# Medians, continuity, and vanishing oscillation 

by
Jonathan Poelhuis and Alberto Torchinsky (Bloomington, IN)


#### Abstract

We consider properties of medians as they pertain to the continuity and vanishing oscillation of a function. Our approach is based on the observation that medians are related to local sharp maximal functions restricted to a cube of $\mathbb{R}^{n}$.


In considering the problem of the resistance of materials to certain types of deformations, F. John was led to the study of quasi-isometric mappings. The setting is essentially as follows. Let $Q_{0} \subset \mathbb{R}^{n}$ be a cube and $f$ a continuous function on $Q_{0}$. Assume that to each subcube $Q$ of $Q_{0}$ with sides parallel to those of $Q_{0}$ there is assigned a constant $c_{Q}$ and let $\mu_{Q}$ be the function of the real variable $M$ given by

$$
\mu_{Q}(M)=\frac{\left|\left\{y \in Q:\left|f(y)-c_{Q}\right|>M\right\}\right|}{|Q|} .
$$

Let $\phi(M)=\sup _{Q \subset Q_{0}} \mu_{Q}(M), 0<s<1 / 2$, and $\lambda$ a number such that $\phi(\lambda) \leq s$. Then under these assumptions

$$
\phi(M) \leq A e^{-B M / \lambda}
$$

holds for all nonnegative $M$ where $A, B$ are universal functions of $s$ and the dimension $n$. Thus the space of functions of bounded mean oscillation (BMO) was introduced and the John-Nirenberg inequality established [5].

Strömberg [11] adopted this setting when studying spaces close to BMO and discussed different ways of describing the oscillation of a function $f$ on cubes. He also incorporated the value $s=1 / 2$ above, which corresponds to the notion of median value $m_{f}(Q)=m_{f}(1 / 2, Q)$ of $f$ over $Q$. The local maximal functions of Strömberg are of particular interest because they allow for pointwise estimates for Calderón-Zygmund singular integral operators [4, 6].

In this paper we consider properties of medians as they pertain to the continuity and vanishing oscillation of a function. Our approach is based on

[^0]the observation that medians are related to local sharp maximal functions restricted to a cube $Q_{0} \subset \mathbb{R}^{n}$ with parameter $0<s \leq 1 / 2$ by means of the expression
\[

$$
\begin{aligned}
M_{0, s, Q_{0}}^{\sharp, \phi} f(x) & =\sup _{x \in Q, Q \subset Q_{0}} \inf _{c} \frac{m_{|f-c|}(1-s, Q)}{\phi(|Q|)} \\
& \sim \sup _{x \in Q, Q \subset Q_{0}} \frac{m_{\left|f-m_{f}(1-s, Q)\right|}(1-s, Q)}{\phi(|Q|)},
\end{aligned}
$$
\]

where $\phi$ equals 1 in the case of functions with bounded median oscillation with parameter $s\left(\mathrm{bmo}_{s}\right)$, and satisfies appropriate conditions in the case of functions with vanishing median oscillation with parameter $s\left(\mathrm{vmo}_{s}\right)$. Strömberg showed that $\mathrm{bmo}_{s}=\mathrm{BMO}$, and, similarly, we show here that for sufficiently small $s, \mathrm{vmo}_{s}=\mathrm{VMO}$, the space of functions of vanishing mean oscillation. Moreover, since VMO is known to contain bounded discontinuous functions [8, 10], we complete the picture by giving criteria for continuity of functions equivalent to a bounded function on a cube in terms of medians.

The paper is organized as follows. In Section 1 we introduce the notions of median and maximal median with respect to a parameter $0<s<1$; when $s \neq 1 / 2$ we refer to these medians as biased with parameter $s$. In Section 2 we consider the a.e. convergence of maximal biased medians in the spirit of Fujii's results [3] for $s=1 / 2$. In Section 3 , motivated by similar results involving averages [9], we characterize continuity in terms of maximal biased medians with parameter $>1 / 2$. In Section 4 we extend the Strömberg decomposition of cubes to parameters $>1 / 2$. Finally, in Section 5 we consider the spaces of functions with vanishing median oscillation, establish a John-Nirenberg type inequality they satisfy, and show that, as anticipated, they coincide with VMO for sufficiently small $s$.

1. Medians and maximal medians. In what follows we restrict our attention to cubes with sides parallel to the coordinate axes.

Definition 1.1. For a cube $Q \subset \mathbb{R}^{n}, 0<s<1$, and a real-valued measurable function $f$ on $Q$ we say that $m_{f}(s, Q)$ is a median value of $f$ over $Q$ with parameter $s$ if

$$
\begin{equation*}
\left|\left\{y \in Q: f(y)<m_{f}(s, Q)\right\}\right| \leq s|Q| \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{y \in Q: f(y)>m_{f}(s, Q)\right\}\right| \leq(1-s)|Q| \tag{1.2}
\end{equation*}
$$

When $s=1 / 2, m_{f}(1 / 2, Q)=m_{f}(Q)$ corresponds to a median value of $f$ over $Q$. The set of median values of $f$ is one point or a closed interval as the example $f=\chi_{[1 / 2,1)}$ on $[0,1]$ shows. It is therefore convenient to work
with maximal medians, which are uniquely defined [1, 3]. More precisely, we have

Definition 1.2. For a cube $Q \subset \mathbb{R}^{n}, 0<s<1$, and a real-valued measurable function $f$ on $Q$, we say that $M_{f}(s, Q)$ is the maximal median of $f$ over $Q$ with parameter $s$ if

$$
M_{f}(s, Q)=\sup \{M:|\{y \in Q: f(y)<M\}|\} \leq s|Q|
$$

The reader will have no difficulty in proving the sup above is assumed, that is to say,

$$
\left|\left\{y \in Q: f(y)<M_{f}(s, Q)\right\}\right| \leq s|Q| .
$$

To justify the nomenclature of maximal median we verify that $M_{f}(s, Q)$ satisfies the conditions that characterize medians. (1.1) is guaranteed since $M_{f}(s, Q)$ is the maximum value for which it holds. As for (1.2), let $B_{n}=$ $\left\{y \in Q: f(y) \geq M_{f}(s, Q)+1 / n\right\}$ and note that $\left|B_{n}\right| \leq(1-s)|Q|$, all $n$, and $\left\{y \in Q: f(y)>M_{f}(s, Q)\right\} \subset \liminf _{n} B_{n}$. Then $\mid\{y \in Q: f(y)>$ $\left.M_{f}(s, Q)\right\}\left|\leq \liminf _{n}\right| B_{n}|\leq(1-s)| Q \mid$.

Hereafter when considering a median we mean the maximal median and denote it simply by $m_{f}(s, Q)$. Clearly maximal medians satisfy

$$
\begin{equation*}
\left|\left\{y \in Q: f(y) \leq m_{f}(s, Q)\right\}\right| \geq s|Q| \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{y \in Q: f(y) \geq m_{f}(s, Q)\right\}\right| \geq(1-s)|Q| . \tag{1.4}
\end{equation*}
$$

We summarize the basic properties of maximal medians that are of interest to us in the following proposition.

