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Equivalence of measures of
smoothness in Lp(S

d−1), 1 < p <∞

by

F. Dai (Edmonton), Z. Ditzian (Edmonton)
and Hongwei Huang (Xiamen)

Abstract. Suppose e∆ is the Laplace–Beltrami operator on the sphere Sd−1, ∆k
ρf(x)

= ∆ρ∆
k−1
ρ f(x) and ∆ρf(x) = f(ρx)− f(x) where ρ ∈ SO(d). Then

ωm(f, t)Lp(Sd−1) ≡ sup{‖∆m
ρ f‖Lp(Sd−1) : ρ ∈ SO(d), max

x∈Sd−1
ρx · x ≥ cos t}

and eKm(f, tm)p ≡ inf{‖f − g‖Lp(Sd−1) + tm‖(− e∆)m/2g‖Lp(Sd−1) : g ∈ D((− e∆)m/2)}

are equivalent for 1 < p <∞. We note that for even m the relation was recently investi-
gated by the second author. The equivalence yields an extension of the results on sharp
Jackson inequalities on the sphere. A new strong converse inequality for Lp(S

d−1) given
in this paper plays a significant role in the proof.

1. Introduction. For a Banach space B of functions on the unit sphere
Sd−1 = {x ∈ Rd : |x|2 = x2

1 + · · ·+ x2
d = 1}, the rth modulus of smoothness

(introduced in [Di-99]) is given for 0 < t < π/2 by

(1.1) ωr(f, t)B = sup{‖∆r
ρf‖B : ρ ∈ SO(d) and

ρx · x ≥ cos t for all x ∈ Sd−1}
where SO(d) is the group of d × d orthogonal matrices of determinant 1,
r ∈ N, and ∆k

ρf(x) is given by

(1.2) ∆k
ρf(x) = ∆ρ(∆k−1

ρ f(x)), ∆ρf(x) = f(ρx)− f(x).

The main result of this paper is the equivalence between ωr(f, t)p =
ωr(f, t)Lp(Sd−1) and the K-functional K̃r(f, t)p = K̃r(f, t)Lp(Sd−1), that is,

(1.3) C−1K̃r(f, tr)p ≤ ωr(f, t)p ≤ CK̃r(f, tr)p, 1 < p <∞,
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which we denote by ωr(f, t)p ≈ K̃r(f, tr)p. In this paper the symbol “ ≈ ”
signifies that a relation such as (1.3) holds, and f is always a real-valued
function on Sd−1.

To define and describe K̃r(f, tr)B, we write

(1.4) K̃r(f, tr)B = inf{‖f − g‖B + tr‖(−∆̃)r/2g‖B : (−∆̃)r/2g ∈ B}

where ∆̃ is the Laplace–Beltrami differential operator on Sd−1. We recall
that

∆̃f(x) = ∆F (x), x ∈ Sd−1, F (x) = f(x/|x|),(1.5)

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

.

We now define (−∆̃)α for α ∈ R. The finite-dimensional space Hk of eigen-
functions of ∆̃ is given by

(1.6) Hk = {ϕ : ∆̃ϕ = −k(k + d− 2)ϕ}, k = 0, 1, . . . ,

and the projection Pkf of f on Hk is given by

(1.7) Pkf =
dk∑
l=1

{ �

Sd−1

f(y)Yk,l(y) dy
}
Yk,l

where Yk,l is any real orthonormal basis of Hk. For any Banach space satis-
fying B ⊂ L1(Sd−1), (1.7) is well defined and the expansion of f by Pkf is
denoted by f ∼

∑
Pkf. The operator (−∆̃)αf is then given by

(1.8) (−∆̃)αf ∼
∑

kα(k + d− 2)αPkf

(defined for α < 0 only when P0f = 0), and (−∆̃)αf ∈ B when there
exists Φ ∈ B such that PkΦ = kα(k + d − 2)αPkf for all k. We note that
for α = r ∈ N, (−∆̃)r = (−1)r∆̃r where ∆̃r is the rth iterate of ∆̃ given
in (1.5).

In Section 10 we apply the equivalence (1.3) to obtain a generalization
of the sharp Jackson inequalities and of the lower estimates for functions in
Lp(Sd−1), 1 < p < ∞ (see [Da-Di-Ti]), and we believe other applications
will be given in the future. In Section 2 we present some additional required
notations. In Sections 3–5 results needed to establish (1.3) for r = 1 are
given. For odd d, the operator
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(1.9)

Aθf(x) =
�

SO(d)

f(QMθQ
−1x) dQ,

�

SO(d)

dQ = 1,

Mθ =



sin θ cos θ
− cos θ sin θ

©
. . .

©
sin θ cos θ
− cos θ sin θ

1


and for combinations of Ajθf, a strong converse inequality of type A (in
the terminology of [Di-Iv]) given in Sections 6 and 7 plays an important
role in the proof of (1.3). We prove the strong converse inequality and the
equivalence for a more general space than just Lp(Sd−1), and we hope it will
be of use in the future as well.

In Section 8 we give an alternative description of ωr(f, t)B by a different
K-functional, and in Section 9 we conclude the proof of (1.3).

2. Preliminaries. We introduce the operator

(2.1) Dαf ∼
∞∑
k=1

(2k + d− 2)2αPkf

with Pkf of (1.7), α ∈ R and Dαf ∈ Lp(Sd−1) if there exists Φ ∈ Lp(Sd−1)
such that PkΦ = (2k + d − 2)2αPkf for all k. We note that Dαf is related
to (−∆̃)αf by

(2.2) ‖(−∆̃)αf‖p ≈ ‖Dαf‖p for 1 ≤ p ≤ ∞, α ∈ R and P0f = 0,

as can easily be verified using the Abel transformation. In fact, we have to
show that {(2k + d− 2)2α/(k(k + d− 2))α} is a bounded multiplier operator
on Lp(Sd−1) for all α ∈ R when P0f = 0. Following [Da-Di-07, Section 4],
we have to show that {(4+(d− 2)2/(k(k + d− 2)))α} satisfies the condition
E(m) of [Da-Di-07, Definition 4.1]. This in turn follows from the obvious
estimate∣∣∣∣ dldxl

(
4 +

(d− 2)2

x(x+ d− 2)

)α∣∣∣∣ ≤ cl(x+ 1)−l−1, x ≥ 0, l = 0, 1, . . . .

Note that the conditions E(m) for positive and negative α are symmetric.
We can now follow the proof of Theorem 4.3 of [Da-Di-07] and in particular
of (4.7) there, which uses the Abel transformation (summation by parts).

For f ∈ C1(Sd−1) we can define the tangential gradient of f, gradtan f,
by

(2.3) gradtan f = ∇F |Sd−1 , F (x) = f(x/|x|) for x ∈ R \ {0}
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where ∇F = gradF is the gradient of F , i.e. ∇F = (∂F/∂x1, . . . , ∂F/∂xd).
In terms of spherical coordinates (see [Er, Chapter XI]) given by

(2.4)



x1 = r cos θ1,
x2 = r sin θ1 cos θ2,
...
xd−1 = r sin θ1 . . . sin θd−2 cosϕ,
xd = r sin θ1 . . . sin θd−2 sinϕ,
0 ≤ θi ≤ π for 1 ≤ i ≤ d− 2 and 0 ≤ ϕ ≤ 2π,

we have

gradtan u =
(
∂u

∂θ1
,

1
sin θ1

∂u

∂θ2
, . . . ,

1
sin θ1 . . . sin θd−2

∂u

∂ϕ

)
,(2.5)

∇u =
(
∂

∂r
,
1
r

gradtan u

)
,

∆̃u = (sin θ1)−d+2 ∂

∂θ1
(sin θ1)d−2 ∂u

∂θ1
(2.6)

+ (sin θ1)−2(sin θ2)−d+3 ∂

∂θ2
(sin θ2)d−3 ∂u

∂θ2
+ · · ·+

+ (sin θ1 . . . sin θd−3)−2(sin θd−2)−1 ∂

∂θd−2
sin θd−2

∂u

∂θd−2

+ (sin θ1 . . . sin θd−2)−2 ∂
2u

∂ϕ2
,

∆u = r−d+1 ∂

∂r

(
rd−1 ∂u

∂r

)
+ r−2∆̃u.

