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Weak type estimates for certain
Calderón–Zygmund singular integral operators

by

Atanas Stefanov (Amherst, MA)

Abstract. We prove weak type (1, 1) estimates for a special class of Calderón–
Zygmund homogeneous kernels represented as l1 sums of “equidistributed” H1 atoms
on S1.

1. Introduction. Let Ω : Sn−1 → C be a complex-valued integrable
function, with mean zero. We consider the Calderón–Zygmund operator de-
fined by

TΩf(x) = lim
ε→0

�

|y|>ε

Ω(y/|y|)
|y|n f(x− y) dy.

The Lp boundedness of TΩ was proved by Calderón–Zygmund [1] under the
optimal size condition

(1)
�

Sn−1

|Ω(θ)|Log+ |Ω(θ)| dθ <∞.

The question of weak type (1, 1) boundedness is more involved (the Lp case
being an easy consequence). Hofmann [6] (when Ω ∈ Lq, q > 1, n = 2) and
Christ–Rubio de Francia [3] (when Ω ∈ LLog+(L), n ≤ 7) proved weak
type bounds for the operator TΩ . It is worth mentioning that the ideas for
these results originated in [2], where similar estimates for the corresponding
maximal function were obtained. Finally, Seeger [7] proved a weak type (1, 1)
result under condition (1) in all dimensions. While as we indicated, (1) is an
optimal size condition, it is far from being necessary. In fact, Coifman and
Weiss [4] and independently Connett [5] proved Lp boundedness of TΩ under
the more general assumption Ω ∈ H1(Sn−1) (see also [8]). This condition
reflects the size as well as the oscillation of the kernel. We will be concerned
here about the following
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Problem. What is the most general assumption on Ω such that the
operator TΩ is of weak type (1, 1), i.e.

(2) ‖TΩf‖L1,∞ ≤ C‖f‖L1?

In particular does (2) hold if Ω ∈ H1(Sn−1)?
We answer this question affirmately for a special class of H1 kernels on

S1. Let

Ω(θ) =
N∑

ν=1

λνaν(θ),

where λν > 0 and aν are H1(S1) atoms. The usual definition of H1(S1)
requires that ‖Ω‖H1 ∼

∑
λν . We consider a special class of H1 kernels

by imposing an extra condition on the structure of the atoms, namely we
want them to be of comparable size and have “almost” disjoint supports.
To be precise, let Iν be the support of aν and eν be the center of the arc Iν .
For simplicity we assign increasing numbers counterclockwise and assume
that e1 = (1, 0). We assume that there exists l ∈ N (which will be fixed
throughout the argument) such that

(1) |aν(θ)| ≤ 2l,
(2) |Iν | ∼ 2−l,
(3) |Iν ∩ Iν′ | ≤ 1

2 min{|Iν |, |Iν′ |}.
Condition (3) above can be rewritten as |eν − eν′ | ≥ c0|ν − ν′|2−l and the
constant c0 will be implicitly present in most of our estimates. In particular
N ≤ 2π2l/c0. We are now ready to state our main result.

Theorem 1. If Ω =
∑N
ν=1 λνaν as above, then

‖TΩf‖L1,∞ ≤ C‖f‖L1

∑

ν

λν ,

where the constant C is independent of N, l, f .

Remarks. • λν > 0 is not a restriction of generality, because we can
always incorporate modulus one numbers in the atoms.
• The LLog+ L theory is largely inapplicable even for single H1 atoms.

The reason is that the proofs never make use of the oscillation properties of
the kernel. In a sense, TΩf is a bilinear operator acting on Ω and f , thus
we ought to decompose f taking into consideration the structure of Ω.

Let us introduce some notations and conventions. We always denote the
Lebesgue measure of some set A by |A|. If Q is a rectangle, then Q∗ will be
used to denote the rectangle with the same center and three times longer
sides. All the sums are with respect to every index present in the sums,
unless otherwise indicated.
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In Section 2 we present a variant of the standard Calderón–Zygmund
decomposition needed for our purposes. In Section 3 we prove Theorem 1
basing on three lemmas dealing with L2 and L1 estimates for the operator.
In the last two sections we demonstrate the technical lemmas used to prove
Theorem 1.