Proposition 1.1. Let $Q \subset \mathbb{R}^{n}$ be a cube, $0<s, t<1$, and $f, g$ realvalued measurable functions on $Q$. Then the following properties hold:
(i) For $s<t$,

$$
\begin{equation*}
m_{f}(s, Q) \leq m_{f}(t, Q) \tag{1.5}
\end{equation*}
$$

(ii) If $f \leq g$ a.e., then

$$
\begin{equation*}
m_{f}(s, Q) \leq m_{g}(s, Q) . \tag{1.6}
\end{equation*}
$$

(iii) For a constant $c$,

$$
\begin{equation*}
m_{f}(s, Q)-c=m_{f-c}(s, Q) . \tag{1.7}
\end{equation*}
$$

(iv) If $f, g \geq 0$ a.e., $0<s, s_{1}<1$, and $0<t<s+s_{1}-1$, then

$$
\begin{equation*}
m_{f+g}(t, Q) \leq m_{f}(s, Q)+m_{g}\left(s_{1}, Q\right) . \tag{1.8}
\end{equation*}
$$

(v) In general, $m_{-|f|}(s, Q) \leq m_{f}(s, Q) \leq m_{|f|}(s, Q)$. And if $m_{f}(s, Q)$ $\leq 0$, then

$$
\begin{equation*}
\left|m_{f}(s, Q)\right| \leq m_{|f|}(1-s, Q) . \tag{1.9}
\end{equation*}
$$

Thus for general $f$,

$$
\begin{equation*}
\left|m_{f}(s, Q)\right| \leq m_{|f|}(s, Q), \quad 1 / 2 \leq s<1 \tag{1.10}
\end{equation*}
$$

(vi) If $f \geq 0$ is locally integrable and $f_{Q}$ denotes the average of $f$ over $Q$, then

$$
\begin{equation*}
m_{f}(s, Q) \leq \frac{1}{1-s} f_{Q} \tag{1.11}
\end{equation*}
$$

Proof. (i) Since $\left|\left\{y \in Q: f(y)<m_{f}(s, Q)\right\}\right| \leq s|Q|<t|Q|$, (1.5) holds.
(ii) Up to a set of measure zero $\left\{y \in Q: g(y)<m_{f}(s, Q)\right\} \subset\{y \in Q$ : $\left.f(y)<m_{f}(s, Q)\right\}$. Therefore $\left|\left\{y \in Q: g(y)<m_{f}(s, Q)\right\}\right| \leq s|Q|$, and so $m_{f}(s, Q) \leq m_{g}(s, Q)$.
(iii) Since $\left\{y \in Q: f(y)<m_{f}(s, Q)\right\}=\left\{y \in Q: f(y)-c<m_{f}(s, Q)-c\right\}$ it readily follows that $m_{f}(s, Q)-c \leq m_{f-c}(s, Q)$. And since $\{y \in Q$ : $\left.f(y)-c<m_{f-c}(s, Q)\right\}=\left\{y \in Q: f(y)<m_{f-c}(s, Q)+c\right\}, m_{f-c}(s, Q)+c \leq$ $m_{f}(s, Q)$. Note that, in particular, $m_{c}(s, Q)=c$.
(iv) For the sake of argument suppose that $f, g$ are measurable functions on $Q$ such that $m_{f+g}(t, Q)-\left(m_{f}(s, Q)+m_{g}\left(s_{1}, Q\right)\right)>2 \eta>0$. Then $\{y \in$ $\left.Q: f(y)<m_{f}(s, Q)+\eta\right\} \cap\left\{y \in Q: g(y)<m_{g}\left(s_{1}, Q\right)+\eta\right\} \subset\{y \in Q: f(y)+$ $\left.g(y)<m_{f+g}(t, Q)\right\}$. Now, since $\left|\left\{y \in Q: f(y)<m_{f}(s, Q)+\eta\right\}\right| \geq s|Q|$, $\left|\left\{y \in Q: g(y)<m_{g}\left(s_{1}, Q\right)+\eta\right\}\right| \geq s_{1}|Q|$, and $\mid\{y \in Q: f(y)+g(y)<$ $\left.m_{f}(t, Q)\right\}|\leq t| Q \mid$, it readily follows that $s+s_{1} \leq 1+t$, which is not the case.
(v) Since $-|f| \leq f \leq|f|$, by (1.6), $m_{-|f|}(s, Q) \leq m_{f}(s, Q) \leq m_{|f|}(s, Q)$. Now, if $m_{f}(s, Q) \leq 0$ note that $\left\{y \in Q:|f(y)|<-m_{f}(s, Q)\right\}=\{y \in Q$ : $\left.m_{f}(s, Q)<-|f(y)|\right\} \subset\left\{y \in Q: m_{f}(s, Q)<f(y)\right\}$, and therefore $\mid\{y \in Q:$ $\left.|f(y)|<-m_{f}(s, Q)\right\}|\leq(1-s)| Q \mid$. Consequently, $\left|m_{f}(s, Q)\right| \leq m_{|f|}(1-s, Q)$. And since for $s \geq 1 / 2,1-s \leq s$, by (1.5) we have $\left|m_{f}(s, Q)\right| \leq m_{|f|}(s, Q)$ for that range of $s$.
(vi) We may assume that $m_{f}(s, Q) \neq 0$. Then by (1.4) and Chebyshev's inequality,

$$
(1-s)|Q| \leq\left|\left\{y \in Q: f(y) \geq m_{f}(s, Q)\right\}\right| \leq \frac{1}{m_{f}(s, Q)} \int_{Q} f(y) d y
$$

and the conclusion follows.
The restriction $1 / 2 \leq s<1$ is necessary for (1.10) to hold. Let $Q=[0,1]$ and $f(x)=-2 \chi_{[0,1 / 2)}(x)+\chi_{[1 / 2,1)}(x)$; then for $0<s<1 / 2, m_{f}(s, Q)=$ -2 but $m_{|f|}(s, Q)=1<2$. And, in contrast to averages, the restriction $0<t<s+s_{1}-1$ is necessary for (1.8) to hold. To see this let $Q=[0,1]$, and pick $1 / 2<s_{1} \leq s<1$, and $t=s+s_{1}-1>0$. If $f=\chi_{[0,1-s]}$ and $g=\chi_{\left[1-s_{1}, 2\left(1-s_{1}\right)\right]},\{y \in Q: f(y)+g(y)<1\}=\left(1-s, 1-s_{1}\right) \cup\left(2\left(1-s_{1}\right), 1\right]$ has measure $\left(s-s_{1}\right)+1-2\left(1-s_{1}\right)=t$, and therefore, although $m_{f}(s, Q)=$ $m_{g}\left(s_{1}, Q\right)=0, m_{f+g}(t, Q)=1$.

Finally, maximal medians can be expressed in terms of distribution functions or nonincreasing rearrangements. Recall that the nonincreasing rearrangement $f^{*}$ of $f$ at level $\lambda>0$ is given by $f^{*}(\lambda)=\inf \left\{\alpha>0: \mid\left\{x \in \mathbb{R}^{n}\right.\right.$ : $|f(x)|>\alpha\} \mid \leq \lambda\}$ and satisfies

$$
\begin{equation*}
\left|\left\{y \in \mathbb{R}^{n}:|f(y)|>f^{*}(u)\right\}\right| \leq u, \quad u>0 \tag{1.12}
\end{equation*}
$$

We then have
Proposition 1.2. Let $Q \subset \mathbb{R}^{n}$ be a cube, $0<s<1$, and $f$ a measurable function on $Q$. Then

$$
m_{|f|}(1-s, Q)=\inf \{\alpha>0:|\{y \in Q:|f(y)|>\alpha\}|<s|Q|\}=\left(f \chi_{Q}\right)^{*}(s|Q|)
$$

Proof. Let $\bar{\alpha}=\inf \{\alpha>0:|\{y \in Q:|f(y)|>\alpha\}|<s|Q|\}$. Then for all $\varepsilon>0$ it readily follows that $|\{y \in Q:|f(y)| \leq \bar{\alpha}+\varepsilon\}|>(1-s)|Q|$, which together with (1.3) implies $m_{|f|}(1-s, Q) \leq \bar{\alpha}+\varepsilon$. Thus $m_{|f|}(1-s, Q) \leq \bar{\alpha}$.

Next, by (1.12), $\left|\left\{y \in Q:|f(y)|>\left(f \chi_{Q}\right)^{*}(s|Q|)\right\}\right| \leq s|Q|$, which gives $\bar{\alpha} \leq\left(f \chi_{Q}\right)^{*}(s|Q|)$.

Finally, since for $\varepsilon>0,\left|\left\{y \in Q:|f(y)|>\left(f \chi_{Q}\right)^{*}(s|Q|)-\varepsilon\right\}\right|>s|Q|$, by (1.2) it readily follows that $\left(f \chi_{Q}\right)^{*}(s|Q|)-\varepsilon<m_{|f|}(1-s, Q)$, and consequently $\left(f \chi_{Q}\right)^{*}(s|Q|) \leq m_{|f|}(1-s, Q)$.