We observe that while gradtan f and ∆̃f given in (2.5) and (2.6) are not
restricted to the unit sphere, they coincide on the unit sphere with (2.3) and
(1.5). In particular, what may seem like a discrepancy between the number
of components of (2.3) and (2.6) does not exist, as (2.5) is the projection
of (2.3) on the hyperplane perpendicular to the vector r, i.e. x/|x|, and in
the r direction the derivative equals 0. We will utilize mainly (2.3) and (1.5)
but will refer to (2.5) and (2.6) which we hope will help those more familiar
with those forms.

We will use many identities and estimates from [Sz] and [An-As-Ro] on
Jacobi and ultraspherical polynomials and we now give the notation used
there.

Definition 2.1. The Jacobi polynomials P (α,β)
n (x) and the ultraspheri-

cal polynomials P λn (x) = Cλn(x) are orthogonal systems of polynomials with
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respect to the weights (1 − x)α(1 + x)β and (1 − x2)λ−1/2 on [−1, 1]. The
normalization of P (α,β)

n (x) and P λn (x) = Cλn(x) is given by

(2.7)
P (α,β)
n (1) =

(
n+ α

n

)
=
Γ (n+ α+ 1)
n!Γ (α+ 1)

P λn (1) = Cλn(1) =
Γ (n+ 2λ)
n!Γ (2λ)

.

The normalization (2.7) follows from [Sz, (4.1.1) and (4.3.1)] and [An-As-Ro,
(2.5.13′)] for P (α,β)

n (x), and from [Sz, (4.7.3), p. 81] and [An-As-Ro, p. 302]
for P λn (x) = Cλn(x). Clearly, (2.7) implies

(2.8) P λn (x) = Cλn(x) =
Γ (2λ+ n)Γ (λ+ 1/2)
Γ (2λ)Γ (λ+ 1/2 + n)

P (λ−1/2,λ−1/2)
n (x).

3. The case r = 1. For r = 1 we obtain the equivalence as a result of
the following theorem. We set Πn = span(

⋃n
k=0Hk).

Theorem 3.1. Suppose f ∈
⋃∞
N=0ΠN , and gradtan f and (−∆̃)αf are

given by (2.3) and (1.8) respectively. Then for 1 < p <∞,

(3.1) ‖ gradtan f‖Lp(Sd−1) ≈ ‖(−∆̃)1/2f‖Lp(Sd−1).

Remark 3.2. The equivalence (3.1) means that whenever one side exists
(i.e. is finite), the other side is finite and equivalent. The constants of the
equivalence depend on p and d but not on f. In fact, we need and will prove
(3.1) just for spherical harmonic polynomials, but because of the density
of span(

⋃∞
k=0Hk) in Lp(Sd−1), (3.1) is valid whenever (−∆̃)1/2f ∈ Lp, in

which case the definition of gradtan f in (2.3) can be extended by density.

For the proof of Theorem 3.1 we need the following two results.

Lemma 3.3. For f, g ∈ C2(Sd−1),
(3.2)
〈−∆̃f, g〉 = 〈gradtan f, gradtan g〉 where 〈ϕ,ψ〉 ≡

�

Sd−1

ϕ(x)ψ(x) dσ(x).

Theorem 3.4. For f ∈ ΠN , 1 < p < ∞ and Dαf given by (2.1) we
have

(3.3) ‖gradtan(D−1/2f)‖Lp(Sd−1) ≤ C‖f‖Lp(Sd−1)

where C depends on p and d but not on f and N.

Lemma 3.3 is known: see [Mu, p. 80, Lemma 1]. We are grateful to the
referee for pointing this out. The proof of Theorem 3.4, which is the main
ingredient of the proof of Theorem 3.1, will be given in Sections 4 and 5.
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Proof of Theorem 3.1 (assuming Theorem 3.4). Using (3.3) and (2.2),
we have, for f ∈ ΠN and 1 < p <∞,

‖ gradtan f‖p = ‖ gradtan(D−1/2D1/2f)‖p ≤ C‖D1/2f‖p(3.4)

≤ C1‖(−∆̃)1/2f‖p.

To show the converse inequality, we assume f ∈ ΠN and let VNf be an
operator satisfying VNg = g for g ∈ ΠN , VNg ∈ Π2N for all g ∈ Lp and
‖VNg‖p ≤ A‖g‖p for all g ∈ Lp(Sd−1), 1 ≤ p ≤ ∞. (That is, VN is a delayed
mean or de la Vallée Poussin-type operator.) We now have (for f ∈ ΠN ,
1 < p <∞ and q−1 + p−1 = 1)

‖(−∆̃)1/2f‖p = sup
‖g‖q≤1

〈(−∆̃)1/2f, g〉

= sup
‖g‖q≤1

〈(−∆̃)1/2f, VNg〉

(and, as ‖VNg‖q ≤ A‖g‖q and VNg ∈ Π2N )

≤ sup
‖h‖q≤A, h∈Π2N

〈(−∆̃)1/2f, h〉

(and, as (−∆̃)1/2f is orthogonal to constants)

≤ sup
‖h‖q≤A, h∈Π2N

〈(−∆̃)1/2f, h− P0h〉

≤ sup
‖h‖q≤A1, h∈Π2N , P0h=0

〈(−∆̃)1/2f, h〉

= sup
‖h‖q≤A1, P0h=0, h∈Π2N

〈(−∆̃)1/2f, (−∆̃)1/2((−∆̃)−1/2h)〉

= sup
‖h‖q≤A1, P0h=0, h∈Π2N

〈(−∆̃)f, (−∆̃)−1/2h〉

(which, recalling Lemma 3.3)

= sup
‖h‖q≤A1, P0h=0, h∈Π2N

〈gradtan f, gradtan((−∆̃)−1/2h)〉

(and by the Hölder inequality)

≤ sup
‖h‖q≤A1, P0h=0, h∈Π2N

‖gradtan f‖p‖gradtan(−∆̃)−1/2h‖q

(and by Theorem 3.4)

≤ C‖gradtan f‖p sup
‖h‖q≤A1, h∈Π2N

‖D1/2(−∆̃)−1/2h‖q
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(and by (2.2))

≤ C1‖gradtan f‖p sup
‖h‖q≤A1

‖h‖q ≤ C1A1‖gradtan f‖p.

4. Essential estimates. In this section we will prove several estimates
that will culminate in the proof of Theorem 3.4 in the next section.

For P ((d−3)/2,(d−3)/2)
k given in Definition 2.1 we have

(4.1) Pkf(x) = A(k, d)
�

Sd−1

f(y)P ((d−3)/2,(d−3)/2)
k (x · y) dσ(y)

where dσ(y) is the Haar measure on Sd−1 satisfying
	
Sd−1 dσ(y) = |Sd−1|,

and

A(k, d) =
1

|Sd−1|
(d+ 2k − 2)Γ ((d− 1)/2)(k + d− 3)!

(d− 2)!Γ (k + (d− 1)/2)
as follows from [St-We, pp. 143–144] together with (2.7). We define the
multiple of P (α,β)

k (x), E(α,β)
k (x), by

E
(α,β)
k (t) =

Γ ((d− 1)/2)
Γ (d− 1)

1
|Sd−1|

(4.2)

× (2k + α+ β + 1)Γ (k + α+ β + 1)
Γ (k + β + 1)

P
(α,β)
k (t),

and by [St-We, pp. 143–144], (4.1) takes the form

(4.1)′ Pkf(x) =
�

Sd−1

f(y)E((d−3)/2,(d−3)/2)
k (x · y) dy.

We now define the kernel KN (t) by

(4.3) KN (t) ≡
2N∑
k=1

η

(
k

N

)
1

2k + d− 2
E

((d−3)/2,(d−3)/2)
k (t)

where η ∈ C∞[0,∞), η(t) = 1 for t ≤ 1 and η(t) = 0 for t ≥ 2.
We need the estimate of K(i)

N (cos θ) given in the following result.