2. Calderón–Zygmund decompositions. Fix λ>0 and a function f .
We will apply the standard decomposition f = g+ b, where g always stands
for a “good” part and b for a “bad” part. In our case, we shall need differ-
ent decompositions in all directions {eν}Nν=1. This way, one gets N different
decompositions, which later on will be used to analyze the operator TΩ .

For every ν ∈ {1, . . . , N}, let Aν be the set of all rectangles with one long
side parallel to eν with length δ and a shorter side of length δ2−l. Define
the uncentered directional maximal function in direction eν by

Mνf(x) = sup
x∈Q∈Aν

1
|Q|

�

Q

|f(y)| dy.

Since the doubling constant for the family Aν is independent of l, we have

(3) ‖Mνf‖L1,∞ ≤ C‖f‖1,
where C is independent of l. Define an exceptional set Eν = {x : |Mνf(x)| >
λ/λν}, ν = 1, . . . , N . Note that |Eν | ≤ ‖f‖1λν/λ by (3). We proceed as
follows:

• Represent Eν as
⋃
iQν,i, where Qν,i ∈ Aν are disjoint and Q∗ν,i∩Ec

ν 6= ∅
for every ν, i.e.

�

Qν,i

|f(y)| dy ≤ C λ

λν
|Qν,i|.

Define

bQν,i(x) =
(
f(x)− 1

|Qν,i|
�

Qν,i

f(y) dy
)
χQν,i(x),

gQν,i(x) =
1
|Qν,i|

( �

Qν,i

f(y) dy
)
χQν,i(x).

• Let Jν = {x : Mf(x) > λ/(
∑
λν)} ∪ ⋃k 6=ν Ek \ Eν . Represent Jν as⋃

Qν,i∈Aν Qν,i, where {Qν,i} are disjoint, and define bQν,i and gQν,i as above.
• For K = R2 \ (

⋃
Eν ∪ {x : Mf(x) > λ/(

∑
λν)}), set g(x) = f(x) for

x ∈ Kν and g(x) = 0 otherwise.

Therefore for every ν ∈ {1, . . . , N} we get a decomposition

f(x) =
∑

i

bQν,i +
∑

i

gQν,i + g =
∑

i

bQν,i + gν + g



4 A. Stefanov

where

(1) � bQν,i = 0,
(2) � |bQν,i | ≤ C(λ/λν)|Qν,i|,

∑
i ‖bQν,i‖1 ≤ C‖f‖1,

(3)
∑ |Qν,i| ≤

∑ |Eν |+ |{x : Mf(x) > λ/(
∑
λν)}| ≤ C∑λν‖f‖1/λ,

(4) ‖gν‖∞ ≤ λ/λν , ‖gν‖1 ≤ ‖f‖1,
(5) ‖g‖∞ ≤ λ/(

∑
λν), ‖g‖1 ≤ ‖f‖1.

Without loss of generality we may and do assume that the sides of the se-
lected cubes are of dyadic sidelength. We will denote by d(Q) the sidelength
of the long side of Q.

3. Proof of Theorem 1. For fixed λ, f , we have

|{x : |TΩf(x)| > λ}| ≤ |{x : |TΩg(x)| > λ/3}|(4)

+
∣∣∣∣
{
x :
∣∣∣∣
∑

ν

λν
aν
|x|2 ∗ gν(x)

∣∣∣∣ > λ/3
}∣∣∣∣

+
∣∣∣∣
{
x :
∣∣∣∣
∑

ν

∑

i

λν
aν
|x|2 ∗ bQν,i(x)

∣∣∣∣ > λ/3
}∣∣∣∣.

Clearly

|{x : |TΩg(x)| > λ/3}| ≤ 9
λ2 ‖TΩ‖

2
2‖g‖

2
2 ≤ C

∑
λν
λ
‖f‖1,

which takes care of the first term. The second term is relatively easy to
handle via L2 estimates (see Lemma 1). The third term on the right hand
side of (4) requires further considerations. Let β : R+ → R be a smooth
function such that

suppβ ⊂ (1/2, 2) and
∑

j∈Z
β(2−jt) = 1 for all t > 0.

