(sin fy) ~4*3 ;%(Sin 0,)%3 03072
4t
+ (sinf; ...sinfg_3) 2(sinfg_s)* 39(32 sin 0, 8352
+ (sinf; ...sin 6y )2 g:;;,
Au = r_d'H% <rd_1 ?;) + 772 Au.

We observe that while grad,,, f and A f given in and are not
restricted to the unit sphere, they coincide on the unit sphere with and
. In particular, what may seem like a discrepancy between the number
of components of and does not exist, as is the projection
of on the hyperplane perpendicular to the vector r, i.e. x/|x|, and in
the r direction the derivative equals 0. We will utilize mainly and
but will refer to and which we hope will help those more familiar
with those forms.

We will use many identities and estimates from [Sz] and [An-As-Ro| on
Jacobi and ultraspherical polynomials and we now give the notation used
there.

DEFINITION 2.1. The Jacobi polynomials pled) () and the ultraspheri-
cal polynomials P} (z) = C;(x) are orthogonal systems of polynomials with
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respect to the weights (1 — 2)®(1 + z)? and (1 — 22)*~%2 on [~1,1]. The

normalization of P{*" (z) and P)(z) = C)(z) is given by

Pld) (1) = <n+a> _Inta+1)

n n!I'a+1)
(2.7)
R =y = T,

The normalization (2.7)) follows from [Sz, (4.1.1) and (4.3.1)] and [An-As-Rol
(2.5.13')] for pied) (x), and from [Sz, (4.7.3), p. 81] and [An-As-Rol, p. 302]
for P)(x) = C)(x). Clearly, implies

' x+n)I'(A+1/2)

28) P =)= Fanrog et BT @),

3. The case r = 1. For r = 1 we obtain the equivalence as a result of
the following theorem. We set II,, = span({J;,_, Hx)-

THEOREM 3.1. Suppose f € Ux_o N, and grad,,, [ and (—ﬁ)af are
given by (2.3) and (1.8) respectively. Then for 1 < p < oo,

(3.1) lgradian £z, (sa-1) = 1(=2)2 fl 1, (50-1).

REMARK 3.2. The equivalence means that whenever one side exists
(i.e. is finite), the other side is finite and equivalent. The constants of the
equivalence depend on p and d but not on f. In fact, we need and will prove
just for spherical harmonic polynomials, but because of the density
of span({Upeo Hy) in Ly(S4Y), is valid whenever (—A)/2f ¢ Ly, in
which case the definition of grad,,, f in can be extended by density.

For the proof of Theorem [3.1] we need the following two results.

LEMMA 3.3. For f,g € C?(S471),
(3.2)

<_Avf7 g> = <gradtan fa gradtan g> where (90777@ = S SO(ZL‘W(:U) dO’(ZL‘)
Sd—1
THEOREM 3.4. For f € IIn, 1 < p < oo and D*f given by we
have

(3.3) leradian (D2 1)1, (s0-1) < Cllfllz,(s0-1)
where C' depends on p and d but not on f and N.

Lemma [3.3] is known: see [Mul p. 80, Lemma 1]. We are grateful to the
referee for pointing this out. The proof of Theorem which is the main
ingredient of the proof of Theorem will be given in Sections [4] and
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Proof of Theorem 3.1 (assuming Theorem [3.4)). Using (3.3) and (2.2),
we have, for f € Iy and 1 < p < o0,

(3.4) leradia, fllp = || gradie, (D~/2DV2 )], < CIIDY £,
< Ul (=2) 2 fllp.

To show the converse inequality, we assume f € IIn and let Vyf be an
operator satisfying Vg = g for g € IIn, Vg € Ilay for all g € L, and
Vvgll, < Allgllp for all g € L,(S971), 1 < p < oo. (That is, Vi is a delayed
mean or de la Vallée Poussin-type operator.) We now have (for f € Iy,
l<p<oocand g !'+pt=1)
I(=2)"2fll, = sup ((=4)"2f,g)
lgllg<1

= sup ((—=4)"/2f,Vivg)

llgllg<1

(and, as ||[Vgllq < Allglly and Vivg € IT2n)

< sup  ((—A)2f,h)
lRllq<A, hellan

(and, as (—A)Y2f is orthogonal to constants)

< sup ((—A~)1/2f,h—P0h)

|h|lg<A, hellon

= sup (=) f, h)
|hllg< AL, hellan, Poh=0

= swp ()L (=) (- A) )
|hllg< A1, Poh=0, hellon

= sup (—A)f.(—A)™/?h)

|h]lg<A1, Poh=0, hellon

(which, recalling Lemma

= sup (grad i f, gradyy, (- 2) /1))
lkllq<A1, Poh=0, h€llsy

(and by the Holder inequality)

|h]lg<A1, Poh=0, hellon

< sup ”gradtan f”pngadtan(_5)71/2th

(and by Theorem [3.4))

< Cligradiy, fll, — sup  [[DY2(=A)"12h,
lhllq<Ar, hellan
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(and by )

< Cillgradeay, fllp sup |[[hlly < CrAslgradey, fllp- =

hllq<Aq

4. Essential estimates. In this section we will prove several estimates
that will culminate in the proof of Theorem in the next section.