Theorem 4.1. For i = 0, 1, . . . and θ ∈ (0, π),

(4.4) |K(i)
N (cos θ)| ≤ C(N−1 + θ)−d−2i+2

where K(i)
N (cos θ) is K(i)

N (t) = (d/dt)iKN (t) evaluated at t = cos θ.

For the proof of (4.4) we need the following lemma.

Lemma 4.2. For α ≥ β ≥ 0 and k = 0, 1, . . . we have

(4.5)
1

2k + α+ β + 2
E

(α+1,β)
k (t) =

k∑
j=0

E
(α,β)
j (t)
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and

(4.6) |E(α,β)
k (cos θ)|

≤


Ck2α+1, 0 ≤ θ ≤ k−1,
Ckα+1/2θ−α−1/2(π − θ)−β−1/2, k−1 ≤ θ ≤ π − k−1,

Ckα+β+1, π − k−1 < θ ≤ π.

Proof. The identity (4.5) follows from [Sz, (9.4.3), p. 255], in which we
use k = 0 and recall (4.2) and C(k)

l =
(
l+k
l

)
. The estimate (4.6) follows from

[Sz, (7.32.5) and (4.1.3)] using (4.2) and

Γ (x+ a)/Γ (x) = xa +O(xa−1) as x→∞ for a ∈ R.

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. We follow the proof of Lemma 3.1 of [Br-Da].
Using [Sz, (4.21.7), p. 63] we have

d

dt
{P (α,β)

k (t)} =
k + α+ β + 1

2
P

(α+1,β+1)
k−1 (t)

and hence
d

dt
{E(α,β)

k (t)} =
1
2
E

(α+1,β+1)
k−1 (t).

Therefore,

(4.7)
(
d

dt

)i
KN (t) ≡ K(i)

N (t)

= C(i)
2N−i∑
k=0

η

(
k + i

N

)
1

2k + 2i+ d− 2
E

((d−3)/2+i,(d−3)/2+i)
k (t),

which, by Lemma 4.2, implies

(4.8) |K(i)
N (t)| ≤ C1(i)

(
1 +

2N−i∑
k=1

kd−3+2i
)
≤ C2(i)Nd−2+2i.

Using (4.5), we have

(4.9)
←
∆
{

1
2k + α+ β + 2

E
(α+1,β)
k (t)

}
= E

(α,β)
k (t)

where E(α+1,β)
−1 (t) = 0,

←
∆bk+1 = bk+1 − bk and

→
∆ck = ck − ck+1.
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Therefore, using the Abel transformation (summation by parts), we have

K
(i)
N (t) = C(i)

∞∑
k=0

η

(
k + i

N

)
1

2k + 2i+ d− 2

(4.10)

×
←
∆
{

1
2k + 2i+ 1 + d− 2

E
((d−3)/2+i+1,(d−3)/2+i)
k (t)

}
= C(i)

∞∑
k=0

→
∆
{
η

(
k + i

N

)
1

2k + 2i+ d− 2

}
× 1

2k + 2i+ 1 + d− 2
E

((d−3)/2+i+1,(d−3)/2+i)
k (t)

= C(i)
∞∑
k=0

aN,j(k)
1

2k + d− 2 + 2i+ j
E

((d−3)/2+i+j,(d−3)/2+i)
k (t)

where aN,0(k) = η
(
k+i
N

)
and aN,j+1(k) ≡

→
∆
{ aN,j(k)

2k+d−2+2i+j

}
.

We now observe that, for ar ≥ 1,∣∣∣∣(→∆)m
1

k + ar

∣∣∣∣ ≤ m!
(k + 1)m+1

.

Furthermore, as η(u) ∈ C∞(R+) and supp η(u) ⊂ [0, 2), one has∣∣∣∣(→∆)lη
(
k + i

N

)∣∣∣∣ ≤ Al
N l

and hence
∣∣∣∣(→∆)lη

(
k + i

N

)∣∣∣∣ ≤ 2l

(k + 1)l
.

As aN,j(k) is a finite sum of terms which are constant times

(
→
∆)m1η

(
k + i

N

) j+1∏
r=2

(
→
∆)mr

1
k + ar

where ar ≥ 1, m1 + · · · + mj+1 = j and mr ≥ 0, we have |aN,j(k)| ≤
C/(k + 1)2j .

Choosing j such that j > d/2 + i− 1 and using (4.6) for θ ∈ (N−1, π/2),
we now have

|K(i)
N (cos θ)| ≤ C(j, i)

(
1 +

∑
1≤k≤θ−1

kd−3+2i + θ−d/2+1−i−j
∑
θ−1≤k

kd/2+i−j−2
)

≡ C(j, i)(1 + I(θ) + J(θ)).

As I(θ) ≤ C1θ
−d+2−2i, we have, for Nθ ≥ 1,

I(θ) ≤ C1θ
−d+2−2i ≤ C1(N−1 + θ)−d−2i+2.

Recalling that j > d/2 + i− 1, we have

J(θ) ≤ C2θ
−d/2+1−i−j ≤ C2θ

−d−2i+2 ≤ C2(N−1 + θ)−d−2i+2.
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For θ ∈ [π/2, π] we choose j ≥ d− 3 + 2i+ 2, and using (4.6) and (4.10), we
obtain

|K(i)
N (cos θ)| ≤ C2

2N−i∑
k=1

k−2j−1 kd−3+2i+j+1 = C2

2N−i∑
k=1

kd−3+2i−j ≤ C3.

Combining the above estimates with (4.8) (for the case θ ∈ [0, N−1]), we
conclude the proof of (4.4).

For x · y = cos θ, θ ∈ [0, π], the Euclidean distance |x − y| satisfies
|x− y| = 2

∣∣sin θ
2

∣∣ ≈ |θ| = arccosx · y, and we have the following corollary of
Theorem 4.1.

Corollary 4.3. Define

(4.11) Gj(x, y) = K ′N (x · y)[yj − (y · x)xj ], 1 ≤ j ≤ d.

Then for x, y, z ∈ Sd−1,

(1) |Gj(x, y)| ≤ C/(N−1 + |x− y|)d−1,
(2) |y − z| ≤ 1

2(N−1 + |x− y|) implies

|Gj(x, y)−Gj(x, z)| ≤
C|y − z|

(N−1 + |x− y|)d
,

(3) |x− z| ≤ 1
2(N−1 + |x− y|) implies

|Gj(x, y)−Gj(z, y)| ≤ C|x− z|
(N−1 + |x− y|)d

.

Proof. Using (4.4) with i = 1 and |yj−(y ·x)xj | ≤ |y−(y ·x)x| = |sin θ| ≤
2
∣∣sin θ

2

∣∣ = |x−y|, where θ = arccosx·y, we obtain (1). The condition |y−z| ≤
1
2(N−1 + |x−y|) implies |x−z|+N−1 ≤ 3

2(|x−y|+N−1) ≤ 3(|x−z|+N−1)
or |x− z|+N−1 ≈ |x− y|+N−1. We have

|K ′N (x · y)−K ′N (x · z)| = |K ′′N (cos θ1)| |x · y − x · z| = I

where cos θ1 is between x · y and x · z and where θ1 ∈ [0, π]. Using (4.4) with
i = 2, we have

|K ′′N (cos θ1)| ≤ C(N−1 + θ1)−d−2 ≤ C1(N−1 + |x− y|)−d−2.

Furthermore,

|x · y − x · z| = 1
2

∣∣|x− y|2 − |x− z|2∣∣
≤ 1

2

∣∣|x− y| − |x− z|∣∣(|x− y|+ |x− z|)
≤ 5

4 |y − z|(|x− y|+N−1).

Therefore,
I ≤ C2(N−1 + |x− y|)−d−1|y − z|.
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We now use (4.4) to estimate |K ′N (x · y)|, and as

|yj − (y · x)xj − zj + (x · z)xj | ≤ |(y − z)− ((y − z) · x)x| ≤ |y − z|,

we complete the proof of (2).
The proof of (3) is the same when x and y are interchanged.