Then

K(x) =
Ω(x)
|x|2 =

∑

ν,j

λνaj,ν(x),

where aj,ν = (aν(x)/|x|2)β(2−j|x|). Introduce also smooth functions ψ,Φ :
R→ R such that

(1) suppψ ⊂ (−1, 1) and ψ(t) = 1 for t ∈ (−1/2, 1/2),
(2) suppΦ ⊂ (−2,−1/2) ∪ (1/2, 2)

and

(5)
∑

m≥0

Φ(2−mt) + ψ(t) = 1 for all t ∈ R.
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Define Bj,ν =
∑
d(Qν,i)=2j bQν,i . Thus the third term on the right of (4)

is controlled by

(6)
∣∣∣∣
{
x :
∣∣∣∣
∑

ν

∑

Qν,i

λν
aν
|x|2 ∗ bQν,i(x)

∣∣∣∣ > λ/3
}∣∣∣∣

≤
∣∣∣
{
x :
∣∣∣
∑

j

∑

s>0

∑

ν

λνaj,ν ∗Bj−s,ν(x)
∣∣∣ > λ/6

}∣∣∣

+
∣∣∣
{
x :
∣∣∣
∑

j

∑

s≤0

∑

ν

λνaj,ν ∗Bj−s,ν(x)
∣∣∣ > λ/6

}∣∣∣.

The support of the function in the second expression on the right hand side
of (6) is in a multiple of the exceptional set

⋃
ν Eν and therefore by the prop-

erties of the decomposition we obtain the desired estimate for it. For the first
expression on the right hand side of (6) we will need a further decomposi-
tion of the kernel. Let P sν be a function so that P̂ sν (ξ) = ψ(2l−s/4〈ξ/|ξ|, eν〉).
Convolution with P sν essentially restricts the Fourier transform of the func-
tion to the part of the sphere “almost” orthogonal to eν , as hinted by the
uncertainty principle.

We split the first term on the right of (6) in two parts as follows:

(7)
∣∣∣
{
x :
∣∣∣
∑

j

∑

s>0

∑

ν

λν(aj,ν ∗Bj−s,ν)(x)
∣∣∣ > λ/6

}∣∣∣

≤
∣∣∣
{
x :
∣∣∣
∑

j

∑

s>0

∑

ν

λν(aj,ν ∗ P sν ∗Bj−s,ν)(x)
∣∣∣ > λ/12

}∣∣∣

+
∣∣∣
{
x :
∣∣∣
∑

j

∑

s>0

∑

ν

λν(aj,ν ∗ (δ − P sν ) ∗Bj−s,ν)(x)
∣∣∣ > λ/12

}∣∣∣

It is convenient to handle (4) and the first term on the right of (7) using L2

estimates and the second term on the right of (7) using an L1 estimate. We
need the following lemmas.

Lemma 1. Let {aν} be a collection of atoms of comparable size and
almost disjoint supports as in the statement of Theorem 1. If ‖gν‖22 ≤
λ‖f‖1/λν , then

∥∥∥∥
∑

ν

λν

(
aν(·)
| · |2 ∗ gν

)∥∥∥∥
2

2
≤ Cλ

(∑
λν

)
‖f‖1.

Lemma 2. Let bQν,i be the family of functions obtained in the Calderón–
Zygmund decomposition and

Bj,ν =
∑

Qν,i: d(Qν,i)=2j

bQν,i .
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Then for every s > 0, we have
∥∥∥
∑

j

∑

ν

λν(aj,ν ∗ P sν ∗Bj−s,ν)
∥∥∥

2

2
≤ C2−s/4λ‖f‖1

∑
λν .

Finally, we state the L1 estimate needed to estimate the second term
in (7).

Lemma 3. Let {aν} be a family of atoms as above. Then

‖aj,ν ∗ (δ − P sν )‖1 ≤ C2−s/8.

