
STUDIA MATHEMATICA 213 (3) (2012)

Medians, continuity, and vanishing oscillation

by

Jonathan Poelhuis and Alberto Torchinsky (Bloomington, IN)

Abstract. We consider properties of medians as they pertain to the continuity and
vanishing oscillation of a function. Our approach is based on the observation that medians
are related to local sharp maximal functions restricted to a cube of Rn.

In considering the problem of the resistance of materials to certain types
of deformations, F. John was led to the study of quasi-isometric mappings.
The setting is essentially as follows. Let Q0 ⊂ Rn be a cube and f a con-
tinuous function on Q0. Assume that to each subcube Q of Q0 with sides
parallel to those of Q0 there is assigned a constant cQ and let µQ be the
function of the real variable M given by

µQ(M) =
|{y ∈ Q : |f(y)− cQ| > M}|

|Q|
.

Let φ(M) = supQ⊂Q0
µQ(M), 0 < s < 1/2, and λ a number such that

φ(λ) ≤ s. Then under these assumptions

φ(M) ≤ Ae−BM/λ

holds for all nonnegative M where A,B are universal functions of s and
the dimension n. Thus the space of functions of bounded mean oscillation
(BMO) was introduced and the John–Nirenberg inequality established [5].

Strömberg [11] adopted this setting when studying spaces close to BMO
and discussed different ways of describing the oscillation of a function f on
cubes. He also incorporated the value s = 1/2 above, which corresponds
to the notion of median value mf (Q) = mf (1/2, Q) of f over Q. The local
maximal functions of Strömberg are of particular interest because they allow
for pointwise estimates for Calderón–Zygmund singular integral operators
[4, 6].

In this paper we consider properties of medians as they pertain to the
continuity and vanishing oscillation of a function. Our approach is based on

2010 Mathematics Subject Classification: Primary 42B25; Secondary 46E30.
Key words and phrases: medians, local sharp maximal function.

DOI: 10.4064/sm213-3-3 [227] c© Instytut Matematyczny PAN, 2012



228 J. Poelhuis and A. Torchinsky

the observation that medians are related to local sharp maximal functions
restricted to a cube Q0 ⊂ Rn with parameter 0 < s ≤ 1/2 by means of the
expression

M ],φ
0,s,Q0

f(x) = sup
x∈Q,Q⊂Q0

inf
c

m|f−c|(1− s,Q)

φ(|Q|)

∼ sup
x∈Q,Q⊂Q0

m|f−mf (1−s,Q)|(1− s,Q)

φ(|Q|)
,

where φ equals 1 in the case of functions with bounded median oscillation
with parameter s (bmos), and satisfies appropriate conditions in the case
of functions with vanishing median oscillation with parameter s (vmos).
Strömberg showed that bmos = BMO, and, similarly, we show here that for
sufficiently small s, vmos = VMO, the space of functions of vanishing mean
oscillation. Moreover, since VMO is known to contain bounded discontinuous
functions [8, 10], we complete the picture by giving criteria for continuity of
functions equivalent to a bounded function on a cube in terms of medians.

The paper is organized as follows. In Section 1 we introduce the notions
of median and maximal median with respect to a parameter 0 < s < 1; when
s 6= 1/2 we refer to these medians as biased with parameter s. In Section 2
we consider the a.e. convergence of maximal biased medians in the spirit
of Fujii’s results [3] for s = 1/2. In Section 3, motivated by similar results
involving averages [9], we characterize continuity in terms of maximal bi-
ased medians with parameter > 1/2. In Section 4 we extend the Strömberg
decomposition of cubes to parameters > 1/2. Finally, in Section 5 we con-
sider the spaces of functions with vanishing median oscillation, establish a
John–Nirenberg type inequality they satisfy, and show that, as anticipated,
they coincide with VMO for sufficiently small s.

1. Medians and maximal medians. In what follows we restrict our
attention to cubes with sides parallel to the coordinate axes.

Definition 1.1. For a cube Q ⊂ Rn, 0 < s < 1, and a real-valued
measurable function f on Q we say that mf (s,Q) is a median value of f
over Q with parameter s if

(1.1) |{y ∈ Q : f(y) < mf (s,Q)}| ≤ s|Q|

and

(1.2) |{y ∈ Q : f(y) > mf (s,Q)}| ≤ (1− s)|Q|.

When s = 1/2, mf (1/2, Q) = mf (Q) corresponds to a median value of
f over Q. The set of median values of f is one point or a closed interval as
the example f = χ[1/2,1) on [0, 1] shows. It is therefore convenient to work
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with maximal medians, which are uniquely defined [1, 3]. More precisely, we
have

Definition 1.2. For a cube Q ⊂ Rn, 0 < s < 1, and a real-valued
measurable function f on Q, we say that Mf (s,Q) is the maximal median
of f over Q with parameter s if

Mf (s,Q) = sup{M : |{y ∈ Q : f(y) < M}|} ≤ s|Q|.
The reader will have no difficulty in proving the sup above is assumed,

that is to say,

|{y ∈ Q : f(y) < Mf (s,Q)}| ≤ s|Q|.
To justify the nomenclature of maximal median we verify that Mf (s,Q)

satisfies the conditions that characterize medians. (1.1) is guaranteed since
Mf (s,Q) is the maximum value for which it holds. As for (1.2), let Bn =
{y ∈ Q : f(y) ≥ Mf (s,Q) + 1/n} and note that |Bn| ≤ (1 − s)|Q|, all n,
and {y ∈ Q : f(y) > Mf (s,Q)} ⊂ lim infnBn. Then |{y ∈ Q : f(y) >
Mf (s,Q)}| ≤ lim infn |Bn| ≤ (1− s)|Q|.