Other equivalent expressions appearing in the literature include those in [2].
2. Convergence of medians. The examples following Proposition 1.1 suggest that medians rely more heavily on the distribution of the values of $f$ than do averages. On the other hand, averages and medians are not always at odds. In particular, using (1.11) the reader should have no difficulty in verifying that the following version of the Lebesgue differentiation theorem holds: If $f$ is a locally integrable function on $\mathbb{R}^{n}$ and $1 / 2 \leq s<1$, then

$$
\lim _{x \in Q, Q \rightarrow x} m_{f}(s, Q)=f(x)
$$

at every Lebesgue point $x$ of $f$.
Thus, in some sense $m_{f}(s, Q)$ is a good substitute for $f_{Q}$ for small $Q$. In fact, a more careful argument gives that the biased maximal medians $m_{f}(s, Q)$ of an arbitrary measurable function $f$ converge to $f$ a.e., a fact observed by Fujii [3] for the case $s=1 / 2$.

ThEOREM 2.1. Let $f$ be a real-valued, finite a.e. measurable function on $\mathbb{R}^{n}$, and $0<s<1$. Then

$$
\begin{equation*}
\lim _{x \in Q, Q \rightarrow x} m_{f}(s, Q)=f(x) \quad \text { a.e. } \tag{2.1}
\end{equation*}
$$

In particular, (2.1) holds at every point of continuity $x$ of $f$.

Proof. For $k \geq 1$ and an integer $j$, let $E_{k, j}=\left\{x \in \mathbb{R}^{n}:(j-1) / 2^{k} \leq\right.$ $\left.f(x)<j / 2^{k}\right\}, a_{k, j}=(j-1) / 2^{k}$, and put $S_{k}(x)=\sum_{j=-\infty}^{\infty} a_{k, j} \chi_{E_{k, j}}(x)$. Note that since $f$ is finite a.e., $\mathbb{R}^{n}=\bigcup_{k, j} E_{k, j}$ except possibly for a set of measure 0 , and when $f(x)$ is finite we have $0 \leq f(x)-S_{k}(x) \leq 2^{-k}$, which gives $m_{S_{k}}(s, Q) \leq m_{f}(s, Q) \leq m_{S_{k}}(s, Q)+2^{-k}$ for all cubes $Q$. Let $A_{k, j}=\left\{x \in E_{k, j}: x\right.$ is a point of density for $\left.E_{k, j}\right\}, A_{k}=\bigcup_{j=-\infty}^{\infty} A_{k, j}$. Since $f$ is finite a.e., $\left|\mathbb{R}^{n} \backslash A_{k}\right|=0$ for all $k$, and if $A=\bigcup_{k=1}^{\infty} A_{k}$, also $\left|\mathbb{R}^{n} \backslash A\right|=0$.

We claim that the limit in question exists for $x \in A$. Given $\varepsilon>0$, pick $k$ such that $2^{-k+1}<\varepsilon$. Then $x \in A_{k, j}$ for some $j$, and

$$
\lim _{x \in Q, Q \rightarrow x} \frac{\left|A_{k, j} \cap Q\right|}{|Q|}=1
$$

Let $\delta=\max \{s, 1-s\}$ and note that for all cubes $Q$ with small enough measure containing $x$,

$$
\frac{\left|A_{k, j} \cap Q\right|}{|Q|}>\delta
$$

We restrict our attention to such small cubes $Q$ containing $x$. Note that for these cubes $m_{S_{k}}(s, Q)=a_{k, j}$. Indeed, on the one hand, since $S_{k}(y)=a_{k, j}$ for $y \in A_{k, j},\left|\left\{y \in Q: S_{k}(y)<a_{k, j}\right\}\right| \leq\left|A_{k, j}^{c} \cap Q\right|<s|Q|$, and therefore $a_{k, j} \leq m_{S_{k}}(s, Q)$. And, on the other, since for $\varepsilon>0,\left\{y \in Q: S_{k}(y)<a_{k, j}+\varepsilon\right\}$ $\supset A_{k, j} \cap Q$, it follows that $\left|\left\{y \in Q: S_{k}(y)<a_{k, j}+\varepsilon\right\}\right| \geq\left|A_{k, j} \cap Q\right| \geq s|Q|$. Hence, $m_{S_{k}}(s, Q) \leq a_{k, j}+\varepsilon$, and since $\varepsilon$ is arbitrary, $m_{S_{k}}(s, Q) \leq a_{k, j}$.

Then, since $a_{k, j}=m_{S_{k}}(s, Q)=S_{k}(x)$ for $x \in A_{k, j}$,

$$
\begin{aligned}
\left|m_{f}(s, Q)-f(x)\right| & \leq\left|m_{f}(s, Q)-m_{S_{k}}(s, Q)\right|+\left|m_{S_{k}}(s, Q)-f(x)\right| \\
& \leq 2^{-k}+\left(f(x)-S_{k}(x)\right) \leq 2^{-k+1}<\varepsilon
\end{aligned}
$$

In other words, $\left|m_{f}(s, Q)-f(x)\right|<\varepsilon$ for $x \in A$ and all $Q$ with small enough measure containing $x$.

Now, at a point of continuity $x$ of $f$, given $\varepsilon>0$, let $\delta>0$ be such that $|f(y)-f(x)| \leq \varepsilon$ for $y \in B(x, \delta)$. Then for $y$ in a cube $Q$ containing $x$ and contained in $B(x, \delta)$ we have $-\varepsilon \leq f(y)-f(x) \leq \varepsilon$, and consequently $-\varepsilon=m_{-\varepsilon}(s, Q) \leq m_{f-f(x)}(s, Q)=m_{f}(s, Q)-f(x) \leq m_{\varepsilon}(s, Q)=\varepsilon$, hence $\left|m_{f}(s, Q)-f(x)\right| \leq \varepsilon$.
3. A median characterization for continuity. We say that a measurable function $f$ on a cube $Q_{0} \subset \mathbb{R}^{n}$ is equivalent to a continuous function on $Q_{0}$ if the values of $f$ can be modified on a set of Lebesgue measure 0 so as to coincide with a continuous function on $Q_{0}$; similarly for $f$ equivalent to a bounded function on a cube. In this section we characterize those measurable functions equivalent to a bounded function on a cube that are equivalent to a continuous function on that cube in terms of medians, keeping in mind
that in the case of locally integrable functions the condition involves the consideration of oscillations involving two nonoverlapping cubes [9].

Definition 3.1. For $0<s<1$ and nonoverlapping cubes $Q_{1}, Q_{2} \subset \mathbb{R}^{n}$, let

$$
\Psi_{s}\left(f, Q_{1}, Q_{2}\right)=\frac{\left|Q_{1}\right|}{\left|Q_{1} \cup Q_{2}\right|} m_{f}\left(s, Q_{1}\right)+\frac{\left|Q_{2}\right|}{\left|Q_{1} \cup Q_{2}\right|} m_{f}\left(s, Q_{2}\right)
$$

and

$$
\Omega(f, s, \delta)=\sup _{\operatorname{diam}\left(Q_{1} \cup Q_{2}\right) \leq \delta} \inf _{c} \Psi_{s}\left(|f-c|, Q_{1}, Q_{2}\right)
$$

$\Psi_{s}$ is a weighted average of maximal medians of $f$ in the spirit of averages and $\Omega(f, s, \delta)$ is related to the oscillation of a measurable function on a cube, as shown by the following result.