The proof can be easily finished assuming the validity of these three
lemmas. First, since ‖gν‖22 ≤ ‖gν‖∞‖gν‖1 ≤ λ‖f‖1/λν , by Lemma 1 we
have ∣∣∣∣

{
x :
∣∣∣∣
∑

ν

λν

(
aν(·)
| · |2 ∗ gν

)
(x)
∣∣∣∣ > λ/3

}∣∣∣∣ ≤
9
λ2

∥∥∥∥
∑

ν

λν
aν(·)
| · |2 ∗ gν

∥∥∥∥
2

2

≤ C
∑
λν
λ
‖f‖1.

Next, Lemma 2 yields∣∣∣
{
x :
∣∣∣
∑

j

∑

s>0

∑

ν

λν(aj,ν ∗ P sν ∗Bj−s,ν
)

(x)
∣∣∣ > λ/12

}∣∣∣

≤ 144
λ2

(∑

s>0

∥∥∥
∑

j

∑

ν

λν(aj,ν ∗ P sν ∗Bj−s,ν)
∥∥∥

2

)2

≤ C

λ2

(∑

s>0

2−s/8
(
λ‖f‖1

∑
λν

)1/2)2
≤ C

λ
‖f‖1

∑
λν .

Finally, by Lemma 3 we have∣∣∣
{
x :
∣∣∣
∑

j

∑

s>0

∑

ν

λν(aj,ν ∗ (δ − P sν ) ∗Bj−s,ν)(x)
∣∣∣ > λ/12

}∣∣∣

≤ C

λ

∑

j

∑

s>0

∑

ν

λν‖aj,ν ∗ (δ − P sν )‖1‖Bj−s,ν‖1

≤ C

λ

∑

s>0

2−s/8
∑

j

∑

ν

λν‖Bj−s,ν‖1 ≤
C

λ
‖f‖1

∑

ν

λν .

This concludes the proof of the theorem based on the lemmas.

4. L2 estimates. Consider the disjoint decomposition of R2 into the
cones

Aν = {ξ ∈ R2 : (ν − 1)2−l ≤ |〈e1, ξ/|ξ|〉| ≤ ν2−l}, ν = 1, . . . , 2l.

We will need the following claim.
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Claim 1. If aν is an H1(S1) atom supported in Iν with ‖aν‖∞ ≤ 2l,
|Iν | = 2−l, then for every ξ ∈ Aν′ , ν′ 6= ν, we have

|F(aν(·)/| · |2)(ξ)| ≤ C/(1 + |ν − ν ′|),
where F denotes the Fourier transform.

Proof. According to the explicit formula for the Fourier transform of
homogeneous kernels (see [10], p. 39), we have

F(aν(·)/| · |2)(ξ) =
�

S1
aν(θ)

[
ln
(

1
|〈θ, ξ/|ξ|〉|

)
+
πi

2
sign〈θ, ξ〉

]
dθ.

The above formula makes sense at least in the case aν ∈ H1(S1) and the
estimate by a constant is immediate (via the H1-BMO duality). In partic-
ular, the L2 norm of the corresponding convolution operator is uniformly
bounded. Since � aν = 0, it is easy to see that if ξ ∈ Aν′ , ν′ 6= ν, then

|F(aν(·)/| · |2)(ξ)| ≤
∣∣∣∣

�

S1
aν(θ)

[
ln
(

1
|〈θ, ξ/|ξ|〉|

)
− ln

(
1

|〈eν , ξ/|ξ|〉|

)]
dθ

∣∣∣∣

≤
�
|aν(θ)| ln

(
1 +
〈θ − eν , ξ/|ξ|〉
〈eν , ξ/|ξ|〉

)
dθ ≤ C

1 + |ν − ν′| ,

since |eν − θ| ≤ 2−l and |〈eν , ξ/|ξ|〉| ∼ |ν − ν ′|2−l.

We are now prepared for the proof of Lemma 1.