For p(d-3)/2(0=3)/2)

given in Definition [2.1| we have

(A1) Puf(e) = AGkd) | fo)R D@y doy)
Sd—1
where do(y) is the Haar measure on S9! satisfying {¢._, do(y) =[S,

and 1 (d+2k—2)((d—1)/2)(k+d—3)!

| Sd—1] (d—2)I'k+(d—1)/2)
as follows from [St-Wel, pp. 143-144] together with (2.7). We define the
multiple of P,Ea’ﬁ) (), E,ia’ﬁ) (x), by

@2 B = F(zsc(ld_—l)lgz) \5;—1!

A(k,d) =

" 2k+a+8+1)(k+a+p4+1) P(a’ﬁ)(t)
I'(k+p8+1) K ’
and by [St-We| pp. 143-144], takes the form
(4.1) Pof@)= | f@)B D@y dy.
Sd—1
We now define the kernel Ky (t) by
SHL 1 ((d-3)/2,(d=3)/2)
_ L2 —3)/2,(d—3)/2
(43) KN<t>_;n(N>2k+ R (0

where n € C*°[0,00), n(t) =1 for t <1 and n(t) =0 for t > 2.
We need the estimate of K](\?)(cos 0) given in the following result.
THEOREM 4.1. Fori=0,1,... and 0 € (0,7),

(4.4) IK\ (cos )] < C(N + ) d-2i+2

where K](\? (cosf) is K](\? (t) = (d/dt)'Kn(t) evaluated at t = cosf.
For the proof of we need the following lemma.
LEMMA 4.2. Fora> (>0 and k = 0,1,... we have

1 ECHLO)( ()
4. - ’ E™
(45) 2k +a+ 3 +2 Ei Z
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and

(4.6) B (cosh)|

Ck2ot, 0<o<k,
< { Cka+1/2(9_a_1/2(77‘ _ 0)—ﬁ—1/2’ k‘_l < 4] <7- k:_l,
C’ko‘+ﬁ+1, T—kl<O<m.

Proof. The identity (4.5)) follows from [Sz, (9.4.3), p. 255], in which we

use k£ = 0 and recall (4.2)) and Cl(k) = (lJlrk) The estimate (4.6)) follows from
ISz, (7.32.5) and (4.1.3)] using (4.2)) and

Iz +a)/l(z)=2°4+0="") asz —ooforacR. u
We are now in a position to prove Theorem

Proof of Theorem 4.1. We follow the proof of Lemma 3.1 of [Br-Dal.
Using [Sz, (4.21.7), p. 63] we have

d a, k+a+ ﬁ +1 a+1,6+1
RO} = === R
and hence
d _(a 1 (a+1,8+1
B0 =5 B,
Therefore,
dy' _ )
(7)) (2 ) Kn() = Ky (®)

(ki 1 ((d=3)/2+i,(d—3)/2+3)
oy —3)/2+4i,(d—3) /2+i
_C(Z)kzzon< N >2k+2z‘+d—2Ek ®),

which, by Lemma implies
' 2N —i ‘ '
(48) KV OIS (1+ Y KTHE) < OpNT
k=1
Using (4.5)), we have
N 1 a+1, a,
(1.9 Marrargm o) = 5090

where E(_alﬂ’ﬂ) (t) =0, Ebkﬂ = bg4+1 — b and &ck = Ck — Ckt1-
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Therefore, using the Abel transformation (summation by parts), we have
(4.10)

; = (k+i 1
K(Z) — ;
N () C(l)kzzon< N >2k+21'+d—2

" 1 ((d—3)/2+i+1,(d—3) /2+4)
XA{2k+2¢+1+d—2E’f ®)

R AR 1
_C(Z)kZOA{”( N >2k:+2z’+d—2}

1 ((d—3)/2+i+1,(d—3)/2+i)
E b
X2k+2z’+1+d—2 k (t)
g Zoo , 1 ((d=3)/2-+i4+5,(d—3) /2+3)

where an (k) = n(%) and an j+1(k) = A{%}
We now observe that, for a, > 1,

- 1 m!
A)™ < )
(A) k+a,|~ (k+1)mt+l
Furthermore, as n(u) € C*°(R) and supp n(u) C [0,2), one has
- k4 A, - k41 2!
Al — || <= h A) < .
( )77( N)'_Nl and hence |( )n< I > S CE=]

As an,j(k) is a finite sum of terms which are constant times

@ra() G

st k+ a,
>

where a, > 1, m; +--- +mj;1 = j and m,
C/(k+1)%.

Choosing j such that j > d/2+i—1 and using for € (N~1,7/2),
we now have

KW (cos0) < CGL(1+ 30 RITHR pgrd/2rizing N7 pd/arini2)
1<k<6—1 0-1<k
=C(4,9)(1+1(0)+ J(9)).
As I(0) < 01079272 we have, for NO > 1,
1(0) < CLO~H2-2% < 0 (N~) 4 9)~4-2i+2,
Recalling that j > d/2+ i — 1, we have
J(0) < Cob=U/2+1=17 < Cpg—d=2+2 < Cy(N~) 4 9)~ 1242,

0, we have |an (k)| <
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For 6 € [r/2, 7] we choose j > d — 3+ 2i + 2, and using (4.6) and (4.10), we

obtain

2N—i 2N—i
]KJ(\;)(Cos 0)] < Cs Z Jom 21 =342kl — o Z k=342~ < 1y
k=1 k=1

Combining the above estimates with ([4.8)) (for the case § € [0, N1]), we
conclude the proof of (4.4). m