Hereafter when considering a median we mean the maximal median and
denote it simply by mf (s,Q). Clearly maximal medians satisfy

(1.3) |{y ∈ Q : f(y) ≤ mf (s,Q)}| ≥ s|Q|
and

(1.4) |{y ∈ Q : f(y) ≥ mf (s,Q)}| ≥ (1− s)|Q|.
We summarize the basic properties of maximal medians that are of in-

terest to us in the following proposition.

Proposition 1.1. Let Q ⊂ Rn be a cube, 0 < s, t < 1, and f, g real-
valued measurable functions on Q. Then the following properties hold:

(i) For s < t,

(1.5) mf (s,Q) ≤ mf (t, Q).

(ii) If f ≤ g a.e., then

(1.6) mf (s,Q) ≤ mg(s,Q).

(iii) For a constant c,

(1.7) mf (s,Q)− c = mf−c(s,Q).

(iv) If f, g ≥ 0 a.e., 0 < s, s1 < 1, and 0 < t < s+ s1 − 1, then

(1.8) mf+g(t, Q) ≤ mf (s,Q) +mg(s1, Q).

(v) In general, m−|f |(s,Q) ≤ mf (s,Q) ≤ m|f |(s,Q). And if mf (s,Q)
≤ 0, then

(1.9) |mf (s,Q)| ≤ m|f |(1− s,Q).
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Thus for general f ,

(1.10) |mf (s,Q)| ≤ m|f |(s,Q), 1/2 ≤ s < 1.

(vi) If f ≥ 0 is locally integrable and fQ denotes the average of f over
Q, then

(1.11) mf (s,Q) ≤ 1

1− s
fQ.

Proof. (i) Since |{y ∈ Q : f(y) < mf (s,Q)}| ≤ s|Q| < t|Q|, (1.5) holds.
(ii) Up to a set of measure zero {y ∈ Q : g(y) < mf (s,Q)} ⊂ {y ∈ Q :

f(y) < mf (s,Q)}. Therefore |{y ∈ Q : g(y) < mf (s,Q)}| ≤ s|Q|, and so
mf (s,Q) ≤ mg(s,Q).

(iii) Since {y ∈ Q : f(y) < mf (s,Q)} = {y ∈ Q : f(y)−c < mf (s,Q)−c}
it readily follows that mf (s,Q) − c ≤ mf−c(s,Q). And since {y ∈ Q :
f(y)−c < mf−c(s,Q)} = {y ∈ Q : f(y) < mf−c(s,Q)+c}, mf−c(s,Q)+c ≤
mf (s,Q). Note that, in particular, mc(s,Q) = c.

(iv) For the sake of argument suppose that f, g are measurable functions
on Q such that mf+g(t, Q) − (mf (s,Q) + mg(s1, Q)) > 2η > 0. Then {y ∈
Q : f(y) < mf (s,Q)+η}∩{y ∈ Q : g(y) < mg(s1, Q)+η} ⊂ {y ∈ Q : f(y)+
g(y) < mf+g(t, Q)}. Now, since |{y ∈ Q : f(y) < mf (s,Q) + η}| ≥ s|Q|,
|{y ∈ Q : g(y) < mg(s1, Q) + η}| ≥ s1|Q|, and |{y ∈ Q : f(y) + g(y) <
mf (t, Q)}| ≤ t|Q|, it readily follows that s + s1 ≤ 1 + t, which is not the
case.

(v) Since −|f | ≤ f ≤ |f |, by (1.6), m−|f |(s,Q) ≤ mf (s,Q) ≤ m|f |(s,Q).
Now, if mf (s,Q) ≤ 0 note that {y ∈ Q : |f(y)| < −mf (s,Q)} = {y ∈ Q :
mf (s,Q) < −|f(y)|} ⊂ {y ∈ Q : mf (s,Q) < f(y)}, and therefore |{y ∈ Q :
|f(y)| < −mf (s,Q)}| ≤ (1−s)|Q|. Consequently, |mf (s,Q)| ≤ m|f |(1−s,Q).
And since for s ≥ 1/2, 1 − s ≤ s, by (1.5) we have |mf (s,Q)| ≤ m|f |(s,Q)
for that range of s.

(vi) We may assume that mf (s,Q) 6= 0. Then by (1.4) and Chebyshev’s
inequality,

(1− s)|Q| ≤ |{y ∈ Q : f(y) ≥ mf (s,Q)}| ≤ 1

mf (s,Q)

�

Q

f(y) dy,

and the conclusion follows.

The restriction 1/2 ≤ s < 1 is necessary for (1.10) to hold. Let Q = [0, 1]
and f(x) = −2χ[0,1/2)(x) + χ[1/2,1)(x); then for 0 < s < 1/2, mf (s,Q) =
−2 but m|f |(s,Q) = 1 < 2. And, in contrast to averages, the restriction
0 < t < s + s1 − 1 is necessary for (1.8) to hold. To see this let Q = [0, 1],
and pick 1/2 < s1 ≤ s < 1, and t = s + s1 − 1 > 0. If f = χ[0,1−s] and
g = χ[1−s1,2(1−s1)], {y ∈ Q : f(y) + g(y) < 1} = (1− s, 1− s1)∪ (2(1− s1), 1]
has measure (s− s1) + 1−2(1− s1) = t, and therefore, although mf (s,Q) =
mg(s1, Q) = 0, mf+g(t, Q) = 1.
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Finally, maximal medians can be expressed in terms of distribution func-
tions or nonincreasing rearrangements. Recall that the nonincreasing rear-
rangement f∗ of f at level λ > 0 is given by f∗(λ) = inf{α > 0 : |{x ∈ Rn :
|f(x)| > α}| ≤ λ} and satisfies

(1.12) |{y ∈ Rn : |f(y)| > f∗(u)}| ≤ u, u > 0.