5. Proof of Theorem 3.4. We are now ready to prove Theorem 3.4,
which is in fact a crucial step in proving Theorem 3.1. To do this, we need
the following Calderón–Zygmund decomposition, which is a special case of
the result given in [St, p. 17 and p. 37, 8.1] in the context of the sphere.

Theorem 5.1 (Calderón–Zygmund decomposition, Stein). Suppose f ∈
L1(Sd−1) and α > |Sd−1|−1

	
Sd−1 |f(y)| dσ(y). Then there exists a decompo-

sition f = g + b with b =
∑

k bk and a sequence {Bk} of spherical caps so
that:

I. |g(x)| ≤ Cα for a.e. x ∈ Sd−1,
II. supp bk(x)⊂Bk, |Bk|−1

	
Bk
|bk(x)| dσ(x) ≤ cα and

	
Sd−1 bk(x) dσ(x)

= 0,
III.

∑
k |Bk| ≤ (C/α)

	
Sd−1 |f(x)| dσ(x).

We note that a spherical cap is the intersection of Sd−1 with a ball in
Rd whose center is in Sd−1.

Now we are in a position to prove Theorem 3.4.

Proof of Theorem 3.4. We assume f ∈ ΠN . By definition, that is, using
(2.1) and (4.3), we have

(5.1) D−1/2f(x) =
�

Sd−1

f(y)KN (x · y) dσ(y).

Therefore,

gradtan(D−1/2f(x)) =
�

Sd−1

f(y) gradtan[KN (〈·, y〉)](x) dσ(y)

=
�

Sd−1

f(y)K ′N (x · y)(y − (x · y)x) dσ(y)

= (T1f(x), . . . , Tdf(x)),

where 〈·, ·〉 denotes the usual dot product in Rd, and

(5.2) Tjf(x) =
�

Sd−1

f(y)Gj(x, y) dσ(y)

with Gj(x, y) given by (4.11). To prove our theorem, it suffices to show

(5.3) ‖Tjf‖p ≤ C‖f‖p for j = 1, . . . , d, 1 < p <∞



190 F. Dai et al.

with C independent of N. For p = 2 we use Lemma 3.3 to obtain

‖Tjf‖22 ≤ ‖gradtan(D−1/2f)‖22 = ‖(−∆̃)1/2(D−1/2f)‖22(5.4)

≤ ‖D1/2(D−1/2f)‖22 ≤ ‖f‖22.

To prove (5.2) for 1 < p ≤ 2 we may use the Marcinkiewicz interpolation
theorem (see [St-We, p. 184, Theorem 2.4]) and show that Tjf is of weak
type (1, 1), that is,

(5.5) |E(α, j)| ≡ |{x ∈ Sd−1 : |Tj(f)(x)| > 2Cα}| ≤ C1
‖f‖1
α

.

As E(α, j) ⊂ Sd−1, |E(α, j)| ≤ |Sd−1|, and hence for α ≤ ‖f‖1, (5.5) is
valid with C1 ≥ |Sd−1|. It remains to prove (5.5) for α > ‖f‖1, for which
Theorem 5.1 is applicable. For α > ‖f‖1 we assume f = g + b with g and b
of Theorem 5.1. Applying (5.4) to g gives

|{x ∈ Sd−1 : |Tjg(x)| > Cα}| ≤ C−2 ‖Tjg‖22
α2

≤ C−2 ‖g‖22
α2
≤ C ′ ‖g‖1

α
.

Using I and III of Theorem 5.1, we have
�

Sd−1\
S
Bk

|g(x)| dσ(x) =
�

Sd−1\
S
Bk

|f(x)| dσ(x) ≤
�

Sd−1

|f(x)| dσ(x)

and
�

S
Bk

|g(x)| dσ(x) ≤ Cα
∣∣∣⋃Bk

∣∣∣ ≤ Cα∑ |Bk| ≤ C2
�

Sd−1

|f(x)| dσ(x).

Hence C ′‖g‖1/α ≤ C1‖f‖1/α.
For each k we assume Bk = B(xk, rk) ∩ Sd−1 with xk ∈ Sd−1 and B∗k =

B(xk, 4rk)∩Sd−1. For x /∈ B∗k (x ∈ Sd−1), using II of Theorem 5.1, we have

|Tj(bk)(x)| =
∣∣∣ �

Bk

(
Gj(x, y)−Gj(x, xk)

)
bk(y) dσ(y)

∣∣∣
≤ C ′

�

Bk

|y − xk|
|x− xk|d

|bk(y)| dσ(y) ≤ C ′ rk
|x− xk|d

�

Bk

|bk(y)| dσ(y)

≤ C ′1|Bk|α
rk

|x− xk|d
,

and hence �

(B∗k)
c

|Tj(bk)(x)| dσ(x) ≤ C ′2α|Bk|.

Therefore,
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|{x ∈ Sd−1 : |Tjb(x)| > Cα}|

≤
∣∣∣⋃
k

B∗k

∣∣∣+
∣∣∣{x ∈ (⋃

k

B∗k

)c
: |Tj(b)(x)| ≥ Cα

}∣∣∣
≤
∑
k

|B∗k|+
1
Cα

�

(
S
k B
∗
k)
c

|Tj(b)(x)| dσ(x)

≤
∑
k

|B∗k|+
1
Cα

∑
k

�

(B∗k)
c

|Tj(bk)| dσ(x)

≤ C3

∑
k

|Bk| ≤ C4
‖f‖1
α

.

This concludes the proof of (5.3) for 1 < p ≤ 2.
To prove (5.3) for 2 < p <∞, we define

T ∗j g(x) =
�

Sd−1

f(y)Gj(y, x) dσ(y).

Using Fubini’s theorem, we have

(5.6)
�

Sd−1

Tjf(x) · g(x) dσ(x) =
�

Sd−1

f(x)T ∗j g(x) dσ(x),

and hence ‖T ∗j ‖(p′,p′) = ‖Tj‖(p,p). We now follow the considerations earlier
in the proof of Theorem 3.4 using (3) of Corollary 4.3 (instead of (2)), to
show

(5.7) ‖T ∗j g‖q ≤ C ′‖g‖q for 1 < q ≤ 2,

which, together with (5.6), completes the proof of (5.3) and of our theorem.

6. A strong converse inequality of type A. We define the operator
Aθ by

(6.1) Aθf(x) =
�

SO(d)

f(Q−1MθQx) dQ,
�

SO(d)

dQ = 1,

where Q ∈ SO(d), x ∈ Sd−1, dQ is the Haar measure on SO(d) and Mθ is
the d× d matrix given by

(6.2)

Mθ =


cos θ sin θ

− sin θ cos θ
©

. . .

©
cos θ sin θ

− sin θ cos θ

 or



cos θ sin θ

− sin θ cos θ
©

. . .

©
cos θ sin θ

− sin θ cos θ

1


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when d is even or odd respectively. Clearly, Aθ is a contraction operator on
Lp(Sd−1), 1 ≤ p ≤ ∞. In fact, on a Banach space B of functions f on Sd−1

satisfying

(6.3) ‖f(ρ ·)‖B = ‖f(·)‖B and ‖f(ρ ·)− f(·)‖B → 0 as |ρ− I| → 0

where ρ ∈ SO(d) and |ρ− I| = maxx∈Sd−1 |ρx− x|, Aθ is also a well-defined
continuous contraction operator, that is, satisfying ‖Aθf‖B ≤ ‖f‖B and
‖Aθ1f −Aθf‖B = o(1) as |θ1 − θ| → 0.

The main result of this section, which is proved in the next section, is
the following strong converse inequality of type A (in the terminology of
[Di-Iv]), which yields an equivalence between special combinations of Ajθf
and the appropriate K-functionals.