For z -y = cosf, 6 € [0,7], the Euclidean distance |z — y| satisfies

|z —y| = 2‘5111%‘ ~ |0| = arccosx - y, and we have the following corollary of
Theorem [4.1]

COROLLARY 4.3. Define
(4.11) Gj(z,y) = Kn(z-y)ly — (y-2)z], 1<j<d
Then for z,y,z € S 1,

(1) |Gj(z,y)| < C/(N7!+ o —y|) 7,
(2) |y — 2| < L(N"L+ |z —y|) implies
Cly — 2|

. — G <
|G](Jj7y) G](J/‘,Z)’ = (Nfl + |:E _y|)d’

(3) |z — 2| < S(N~! + |z — y|) implies

Clz — 2|

: —G. < .
|G](x,y) G](Z’y)’ = (N—l + |:1:—y|)d

Proof. Using (4.4) with ¢ = 1 and |y; — (y-2)z;| < |ly—(y-2)z| = |sinf| <
2|sin g{ = |x—yl, where § = arccos z-y, we obtain (1). The condition |y—z| <
LN+ [z —y]) implies |z — 2|+ N1 < 3(lz—y|+ N~1) < 3(lz—2|+ N 1)
or v —z|+ N7t~ |z —y| + N~L. We have

[Ki(z-y) = Ky(x-2)] = [K(cosby)| oy —a- 2] =T
where cos 0; is between z -y and x - z and where 6, € [0, 7]. Using (4.4 with
1 = 2, we have

| K% (cos )] < C’(N_1 + 91)_d_2 < C’l(N_1 + |z — y|)_d_2.

Furthermore,

ey —a-2] = |le -y — o — 2P
Yjw =yl — le — 21| (e — | + |« - 2])
Sy — 2|(jz —yl + N7V).

IN A

Therefore,
I<Oy(NT - fz —y)) ™y — 2.
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We now use (4.4) to estimate | K/ (z - y)|, and as
lyj — (- @) — 2+ (2 2)z) < |y —2) = ((y — 2) - 2)z| < |y — 2],

we complete the proof of (2).
The proof of (3) is the same when x and y are interchanged. m

5. Proof of Theorem We are now ready to prove Theorem
which is in fact a crucial step in proving Theorem [3.1] To do this, we need
the following Calderén—Zygmund decomposition, which is a special case of
the result given in [St, p. 17 and p. 37, 8.1] in the context of the sphere.

THEOREM 5.1 (Calderén-Zygmund decomposition, Stein). Suppose f €
Li(S4Y) and o > |41 $ga—1 |f(y)|do(y). Then there exists a decompo-
sition f = g+ b with b = ), by and a sequence {By} of spherical caps so
that:

L |g(x)| < Ca for a.e. v € S971,
I1. supp by(z) C By, |Bg|™! §5, [be(z)| do(z) < ca and g4 bi(z) do(z)
::O,
L Y, |Bil < (C/a) {gas [F(2)]do(a).
We note that a spherical cap is the intersection of S9! with a ball in

R? whose center is in S%L.
Now we are in a position to prove Theorem [3.4]

Proof of Theorem (3.4 We assume f € IIy. By definition, that is, using
(2.1) and (4.3]), we have

(5.1) D Pf@) = | fyKn( y)do(y).
gd—1
Therefore,
gradtan(D_1/2f($)): S f(y)gradtan[KN«"y»](x)da(y)
gd—1
= | fEyGE vy - (z-y)z)do(y)
gd—1

= (Tlf(x)7 HERR Tdf(w))v
where (-,-) denotes the usual dot product in RY, and

(5.2) Tif(z)= | f()Gj(x,y)do(y)
gd—1

with G;(z,y) given by (4.11)). To prove our theorem, it suffices to show
(5.3) \Tifllp < C|fllp forj=1,...,d,1<p<oo
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with C independent of N. For p = 2 we use Lemma [3.3] to obtain
(5-4) 1T £13 < llgradian (D2 F)I13 = (=2)/2(D72 )3
< DDV h)5 < 1115

To prove (5.2) for 1 < p < 2 we may use the Marcinkiewicz interpolation
theorem (see [St-Wel, p. 184, Theorem 2.4]) and show that 7} f is of weak
type (1,1), that is,

oAl = e e SHL: 1T, ot < o 17l
(5.5)  [Elxj)=Hze HT(F)(@)] > 2Ca}] < G ==
As E(a,j) € S¥1, |E(a,j)] < |S47Y, and hence for a < ||f|l1, (5.5) is
valid with C; > |S9~!|. Tt remains to prove (5.5) for a > ||f||1, for which
Theorem is applicable. For a > || f||1 we assume f = g+ b with g and b

of Theorem Applying (5.4) to g gives

1913 _ 2 |l
a? ¢

2
gl _ o ol

{z € 5 : [Tig(x)| > Caj| < €2 ! .