We then have

Proposition 1.2. Let Q ⊂ Rn be a cube, 0 < s < 1, and f a measurable
function on Q. Then

m|f |(1− s,Q) = inf{α > 0 : |{y ∈ Q : |f(y)| > α}| < s|Q|} = (fχQ)∗(s|Q|).

Proof. Let α = inf{α > 0 : |{y ∈ Q : |f(y)| > α}| < s|Q|}. Then for all
ε > 0 it readily follows that |{y ∈ Q : |f(y)| ≤ α + ε}| > (1 − s)|Q|, which
together with (1.3) implies m|f |(1− s,Q) ≤ α+ ε. Thus m|f |(1− s,Q) ≤ α.

Next, by (1.12), |{y ∈ Q : |f(y)| > (fχQ)∗(s|Q|)}| ≤ s|Q|, which gives
α ≤ (fχQ)∗(s|Q|).

Finally, since for ε > 0, |{y ∈ Q : |f(y)| > (fχQ)∗(s|Q|)− ε}| > s|Q|, by
(1.2) it readily follows that (fχQ)∗(s|Q|) − ε < m|f |(1 − s,Q), and conse-
quently (fχQ)∗(s|Q|) ≤ m|f |(1− s,Q).

Other equivalent expressions appearing in the literature include those
in [2].

2. Convergence of medians. The examples following Proposition 1.1
suggest that medians rely more heavily on the distribution of the values of f
than do averages. On the other hand, averages and medians are not always
at odds. In particular, using (1.11) the reader should have no difficulty in
verifying that the following version of the Lebesgue differentiation theorem
holds: If f is a locally integrable function on Rn and 1/2 ≤ s < 1, then

lim
x∈Q,Q→x

mf (s,Q) = f(x)

at every Lebesgue point x of f .

Thus, in some sense mf (s,Q) is a good substitute for fQ for small Q.
In fact, a more careful argument gives that the biased maximal medians
mf (s,Q) of an arbitrary measurable function f converge to f a.e., a fact
observed by Fujii [3] for the case s = 1/2.

Theorem 2.1. Let f be a real-valued, finite a.e. measurable function
on Rn, and 0 < s < 1. Then

(2.1) lim
x∈Q,Q→x

mf (s,Q) = f(x) a.e.

In particular, (2.1) holds at every point of continuity x of f .



232 J. Poelhuis and A. Torchinsky

Proof. For k ≥ 1 and an integer j, let Ek,j = {x ∈ Rn : (j − 1)/2k ≤
f(x) < j/2k}, ak,j = (j − 1)/2k, and put Sk(x) =

∑∞
j=−∞ ak,jχEk,j

(x).
Note that since f is finite a.e., Rn =

⋃
k,j Ek,j except possibly for a set

of measure 0, and when f(x) is finite we have 0 ≤ f(x) − Sk(x) ≤ 2−k,
which gives mSk

(s,Q) ≤ mf (s,Q) ≤ mSk
(s,Q) + 2−k for all cubes Q. Let

Ak,j = {x ∈ Ek,j : x is a point of density for Ek,j}, Ak =
⋃∞
j=−∞Ak,j . Since

f is finite a.e., |Rn \Ak| = 0 for all k, and if A =
⋃∞
k=1Ak, also |Rn \A| = 0.

We claim that the limit in question exists for x ∈ A. Given ε > 0, pick
k such that 2−k+1 < ε. Then x ∈ Ak,j for some j, and

lim
x∈Q,Q→x

|Ak,j ∩Q|
|Q|

= 1.

Let δ = max{s, 1 − s} and note that for all cubes Q with small enough
measure containing x,

|Ak,j ∩Q|
|Q|

> δ.

We restrict our attention to such small cubes Q containing x. Note that
for these cubes mSk

(s,Q) = ak,j . Indeed, on the one hand, since Sk(y) = ak,j
for y ∈ Ak,j , |{y ∈ Q : Sk(y) < ak,j}| ≤ |Ack,j ∩ Q| < s|Q|, and therefore
ak,j ≤ mSk

(s,Q). And, on the other, since for ε > 0, {y∈Q : Sk(y)<ak,j+ε}
⊃ Ak,j ∩Q, it follows that |{y ∈ Q : Sk(y) < ak,j + ε}| ≥ |Ak,j ∩Q| ≥ s|Q|.
Hence, mSk

(s,Q) ≤ ak,j + ε, and since ε is arbitrary, mSk
(s,Q) ≤ ak,j .

Then, since ak,j = mSk
(s,Q) = Sk(x) for x ∈ Ak,j ,

|mf (s,Q)− f(x)| ≤ |mf (s,Q)−mSk
(s,Q)|+ |mSk

(s,Q)− f(x)|
≤ 2−k + (f(x)− Sk(x)) ≤ 2−k+1 < ε.

In other words, |mf (s,Q)−f(x)| < ε for x ∈ A and all Q with small enough
measure containing x.

Now, at a point of continuity x of f , given ε > 0, let δ > 0 be such
that |f(y)− f(x)| ≤ ε for y ∈ B(x, δ). Then for y in a cube Q containing x
and contained in B(x, δ) we have −ε ≤ f(y) − f(x) ≤ ε, and consequently
−ε = m−ε(s,Q) ≤ mf−f(x)(s,Q) = mf (s,Q)− f(x) ≤ mε(s,Q) = ε, hence
|mf (s,Q)− f(x)| ≤ ε.