Theorem 6.1. Suppose l ∈ N, 0 < θ ≤ π/(2l), f ∈ B ⊂ L1(Sd−1) for
some d ≥ 3, and the Banach space B satisfies (6.3). Then

(6.4) ‖Aθ,lf − f‖B ≈ infe∆lg∈B (‖f − g‖B + θ2l‖∆̃lg‖B) ≡ K̃2l(f, θ2l)B

where

(6.5) Aθ,lf(x) =
−2(
2l
l

) l∑
j=1

(−1)j
(

2l
l − j

)
Ajθf(x)

and Aτf(x) is given in (6.1).

Remark 6.2. For even dimension d (d > 3),

(6.6) Aθf(x) = Sθf(x) =
1
mθ

�

x·y=cos θ

f(y) dy, mθ =
�

x·y=cos θ

dy

(see [Da-Di-08, Th. 2.1]), and hence Aθ,lf = Sθ,lf with Sθ,lf of [Da-Di-04,
(1.7)]. This means that Theorem 6.1 was already proved (for even d) in
[Da-Di-04, Th. 4.1] for B = Lp(Sd−1) (1 ≤ p ≤ ∞) and in [Da-Di-08,
Th. 3.3] for B satisfying (6.3).

For the proof of Theorem 6.1 (for odd d) we need a few lemmas. As we
use many results from [Sz] and from [An-As-Ro], we remind the reader again
that the systems of polynomials {P (α,β)

n (x)} and {Cλn(x)} = {P λn (x)} are the
orthogonal polynomials with respect to (1− x)α(1 + x)β and (1− x2)λ−1/2

on [−1, 1] which are normalized by (2.7) (see Definition 2.1).
Perhaps the crucial result of this section is the simple description of Aθf

(for odd d) given in the following theorem.
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Theorem 6.3. Suppose Aθf is given by (6.1) with odd d ≥ 3 and Mθ is
given in (6.2). Then for f ∈ L1(Sd−1) satisfying f ∼

∑∞
k=0 Pkf we have

(6.7)

Aθf ∼
∞∑
n=0

R(λ,λ−1)
n (cos θ)Pnf, λ =

d− 2
2

, R(λ,λ−1)
n (x) =

P
(λ,λ−1)
n (x)

P
(λ,λ−1)
n (1)

.

For comparison, we note that [Da-Di-08, Th. 2.1] and classical results
imply, for even d > 3,

Aθf ∼
∞∑
n=0

R(λ,λ)
n (cos θ)Pnf, λ =

d− 2
2

, R(λ,λ)
n (x) =

P
(λ,λ)
n (x)

P
(λ,λ)
n (1)

.

Proof. Using [Da-Di-08, Th. 4.1, (4.4)], we have

Aθf(x) = c

π/2�

0

cosd−2 ϕSψ(ϕ,θ)f(x) dϕ

where c
	π/2
0 cosd−2 ϕdϕ = 1 and sin

(
1
2ψ(ϕ, θ)

)
=
(
sin θ

2

)
cosϕ. Since we

have Sψ(ϕ,θ)h(x) ∈ Hn for h ∈ Hn, it follows that

Pn(Aθf) = c

π/2�

0

cosd−2 ϕSψ(ϕ,θ)Pnf dϕ

and hence

Aθf ∼
∞∑
n=0

mn(θ)Pnf, mn(θ) = c

π/2�

0

cosd−2 ϕ
Cλn(cosψ(ϕ, θ))

Cλn(1)
dϕ.

A change of variables and use of the definition of ψ(ϕ, θ) yield

mn(θ) =
c

2Cλn(1)

π/2�

0

sin2λ ϕCλn(cos2 ϕ+ sin2 ϕ cos θ) dϕ.

Thus, using (2.8) and the fact that mn(0) = 1, we are reduced to showing

(6.8) R(λ,λ−1)
n (cos θ) = c

π/2�

0

sin2λ ϕR(λ−1/2,λ−1/2)
n (cos2 ϕ+ sin2 ϕ cos θ) dϕ,

where R(α,β)
n (t) = P

(α,β)
n (t)/P (α,β)

n (1). The referee kindly pointed out that
(6.8) can be deduced easily from the following formula which can be found
in [Sz, (4.10.11), p. 96]:

(6.9) (1− x)α+µR(α+µ,β−µ)
n (x)

=
Γ (α+ µ+ 1)
Γ (α+ 1)Γ (µ)

1�

x

(1− y)αR(α,β)
n (y)(y − x)µ−1 dy.
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In fact, performing a change of variable y = (1 − cos θ) cos2 ϕ + cos θ, we
deduce from (6.9) that

R(α+µ,β−µ)
n (cos θ)

=
Γ (α+ µ+ 1)
Γ (α+ 1)Γ (µ)

(1− cos θ)−α−µ
1�

cos θ

(1− y)αR(α,β)
k (y)(y − cos θ)µ−1 dy

=
2Γ (α+ µ+ 1)
Γ (α+ 1)Γ (µ)

π/2�

0

sin2α+1 ϕ cos2µ−1 ϕR(α,β)
n (cos2 ϕ+ sin2 ϕ cos θ) dϕ.

Now setting α = β = λ − 1/2 and µ = 1/2, we obtain the desired equa-
tion (6.8). This completes the proof.

To prove Theorem 6.1 for B satisfying (6.3) and not just for Lp,
1 ≤ p <∞, or when d is even, we need the following lemma.

Lemma 6.4. For B satisfying (6.3), B ⊂ L1(Sd−1) and δ > d − 1 one
has

(6.10) ‖CδNf‖B ≤ C‖f‖B
where

CδNf =
N∑
k=0

AδN−k
AδN

Pkf and Aδj =
Γ (j + δ + 1)

Γ (j + 1)Γ (δ + 1)
.

Proof. We define

Kδ
N (cos θ) =

N∑
k=0

AδN−k
AδN

‖R(λ,λ−1)
k ‖−2

2,wλ
R

(λ,λ−1)
k (cos θ)

with ‖g‖p,wλ = {
	π
0 |g(θ)|pwλ(θ) dθ}1/p and

w(θ) = wλ(θ) =
(

sin
θ

2

)2λ+1(
cos

θ

2

)2λ−1

.

Using [Bo-Cl, Th. 2.1, pp. 230–231] for δ > 2λ+ 1 = d− 1, we have

|Kδ
N (cos θ)| ≤ CN2λ+2(1 +Nθ)−2λ−3 for θ ∈ [0, π]

and hence

sup
N

π�

0

|KN (cos θ)|wλ(θ) dθ ≤ C1.

It is sufficient to show the identity

CδN (f) =
π�

0

AθfK
δ
N (cos θ)wλ(θ) dθ
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since, as Aθf is continuous and a contraction in B, it will imply ‖CδNf‖B ≤
C1‖f‖B. To prove the above identity, we observe that, for 0 ≤ k ≤ N ,

Pk

( π�
0

AθfK
δ
N (cos θ)wλ(θ) dθ

)
=
[ π�

0

R
(λ,λ−1)
k (cos θ)Kδ

N (cos θ)wλ(θ) dθ
]
Pkf

=
AδN−k
AδN

Pkf = Pk(CδNf).

For convenience we state the following well-known elementary multi-
plier theorem which is an immediate result of the Abel transformation
(summation by parts) and Pkf = (

←
∆)m+1

{(
k+m
m

)
Cmk f

}
where

←
∆µ(k) =

µ(k)− µ(k− 1), (
←
∆)rµ(k) =

←
∆((

←
∆)r−1µ(k)g), Cmk f = 0 for k < 0 and Cmk f

is given by (6.10) with m = δ for k ≥ 0.

Theorem 6.5. Suppose

‖Cmn f‖B ≤ C‖f‖B,
∞∑
k=0

(
k +m

k

)
|(
→
∆)m+1µ(k)| < C

and µ(k) = o(1) as k →∞. Then

(6.11) ‖Tµf‖B ≤ C1‖f‖B where Tµf ∼
∞∑
k=0

µ(k)Pkf.

7. Proof of Theorem 6.1. In Section 6 we stated the strong converse
inequality, i.e. Theorem 6.1, and established the setup and preliminary re-
sults needed for its proof, which we now give.