Using I and IIT of Theorem we have
| lg@ldox)= | |f@)|do(z) < | |f(x)|do(x)
S-1\U B s-1\U By =
and
| l9@)|do(z) < Cal| By < Cad Bl < C? | |f(@)|doa).
U By Sd—1

Hence C'[|g[l1/a < C1| f]l1 /e
For each k we assume By, = B(xy, ) N ST with 2, € S9! and B} =
B(xg, 4r,) N S? L For x ¢ B} (v € S°1), using IT of Theorem we have

T00) @) = | § (Gila,y) = Gilw,an)buly) do(y)|
By

<o { =l det) < O — T T () d
<O | oSl dry) < O | )l o)
Bk Bk
<C'\Bulo —Tk
= 1’ k‘a ’$—$k|d7
and hence
S T (bi) ()| do(x) < Cya| By
(BY)e

Therefore,
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{w € $% ¢ [ Tyb(a)| > Ca}|
< |Us:
k

N 1
§Z|Bk‘+@ S |T;(b) ()| do ()
k (U Bp)®

o1
<SIB+ 5> | T do(@)
k k (Br)e

I/

1
o

+ Hf‘? < (UBZ)C Ty (b) ()] > Ca}‘
k

<C3) Bl <Cy
k

This concludes the proof of (5.3) for 1 <p < 2.
To prove ((5.3)) for 2 < p < 0o, we define

Trg(x)= | f)G,(y.x)do(y).

Sd—1
Using Fubini’s theorem, we have
(5.6) |\ Tif(@)-g(@)do(z) = | f@)T}g(x)do(2),
Sd—1 Sd—1
and hence || T 1y = [T}l (p,p)- We now follow the considerations earlier

in the proof of Theorem using (3) of Corollary (instead of (2)), to
show

(5.7) 1T5gllq < C'llgllq for 1 <g<2,
which, together with (5.6]), completes the proof of ([5.3]) and of our theorem. m

6. A strong converse inequality of type A. We define the operator
Ay by

(6.1) Aof(x)= | FIQ'MyQ2)dQ, | dQ=1,
SO(d) SO(d)

where Q € SO(d), z € S9!, dQ is the Haar measure on SO(d) and My is
the d x d matrix given by

(6.2)
- . [ cos@ sing i
cos 0 sin 6 cosv s O
] O —sinf cos
—sinfcosf
My = or
0 sin 6
cosf sin O C(?S S

O ) —sinf cos

i —sind cos? | 1
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when d is even or odd respectively. Clearly, Ay is a contraction operator on
L,(S%71), 1 < p < cc. In fact, on a Banach space B of functions f on S9!
satisfying

6.3) Nf(e)lls=1fC)lz and |[f(p-) = f()z =0 as|p—1I| =0

where p € SO(d) and |p — I| = max,cgi—1 |pr — x|, Ay is also a well-defined
continuous contraction operator, that is, satisfying ||Agf|lp < ||fllz and
||A91f — AngB = 0(1) as ‘91 - 9| — 0.

The main result of this section, which is proved in the next section, is
the following strong converse inequality of type A (in the terminology of
[Di-Iv]), which yields an equivalence between special combinations of A f
and the appropriate K-functionals.

THEOREM 6.1. Suppose l € N, 0 < 0 < n/(2l), f € B C L1(S*) for
some d > 3, and the Banach space B satisfies (6.3]). Then

(6.4) |Aguf — fllg ~ inf (|f — gllz + 6% Al5) = Ku(f,60*)5
AlgeB

where

l
(©5) Aot @) = o 317 (2 ) s @)

and A, f(x) is given in (6.1)).

REMARK 6.2. For even dimension d (d > 3),

66)  Af@)=Sf@)=— § f@dy me= | dy

0 z-y=cos 0 z-y=cos 0
(see [Da-Di-08 Th. 2.1]), and hence Ag;f = Sp,f with Sp;f of [Da-Di-04]
(1.7)]. This means that Theorem was already proved (for even d) in
[Da-Di-04, Th. 4.1] for B = L,(S* ') (1 < p < 00) and in [Da-Di-08,
Th. 3.3] for B satisfying (6.3).

For the proof of Theorem (for odd d) we need a few lemmas. As we
use many results from [Sz] and from |[An-As-Ro], we remind the reader again
that the systems of polynomials {P,&a’ﬂ) (z)} and {C}(x)} = {P}x)} are the
orthogonal polynomials with respect to (1 — z)*(1 4 z)% and (1 — 22)*~1/2
on [—1,1] which are normalized by (see Definition [2.1]).

Perhaps the crucial result of this section is the simple description of Ay f
(for odd d) given in the following theorem.
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THEOREM 6.3. Suppose Agf is given by (6.1) with odd d > 3 and My is
given in (6.2). Then for f € Li(S%1) satisfying f ~ > reo Prf we have
(6.7)

For comparison, we note that [Da-Di-08, Th. 2.1] and classical results
imply, for even d > 3,