Theorem 3.1. Let $Q_{0} \subset \mathbb{R}^{n}$ be a cube, $1 / 2<s<1$, $f$ a measurable function on $Q_{0}$ that is equivalent to a bounded function there, and $\omega(f, \delta)$, $\delta>0$, the essential modulus of continuity of $f$ defined by

$$
\omega(f, \delta)=\sup _{|h| \leq \delta}\left(\operatorname{ess} \sup _{x, x+h \in Q_{0}}|f(x+h)-f(x)|\right) .
$$

Then we have $\Omega(f, s, \delta)=\omega(f, \delta) / 2$.
Proof. For nonoverlapping cubes $Q_{1}, Q_{2} \subset Q_{0}$, let

$$
\Theta=\operatorname{ess} \operatorname{osc}\left(f, Q_{1} \cup Q_{2}\right)=\underset{Q_{1} \cup Q_{2}}{\operatorname{ess} \sup _{2}} f-\operatorname{ess} \inf _{Q_{1} \cup Q_{2}} f
$$

Let $\delta>0$. If $x \in Q_{1} \cup Q_{2} \subset Q_{0}$ is such that $x+h \in Q_{0}$ where $|h| \leq \delta$, since

$$
\underset{x, x+h \in Q_{0}}{\operatorname{ess} \sup _{0}}|f(x+h)-f(x)| \geq \underset{Q_{1} \cup Q_{2}}{\operatorname{ess} \sup } f-\underset{Q_{1} \cup Q_{2}}{\operatorname{ess} \inf } f,
$$

taking the sup over $|h| \leq \delta$ it readily follows that $\omega(f, \delta) \geq \Theta$. Moreover, since for $y \in Q_{1}$ and an arbitrary constant $c$,

$$
|f(y)-c| \leq \max \left\{\underset{Q_{1} \cup Q_{2}}{\operatorname{ess} \sup } f-c, c-\underset{Q_{1} \cup Q_{2}}{\operatorname{ess} \inf } f\right\}
$$

picking $c=\left(\sup _{\inf _{Q_{1} \cup Q_{2}}} f+\operatorname{ess}_{\inf _{Q_{1} \cup Q_{2}}} f\right) / 2$, it follows that $|f(y)-c| \leq$ $\Theta / 2$, and, consequently, $m_{|f-c|}\left(s, Q_{1}\right) \leq m_{\Theta / 2}\left(s, Q_{1}\right)=\Theta / 2$; similarly we have $m_{|f-c|}\left(s, Q_{2}\right) \leq \Theta / 2$. Therefore,

$$
\inf _{c} \Psi_{s}\left(|f-c|, Q_{1}, Q_{2}\right) \leq \frac{\left|Q_{1}\right|}{\left|Q_{1} \cup Q_{2}\right|} \frac{\Theta}{2}+\frac{\left|Q_{2}\right|}{\left|Q_{1} \cup Q_{2}\right|} \frac{\Theta}{2}=\frac{\Theta}{2}
$$

and consequently $\Omega(f, s, \delta) \leq \Theta / 2 \leq \omega(f, \delta) / 2$.
Conversely, let $0<t<2 s-1$. Then for fixed $\delta>0$, given $\varepsilon>0$, pick $h$ with $|h|<\delta$ such that ess $\sup _{x, x+h \in Q_{0}}|f(x+h)-f(x)| \geq \omega(f, \delta)-\varepsilon$. Then $E=\left\{x \in Q_{0}: x+h \in Q_{0}\right.$ and $\left.|f(x+h)-f(x)| \geq \omega(f, \delta)-\varepsilon\right\}$ has positive
measure. Let $x \in E$ be a point of density of $E$ and $a$ small enough so that $Q(x, a), Q(x+h, a)$ are nonoverlapping and

$$
\frac{|E \cap Q(x, a)|}{|Q(x, a)|}>1-t
$$

Now, since $\{y \in Q(x+h, a): g(y)<M\}=\{y \in Q(x, a): g(y+h)<M\}$ and $|Q(x, a)|=|Q(x+h, a)|$, it readily follows that $m_{|f-c|}(s, Q(x+h, a))=$ $m_{|f(\cdot+h)-c|}(s, Q(x, a))$, and consequently, since $|f(y+h)-f(y)| \leq|f(y+h)-c|$ $+|f(y)-c|$, by (1.8) and (1.6), $m_{|f-c|}(s, Q(x, a))+m_{|f-c|}(s, Q(x+h, a)) \geq$ $m_{|f-c|+|f(\cdot+h)-c|}(t, Q(x, a)) \geq m_{|f(\cdot+h)-f|}(t, Q(x, a))$. Therefore,

$$
\begin{aligned}
& \Psi_{s}(|f-c|, Q(x, a), Q(x+h, a)) \\
& \qquad \begin{array}{l}
\geq \frac{1}{2} m_{|f-c|}(s, Q(x, a))+\frac{1}{2} m_{|f-c|}(s, Q(x+h, a)) \\
\end{array} \quad \geq \frac{1}{2} m_{|f(\cdot+h)-f|}(t, Q(x, a))
\end{aligned}
$$

Finally, since $|E \cap Q(x, a)|=\mid\{y \in Q(x, a):|f(y+h)-f(y)| \geq$ $\omega(f, \delta)-\varepsilon\}|>(1-t)| Q(x, a) \mid$, it readily follows that $m_{|f(\cdot+h)-f|}(t, Q(x, a))$ $\geq \omega(f, \delta)-\varepsilon$, which, since $\varepsilon$ is arbitrary, implies $\Psi_{s}(|f-c|, Q(x, a)$, $Q(x+h, a)) \geq \omega(f, \delta) / 2$. Thus $\Omega\left(f, s, \delta+(\sqrt{2 a})^{n}\right) \geq \omega(f, \delta)$, and letting $a \rightarrow 0, \Omega(f, s, \delta) \geq \omega(f, \delta) / 2$.

Theorem 3.2. Let $Q_{0} \subset \mathbb{R}^{n}$ be a cube, $1 / 2<s<1$, and $f$ a measurable function on $Q_{0}$ that is equivalent to a bounded function there. Then $f$ is equivalent to a continuous function on $Q_{0}$ iff $\lim _{\eta \rightarrow 0^{+}} \Omega(f, s, \eta)=0$.

The proof follows at once from Theorem 3.1. Note that by Proposition 1.2 the conclusion can also be stated in terms of rearrangements.
4. A decomposition of cubes. Strömberg's essential tool in dealing with the oscillation of functions and local maximal functions is a decomposition of cubes [11]. In this section we extend the results to biased medians with parameters $>1 / 2$.

We begin by introducing the local sharp maximal function restricted to a cube.

Definition 4.1. Let $Q_{0} \subset \mathbb{R}^{n}$ and $0<s \leq 1 / 2$. For a measurable function $f$ on $Q_{0}$, the local sharp maximal function restricted to $Q_{0}$ of $f$, written $M_{0, s, Q_{0}}^{\sharp} f(x)$, is defined at $x \in Q_{0}$ as

$$
\begin{equation*}
M_{0, s, Q_{0}}^{\sharp} f(x)=\sup _{x \in Q, Q \subset Q_{0}} \inf _{c} \inf \{\alpha \geq 0:|\{y \in Q:|f(y)-c|>\alpha\}|<s|Q|\} . \tag{4.1}
\end{equation*}
$$

When $Q_{0}=\mathbb{R}^{n}, M_{0, s, \mathbb{R}^{n}}^{\sharp} f(x)=M_{0, s}^{\sharp} f(x)$ denotes the local sharp maximal function of $f$ at $x \in \mathbb{R}^{n}$.

The range $0<s \leq 1 / 2$ is necessary since for $s>1 / 2, M_{0, s, Q}^{\sharp} f(x)=0$ for a function $f$ that takes two different values.

Local maximal functions, as well as maximal functions defined in terms of rearrangements, can be expressed in terms of medians. Let $\omega_{s}(f, Q)=$ $\inf _{c}\left((f-c) \chi_{Q}\right)^{*}(s|Q|)$. Then by Proposition 1.2,

$$
M_{0, s, Q_{0}}^{\sharp} f(x)=\sup _{x \in Q, Q \subset Q_{0}} \omega_{s}(f, Q)=\sup _{x \in Q, Q \subset Q_{0}} \inf _{c} m_{|f-c|}(1-s, Q) .
$$

The first expression above is used by Lerner [6, 7].
An efficient choice for $c$ in the infimum above is $m_{\left|f-m_{f}(1-s, Q)\right|}(1-s, Q)$. Indeed, for $Q \subset Q_{0}$ and a constant $c$, since $1-s \geq 1 / 2$, by (1.7) and (1.10),

$$
\begin{equation*}
\left|m_{f}(1-s, Q)-c\right| \leq m_{|f-c|}(1-s, Q) \tag{4.2}
\end{equation*}
$$

Then, since $\left|f(y)-m_{f}(1-s, Q)\right| \leq|f(y)-c|+\left|c-m_{f}(1-s, Q)\right|$, by (1.5), (1.7), and (4.2),

$$
\begin{aligned}
& m_{\left|f-m_{f}(1-s, Q)\right|}(1-s, Q) \leq m_{|f-c|}(1-s, Q)+\left|c-m_{f}(1-s, Q)\right| \\
& \leq m_{|f-c|}(1-s, Q)+m_{|f-c|}(1-s, Q)=2 m_{|f-c|}(1-s, Q)
\end{aligned}
$$

and consequently

$$
\begin{align*}
\inf _{c} m_{|f-c|}(1-s, Q) & \leq m_{\left|f-m_{f}(1-s, Q)\right|}(1-s, Q)  \tag{4.3}\\
& \leq 2 \inf _{c} m_{|f-c|}(1-s, Q)
\end{align*}
$$