3. A median characterization for continuity. We say that a mea-
surable function f on a cube Q0 ⊂ Rn is equivalent to a continuous function
on Q0 if the values of f can be modified on a set of Lebesgue measure 0 so as
to coincide with a continuous function on Q0; similarly for f equivalent to a
bounded function on a cube. In this section we characterize those measurable
functions equivalent to a bounded function on a cube that are equivalent to
a continuous function on that cube in terms of medians, keeping in mind
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that in the case of locally integrable functions the condition involves the
consideration of oscillations involving two nonoverlapping cubes [9].

Definition 3.1. For 0 < s < 1 and nonoverlapping cubes Q1, Q2 ⊂ Rn,
let

Ψs(f,Q1, Q2) =
|Q1|

|Q1 ∪Q2|
mf (s,Q1) +

|Q2|
|Q1 ∪Q2|

mf (s,Q2),

and

Ω(f, s, δ) = sup
diam(Q1∪Q2)≤δ

inf
c
Ψs(|f − c|, Q1, Q2).

Ψs is a weighted average of maximal medians of f in the spirit of averages
and Ω(f, s, δ) is related to the oscillation of a measurable function on a cube,
as shown by the following result.

Theorem 3.1. Let Q0 ⊂ Rn be a cube, 1/2 < s < 1, f a measurable
function on Q0 that is equivalent to a bounded function there, and ω(f, δ),
δ > 0, the essential modulus of continuity of f defined by

ω(f, δ) = sup
|h|≤δ

(
ess sup
x,x+h∈Q0

|f(x+ h)− f(x)|
)
.

Then we have Ω(f, s, δ) = ω(f, δ)/2.

Proof. For nonoverlapping cubes Q1, Q2 ⊂ Q0, let

Θ = ess osc(f,Q1 ∪Q2) = ess sup
Q1∪Q2

f − ess infQ1∪Q2f.

Let δ > 0. If x ∈ Q1 ∪Q2 ⊂ Q0 is such that x+ h ∈ Q0 where |h| ≤ δ, since

ess sup
x,x+h∈Q0

|f(x+ h)− f(x)| ≥ ess sup
Q1∪Q2

f − ess inf
Q1∪Q2

f,

taking the sup over |h| ≤ δ it readily follows that ω(f, δ) ≥ Θ. Moreover,
since for y ∈ Q1 and an arbitrary constant c,

|f(y)− c| ≤ max
{

ess sup
Q1∪Q2

f − c, c− ess inf
Q1∪Q2

f
}
,

picking c = (sup infQ1∪Q2 f + ess infQ1∪Q2 f)/2, it follows that |f(y) − c| ≤
Θ/2, and, consequently, m|f−c|(s,Q1) ≤ mΘ/2(s,Q1) = Θ/2; similarly we
have m|f−c|(s,Q2) ≤ Θ/2. Therefore,

inf
c
Ψs(|f − c|, Q1, Q2) ≤

|Q1|
|Q1 ∪Q2|

Θ

2
+

|Q2|
|Q1 ∪Q2|

Θ

2
=
Θ

2
,

and consequently Ω(f, s, δ) ≤ Θ/2 ≤ ω(f, δ)/2.

Conversely, let 0 < t < 2s− 1. Then for fixed δ > 0, given ε > 0, pick h
with |h| < δ such that ess supx,x+h∈Q0

|f(x+ h)− f(x)| ≥ ω(f, δ)− ε. Then
E = {x ∈ Q0 : x+ h ∈ Q0 and |f(x+ h)− f(x)| ≥ ω(f, δ)− ε} has positive
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measure. Let x ∈ E be a point of density of E and a small enough so that
Q(x, a), Q(x+ h, a) are nonoverlapping and

|E ∩Q(x, a)|
|Q(x, a)|

> 1− t.

Now, since {y ∈ Q(x + h, a) : g(y) < M} = {y ∈ Q(x, a) : g(y + h) < M}
and |Q(x, a)| = |Q(x+h, a)|, it readily follows that m|f−c|(s,Q(x+h, a)) =
m|f(·+h)−c|(s,Q(x, a)), and consequently, since |f(y+h)−f(y)|≤|f(y+h)−c|
+ |f(y)− c|, by (1.8) and (1.6), m|f−c|(s,Q(x, a)) +m|f−c|(s,Q(x+ h, a)) ≥
m|f−c|+|f(·+h)−c|(t, Q(x, a)) ≥ m|f(·+h)−f |(t, Q(x, a)). Therefore,

Ψs(|f − c|, Q(x, a), Q(x+ h, a))

≥ 1

2
m|f−c|(s,Q(x, a)) +

1

2
m|f−c|(s,Q(x+ h, a))

≥ 1

2
m|f(·+h)−f |(t, Q(x, a)).

Finally, since |E ∩ Q(x, a)| = |{y ∈ Q(x, a) : |f(y + h) − f(y)| ≥
ω(f, δ)− ε}| > (1− t)|Q(x, a)|, it readily follows that m|f(·+h)−f |(t, Q(x, a))
≥ ω(f, δ) − ε, which, since ε is arbitrary, implies Ψs(|f − c|, Q(x, a),
Q(x + h, a)) ≥ ω(f, δ)/2. Thus Ω(f, s, δ + (

√
2a)n) ≥ ω(f, δ), and letting

a→ 0, Ω(f, s, δ) ≥ ω(f, δ)/2.

Theorem 3.2. Let Q0 ⊂ Rn be a cube, 1/2 < s < 1, and f a measurable
function on Q0 that is equivalent to a bounded function there. Then f is
equivalent to a continuous function on Q0 iff limη→0+ Ω(f, s, η) = 0.