A9f N Z Rg{\,/\fl)(cos Q)Pn,ﬂ A= %, RT(Z)\,)\fl) (l‘) =
n=0

0o (AN
Apf ~ Z RN (cosO)P,f, = d 5 2, RO (z) = w
n=0 n
Proof. Using [Da-Di-08, Th. 4.1, (4.4)], we have
w/2
Apf(x) =c | cos™ o Sy (0 f(x)dp
0

where 083/2 cos?2pdp = 1 and sin(%w(q),ﬁ)) = (sing) cos ¢. Since we
have Sy, gyh(x) € Hy, for h € Hy, it follows that
P(p,0)
w/2
P,(Apf) =c S 082 0 Sy (o0 Puf d
0
and hence
o0 71'/2 A
—o Ch(cos (e, b))
— d—2 n )
Agf ~ T;)mn(g)Pnﬁ mn(0) = c (S) Cos ¥ 07)1\(1) dp.
A change of variables and use of the definition of 1 (¢, 8) yield
c w/2
_ CON A2 .2
mn(0) = 50D (S) sin“* ¢ C7 (cos” ¢ + sin” ¢ cos 0) dep.
Thus, using (2.8) and the fact that m,(0) = 1, we are reduced to showing
w/2
(6.8) RAA"D(cosf) = ¢ S sin? o RO=Y/22=1/2) (cos? o 4 sin? p cos 0) dep,
0
where R{™?) (t) = pied) (t)/PT(La’ﬁ)(l). The referee kindly pointed out that
can be deduced easily from the following formula which can be found
in [S2, (4.10.11), p. 96]:

(6.9)  (L—a)* HRETHI) (q)

_ Ila+p+1)
RACESA)

(1 —y)* R (y)(y — z)" ' dy.

R e =
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In fact, performing a change of variable y = (1 — cos ) cos? p + cos ), we
deduce from that

R%O‘Jr“ﬁ_“) (cos @)

_ I'la+p+1)

—a— a pla,B) _
= Ttar1rg L0 | =) B )y - coso) T dy

2F@+M+D%

— 2u—1 (a,8) 2 2 9) do.
Tlot DI () © COS @ Ry (cos® p + sin” p cos 8) dy

0
Now setting o = 8 = A — 1/2 and u = 1/2, we obtain the desired equa-
tion . This completes the proof. =

To prove Theorem for B satisfying (6.3) and not just for L,
1 < p < 00, or when d is even, we need the following lemma.

LEMMA 6.4. For B satisfying (6.3), B C Li1(S%!) and § > d — 1 one
has

(6.10) 1C% flls < Clfls

where
N

Z 5kPkf and A;S-:
k= N

Proof. We define

I(j+6+1)
rG+1)IrG+1)

)
Y (cosB) Z Né HR,(C)")‘_DHiiAR,(j"/\_l)(cos 0)
k=0 N

with Hg”p,w/\ = {So l9(0)[Pwx (0 )de}l/p and
g\ M g\ 2A-1
w(f) = wy(0) = (sm 2) <cos 2> .

Using [Bo-Cl, Th. 2.1, pp. 230-231] for 6 > 2A +1 =d — 1, we have
|K%(cos0)| < CNP*2(1 4+ NO)"2=2 for 0 € [0, 7]
and hence

sup | | K (cos 0)|wy (0) df < C1.
N
0

It is sufficient to show the identity
CX(f) = | Agf K3 (cos O)wy (6) dO
0
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since, as Ay f is continuous and a contraction in B, it will imply HC’?V flls <
C1]|f||B- To prove the above identity, we observe that, for 0 < k < NV,

Py ( 7§ Ag f K3y (cos 0)wy(0) d9) = ﬁR,(j’)‘_l) (cos 0) K% (cos @)wy (0) db | Py f
0 0

5
ANy,

P.f = P.(C%f). =
a5, k(Cn f)

For convenience we state the following well-known elementary multi-
plier theorem which is an immediate result of the Abel transformation

(summation by parts) and Pkf = m+1{(k+m) Cif} where A,u(k:)

p(k) —wk —1), (A)"u(k) = A((A)T Yu(k)g), Cf =0 for k < 0 and CJ* f
is given by (6.10)) with m = ¢ for k& > 0.

THEOREM 6.5. Suppose

(k+m\,, =
ez sla<cisla 3 (* ") I@m ) < o

k=0
and (k) = o(1) as k — oo. Then

(6.11) T, flls < Cillflls where Tpuf ~ > u(k)Pif.
k=0

7. Proof of Theorem In Section [6] we stated the strong converse
inequality, i.e. Theorem and established the setup and preliminary re-
sults needed for its proof, which we now give.

Proof of Theorem . As noted in Remark we need to prove (6.4])
only for odd d > 3. For the delayed means 749 f given by

- 1, 0<z<l,
(11) o =3 waRPS, we R0, ww={ ) )=
k=0 -

we have the realization result
(7.2) Ko (£,6°")5 ||f 77a9f||B + 07 (—A) o f |15

(see [Di-98, Th. 7.1] in which ( is proved using (| - for any delayed
means). To prove (6.4]) we follow [Da—Di—04, Th. 4.1], and using (7.2), it is
enough to show for some a > 0 that

(7.3) If = Aioflls = ClIf —naofl B
(7.4) If — Ao flls > CO* (=) a0 f | 5,
(7.5) 1m0 f — Avgnao fllB < COP | Anas f] 5,
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which correspond to [Da-Di-04, (5.3)—(5.5)]. It seems now that here and in
[Da-Di-04, Section 5] it is sufficient to deal with a = 1, but in order not
to repeat and marginally modify the calculations in [Da-Di-04], we main-
tain 1,9.