The decomposition of cubes relies on three lemmas which we prove next.
Lemma 4.1. Let $Q \subset \mathbb{R}^{n}$ be a cube, $0<s \leq 1 / 2,1 / 2 \leq t \leq 1-s$, and $f$ a measurable function on $Q$. Then for any $\eta>0$,

$$
\begin{equation*}
\left|\left\{y \in Q:\left|f(y)-m_{f}(t, Q)\right| \geq 2 \inf _{x \in Q} M_{0, s, Q}^{\sharp} f(x)+\eta\right\}\right|<s|Q| . \tag{4.4}
\end{equation*}
$$

Proof. For fixed $c$, let $\alpha(c)=m_{|f-c|}(1-s, Q)$. Then by (4.2) and (1.5),

$$
\begin{equation*}
\left|m_{f}(t, Q)-c\right| \leq m_{|f-c|}(t, Q) \leq m_{|f-c|}(1-s, Q)=\alpha(c), \tag{4.5}
\end{equation*}
$$

and by (1.4),

$$
\begin{equation*}
|\{y \in Q:|f(y)-c| \geq \alpha(c)+\varepsilon\}|<s|Q|, \quad \varepsilon>0 \tag{4.6}
\end{equation*}
$$

Let $m=\inf _{c} \alpha(c)$ and pick $\left\{c_{k}\right\}$ such that $m \leq \alpha\left(c_{k}\right) \leq m+1 / k$, all $k$. Then by (4.5),

$$
\begin{aligned}
\left|f(y)-c_{k}\right| & \geq\left|f(y)-m_{f}(t, Q)\right|-\left|m_{f}(t, Q)-c_{k}\right| \\
& \geq\left|f(y)-m_{f}(t, Q)\right|-\alpha\left(c_{k}\right),
\end{aligned}
$$

and consequently, since $2 m+\eta \geq \alpha\left(c_{k}\right)+(\eta-2 / k),\{y \in Q: \mid f(y)-$ $\left.m_{f}(t, Q) \mid \geq 2 m+\eta\right\} \subset\left\{y \in Q:\left|f(y)-c_{k}\right| \geq \alpha\left(c_{k}\right)+\varepsilon_{k}\right\}$, where we have chosen $k$ sufficiently large so that $\varepsilon_{k}=\eta-2 / k>0$. Then by (4.6),
$\left|\left\{y \in Q:\left|f(y)-m_{f}(t, Q)\right|>2 m+\eta\right\}\right|<s|Q|$. Finally, since $M_{0, s, Q}^{\#} f(x) \geq m$ for all $x \in Q$, (4.4) holds.

Lemma 4.2. Let $Q \subset \mathbb{R}^{n}$ be a cube, $0<s \leq 1 / 2,1 / 2 \leq t \leq 1-s, \eta>0$, and $f$ a measurable function on an open cube containing $Q$. Then for any family of cubes $\left\{Q_{\varepsilon}\right\}$ with $(1-\varepsilon) Q \subset Q_{\varepsilon} \subset(1+\varepsilon) Q$,

$$
\limsup _{\varepsilon \rightarrow 0^{+}}\left|m_{f}(t, Q)-m_{f}\left(t, Q_{\varepsilon}\right)\right| \leq 2 \inf _{x \in Q} M_{0, s, Q}^{\sharp} f(x)+\eta \text {. }
$$

Proof. Let $A=\inf _{x \in Q} M_{0, s, Q}^{\sharp} f(x)$. For the sake of argument assume there is a sequence $\varepsilon_{k} \rightarrow 0$ such that $\left|m_{f}(t, Q)-m_{f}\left(t, Q_{\varepsilon_{k}}\right)\right|>2 A+\eta$ for all $k$. Then by (1.10),

$$
2 A+\eta<\left|m_{f}(t, Q)-m_{f}\left(t, Q_{\varepsilon_{k}}\right)\right| \leq m_{\left|f-m_{f}(t, Q)\right|}\left(t, Q_{\varepsilon_{k}}\right),
$$

and consequently, by (1.4),

$$
\begin{equation*}
\left|\left\{y \in Q_{\varepsilon_{k}}:\left|f(y)-m_{f}(t, Q)\right|>2 A+\eta\right\}\right| \geq(1-t)\left|Q_{\varepsilon_{k}}\right| . \tag{4.7}
\end{equation*}
$$

Since $Q_{\varepsilon_{k}} \subset\left(1+\varepsilon_{k}\right) Q$, the left-hand side of (4.7) is bounded above by

$$
\begin{aligned}
\mid\{y \in & \left.\left(1+\varepsilon_{k}\right) Q:\left|f(y)-m_{f}(t, Q)\right|>2 A+\eta\right\} \mid \\
& \leq\left(\left(1+\varepsilon_{k}\right)^{n}-1\right)|Q|+\left|\left\{y \in Q:\left|f(y)-m_{f}(t, Q)\right|>2 A+\eta\right\}\right|,
\end{aligned}
$$

and since $\left(1-\varepsilon_{k}\right) Q \subset Q_{\varepsilon_{k}}$, the right-hand side of (4.7) is bounded below by

$$
(1-t)\left(1-\varepsilon_{k}\right)^{n}|Q| .
$$

Combining these estimates it follows that

$$
\left|\left\{y \in Q:\left|f(y)-m_{f}(t, Q)\right|>2 A+\eta\right\}\right| \geq\left((1-t)\left(1-\varepsilon_{k}\right)^{n}-\left(\left(1+\varepsilon_{k}\right)^{n}-1\right)\right)|Q| .
$$

Now, by (4.4) there exists $\delta>0$ such that $\mid\left\{y \in Q:\left|f(y)-m_{f}(t, Q)\right| \geq\right.$ $2 A+\eta\}|=(s-\delta)| Q \mid$, and so

$$
s-\delta \geq\left((1-t)\left(1-\varepsilon_{k}\right)^{n}-\left(\left(1+\varepsilon_{k}\right)^{n}-1\right)\right) .
$$

Thus, letting $k \rightarrow \infty$ implies $s-\delta \geq 1-t \geq s$, which is not the case.
Lemma 4.3. Let $Q_{0}, Q_{1} \subset \mathbb{R}^{n}$ be cubes with $Q_{0} \subset Q_{1}$ and $\left|Q_{1}\right| \leq 2^{k}\left|Q_{0}\right|$ for some integer $k, 0<s \leq 1 / 2,1 / 2 \leq t \leq 1-s$, and $f$ a measurable function on $Q_{1}$. Then

$$
\begin{equation*}
\left|m_{f}\left(t, Q_{0}\right)-m_{f}\left(t, Q_{1}\right)\right| \leq 10 k \inf _{x \in Q_{0}} M_{0, s, Q_{1}}^{\sharp} f(x) . \tag{4.8}
\end{equation*}
$$

Proof. By the triangle inequality it suffices to prove the case $k=1$. Let $A=\inf _{x \in Q_{0}} M_{0, s, Q_{1}}^{\sharp} f(x)$. For the sake of argument suppose that (4.8) does not hold. Then if $A>0$, by Lemma 4.2, for any fixed $0<\eta<A / 2$, there exists a cube $Q_{2}$ such that $Q_{0} \subset Q_{2} \subset Q_{1}$ and

$$
\left|m_{f}\left(t, Q_{2}\right)-m_{f}\left(t, Q_{0}\right)\right|>4 A+2 \eta, \quad\left|m_{f}\left(t, Q_{2}\right)-m_{f}\left(t, Q_{1}\right)\right|>4 A+2 \eta .
$$