Proof of Lemma 1. We use the function P 0
ν defined by

P̂ 0
ν (ξ) = ψ(2l〈ξ/|ξ|, eν〉).

Clearly
∥∥∥∥
∑

ν

λν
aν(·)
| · |2 ∗ gν

∥∥∥∥
2

2
≤ 2
∥∥∥∥
∑

ν

λν
aν(·)
| · |2 ∗ P

0
ν ∗ gν

∥∥∥∥
2

2
(8)

+ 2
∥∥∥∥
∑

ν

λν
aν(·)
| · |2 ∗ (δ − P 0

ν ) ∗ gν
∥∥∥∥

2

2
.

By support considerations, P̂ 0
ν P̂

0
ν′ 6= 0 only if |ν − ν ′| ≤ 100/c0. Therefore

by Plancherel’s theorem and Claim 1,
∥∥∥∥
∑

ν

λν
aν(·)
| · |2 ∗ P

0
ν ∗ gν

∥∥∥∥
2

2
≤ C

∑

ν

λ2
ν

∥∥∥∥
aν(·)
| · |2 ∗ gν

∥∥∥∥
2

2

≤ C
∑

ν

λ2
ν‖gν‖22 ≤ C

(∑
λν

)
λ‖f‖1.
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For the second term on the right (8) we use Claim 1, Plancherel’s theorem,
and Cauchy–Schwarz to obtain
∥∥∥∥
∑

ν

λν
aν(·)
| · |2 ∗ (δ − P 0

ν ) ∗ gν
∥∥∥∥

2

2

≤
∑

ν

∑

ν′

λνλν′
�
|ĝν ||ĝν′ |

∣∣∣∣
âν(·)
| · |2

∣∣∣∣
∣∣∣∣
̂aν′(·)
| · |2

∣∣∣∣|1− P̂ 0
ν ||1− P̂ 0

ν′ | dξ

≤ C
∑

ν,ν′,ν′′

λνλν′
�

Aν′′

|ĝν |
1 + |ν′′ − ν′| ·

|ĝν′ |
1 + |ν′′ − ν| dξ

≤ C
∑

ν,ν′′

∑

ν′

λ2
ν

�

Aν′′

|ĝν |2
(1 + |ν′′ − ν′|)2 dξ

+ C
∑

ν,ν′′

∑

ν

λ2
ν′

�

Aν′′

|ĝν′ |2
(1 + |ν′′ − ν|)2 dξ

≤ C
∑

ν

λ2
ν‖gν‖22 ≤

(∑
λν

)
λ‖f‖1.

We turn to the estimate concerning the first term on the right of (8).
We use the TT ∗ tools elaborated in [3], but note that no cancellation of the
atoms aν is needed in the proof, whereas the cancellation of bQν,i is heavily
exploited.

Proof of Lemma 2. Observe that since {eν} are “equidistributed”, each ξ
is contained in no more than C2s/4 sets of the form supp P̂ sν . By Plancherel’s
identity,

∥∥∥
∑

j

∑

ν

λνaj,ν ∗ P sν ∗Bj−s,ν
∥∥∥

2

2
=
∥∥∥
∑

j

∑

ν

λν âj,ν P̂ sν B̂j−s,ν
∥∥∥

2

2

≤
∑

ν

λ2
ν2s/4

∥∥∥
∑

j

aj,ν ∗Bj−s,ν
∥∥∥

2

2
.

Therefore it suffices to prove the following inequality:

(9)
∥∥∥
∑

j

aj,ν ∗Bj−s,ν
∥∥∥

2

2
≤ C2−s/2

λ

λν

∑

j

‖Bj−s,ν‖1

for every ν = 1, . . . , N .
Without loss of generality eν = e1 = (1, 0) and for simplicity we drop

dependence on ν from our notation. All the rectangles that appear below
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will be assumed to be in the family A1. We have
∥∥∥
∑

j

aj ∗Bj−s
∥∥∥

2

2
≤ 2
∣∣∣
∑

i

∑

i≤j
〈aj ∗Bj−s, ai ∗Bi−s〉

∣∣∣

≤ 2
∑

j

‖Bj−s‖1
∑

i≤j
‖ãj ∗ ai ∗Bi−s‖∞.