The proof follows at once from Theorem 3.1. Note that by Proposition
1.2 the conclusion can also be stated in terms of rearrangements.

4. A decomposition of cubes. Strömberg’s essential tool in dealing
with the oscillation of functions and local maximal functions is a decompo-
sition of cubes [11]. In this section we extend the results to biased medians
with parameters > 1/2.

We begin by introducing the local sharp maximal function restricted to
a cube.

Definition 4.1. Let Q0 ⊂ Rn and 0 < s ≤ 1/2. For a measurable
function f on Q0, the local sharp maximal function restricted to Q0 of f ,
written M ]

0,s,Q0
f(x), is defined at x ∈ Q0 as

(4.1)

M ]
0,s,Q0

f(x) = sup
x∈Q,Q⊂Q0

inf
c

inf{α ≥ 0 : |{y ∈ Q : |f(y)− c| > α}| < s|Q|}.

When Q0 = Rn, M ]
0,s,Rnf(x) = M ]

0,sf(x) denotes the local sharp maximal
function of f at x ∈ Rn.
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The range 0 < s ≤ 1/2 is necessary since for s > 1/2, M ]
0,s,Qf(x) = 0

for a function f that takes two different values.

Local maximal functions, as well as maximal functions defined in terms
of rearrangements, can be expressed in terms of medians. Let ωs(f,Q) =
infc((f − c)χQ)∗(s|Q|). Then by Proposition 1.2,

M ]
0,s,Q0

f(x) = sup
x∈Q,Q⊂Q0

ωs(f,Q) = sup
x∈Q,Q⊂Q0

inf
c
m|f−c|(1− s,Q).

The first expression above is used by Lerner [6, 7].

An efficient choice for c in the infimum above is m|f−mf (1−s,Q)|(1−s,Q).
Indeed, for Q ⊂ Q0 and a constant c, since 1− s ≥ 1/2, by (1.7) and (1.10),

(4.2) |mf (1− s,Q)− c| ≤ m|f−c|(1− s,Q).

Then, since |f(y)−mf (1− s,Q)| ≤ |f(y)− c|+ |c−mf (1− s,Q)|, by (1.5),
(1.7), and (4.2),

m|f−mf (1−s,Q)|(1− s,Q) ≤ m|f−c|(1− s,Q) + |c−mf (1− s,Q)|
≤ m|f−c|(1− s,Q) +m|f−c|(1− s,Q) = 2m|f−c|(1− s,Q),

and consequently

inf
c
m|f−c|(1− s,Q) ≤ m|f−mf (1−s,Q)|(1− s,Q)(4.3)

≤ 2 inf
c
m|f−c|(1− s,Q).

The decomposition of cubes relies on three lemmas which we prove next.

Lemma 4.1. Let Q ⊂ Rn be a cube, 0 < s ≤ 1/2, 1/2 ≤ t ≤ 1 − s, and
f a measurable function on Q. Then for any η > 0,

(4.4) |{y ∈ Q : |f(y)−mf (t, Q)| ≥ 2 inf
x∈Q

M ]
0,s,Qf(x) + η}| < s|Q|.

Proof. For fixed c, let α(c) = m|f−c|(1− s,Q). Then by (4.2) and (1.5),

(4.5) |mf (t, Q)− c| ≤ m|f−c|(t, Q) ≤ m|f−c|(1− s,Q) = α(c),

and by (1.4),

(4.6) |{y ∈ Q : |f(y)− c| ≥ α(c) + ε}| < s|Q|, ε > 0.

Let m = infc α(c) and pick {ck} such that m ≤ α(ck) ≤ m+ 1/k, all k.
Then by (4.5),

|f(y)− ck| ≥ |f(y)−mf (t, Q)| − |mf (t, Q)− ck|
≥ |f(y)−mf (t, Q)| − α(ck),

and consequently, since 2m + η ≥ α(ck) + (η − 2/k), {y ∈ Q : |f(y) −
mf (t, Q)| ≥ 2m + η} ⊂ {y ∈ Q : |f(y) − ck| ≥ α(ck) + εk}, where we
have chosen k sufficiently large so that εk = η − 2/k > 0. Then by (4.6),
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|{y ∈ Q : |f(y)−mf (t, Q)| > 2m+η}| < s|Q|. Finally, since M#
0,s,Qf(x) ≥ m

for all x ∈ Q, (4.4) holds.

Lemma 4.2. Let Q ⊂ Rn be a cube, 0 < s ≤ 1/2, 1/2 ≤ t ≤ 1−s, η > 0,
and f a measurable function on an open cube containing Q. Then for any
family of cubes {Qε} with (1− ε)Q ⊂ Qε ⊂ (1 + ε)Q,

lim sup
ε→0+

|mf (t, Q)−mf (t, Qε)| ≤ 2 inf
x∈Q

M ]
0,s,Qf(x) + η.

Proof. Let A = infx∈QM
]
0,s,Qf(x). For the sake of argument assume

there is a sequence εk → 0 such that |mf (t, Q) −mf (t, Qεk)| > 2A + η for
all k. Then by (1.10),

2A+ η < |mf (t, Q)−mf (t, Qεk)| ≤ m|f−mf (t,Q)|(t, Qεk),

and consequently, by (1.4),

(4.7) |{y ∈ Qεk : |f(y)−mf (t, Q)| > 2A+ η}| ≥ (1− t)|Qεk |.

Since Qεk ⊂ (1 + εk)Q, the left-hand side of (4.7) is bounded above by

|{y ∈ (1 + εk)Q : |f(y)−mf (t, Q)| > 2A+ η}|
≤ ((1 + εk)

n − 1)|Q|+ |{y ∈ Q : |f(y)−mf (t, Q)| > 2A+ η}|,
and since (1− εk)Q ⊂ Qεk , the right-hand side of (4.7) is bounded below by

(1− t)(1− εk)n|Q|.
Combining these estimates it follows that

|{y ∈ Q : |f(y)−mf (t, Q)| > 2A+η}| ≥ ((1−t)(1−εk)n−((1+εk)
n−1))|Q|.