And if $A=0$, then $\left|m_{f}\left(t, Q_{0}\right)-m_{f}\left(t, Q_{1}\right)\right|>0$ and there exists a cube $Q_{2}$ such that $Q_{0} \subset Q_{2} \subset Q_{1}$ and

$$
\left|m_{f}\left(t, Q_{2}\right)-m_{f}\left(t, Q_{0}\right)\right|>2 \eta, \quad\left|m_{f}\left(t, Q_{2}\right)-m_{f}\left(t, Q_{1}\right)\right|>2 \eta
$$

for $\eta$ sufficiently small.
Thus in both cases the sets $\left\{y \in Q_{k}:\left|f(y)-m_{f}\left(t, Q_{k}\right)\right| \leq 2 A+\eta\right\}$, $k=0,1,2$, are pairwise disjoint subsets of $Q_{1}$, and consequently

$$
\begin{aligned}
& \left\{y \in Q_{0}:\left|f(y)-m_{f}\left(t, Q_{0}\right)\right| \leq 2 A+\eta\right\} \\
& \cup\left\{y \in Q_{2}:\left|f(y)-m_{f}\left(t, Q_{2}\right)\right| \leq 2 A+\eta\right\} \\
& \quad \subset\left\{y \in Q_{1}:\left|f(y)-m_{f}\left(t, Q_{1}\right)\right|>2 A+\eta\right\}
\end{aligned}
$$

Therefore, since $\inf _{x \in Q_{k}} M_{0, s, Q_{k}}^{\sharp} f(x) \leq A$ for $k=0,1,2$, by Lemma 4.1,

$$
(1-s)\left|Q_{0}\right|+(1-s)\left|Q_{2}\right|<s\left|Q_{1}\right|
$$

Thus $2(1-s)\left|Q_{0}\right|<s\left|Q_{1}\right|<2 s\left|Q_{0}\right|$, and consequently $1<2 s$, which is not the case.

We are now ready to consider the decomposition of cubes relative to medians.

Proposition 4.1. Let $Q \subset \mathbb{R}^{n}$ be a cube, $0<s \leq 1 / 2,1 / 2 \leq t \leq 1-s$, $\delta, \beta>0$, and $f$ a measurable function on $Q$. Then if $\left|m_{f}(t, Q)\right| \leq \delta$, there exists a (possibly empty) family $\left\{Q_{k}\right\}$ of nonoverlapping dyadic subcubes of $Q$ so that
(1) $Q_{k} \not \subset\left\{y \in Q: M_{0, s, Q}^{\sharp} f(y)>\beta\right\}$,
(2) $\delta<\left|m_{f}\left(t, Q_{k}\right)\right| \leq \delta+10 n \beta$,
(3) $|f(x)| \leq \delta$ for a.e. $x \in Q \backslash\left(\left\{y \in Q: M_{0, s, Q}^{\#} f(y)>\beta\right\} \cup \bigcup_{k} Q_{k}\right)$.

Proof. If $M_{0, s, Q}^{\sharp} f(y)>\beta$ for all $y \in Q$ we pick $\left\{Q_{k}\right\}$ as the empty family. Otherwise subdivide $Q$ dyadically into $2^{n}$ subcubes and note that by Lemma 4.3 , for each dyadic subcube $Q^{\prime},\left|m_{f}\left(t, Q^{\prime}\right)\right| \leq \delta+10 n \inf _{x \in Q^{\prime}} M_{0, s, Q}^{\sharp} f(x)$. Thus for each of these subcubes $Q^{\prime}$ one of the following holds:
(a) $Q^{\prime} \subset\left\{y \in Q: M_{0, s, Q}^{\sharp} f(y)>\beta\right\}$ : we discard $Q^{\prime}$.
(b) $Q^{\prime}$ satisfies conditions (1) and (2) above: we collect this $Q^{\prime}$.
(c) $Q^{\prime} \not \subset\left\{y \in Q: M_{0, s, Q}^{\sharp} f(y)>\beta\right\}$ but $\left|m_{f}\left(t, Q^{\prime}\right)\right| \leq \delta$ : we subdivide $Q^{\prime}$ and continue in this fashion.

Finally, a.e. $x \in Q \backslash\left(\left\{y \in Q: M_{0, s, Q}^{\sharp} f(y)>\beta\right\} \cup \bigcup_{k} Q_{k}\right)$ is contained in arbitrarily small cubes $\left\{Q_{k}(x)\right\}$ containing $x$ so that $\left|m_{f}\left(t, Q_{k}(x)\right)\right| \leq \delta$. By Theorem 2.1 it readily follows that $|f(x)| \leq \delta$ for a.e. such $x$.

We can be more precise in the description of the cubes above when $M_{0, s, Q}^{\sharp} f \in L^{\infty}(Q)$. Observe that $f-m_{f}(t, Q)$ satisfies $m_{f-m_{f}(t, Q)}(t, Q)=0$ and $M_{0, s, Q}^{\sharp} f(x)=M_{0, s, Q}^{\sharp}\left(f-m_{t}(t, Q)\right)(x)$ for all $x \in Q$, which means that
the decomposition for $f-m_{f}(t, Q)$ holds for any $\delta>0$. Let $\left\{Q_{j}\right\}$ and $\left\{Q_{k}\right\}$ denote the families of cubes obtained from the decomposition with parameters $\beta \geq\left\|M_{0, s, Q}^{\sharp} f\right\|_{L^{\infty}(Q)}$ and $\delta_{1}=4 \beta+2 \eta$ and $\delta_{2}=2 \delta_{1}+10 n \beta$, respectively.

Observe that by construction we have $\bigcup_{k} Q_{k} \subset \bigcup_{j} Q_{j}$. To see this consider a dyadic subcube $Q^{\prime}$ of $Q$ that has not been discarded; this depends on $\beta$ and not on $\delta_{1}$ or $\delta_{2}$. If $Q^{\prime}$ is a $Q_{j}$, then $\delta_{1}<\left|m_{f-m_{f}(t, Q)}\left(t, Q^{\prime}\right)\right| \leq$ $\delta_{1}+10 n \beta<\delta_{2}$ and $Q^{\prime}$ is not a $Q_{k}$. So any $Q_{k}$ contained in $Q^{\prime}$ arises from subsequent subdivisions of $Q^{\prime}$. On the other hand, if $Q^{\prime}$ is not a $Q_{j}$, then $\left|m_{f-m_{f}(t, Q)}\left(t, Q^{\prime}\right)\right| \leq \delta_{1}<\delta_{2}$ and $Q^{\prime}$ is not a $Q_{k}$ either. Since this relation is maintained at every level of the successive dyadic subdivisions, the $Q_{k}$ 's arise from subdivisions of $Q_{j}$ 's.

From here on the argument proceeds as in Lemma 4.3. Note that

$$
\delta_{1}<\left|m_{f-m_{f}(t, Q)}\left(t, Q_{j}\right)\right|=\left|m_{f}\left(t, Q_{j}\right)-m_{f}(t, Q)\right| \leq \delta_{1}+10 n \beta=\delta_{2}-\delta_{1}
$$

and

$$
\delta_{2}<\left|m_{f-m_{f}(t, Q)}\left(t, Q_{k}\right)\right|=\left|m_{f}(t, Q)-m_{f}\left(t, Q_{k}\right)\right|
$$

Therefore,

$$
\begin{aligned}
\left|m_{f}\left(t, Q_{j}\right)-m_{f}\left(t, Q_{k}\right)\right| & \geq\left|m_{f}\left(t, Q_{k}\right)-m_{f}(t, Q)\right|-\left|m_{f}\left(t, Q_{j}\right)-m_{f}(t, Q)\right| \\
& >\delta_{2}-\left(\delta_{2}-\delta_{1}\right)=\delta_{1}=4 \beta+2 \eta
\end{aligned}
$$

Thus it readily follows that the sets $\left\{y \in Q:\left|f(y)-m_{f}(t, Q)\right| \leq 2 \beta+\eta\right\}$, $\left\{y \in Q_{j}:\left|f(y)-m_{f}\left(t, Q_{j}\right)\right| \leq 2 \beta+\eta\right\}$, and $\left\{y \in Q_{k}:\left|f(y)-m_{f}\left(t, Q_{k}\right)\right| \leq\right.$ $2 \beta+\eta\}$ are nonoverlapping, and so

$$
\begin{align*}
& \left\{y \in Q_{j}:\left|f(y)-m_{f}\left(t, Q_{j}\right)\right| \leq 2 \beta+\eta\right\}  \tag{4.9}\\
& \cup\left\{y \in Q_{k}:\left|f(y)-m_{f}\left(t, Q_{k}\right)\right| \leq 2 \beta+\eta\right\} \\
& \quad \subset\left\{y \in Q:\left|f(y)-m_{f}(t, Q)\right|>2 \beta+\eta\right\}
\end{align*}
$$