We may also follow [Da-Di-04, (5.6)] and prove as an alternative to
that

(7.6) 1A o(f = nao.)lB < CIIf — Ao fll,
since || Ao fllp < 2'|fllz and |naofllz < Cillf|| 5 imply
(I — A7) (f = ma0f)lB =T+ A+ -+ + Al )L — Arg)(f — naof) I8
< Collf — Ao fll B

We now set
l

a = -2 i 2 MA=D (605 4
l(kae) (%l);( 1)j (l—j)Rk ( ]9)7

and using Lemma [6.4] and Theorem [6.1, we only have to show that the
moments
11— n(abk)
By =17 o
- Cll(k?, 9)
@) _ (k(k+20)6°)
i = - al(ka 0)
3 1—a(k,0)
P = 2l
(k(k+2X)62)
satisfy the conditions of Theorem for some m >d—1 (m >2\+1).
To do this, we first show that for nonnegative integers s,k and 6 €
[0,7/2), we have

(7.7) |(£)3RI(€047/3)(C05 0)| < C(S,Oé,ﬂ)es(l + kg)—a—l/z7

where R (t) = PP (t)/PLP(1).
We use [An-As-Rol, (6.4.20), p. 304] together with (6.7 to obtain
ERIEO‘”B) (cosf) = R,(:"ﬁ) (cos@) — R,(ﬁ:_’f) (cos9)
2k+a+p3+2 R@t+LA)
2(a+1) k

CLl(kﬁ, 9)57
n(adk),

n(adk)

= (1 —cosf) (cos®),

and by induction
|(Z)5R,(€a”8) (cos )| < Ci(s,a, ) max (1 — cos G)S_ik:s_%|R,(€a+s_i’ﬂ)(cos )|,

which implies (7.7) using [Sz, (8.21.18), p. 196] for k6 > 1, and using

\R,(CO‘+S’B) (cos@)| < 1 otherwise.
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We observe that for the estimate of ,ug) we need for k > 1/(af) the
inequalities 1 — a;(k,0) > va; > 0 and 0 < C; < (1 —a(k,0))/(k0)* <
Cy < oo for 6 € [0,7/2], both of which follow from [Sz, (4.7.29), p. 83]
which yields

(A1) 1 A+1/2
R (cosf) = C (cos )
k C,;\H/Q(l) Jrcli\jll/z(l) k

1 A+1/2
+ C. 11" (cos )
Gt o
and the result on C’,?H/Q(cos ) given in [Da-Di-04, Th. 4.4, p. 278].

The proof now follows the proof in [Da-Di-04, pp. 281-283], with (7.7])
used instead of Lemma 4.3 of [Da-Di-04]. =

8. An equivalence relation. In this section we will introduce and
establish a K-functional equivalent to w"(f,t),=w"(f,t)r (ge-1), 1 <p<oo.
This will not be K,(f,t"),, but will be of help in proving K,(f,t"), ~
w'(f,t)p for 1 < p < oo. We believe that the equivalence proved in this
section (Theorem is of independent interest and will turn out useful for
various purposes in the future.

DEFINITION 8.1. A d x d skew-symmetric matrix M is of class M if

0 (05}
—Qq 0 O
(8.1) M= 0 o , O<ap<--- <oy <1.
—a 0
O

0

It is known (see [Di-99 p. 191] or [Gal pp. 287-288]) that p € SO(d)
satisfies |p — I| < QSing (or px -z > cosf for all z € S471) if and only if it
can be represented as p = ?@MQ7" with Q € SO(d) and M € M.

For g(z) € C™(S%1), (8/0t)"g(e!QMQ " z)|,_, exists in C(S?1), that
is, for each fixed u the derivative is in C'(S?~1) and is continuous in u for
u € R. We may consider (9/0t)"g(e!@MQ" 2)|,—, as an element of Ly(S91),
1 < p < o0, and denote it by g (e*@MQ™") In fact, for g € C™(5%!) and
any space of functions B O C(S%1) which satisfies (6.3), g (€*@MQ7".) ig
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defined and satisfies
T Uu -1
(8.2) 19" (e M) |g = ||g s
1) (e @MQ™y _ g1 (u2@MQT Y| 0 as ug — ug — 0.

(r) (eUQQMQ_l

For P, € span(UZ;O1 Hy) we have PT(LT)(e“QMQfl-) € span(UZ;(l) Hy),
since when ¢ € Hy, the quotient [p(e(T)QMQ™! 1) _ (cu@MQ™ )] /¢ g
in Hy, and so is its limit (in C(S971), L,(S91) or B satisfying (6.3))) as
t— 0.

We now define the K-functional K, (f,t")p and the realization functional
R.(f,n~")p for B satisfying (6.3) and C(S4~!) c B ¢ Li(S%!) by

(83) K (f,t")p=mt{|f g+t sup [g" (M|
MeM

QeSO(d) ge Cr(Sdfl)}
and
(84)  Re(fon"p=If —Pullp+n" sup [P
MeM
QeSO(d)

with P, € span({J}—y Hy) and

(85)  If = Palls=Eu(f)p = im{[If ~ ol : 0 € span(U Hy) }.

The main result of this section is now given in the following theorem.

THEOREM 8.2. Suppose that f € L,(S4Y) with 1 < p < oo, or f €
C(S%1) for p = co. Then
(8.6) w'(f, t)Lp(SdA) ~ K. (f,t); o(54-1) & R.(f,[1/t]7") 1 »(59-1)
where K, (f,t"), (ga-1y and Ry(f,[1/t]7") (ga-1) are given by | (8-3) and
(8:4) for B = L,(S471).
We note that the concepts in (8.3)), (8.4) and (8.5)) are given for a Banach
space more general than L,(S%1) for the benefit of Remark
Proof. For g € C7(S%1) and p satisfying pz -2 > cost (for all z € S971)
we have, for p = exp(tQMQ_l) with M € M,
t
S S exp u1+--'+uT)QMQ_1)-)dul...dur.