Now, by (4.4) there exists δ > 0 such that |{y ∈ Q : |f(y)−mf (t, Q)| ≥
2A+ η}| = (s− δ)|Q|, and so

s− δ ≥ ((1− t)(1− εk)n − ((1 + εk)
n − 1)).

Thus, letting k →∞ implies s− δ ≥ 1− t ≥ s, which is not the case.

Lemma 4.3. Let Q0, Q1 ⊂ Rn be cubes with Q0 ⊂ Q1 and |Q1| ≤ 2k|Q0|
for some integer k, 0 < s ≤ 1/2, 1/2 ≤ t ≤ 1 − s, and f a measurable
function on Q1. Then

(4.8) |mf (t, Q0)−mf (t, Q1)| ≤ 10k inf
x∈Q0

M ]
0,s,Q1

f(x).

Proof. By the triangle inequality it suffices to prove the case k = 1. Let
A = infx∈Q0 M

]
0,s,Q1

f(x). For the sake of argument suppose that (4.8) does

not hold. Then if A > 0, by Lemma 4.2, for any fixed 0 < η < A/2, there
exists a cube Q2 such that Q0 ⊂ Q2 ⊂ Q1 and

|mf (t, Q2)−mf (t, Q0)| > 4A+ 2η, |mf (t, Q2)−mf (t, Q1)| > 4A+ 2η.
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And if A = 0, then |mf (t, Q0)−mf (t, Q1)| > 0 and there exists a cube Q2

such that Q0 ⊂ Q2 ⊂ Q1 and

|mf (t, Q2)−mf (t, Q0)| > 2η, |mf (t, Q2)−mf (t, Q1)| > 2η

for η sufficiently small.
Thus in both cases the sets {y ∈ Qk : |f(y) − mf (t, Qk)| ≤ 2A + η},

k = 0, 1, 2, are pairwise disjoint subsets of Q1, and consequently

{y ∈ Q0 : |f(y)−mf (t, Q0)| ≤ 2A+ η}
∪ {y ∈ Q2 : |f(y)−mf (t, Q2)| ≤ 2A+ η}

⊂ {y ∈ Q1 : |f(y)−mf (t, Q1)| > 2A+ η}.

Therefore, since infx∈Qk
M ]

0,s,Qk
f(x) ≤ A for k = 0, 1, 2, by Lemma 4.1,

(1− s)|Q0|+ (1− s)|Q2| < s|Q1|.
Thus 2(1− s)|Q0| < s|Q1| < 2s|Q0|, and consequently 1 < 2s, which is not
the case.

We are now ready to consider the decomposition of cubes relative to
medians.

Proposition 4.1. Let Q ⊂ Rn be a cube, 0 < s ≤ 1/2, 1/2 ≤ t ≤ 1− s,
δ, β > 0, and f a measurable function on Q. Then if |mf (t, Q)| ≤ δ, there
exists a (possibly empty) family {Qk} of nonoverlapping dyadic subcubes
of Q so that

(1) Qk 6⊂ {y ∈ Q : M ]
0,s,Qf(y) > β},

(2) δ < |mf (t, Qk)| ≤ δ + 10nβ,

(3) |f(x)| ≤ δ for a.e. x ∈ Q \ ({y ∈ Q : M#
0,s,Qf(y) > β} ∪

⋃
kQk).

Proof. If M ]
0,s,Qf(y) > β for all y ∈ Q we pick {Qk} as the empty family.

Otherwise subdivide Q dyadically into 2n subcubes and note that by Lemma
4.3, for each dyadic subcube Q′, |mf (t, Q′)| ≤ δ + 10n infx∈Q′ M ]

0,s,Qf(x).

Thus for each of these subcubes Q′ one of the following holds:

(a) Q′ ⊂ {y ∈ Q : M ]
0,s,Qf(y) > β}: we discard Q′.

(b) Q′ satisfies conditions (1) and (2) above: we collect this Q′.

(c) Q′ 6⊂ {y ∈ Q : M ]
0,s,Qf(y) > β} but |mf (t, Q′)| ≤ δ: we subdivide Q′

and continue in this fashion.

Finally, a.e. x ∈ Q \ ({y ∈ Q : M ]
0,s,Qf(y) > β} ∪

⋃
kQk) is contained in

arbitrarily small cubes {Qk(x)} containing x so that |mf (t, Qk(x))| ≤ δ. By
Theorem 2.1 it readily follows that |f(x)| ≤ δ for a.e. such x.

We can be more precise in the description of the cubes above when
M ]

0,s,Qf ∈ L∞(Q). Observe that f −mf (t, Q) satisfies mf−mf (t,Q)(t, Q) = 0

and M ]
0,s,Qf(x) = M ]

0,s,Q(f −mt(t, Q))(x) for all x ∈ Q, which means that
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the decomposition for f − mf (t, Q) holds for any δ > 0. Let {Qj} and
{Qk} denote the families of cubes obtained from the decomposition with

parameters β ≥ ‖M ]
0,s,Qf‖L∞(Q) and δ1 = 4β + 2η and δ2 = 2δ1 + 10nβ,

respectively.
Observe that by construction we have

⋃
kQk ⊂

⋃
j Qj . To see this con-

sider a dyadic subcube Q′ of Q that has not been discarded; this depends
on β and not on δ1 or δ2. If Q′ is a Qj , then δ1 < |mf−mf (t,Q)(t, Q

′)| ≤
δ1 + 10nβ < δ2 and Q′ is not a Qk. So any Qk contained in Q′ arises from
subsequent subdivisions of Q′. On the other hand, if Q′ is not a Qj , then
|mf−mf (t,Q)(t, Q

′)| ≤ δ1 < δ2 and Q′ is not a Qk either. Since this relation
is maintained at every level of the successive dyadic subdivisions, the Qk’s
arise from subdivisions of Qj ’s.