Proof of Theorem 6.1. As noted in Remark 6.2, we need to prove (6.4)
only for odd d ≥ 3. For the delayed means ηaθf given by

(7.1) ηaθf =
∞∑
k=0

η(aθk)Pkf, η ∈ C∞(R+), η(x) =
{

1, 0 ≤ x ≤ 1,
0, 2 ≤ x,

we have the realization result

(7.2) K̃2r(f, θ2r)B ≈ ‖f − ηaθf‖B + θ2r‖(−∆̃)rηaθf‖B
(see [Di-98, Th. 7.1] in which (7.2) is proved using (6.10) for any delayed
means). To prove (6.4) we follow [Da-Di-04, Th. 4.1], and using (7.2), it is
enough to show for some a > 0 that

‖f −Al,θf‖B ≥ C‖f − ηaθf‖B,(7.3)

‖f −Al,θf‖B ≥ Cθ2l‖(−∆̃)lηaθf‖B,(7.4)

‖ηaθf −Al,θηaθf‖B ≤ Cθ2l‖∆̃lηaθf‖B,(7.5)
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which correspond to [Da-Di-04, (5.3)–(5.5)]. It seems now that here and in
[Da-Di-04, Section 5] it is sufficient to deal with a = 1, but in order not
to repeat and marginally modify the calculations in [Da-Di-04], we main-
tain ηaθ.

We may also follow [Da-Di-04, (5.6)] and prove as an alternative to (7.3)
that

(7.6) ‖A5
l,θ(f − ηaθf)‖B ≤ C‖f −Al,θf‖B,

since ‖Al,θf‖B ≤ 2l‖f‖B and ‖ηaθf‖B ≤ C1‖f‖B imply

‖(I −A5
l,θ)(f − ηaθf)‖B = ‖(I +Al,θ + · · ·+A4

l,θ)(I −Al,θ)(f − ηaθf)‖B
≤ C2‖f −Al,θf‖B.

We now set

al(k, θ) =
−2(
2l
l

) l∑
j=1

(−1)j
(

2l
l − j

)
R

(λ,λ−1)
k (cos jθ),

and using Lemma 6.4 and Theorem 6.1, we only have to show that the
moments

µ
(1)
k =

1− η(aθk)
1− al(k, θ)

al(k, θ)5,

µ
(2)
k =

(k(k + 2λ)θ2)l

1− al(k, θ)
η(aθk),

µ
(3)
k =

1− al(k, θ)
(k(k + 2λ)θ2)l

η(aθk)

satisfy the conditions of Theorem 6.5 for some m > d− 1 (m > 2λ+ 1).
To do this, we first show that for nonnegative integers s, k and θ ∈

[0, π/2), we have

(7.7) |(
→
∆)sR(α,β)

k (cos θ)| ≤ C(s, α, β)θs(1 + kθ)−α−1/2,

where R(α,β)
k (t) = P

(α,β)
k (t)/P (α,β)

k (1).
We use [An-As-Ro, (6.4.20), p. 304] together with (6.7) to obtain

→
∆R(α,β)

k (cos θ) = R
(α,β)
k (cos θ)−R(α,β)

k+1 (cos θ)

= (1− cos θ)
2k + α+ β + 2

2(α+ 1)
R

(α+1,β)
k (cos θ),

and by induction

|(
→
∆)sR(α,β)

k (cos θ)| ≤ C1(s, α, β) max
2i≤s

(1− cos θ)s−iks−2i|R(α+s−i,β)
k (cos θ)|,

which implies (7.7) using [Sz, (8.21.18), p. 196] for kθ ≥ 1, and using
|R(α+s,β)

k (cos θ)| ≤ 1 otherwise.
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We observe that for the estimate of µ(1)
k we need for k ≥ 1/(aθ) the

inequalities 1 − al(k, θ) ≥ vα,l > 0 and 0 < C1 ≤ (1− al(k, θ))/(kθ)2l <
C2 < ∞ for θ ∈ [0, π/2], both of which follow from [Sz, (4.7.29), p. 83]
which yields

R
(λ,λ−1)
k (cos θ) =

1

C
λ+1/2
k (1) + C

λ+1/2
k−1 (1)

C
λ+1/2
k (cos θ)

+
1

C
λ+1/2
k−1 (1) + C

λ+1/2
k (1)

C
λ+1/2
k−1 (cos θ)

and the result on C
λ+1/2
k (cos θ) given in [Da-Di-04, Th. 4.4, p. 278].

The proof now follows the proof in [Da-Di-04, pp. 281–283], with (7.7)
used instead of Lemma 4.3 of [Da-Di-04].

8. An equivalence relation. In this section we will introduce and
establish a K-functional equivalent to ωr(f, t)p=ωr(f, t)Lp(Sd−1), 1≤p≤∞.
This will not be K̃r(f, tr)p, but will be of help in proving K̃r(f, tr)p ≈
ωr(f, t)p for 1 < p < ∞. We believe that the equivalence proved in this
section (Theorem 8.2) is of independent interest and will turn out useful for
various purposes in the future.

Definition 8.1. A d× d skew-symmetric matrix M is of class M if

(8.1) M =



0 α1

−α1 0 ©
. . .

0 αk

−αk 0

© . . .

0


, 0 < αk ≤ · · · ≤ α1 ≤ 1.

It is known (see [Di-99, p. 191] or [Ga, pp. 287–288]) that ρ ∈ SO(d)
satisfies |ρ− I| ≤ 2 sin θ

2 (or ρx · x ≥ cos θ for all x ∈ Sd−1) if and only if it
can be represented as ρ = eθQMQ−1

with Q ∈ SO(d) and M ∈M.

For g(x) ∈ Cr(Sd−1), (∂/∂t)rg(etQMQ−1
x)|t=u exists in C(Sd−1), that

is, for each fixed u the derivative is in C(Sd−1) and is continuous in u for
u ∈ R. We may consider (∂/∂t)rg(etQMQ−1

x)|t=u as an element of Lp(Sd−1),
1 ≤ p ≤ ∞, and denote it by g(r)(euQMQ−1 ·). In fact, for g ∈ Cr(Sd−1) and
any space of functions B ⊃ C(Sd−1) which satisfies (6.3), g(r)(euQMQ−1 ·) is
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defined and satisfies

(8.2)
‖g(r)(eu1QMQ−1 ·)‖B = ‖g(r)(eu2QMQ−1 ·)‖B,

‖g(r)(eu1QMQ−1 ·)− g(r)(eu2QMQ−1 ·)‖B → 0 as u1 − u2 → 0.

For Pn ∈ span(
⋃n−1
k=0 Hk) we have P

(r)
n (euQMQ−1 ·) ∈ span(

⋃n−1
k=0 Hk),

since when ϕ ∈ Hk, the quotient [ϕ(e(u+t)QMQ−1
x) − ϕ(euQMQ−1

x)]/t is
in Hk, and so is its limit (in C(Sd−1), Lp(Sd−1) or B satisfying (6.3)) as
t→ 0.

We now define the K-functional Kr(f, tr)B and the realization functional
Rr(f, n−r)B for B satisfying (6.3) and C(Sd−1) ⊂ B ⊂ L1(Sd−1) by

(8.3) Kr(f, tr)B = inf{‖f − g‖B + tr sup
M∈M
Q∈SO(d)

‖g(r)(euQMQ−1 ·)‖B :

g ∈ Cr(Sd−1)}
and

(8.4) Rr(f, n−r)B = ‖f − Pn‖B + n−r sup
M∈M
Q∈SO(d)

‖P (r)
n (euQMQ−1 ·)‖B

with Pn ∈ span(
⋃n−1
k=0 Hk) and

(8.5) ‖f − Pn‖B = En(f)B ≡ inf
{
‖f − ϕ‖B : ϕ ∈ span

(n−1⋃
k=0

Hk

)}
.

The main result of this section is now given in the following theorem.