Using (8.2) for B satisfying B ¢ C(S%1) and (6.3)), and in particular for
B = Lp(S 1, 1< p<oo,or B=C(S%1), we have

r r r u -1
18,918 < t7]lg") (M) 5.
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Choosing now g close to the infimum in (8.3)), writing f = f — ¢ + g and
recalling [|A7(f — g)l|s < 2[1f — gll, we have

wr(.ﬂ tT)B < (1 + 5)2TK (fa tr) .
Furthermore, using the definitions and ( ., we have
Kr(fa tr)B < RT( ) [1/t]7 )B-

In view of the Jackson inequality (see [Di-04]), we now need only show
that

(8.7) nfrIIPV(LT)(G“QMQ Wi, (sa-1) < Cro"(f,1/n) 1, (501

for P, satisfying (8:5) with B = L,(S%1) to establish R,(f,n~ )LP(Sd—l) <

Cow"(f,1/n) 1, (g4-1) and complete the proof of (8.6]). To prove (8.7)) we need
the Bernsteln—type inequality

T u -1 T
(8.8) 1P (@M )| (sa-1) < Csn” || Pa(:)ll, (s0-1)

for any P, € span(UZ;é Hy,). As the derivative of P, (e™@MQ7".) with respect
to 7 is in span(UZ;(l] Hy,), it is sufficient to prove (8.8)) for » = 1 and use
that as the first and inductive step in proving (8.8)),

To prove (8.8)) for r = 1 we observe that

w -1
(8.9) 1P, (e"@MC )|, (sa-1) < llgradgn Pa(-)ll 1, (sa-1)-

We now follow [Di-04], Section 9] (used also in Section |4 here) to write

2n
(8.10) Gn(z-y) Z ( >2Ykl )Yia(y
k=0
_ Z 77( % ) BU@-3/20-9/2)
k=0

with Y}, ;(x) any orthonormal basis of Hj, n(t) as given for (4.3)), and
E,(C(d73)/2’(d73)/2) (t) given in (4.2)). We now have

and
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Therefore,

(8.11)  [[gradiay Pallr, (se-1)
< C(A)| Pl (sa-1) - |G (#)(1 — ¢t 2H@=22)
where
C(d)|Gn(t) (1 — )2y < | |Gala )| dy < M.
Ggd—1

Using the Bernstein inequality for the polynomials Gy, (t) (of degree 2n)
with weight (1 — #2)(=2)/2 in L;[—1,1] (see [Di=Td, Th. 8.4.7]), we have

lgrada, Pollz, (sa-1y < CnllPallp,(sa-1y | Gl y)ldy
gd—1
< 51”||PnHLp(sd—1)7

and hence ({8.8]).

To prove (8.7) we first prove the weaker inequality
(8.12) 1P (e QM) (sam1y < Con™ W (£, 1/n) 1 (g0-1)-

We write
!
P,=P,— Py + Z(PQj — Pyi—1)+ P, where | =max{j:2 <n}
j=1
and use (8.8) with 7 + 1 (instead of ) and with n or 2/ (instead of just n)
to obtain

l
—1 (o
[P+ (e QM| sa-y < MY 20T Ey (),
j=1

l
<M (1,20,

Jj=1

l
g M2 Z 2‘7'(7"'1‘1)2(l—j)7’('UT’(](‘7 2_l)p
j=1
S C2nr+1w1”(f’ n_l)p7

thus establishing .
Since || f— Pyl < C3w"(f,1/n)p was proved for B = L,(S47!) in [Di-04]
and for more general B in [Da-Di-08|, Th. 6.3], we obtain w (Pn7 1/n)p,(se-1)
< (2"C3 + 1)w"(f,1/n)p. We now write
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In ™ P (M) — A

Un  1/nuy4-+ur

= H S S S Pg'*'l)(exp(u+t)QMQ_1-)dtdu1...duTHLp(qu)
0 0 0

Pa(e @)

exp(n-1QMQ-1) Iz, (s4-1)

< rn P (exp(v@MQ ) | <G (f,n 7).

Lp(S-1)
Therefore,
In =" P (e QM| (samy < rCow" (fin)p + (27Cs + 1w (00,
< Gy (f, n_l)p~ u

REMARK 8.3. Examining the proof of Theorem one can deduce
for any Orlicz space O satisfying (6.3) and C(S9~!) ¢ O c L1(S%1), and
some other spaces. As we conjecture and hope that will be valid for
any Banach space B of functions on S9! satisfying (6.3) and C(S91) c
B C Li(S%1), which will follow from (8.8) for such spaces, we concentrated
here on the L,(S%~!) case which is needed for the proof of the main theorem
of this paper.

9. The main result. In this section we will prove the equivalence (|1.3))
written also as

(9.1) wr(f,t)p%kr(f,tr)p, l<p<oo,r=12...,
which is the main result of this paper. We first prove:

THEOREM 9.1. For a function space B on S ' (d > 3) satisfying
C(8%1) c B c L1(8% 1) and (6.3)), we have
(9.2) Kom(f,07™) 5 < Cw®™(f,0)p, m=12 ...