From here on the argument proceeds as in Lemma 4.3. Note that

δ1 < |mf−mf (t,Q)(t, Qj)| = |mf (t, Qj)−mf (t, Q)| ≤ δ1 + 10nβ = δ2 − δ1,
and

δ2 < |mf−mf (t,Q)(t, Qk)| = |mf (t, Q)−mf (t, Qk)|.
Therefore,

|mf (t, Qj)−mf (t, Qk)| ≥ |mf (t, Qk)−mf (t, Q)| − |mf (t, Qj)−mf (t, Q)|
> δ2 − (δ2 − δ1) = δ1 = 4β + 2η.

Thus it readily follows that the sets {y ∈ Q : |f(y)−mf (t, Q)| ≤ 2β+η},
{y ∈ Qj : |f(y)−mf (t, Qj)| ≤ 2β + η}, and {y ∈ Qk : |f(y)−mf (t, Qk)| ≤
2β + η} are nonoverlapping, and so

(4.9) {y ∈ Qj : |f(y)−mf (t, Qj)| ≤ 2β + η}
∪ {y ∈ Qk : |f(y)−mf (t, Qk)| ≤ 2β + η}

⊂ {y ∈ Q : |f(y)−mf (t, Q)| > 2β + η}.

Now, since infx∈Qj M
]
0,s,Qj

f(x) ≤ β for each Qj , by (4.4) it follows that

(1− s)
∑
j

|Qj | ≤
∑
j

|{y ∈ Qj : |f(y)−mf (t, Qj)| ≤ 2β + η}|,

and a similar estimate holds with the Qk’s in place of the Qj ’s. Finally, since
the sets on the left-hand side of (4.9) are pairwise disjoint for all j and k,

and since
⋃
kQk ⊂

⋃
j Qj and infx∈QM

]
0,s,Qf(x) ≤ β, by Lemma 4.1,

2
∑
k

|Qk| ≤
∑
k

|Qk|+
∑
j

|Qj | ≤
s

1− s
|Q|,

and consequently, since 2(1− s) ≥ 1,

(4.10)
∑
k

|Qk| ≤
s

2(1− s)
|Q| ≤ s|Q|.
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5. Vanishing median oscillation. We say that a measurable func-
tion f defined on a cube Q0 ⊂ Rn is of vanishing median oscillation with
parameter s in Q0 (vmos(Q0)) if

φs(u) = sup
Q⊂Q0, |Q|≤u

inf
c
m|f−c|(1− s,Q)

satisfies limu→0+ φs(u) = 0.
Note that by (1.11),

inf
c
m|f−c|(1− s,Q) ≤ 1

s

1

|Q|

�

Q

|f(y)− fQ| dy,

and therefore limu→0+ φs(u) = 0 for all s whenever f ∈ VMO(Q0). Here we
show that the spaces actually coincide for s ≤ 2−n.

Now, φs is a nonnegative, nondecreasing continuous function that van-
ishes at the origin, and vmos may be described in terms of such functions φ
as follows. Let

‖f‖s,φ,Q0 = sup
Q⊂Q0

inf
c

m|f−c|(1− s,Q)

φ(|Q|)
∼ sup

Q⊂Q0

m|f−mf (1−s,Q)|(1− s,Q)

φ(|Q|)
,

and bmos,φ(Q0) = {f : f is defined and measurable on Q0, and ‖f‖s,φ,Q0

<∞}. Then vmos(Q0) =
⋃
φ bmos,φ(Q0).

Now fix Q0 and 0 < s ≤ 1/2n. Let φ : R+ → R+ be continuous, nonde-
creasing, and φ(0) = 0, and define Ψ|Q0| : [0, 2n|Q0|]→ R+ by

(5.1) Ψ|Q0|(u) =

2n|Q0|�

u

φ(v)

v
dv.

We can then prove a strengthened version of the John–Nirenberg inequality.

Theorem 5.1. Let f ∈ bmos,φ(Q0) for some φ as above and Ψ|Q0|(u) be
given by (5.1). Then there exist constants c1, c2 independent of f and of all
subcubes Q ⊂ Q0 so that

(5.2)
|{y ∈ Q : |f(y)−mf (1− s,Q)| > λ}| ≤ c1Ψ−1|Q|(c2λ/‖f‖s,φ,Q), λ > 0.

Proof. If ‖f‖s,φ,Q0 = 0, clearly M ]
0,s,Q0

f(x) = 0 for all x ∈ Q0 and by
Lemma 4.3, the medians of f over all subcubes of Q0 are constant. Then
by Theorem 2.1, f is a.e. constant, and the conclusion holds in this case.
Otherwise, since ‖f − c‖s,φ,Q0 = ‖f‖s,φ,Q0 and ‖cf‖s.φ,Q0 = |c| ‖f‖s,φ,Q0 for
all constants c, we may assume that ‖f‖s,φ,Q0 = 1 and mf (1 − s,Q0) = 0.
Then by (4.3),

m|f−mf (1−s,Q)|(t, Q) ≤ 2φ(|Q|) ≤ 2φ(|Q0|) for all Q ⊂ Q0,

and consequently ‖M ]
0,s,Q0

f‖L∞(Q0) ≤ 2φ(|Q0|). Pick now β0 = 2φ(|Q0|),
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and note that since φ(u) > 0 for u > 0, δ0 = (10n+9)β0 works in Proposition

4.1 and in the comments that follow it. Since |{y ∈ Q0 : M ]
0,s,Q0

f(y) > β0}|
= 0 we get a (first-generation) family {Q1

j} of nonoverlapping subcubes
of Q0 so that

(1) δ0 < |mf (t, Q1
j )| ≤ δ0 + 10nβ0 for all j,

(2) |f(x)| ≤ δ0 for a.e.x ∈ Q0 \
⋃
j Q

1
j , and

(3)
∑

j |Q1
j | ≤ s|Q0|.