Now, since $\inf _{x \in Q_{j}} M_{0, s, Q_{j}}^{\sharp} f(x) \leq \beta$ for each $Q_{j}$, by (4.4) it follows that

$$
(1-s) \sum_{j}\left|Q_{j}\right| \leq \sum_{j}\left|\left\{y \in Q_{j}:\left|f(y)-m_{f}\left(t, Q_{j}\right)\right| \leq 2 \beta+\eta\right\}\right|
$$

and a similar estimate holds with the $Q_{k}$ 's in place of the $Q_{j}$ 's. Finally, since the sets on the left-hand side of (4.9) are pairwise disjoint for all $j$ and $k$, and since $\bigcup_{k} Q_{k} \subset \bigcup_{j} Q_{j}$ and $\inf _{x \in Q} M_{0, s, Q}^{\sharp} f(x) \leq \beta$, by Lemma 4.1,

$$
2 \sum_{k}\left|Q_{k}\right| \leq \sum_{k}\left|Q_{k}\right|+\sum_{j}\left|Q_{j}\right| \leq \frac{s}{1-s}|Q|
$$

and consequently, since $2(1-s) \geq 1$,

$$
\begin{equation*}
\sum_{k}\left|Q_{k}\right| \leq \frac{s}{2(1-s)}|Q| \leq s|Q| \tag{4.10}
\end{equation*}
$$

5. Vanishing median oscillation. We say that a measurable function $f$ defined on a cube $Q_{0} \subset \mathbb{R}^{n}$ is of vanishing median oscillation with parameter $s$ in $Q_{0}\left(\mathrm{vmo}_{s}\left(Q_{0}\right)\right)$ if

$$
\phi_{s}(u)=\sup _{Q \subset Q_{0},|Q| \leq u} \inf _{c} m_{|f-c|}(1-s, Q)
$$

satisfies $\lim _{u \rightarrow 0^{+}} \phi_{s}(u)=0$.
Note that by (1.11),

$$
\inf _{c} m_{|f-c|}(1-s, Q) \leq \frac{1}{s} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y,
$$

and therefore $\lim _{u \rightarrow 0^{+}} \phi_{s}(u)=0$ for all $s$ whenever $f \in \operatorname{VMO}\left(Q_{0}\right)$. Here we show that the spaces actually coincide for $s \leq 2^{-n}$.

Now, $\phi_{s}$ is a nonnegative, nondecreasing continuous function that vanishes at the origin, and $\mathrm{vmo}_{s}$ may be described in terms of such functions $\phi$ as follows. Let

$$
\|f\|_{s, \phi, Q_{0}}=\sup _{Q \subset Q_{0}} \inf _{c} \frac{m_{|f-c|}(1-s, Q)}{\phi(|Q|)} \sim \sup _{Q \subset Q_{0}} \frac{m_{\left|f-m_{f}(1-s, Q)\right|}(1-s, Q)}{\phi(|Q|)},
$$

and $\operatorname{bmo}_{s, \phi}\left(Q_{0}\right)=\left\{f: f\right.$ is defined and measurable on $Q_{0}$, and $\|f\|_{s, \phi, Q_{0}}$ $<\infty\}$. Then $\operatorname{vmo}_{s}\left(Q_{0}\right)=\bigcup_{\phi} \mathrm{bmo}_{s, \phi}\left(Q_{0}\right)$.

Now fix $Q_{0}$ and $0<s \leq 1 / 2^{n}$. Let $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be continuous, nondecreasing, and $\phi(0)=0$, and define $\Psi_{\left|Q_{0}\right|}:\left[0,2^{n}\left|Q_{0}\right|\right] \rightarrow \mathbb{R}^{+}$by

$$
\begin{equation*}
\Psi_{\left|Q_{0}\right|}(u)=\int_{u}^{2^{n}\left|Q_{0}\right|} \frac{\phi(v)}{v} d v \tag{5.1}
\end{equation*}
$$

We can then prove a strengthened version of the John-Nirenberg inequality.
Theorem 5.1. Let $f \in \operatorname{bmo}_{s, \phi}\left(Q_{0}\right)$ for some $\phi$ as above and $\Psi_{\left|Q_{0}\right|}(u)$ be given by (5.1). Then there exist constants $c_{1}, c_{2}$ independent of $f$ and of all subcubes $Q \subset Q_{0}$ so that

$$
\begin{equation*}
\left|\left\{y \in Q:\left|f(y)-m_{f}(1-s, Q)\right|>\lambda\right\}\right| \leq c_{1} \Psi_{|Q|}^{-1}\left(c_{2} \lambda /\|f\|_{s, \phi, Q}\right), \quad \lambda>0 \tag{5.2}
\end{equation*}
$$

Proof. If $\|f\|_{s, \phi, Q_{0}}=0$, clearly $M_{0, s, Q_{0}}^{\sharp} f(x)=0$ for all $x \in Q_{0}$ and by Lemma 4.3, the medians of $f$ over all subcubes of $Q_{0}$ are constant. Then by Theorem 2.1, $f$ is a.e. constant, and the conclusion holds in this case. Otherwise, since $\|f-c\|_{s, \phi, Q_{0}}=\|f\|_{s, \phi, Q_{0}}$ and $\|c f\|_{s . \phi, Q_{0}}=|c|\|f\|_{s, \phi, Q_{0}}$ for all constants $c$, we may assume that $\|f\|_{s, \phi, Q_{0}}=1$ and $m_{f}\left(1-s, Q_{0}\right)=0$. Then by (4.3),

$$
m_{\left|f-m_{f}(1-s, Q)\right|}(t, Q) \leq 2 \phi(|Q|) \leq 2 \phi\left(\left|Q_{0}\right|\right) \quad \text { for all } Q \subset Q_{0}
$$

and consequently $\left\|M_{0, s, Q_{0}}^{\sharp} f\right\|_{L^{\infty}\left(Q_{0}\right)} \leq 2 \phi\left(\left|Q_{0}\right|\right)$. Pick now $\beta_{0}=2 \phi\left(\left|Q_{0}\right|\right)$,
and note that since $\phi(u)>0$ for $u>0, \delta_{0}=(10 n+9) \beta_{0}$ works in Proposition 4.1 and in the comments that follow it. Since $\left|\left\{y \in Q_{0}: M_{0, s, Q_{0}}^{\sharp} f(y)>\beta_{0}\right\}\right|$ $=0$ we get a (first-generation) family $\left\{Q_{j}^{1}\right\}$ of nonoverlapping subcubes of $Q_{0}$ so that
(1) $\delta_{0}<\left|m_{f}\left(t, Q_{j}^{1}\right)\right| \leq \delta_{0}+10 n \beta_{0}$ for all $j$,
(2) $|f(x)| \leq \delta_{0}$ for a.e. $x \in Q_{0} \backslash \bigcup_{j} Q_{j}^{1}$, and
(3) $\sum_{j}\left|Q_{j}^{1}\right| \leq s\left|Q_{0}\right|$.

Now we fix one cube $Q_{j}^{1}$ of this family, which for simplicity we denote $Q^{1}$, and define $g=f-m_{f}\left(t, Q^{1}\right)$. Note that $m_{g}\left(t, Q^{1}\right)=0$ and $g-m_{g}(t, Q)=$ $f-m_{f}(t, Q)$ for all $Q \subset Q^{1}$. Then as above $m_{\left|g-m_{g}(t, Q)\right|}(t, Q) \leq 2 \phi(|Q|)$ for all $Q \subset Q^{1}$, and thus $\left\|M_{0, s, Q^{1}}^{\sharp} g\right\|_{L^{\infty}\left(Q^{1}\right)} \leq 2 \phi(|Q|)=2 \phi\left(\left|Q_{0}\right| / 2^{n}\right)$.