Theorem 8.2. Suppose that f ∈ Lp(Sd−1) with 1 ≤ p < ∞, or f ∈
C(Sd−1) for p =∞. Then

(8.6) ωr(f, t)Lp(Sd−1) ≈ Kr(f, tr)Lp(Sd−1) ≈ Rr(f, [1/t]−r)Lp(Sd−1)

where Kr(f, tr)Lp(Sd−1) and Rr(f, [1/t]−r)Lp(Sd−1) are given by (8.3) and
(8.4) for B = Lp(Sd−1).

We note that the concepts in (8.3), (8.4) and (8.5) are given for a Banach
space more general than Lp(Sd−1) for the benefit of Remark 8.3.

Proof. For g ∈ Cr(Sd−1) and ρ satisfying ρx ·x ≥ cos t (for all x ∈ Sd−1)
we have, for ρ = exp(tQMQ−1) with M ∈M,

∆r
ρg(·) =

t�

0

· · ·
t�

0

g(r)
(
exp((u1 + · · ·+ ur)QMQ−1) ·

)
du1 . . . dur.

Using (8.2) for B satisfying B ⊂ C(Sd−1) and (6.3), and in particular for
B = Lp(Sd−1), 1 ≤ p <∞, or B = C(Sd−1), we have

‖∆r
ρg(·)‖B ≤ tr‖g(r)(euQMQ−1 ·)‖B.
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Choosing now g close to the infimum in (8.3), writing f = f − g + g and
recalling ‖∆r

ρ(f − g)‖B ≤ 2r‖f − g‖B, we have

ωr(f, tr)B ≤ (1 + ε)2rKr(f, tr)B.

Furthermore, using the definitions (8.3) and (8.4), we have

Kr(f, tr)B ≤ Rr(f, [1/t]−r)B.

In view of the Jackson inequality (see [Di-04]), we now need only show
that

(8.7) n−r‖P (r)
n (euQMQ−1 ·)‖Lp(Sd−1) ≤ C1ω

r(f, 1/n)Lp(Sd−1)

for Pn satisfying (8.5) with B = Lp(Sd−1) to establish Rr(f, n−1)Lp(Sd−1) ≤
C2ω

r(f, 1/n)Lp(Sd−1) and complete the proof of (8.6). To prove (8.7) we need
the Bernstein-type inequality

(8.8) ‖P (r)
n (euQMQ−1 ·)‖Lp(Sd−1) ≤ C3n

r‖Pn(·)‖Lp(Sd−1)

for any Pn ∈ span(
⋃n−1
k=0 Hk). As the derivative of Pn(eτQMQ−1 ·) with respect

to τ is in span(
⋃n−1
k=0 Hk), it is sufficient to prove (8.8) for r = 1 and use

that as the first and inductive step in proving (8.8),
To prove (8.8) for r = 1 we observe that

(8.9) ‖P ′n(euQMQ−1 ·)‖Lp(Sd−1) ≤ ‖gradtan Pn(·)‖Lp(Sd−1).

We now follow [Di-04, Section 9] (used also in Section 4 here) to write

Gn(x · y) =
2n∑
k=0

η

(
k

n

) dk∑
l=1

Yk,l(x)Yk,l(y)(8.10)

=
2n∑
k=0

η

(
k

n

)
E

((d−3)/2,(d−3)/2)
k (x · y)

with Yk,l(x) any orthonormal basis of Hk, η(t) as given for (4.3), and
E

((d−3)/2,(d−3)/2)
k (t) given in (4.2). We now have

Pn(x) =
�

Sd−1

Pn(y)Gn(x · y) dy

and

|gradtan Pn(x)| =
∣∣∣ �

Sd−1

Pn(y) gradtan[Gn(〈·, y〉)](x) dy
∣∣∣

≤
�

Sd−1

|Pn(y)G′n(x · y)|
√

1− (x · y)2 dy.
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Therefore,

(8.11) ‖gradtan Pn‖Lp(Sd−1)

≤ C(d)‖Pn‖Lp(Sd−1) · ‖G′n(t)(1− t2)(d−2)/2‖L1[−1,1]

where

C(d)‖Gn(t)(1− t2)(d−3)/2‖Lp[−1,1] ≤
�

Sd−1

|Gn(x · y)| dy ≤M.

Using the Bernstein inequality for the polynomials Gn(t) (of degree 2n)
with weight (1− t2)(d−2)/2 in L1[−1, 1] (see [Di-To, Th. 8.4.7]), we have

‖gradtan Pn‖Lp(Sd−1) ≤ C̃n‖Pn‖Lp(Sd−1)

�

Sd−1

|Gn(x · y)| dy

≤ C̃1n‖Pn‖Lp(Sd−1),

and hence (8.8).
To prove (8.7) we first prove the weaker inequality

(8.12) ‖P (r+1)
n (euQMQ−1 ·)‖Lp(Sd−1) ≤ C2n

r+1ωr(f, 1/n)Lp(Sd−1).

We write

Pn = Pn − P2l +
l∑

j=1

(P2j − P2j−1) + P1 where l = max{j : 2j < n}

and use (8.8) with r + 1 (instead of r) and with n or 2j (instead of just n)
to obtain

‖P (r+1)
n (euQMQ−1 ·)‖Lp(Sd−1) ≤M

l∑
j=1

2j(r+1)E2j (f)p

≤M1

l∑
j=1

2j(r+1)ωr(f, 2−j)p

≤M2

l∑
j=1

2j(r+1)2(l−j)rωr(f, 2−l)p

≤ C2n
r+1ωr(f, n−1)p,

thus establishing (8.12).
Since ‖f−Pn‖B ≤ C3ω

r(f, 1/n)B was proved for B = Lp(Sd−1) in [Di-04]
and for more general B in [Da-Di-08, Th. 6.3], we obtain ωr(Pn, 1/n)Lp(Sd−1)

≤ (2rC3 + 1)ωr(f, 1/n)p. We now write
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‖n−rP (r)
n (euQMQ−1 ·)−∆r

exp(n−1QMQ−1)Pn(euQMQ−1 ·)‖Lp(Sd−1)

=
∥∥∥ 1/n�

0

· · ·
1/n�

0

u1+···+ur�

0

P (r+1)
n (exp(u+ t)QMQ−1·) dt du1 . . . dur‖Lp(Sd−1)

≤ rn−r−1‖P (r+1)
n (exp(vQMQ−1·))

∥∥∥
Lp(Sd−1)

≤ rC2ω
r(f, n−1)p.

Therefore,
‖n−rP (r)

n (euQMQ−1 ·)‖Lp(Sd−1) ≤ rC2ω
r(f, n−1)p + (2rC3 + 1)ωr(f, n−1)p

≤ C4ω
r(f, n−1)p.

Remark 8.3. Examining the proof of Theorem 8.2, one can deduce (8.6)
for any Orlicz space O satisfying (6.3) and C(Sd−1) ⊂ O ⊂ L1(Sd−1), and
some other spaces. As we conjecture and hope that (8.6) will be valid for
any Banach space B of functions on Sd−1 satisfying (6.3) and C(Sd−1) ⊂
B ⊂ L1(Sd−1), which will follow from (8.8) for such spaces, we concentrated
here on the Lp(Sd−1) case which is needed for the proof of the main theorem
of this paper.

9. The main result. In this section we will prove the equivalence (1.3)
written also as

(9.1) ωr(f, t)p ≈ K̃r(f, tr)p, 1 < p <∞, r = 1, 2, . . . ,

which is the main result of this paper. We first prove:

Theorem 9.1. For a function space B on Sd−1 (d ≥ 3) satisfying
C(Sd−1) ⊂ B ⊂ L1(Sd−1) and (6.3), we have
(9.2) K̃2m(f, θ2m)B ≤ Cω2m(f, θ)B, m = 1, 2, . . . .

Proof. Using Mθ of (6.2) (which depends on whether d is even or odd),
we have

ω2m(f, θ)B ≥ sup{‖∆2m
ρ f‖B : ρ = QMθQ

−1, Q ∈ SO(d)}

≥
�

Q∈SO(d)

‖∆2m
QMθQ−1f‖B dQ.