Proof. Using My of (6.2]) (which depends on whether d is even or odd),

we have

W (f.0)p = sup{[|A)" fllp : p = QMpQ ™", Q € SO(d)}

> | Ao 1 fllBdQ.
QeSO(d)
Since T'(p) f(z) = f(pzx) satisfies ||T'(p) fllz = || f|| B, we obtain

0> | IT(QMQ ™AL, o1 fllBdQ
QeSO(d)

2 H Qego(d)T((QMGQ_l)m)AQQ%IeQ1fdQHB

m

2m 1
= ()0t = 1l = C R 1.6
where in the last step we used Theorem .
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For odd m we have only the following somewhat weaker result.
THEOREM 9.2. Forl<p<oo, d>3 andm=1,2,...,
(9-3) fcm(f, 0™)p < Cw™(£,6),.

Proof. For even m, was already proved in Theorem and hence
we only have to prove for m = 2l— 1 and [ =1,2,.... For P, satisfying
\f = Pullp = En(f)ps P ¢ span({Jj—, Hi), and using the definition of
Km(f, 0™), and a Jackson-type inequality (see [Di-04, Th. 8.1]), we have

En(f,n™™)p S If = Pallp + 0™ [(=2)™2 Pl
< CL" (f,n )y + 0" (= )P .

Since w" (Pp,n 1)y < W' (Po—f,n ™ ptw” (fin™h)p < (C127+ 1w (f,n ),
and as both (— ) ™/2 and w" annihilate constants, it is sufficient to show

(9.4) n_mH(_A)m/QPn”p < Cow™ (Pn,n_ )p
for any P, € span(UZ;é Hy).

For m = 21 — 1 we apply Theorem [9.1]to (—A)Y/2P, and the realization
result (see [Di-98, Th. 8.1]) to obtain

W (=) 2Py > CT R (=) 2P 0,
> O (= A) 2By .
We now observe that A, and (—=A)~Y/2 commute and hence
W (=A) V2P n )y = sup{||A] (= A) V2P, s p € SO(d), [p—1] < 1/n}
< sup{[|A-(=A) VAT P 7 € SO(A), [p—T| < U/m, [7—1| < 1/n}.
We set Qn, = AZZ Ip, and note that if P, € span(Uk 1 ' Hy,), also

Qnyp € span(Uk:1 H k), and using as well as Theorems [3.4] and |8 . we
have, for |7 —I| < 1/n and 1 <p< 00,

”AT<_AV)_1/2Qn,p P < An_lngradtan (_5)_1/2Qn,p”p < Aln_
which completes the proof of | and of our theorem. m

Theorems [9.1] and [9.2] already yield part of our main result of this paper
given in the next theorem.

THEOREM 9.3. Suppose f € L,(S4 1), 1 < p < oo, d >3 andr =
1,2,.... Then

w"(f,0)p = f{r(fa 0")p-
Proof. Using Theorem we need to show only that
(9.5) W'(f,0), < CK.(f,07),.
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We use E,(f)p < C1 K, (f, 1/n), (see [Di-98, Th. 6.1]), the realization of

K. (f,1/n), (see [Di=98, Th. 6.2]), and the relation w" (f,1/n),~ R,(f,1/n"),
in Theorem to reduce the proof of (9.5)) to

(9.6) | B (e 9MO ) < Call(=4)/2 Pl

for P, € Span(UZ;% Hy) with C; = Cy(r,p) independent of @ € SO(d),
M e M, n and P,.

We define P, , = (=A)~"/2P,, which is in span(Uz;% Hj,), and we need
to show

r u -1
(9.7) 1P (e 9MC™ ) [, < Cul| Pagllp = Cill Pallp-
We use the identity

o a tQMQ—l . 6 o tQMQ_l
(-2 (5 Q@9 0) ) = 2 (2@ ),
which is valid for « € R and @, € span(Uz;l1 Hy) with o = —1/2 and
Qn(z) = P (), and derive

n,r—1
—1 ~ _ -1 -1
| P (@M < flgradyuy (—2) 2P (@M,
(which, using Theorem implies for 1 < p < o0)

OB (@M,

n,r—1

(which, using induction on r, implies)

< C(F)||Pu(e@MR ||, = C (1) | Pallp- m

10. Application. Having Theorem we can improve and extend
Theorem 2.2 of [Da-Di-Ti]. We obtain the following sharp Jackson and sharp
lower estimate for w"(f,1),.

THEOREM 10.1. For f € L,(S* 1), 1<p<oo,d>3,r=1,2,... and
s = max(p,2) one has

10.1) {3 KB o 1)}1/ < O (f,1)p = CW' (£,1) 1, (501

1<k<1/t
and
(10.2) tT{1§2 " g, }1/S<cw(f )y, m>r
: TSt = Y :

t

We note that in [Da-Di-Ti, Th. 2.2], r is restricted to even integers.



204 F. Dai et al.

Proof. We simply substitute the result of Theorem in [Da-Di-Ti
Th. 8.1]. =
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Added in proof. The optimality of the range 1 < p < oo in Theorems 3.1 and 9.3
was recently established by the second author in an article to appear in Studia Mathe-
matica. That is, w™(f,¢)p &~ Kun(f,t™)p does not hold for p =1 and p = cc.
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