We then pick (first-generation) parameters $\beta_{1}=2 \phi\left(\left|Q_{0}\right| / 2^{n}\right)$ and $\delta_{1}=$ $(10 n+9) \beta_{1}$, which gives $\left|\left\{y \in Q^{1}: M_{0, s, Q^{1}}^{\sharp} g(y)>\beta_{1}\right\}\right|=0$. As before, we get a (second-generation) nonoverlapping family $\left\{Q_{j}^{2}\right\} \subset Q^{1}$ so that
(1) $\delta_{1}<\left|m_{g}\left(t, Q_{j}^{2}\right)\right| \leq \delta_{1}+10 n \beta_{1}$ for all $j$,
(2) $|g(x)| \leq \delta_{1}$ for a.e. $x \in Q^{1} \backslash \bigcup_{j} Q_{j}^{2}$, and
(3) $\sum_{j}\left|Q_{j}^{2}\right| \leq s\left|Q^{1}\right|$.

We can keep control of the cubes we are gathering and $f$. Indeed, clearly

$$
\sum_{j}\left|Q_{j}^{2}\right| \leq s \sum_{k}\left|Q_{k}^{1}\right| \leq s^{2}\left|Q_{0}\right| .
$$

And as for $f$, we notice that for a.e. $x \in Q^{1} \backslash \bigcup_{j} Q_{j}^{2}$,

$$
\begin{aligned}
|f(x)| & \leq\left|f(x)-m_{f}\left(t, Q^{1}\right)\right|+\mid m_{f}\left(t, Q^{1}\left|=|g(x)|+\left|m_{f}\left(t, Q^{1}\right)\right|\right.\right. \\
& \leq \delta_{1}+\delta_{0}+10 n \beta_{0} \leq(20 n+9)\left(\beta_{0}+\beta_{1}\right) .
\end{aligned}
$$

Continuing in this fashion, the computation becomes clear: Having selected the $(k-1)$ st generation of subcubes $\left\{Q^{k-1}\right\}$, we then select a $k$ th generation of subcubes so that
(1) with $\beta_{j}=2 \phi\left(\left|Q_{0}\right| / 2^{n j}\right)$ and $\delta_{j}=(10 n+9) \beta_{j}, 0 \leq j \leq k-1$, we have $|f(x)| \leq(10 n+9) \sum_{j=0}^{k-1} \delta_{j}+10 n \sum_{j=0}^{k-2} \beta_{j} \leq(20 n+9) \sum_{j=0}^{k-1} \beta_{j}$ for a.e. $x \in Q^{k-1} \backslash \bigcup_{j} Q_{j}^{k}$, and
(2) $\sum_{j}\left|Q_{j}^{k}\right| \leq s^{k}\left|Q_{0}\right|$.

This is all that is needed. Suppose first that $\lim _{u \rightarrow 0^{+}} \Psi_{\left|Q_{0}\right|}(u)=\infty$. Then, for $\lambda>2(20 n+9) \phi\left(\left|Q_{0}\right|\right)$, let $k$ be the largest integer with the property that $2(20 n+9) \sum_{j=0}^{k-1} \phi\left(\left|Q_{0}\right| / 2^{n j}\right)<\lambda$ and observe that by (1) above $\left\{y \in Q_{0}\right.$ : $|f(y)|>\lambda\} \subset \bigcup_{j} Q_{j}^{k}$, and so by (2) above $\left|\left\{y \in Q_{0}:|f(y)|>\lambda\right\}\right| \leq s^{k}\left|Q_{0}\right|$.

Furthermore, by this choice of $k$ we have
$\lambda<2(20 n+9) \sum_{j=0}^{k} \phi\left(\left|Q_{0}\right| / 2^{n j}\right) \leq \frac{2(20 n+9)}{n \ln (2)} \int_{\left|Q_{0}\right| / 2^{k n}}^{2^{n}\left|Q_{0}\right|} \phi(u) \frac{d u}{u}=c \Psi_{\left|Q_{0}\right|}\left(\frac{\left|Q_{0}\right|}{2^{k n}}\right)$
where $c=2(20 n+9) / n \ln (2)$.
So,

$$
\frac{\left|Q_{0}\right|}{2^{k n}} \leq \Psi_{\left|Q_{0}\right|}^{-1}\left(c_{2} \lambda\right), \quad c_{2}=\frac{n \ln (2)}{2(4+10 n)} .
$$

Therefore,

$$
\left|\left\{y \in Q_{0}:|f(y)|>\lambda\right\}\right| \leq s^{k}\left|Q_{0}\right| \leq \frac{\left|Q_{0}\right|}{2^{k n}} \leq \Psi_{\left|Q_{0}\right|}^{-1}\left(c_{2} \lambda\right),
$$

as we wanted to show.
And, for $\lambda \leq 2(20 n+9) \phi\left(\left|Q_{0}\right|\right)$, pick $c_{1}$ so that $\left|Q_{0}\right| \leq c_{1} \Psi_{\left|Q_{0}\right|}^{-1}\left(c_{2} \lambda\right)$; since $\left\{y \in Q_{0}:|f(y)|>\lambda\right\} \subset Q_{0}$, the conclusion holds. Clearly the argument works for all $Q \subset Q_{0}$.

Finally, in case $\lim _{u \rightarrow 0^{+}} \Psi_{\left|Q_{0}\right|}(u)<\infty$, the above argument works for all integers $k$, and therefore $f$ is an essentially bounded function on $Q_{0}$ that satisfies (5.2). A more thorough argument shows that $f$ is equivalent to an essentially Lipschitz function on $Q_{0}$ [10].

It is now straightforward that if $f \in \operatorname{vmo}_{s}\left(Q_{0}\right)$, then $f \in \operatorname{VMO}\left(Q_{0}\right)$. Pick $\phi$ such that $f \in \mathrm{bmo}_{s, \phi, Q_{0}}$. Then by integrating (5.2) with respect to $\lambda$ it follows that for all subcubes $Q \subset Q_{0}$,

$$
\begin{aligned}
\int_{Q}\left|f(y)-m_{f}(1-s, Q)\right| d y & =\int_{0}^{\infty}\left|\left\{y \in Q:\left|f(y)-m_{f}(1-s, Q)\right|>\lambda\right\}\right| d \lambda \\
& \leq c_{1} \int_{0}^{\infty} \Psi_{|Q|}^{-1}\left(c_{2} \lambda /\|f\|_{s, \phi, Q_{0}}\right) d \lambda \\
& \leq c\|f\|_{s, \phi, Q_{0}}|Q| \phi\left(2^{n}|Q|\right) .
\end{aligned}
$$

Therefore,

$$
\sup _{Q \subset Q_{0},|Q| \leq u} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq c \phi\left(2^{n} u\right) \rightarrow 0
$$

as $u \rightarrow 0^{+}$and $f \in \operatorname{VMO}\left(Q_{0}\right)$.

## References

[1] L. Carleson, BMO-10 years' development, in: 18th Scandinavian Congress of Mathematicians (Aarhus, 1980), Progr. Math. 11, Birkhäuser, Boston, 1981, 3-21.
[2] M. Cwikel, Y. Sagher, and P. Shvartsman, A new look at the John-Nirenberg and John-Strömberg theorems for BMO, J. Funct. Anal. 263 (2012), 129-166.
[3] N. Fujii, A condition for a two-weight norm inequality for singular integral operators, Studia Math. 98 (1991), 175-190.
[4] B. Jawerth and A. Torchinsky, Local sharp maximal functions, J. Approx. Theory 43 (1985), 231-270.
[5] F. John, Quasi-isometric mappings, in: Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Roma, 1965, 462-473.
[6] A. K. Lerner, A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. London Math. Soc. 42 (2010), 843-856.
[7] A. K. Lerner, A simple proof of the $A_{2}$ conjecture, Int. Math. Res. Notices 2012, doi: $10.1093 / \mathrm{imrn} / \mathrm{rns} 145$.
[8] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
[9] X. L. Shi and A. Torchinsky, Functions of vanishing mean oscillation, Math. Nachr. 133 (1987), 289-296.
[10] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 593-608.
[11] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544.

Jonathan Poelhuis, Alberto Torchinsky
Department of Mathematics
Indiana University
Bloomington, IN 47405 , U.S.A.
E-mail: jpoelhui@umail.iu.edu torchins@indiana.edu


[^0]:    2010 Mathematics Subject Classification: Primary 42B25; Secondary 46E30.
    Key words and phrases: medians, local sharp maximal function.