Since T (ρ)f(x) = f(ρx) satisfies ‖T (ρ)f‖B = ‖f‖B, we obtain

ω2m(f, θ)B ≥
�

Q∈SO(d)

‖T ((QMθQ
−1)m)∆2m

QMθQ−1f‖B dQ

≥
∥∥∥ �

Q∈SO(d)

T ((QMθQ
−1)m)∆2m

QMθQ−1f dQ
∥∥∥
B

=
(

2m
m

)
‖Aθ,mf − f‖B ≥ C−1K̃2m(f, θ2m)B,

where in the last step we used Theorem 6.1.
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For odd m we have only the following somewhat weaker result.

Theorem 9.2. For 1 < p <∞, d ≥ 3 and m = 1, 2, . . . ,

(9.3) K̃m(f, θm)p ≤ Cωm(f, θ)p.

Proof. For even m, (9.3) was already proved in Theorem 9.1, and hence
we only have to prove (9.3) for m = 2l−1 and l = 1, 2, . . . . For Pn satisfying
‖f − Pn‖p = En(f)p, Pn ∈ span(

⋃n−1
k=0 Hk), and using the definition of

K̃m(f, θm)p and a Jackson-type inequality (see [Di-04, Th. 8.1]), we have

K̃m(f, n−m)p ≤ ‖f − Pn‖p + n−m‖(−∆̃)m/2Pn‖p
≤ C1ω

r(f, n−1)p + n−m‖(−∆̃)m/2Pn‖p.

Since ωr(Pn, n−1)p ≤ ωr(Pn−f, n−1)p+ωr(f, n−1)p ≤ (C12r+1)ωr(f, n−1)p,
and as both (−∆̃)m/2 and ωr annihilate constants, it is sufficient to show

(9.4) n−m‖(−∆̃)m/2Pn‖p ≤ C2ω
m(Pn, n−1)p

for any Pn ∈ span(
⋃n−1
k=0 Hk).

For m = 2l− 1 we apply Theorem 9.1 to (−∆̃)1/2Pn and the realization
result (see [Di-98, Th. 8.1]) to obtain

ω2l((−∆̃)−1/2Pn, n
−1)p ≥ C−1K̃2l((−∆̃)−1/2Pn, n

−2l)p

≥ C−1
1 n−2l‖(−∆̃)l−1/2Pn‖p.

We now observe that ∆ρ and (−∆̃)−1/2 commute and hence

ω2l((−∆̃)−1/2Pn, n
−1)p = sup{‖∆2l

ρ (−∆̃)−1/2Pn‖p : ρ ∈ SO(d), |ρ−I| ≤ 1/n}

≤ sup{‖∆τ (−∆̃)−1/2∆2l−1
ρ Pn‖p : ρ, τ ∈ SO(d), |ρ−I| ≤ 1/n, |τ−I| ≤ 1/n}.

We set Qn,ρ = ∆2l−1
ρ Pn and note that if Pn ∈ span(

⋃n−1
k=1 Hk), also

Qn,ρ ∈ span(
⋃n−1
k=1 Hk), and using (2.2) as well as Theorems 3.4 and 8.2, we

have, for |τ − I| ≤ 1/n and 1 < p <∞,

‖∆τ (−∆̃)−1/2Qn,ρ‖p ≤ An−1‖gradtan (−∆̃)−1/2Qn,ρ‖p ≤ A1n
−1‖Qn,ρ‖p,

which completes the proof of (9.4) and of our theorem.

Theorems 9.1 and 9.2 already yield part of our main result of this paper
given in the next theorem.

Theorem 9.3. Suppose f ∈ Lp(Sd−1), 1 < p < ∞, d ≥ 3 and r =
1, 2, . . . . Then

ωr(f, θ)p ≈ K̃r(f, θr)p.

Proof. Using Theorem 9.2, we need to show only that

(9.5) ωr(f, θ)p ≤ CK̃r(f, θr)p.
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We use En(f)p ≤ C1K̃r(f, 1/n)p (see [Di-98, Th. 6.1]), the realization of
K̃r(f, 1/n)p (see [Di-98, Th. 6.2]), and the relation ωr(f, 1/n)p≈Rr(f, 1/nr)p
in Theorem 8.2 to reduce the proof of (9.5) to

(9.6) ‖P (r)
n (euQMQ−1 ·)‖p ≤ C1‖(−∆̃)r/2Pn‖p

for Pn ∈ span(
⋃n−1
k=1 Hk) with C1 ≡ C1(r, p) independent of Q ∈ SO(d),

M ∈M, n and Pn.

We define Pn,r = (−∆̃)−r/2Pn, which is in span(
⋃n−1
k=1 Hk), and we need

to show

(9.7) ‖P (r)
n,r (e

uQMQ−1 ·)‖p ≤ C1‖Pn,0‖p = C1‖Pn‖p.

We use the identity

(−∆̃)α
(
∂

∂t
Qn(etQMQ−1

x)
)

=
∂

∂t
(−∆̃)αQn(etQMQ−1

x),

which is valid for α ∈ R and Qn ∈ span(
⋃n−1
k=1 Hk) with α = −1/2 and

Qn(x) = P
(r−1)
n,r−1(x), and derive

‖P (r)
n,r (e

uQMQ−1 ·)‖p ≤ ‖gradtan(−∆̃)−1/2P
(r−1)
n,r−1(euQMQ−1 ·)‖p

(which, using Theorem 3.1, implies for 1 < p <∞)

≤ C(r)‖P (r−1)
n,r−1(euQMQ−1 ·)‖p

(which, using induction on r, implies)

≤ C̃(r)‖Pn(euQMQ−1 ·)‖p = C̃(r)‖Pn‖p.

10. Application. Having Theorem 9.3, we can improve and extend
Theorem 2.2 of [Da-Di-Ti]. We obtain the following sharp Jackson and sharp
lower estimate for ωr(f, t)p.

Theorem 10.1. For f ∈ Lp(Sd−1), 1 < p <∞, d ≥ 3, r = 1, 2, . . . and
s = max(p, 2) one has

(10.1) tr
{ ∑

1≤k≤1/t

ksr−1Ek(f)sLp(Sd−1)

}1/s
≤ Cωr(f, t)p = Cωr(f, t)Lp(Sd−1)

and

(10.2) tr
{ 1/2�

t

ωm(f, u)sp
urs+1

du

}1/s

≤ Cωr(f, t)p, m > r.

We note that in [Da-Di-Ti, Th. 2.2], r is restricted to even integers.
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Proof. We simply substitute the result of Theorem 9.3 in [Da-Di-Ti,
Th. 8.1].
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Added in proof. The optimality of the range 1 < p < ∞ in Theorems 3.1 and 9.3
was recently established by the second author in an article to appear in Studia Mathe-
matica. That is, ωm(f, t)p ≈ eKm(f, tm)p does not hold for p = 1 and p =∞.
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[Er] A. Erdélyi et al., Higher Transcendental Functions, Vol. II, Bateman Manu-

script Project, McGraw-Hill, 1953.
[Ga] F. R. Gantmakher, The Theory of Matrices, Vol. 1, Chelsea Publ., New

York, 1959.
[Mu] C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces, Appl.

Math. Sci. 129, Springer, New York, 1998.

http://dx.doi.org/10.2307/1996468
http://dx.doi.org/10.1016/j.jfa.2004.10.005
http://dx.doi.org/10.1016/j.jat.2004.10.003
http://dx.doi.org/10.1007/s00365-005-0623-8
http://dx.doi.org/10.1007/s10474-007-6206-3
http://dx.doi.org/10.1016/j.jat.2007.04.015
http://dx.doi.org/10.1023/A:1006554907440
http://dx.doi.org/10.1007/BF02788240
http://dx.doi.org/10.1023/B:AMHU.0000023207.17695.0d
http://dx.doi.org/10.1016/j.jat.2006.12.008
http://dx.doi.org/10.1007/BF02788839


Measures of smoothness 205

[St] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and
Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

[St-We] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean
Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
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