Now we fix one cube Q1
j of this family, which for simplicity we denote Q1,

and define g = f −mf (t, Q1). Note that mg(t, Q
1) = 0 and g −mg(t, Q) =

f −mf (t, Q) for all Q ⊂ Q1. Then as above m|g−mg(t,Q)|(t, Q) ≤ 2φ(|Q|) for

all Q ⊂ Q1, and thus ‖M ]
0,s,Q1g‖L∞(Q1) ≤ 2φ(|Q|) = 2φ(|Q0|/2n).

We then pick (first-generation) parameters β1 = 2φ(|Q0|/2n) and δ1 =

(10n + 9)β1, which gives |{y ∈ Q1 : M ]
0,s,Q1g(y) > β1}| = 0. As before, we

get a (second-generation) nonoverlapping family {Q2
j} ⊂ Q1 so that

(1) δ1 < |mg(t, Q
2
j )| ≤ δ1 + 10nβ1 for all j,

(2) |g(x)| ≤ δ1 for a.e.x ∈ Q1 \
⋃
j Q

2
j , and

(3)
∑

j |Q2
j | ≤ s|Q1|.

We can keep control of the cubes we are gathering and f . Indeed, clearly∑
j

|Q2
j | ≤ s

∑
k

|Q1
k| ≤ s2|Q0|.

And as for f , we notice that for a.e.x ∈ Q1 \
⋃
j Q

2
j ,

|f(x)| ≤ |f(x)−mf (t, Q1)|+ |mf (t, Q1| = |g(x)|+ |mf (t, Q1)|
≤ δ1 + δ0 + 10nβ0 ≤ (20n+ 9)(β0 + β1).

Continuing in this fashion, the computation becomes clear: Having se-
lected the (k − 1)st generation of subcubes {Qk−1}, we then select a kth
generation of subcubes so that

(1) with βj = 2φ(|Q0|/2nj) and δj = (10n+9)βj , 0 ≤ j ≤ k−1, we have

|f(x)| ≤ (10n + 9)
∑k−1

j=0 δj + 10n
∑k−2

j=0 βj ≤ (20n + 9)
∑k−1

j=0 βj for

a.e.x ∈ Qk−1 \
⋃
j Q

k
j , and

(2)
∑

j |Qkj | ≤ sk|Q0|.

This is all that is needed. Suppose first that limu→0+ Ψ|Q0|(u) =∞. Then,
for λ > 2(20n+9)φ(|Q0|), let k be the largest integer with the property that

2(20n + 9)
∑k−1

j=0 φ(|Q0|/2nj) < λ and observe that by (1) above {y ∈ Q0 :

|f(y)| > λ} ⊂
⋃
j Q

k
j , and so by (2) above |{y ∈ Q0 : |f(y)| > λ}| ≤ sk|Q0|.
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Furthermore, by this choice of k we have

λ < 2(20n+9)

k∑
j=0

φ(|Q0|/2nj) ≤
2(20n+ 9)

n ln(2)

2n|Q0|�

|Q0|/2kn
φ(u)

du

u
= cΨ|Q0|

(
|Q0|
2kn

)
where c = 2(20n+ 9)/n ln(2).

So,
|Q0|
2kn
≤ Ψ−1|Q0|(c2λ), c2 =

n ln(2)

2(4 + 10n)
.

Therefore,

|{y ∈ Q0 : |f(y)| > λ}| ≤ sk|Q0| ≤
|Q0|
2kn
≤ Ψ−1|Q0|(c2λ),

as we wanted to show.

And, for λ ≤ 2(20n+9)φ(|Q0|), pick c1 so that |Q0| ≤ c1Ψ−1|Q0|(c2λ); since

{y ∈ Q0 : |f(y)| > λ} ⊂ Q0, the conclusion holds. Clearly the argument
works for all Q ⊂ Q0.

Finally, in case limu→0+ Ψ|Q0|(u) <∞, the above argument works for all
integers k, and therefore f is an essentially bounded function on Q0 that
satisfies (5.2). A more thorough argument shows that f is equivalent to an
essentially Lipschitz function on Q0 [10].

It is now straightforward that if f ∈ vmos(Q0), then f ∈ VMO(Q0).
Pick φ such that f ∈ bmos,φ,Q0 . Then by integrating (5.2) with respect to
λ it follows that for all subcubes Q ⊂ Q0,

�

Q

|f(y)−mf (1− s,Q)| dy =

∞�

0

|{y ∈ Q : |f(y)−mf (1− s,Q)| > λ}| dλ

≤ c1
∞�

0

Ψ−1|Q|(c2λ/‖f‖s,φ,Q0) dλ

≤ c‖f‖s,φ,Q0 |Q|φ(2n|Q|).

Therefore,

sup
Q⊂Q0, |Q|≤u

1

|Q|

�

Q

|f(y)− fQ| dy ≤ cφ(2nu)→ 0

as u→ 0+ and f ∈ VMO(Q0).
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