Thus it suffices to prove
∑
i≤j ‖ãj ∗ ai ∗Bi−s‖∞ ≤ C2−s/2λ/λ1. By dilation,

this is equivalent to the case j = 0, i ≤ 0. Write (ã0 ∗ ai)(y) = 〈Lyi a, ã〉,
where

(10) Lyi a(θ) =
�
a

(
y − tθ
|y − tθ|

)
β(|y − tθ|)
|y − tθ|2 ·

β(2−it)
t

dt.

We see that ã0 ∗ ai ∗Bi−s(0) = 〈Ti,sa, ã〉, where

Ti,sa(θ) =
�
Bi−s(−y)Lyi a(θ) dy =

∑

Q: d(Q)=2i−s

�
bQ(−y)Lyi a(θ) dy.

Since ‖ã‖∞ ≤ 2l and |I| = |supp ã| ≤ 2−l, it suffices to show that

(11)
∑

i≤0

sup
θ∈I
|Ti,sa(θ)| ≤ C2−s/2λ/λ1,

since the general case for ã0 ∗ ai ∗Bi−s(x) follows by translation invariance.
To prove (11), note first that suppy L

y
i a(θ) ⊆ {y : 1≤|y|≤2, |y/|y|−e1|

≤ 21−l}. Set δ = 2−l−s/2. Consider two cases.
In the first case, 1 ≤ |y| ≤ 2, |y/|y| − e1| ≤ δ. Split the rectangles

accordingly in two groups:

C′i = {Q ∈ A1 : d(Q) = 2i−s, Q ∩ {y : 1 ≤ |y| ≤ 2, |y/|y| − e1| ≤ δ} 6= ∅},
C′′i = A1 \ C′i ∩ {Q : d(Q) = 2i−s}.

Since ‖Lyi a‖∞ ≤ C2l we have
∑

i≤0

sup
θ

∣∣∣
∑

Q∈C′i

�
bQ(−y)Lyi a(θ) dy

∣∣∣ ≤
∑

i≤0

∑

Q∈C′i

‖bQ‖1‖L
y
i a‖∞

≤ C2l
λ

λ1

∑

i≤0

∑

Q∈C′i

|Q| ≤ C2l
λ

λ1
δ

= C
λ

λ1
2−s/2,

which gives the estimate in the first case.
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To treat the second case, we need the following

Claim 2. For every θ ∈ supp a, 1 ≤ |y| ≤ 2, δ ≤ |y/|y| − e1| ≤ 2−l, we
have ∣∣∣∣

∂

∂θ
Lyi a(θ)

∣∣∣∣ ≤ C2l−i,
∣∣∣∣
∂

∂θ⊥
Lyi a(θ)

∣∣∣∣ ≤ C2l−iδ−1 = C22l+s/2−i,

where θ⊥ ∈ S1, 〈θ⊥, θ〉 = 0, and ∂/∂θ is the directional derivative in direc-
tion θ.

Proof. By rotation invariance, it suffices to check the Claim for θ = e1,
i.e.

(12)
∣∣∣∣
∂

∂y1
Lyi a(e1)

∣∣∣∣ ≤ C2l−i,
∣∣∣∣
∂

∂y2
Lyi a(e1)

∣∣∣∣ ≤ C2l−iδ−1.

Note that since |y/|y| − e1| > δ, we have |y2| > cδ. Following [3], we make
the change of variables ω = (y − te1)/|y − te1| and differentiate (10) with
respect to y1. Introduce also the inverse Jacobi factor J(ω, y) = |dω/dt| =
|y2|/|y − te1|2. We have

∂

∂y1
Lyi a(e1) =

�
a(ω)

∂

∂y1

(
β(|y − t(ω)e1|)
|y − t(ω)e1|2

· β(2−it(ω))
t(ω)

)
1

J(ω, y)
dω

−
�
a(ω)

β(|y − t(ω)e1|)
|y − t(ω)e1|2

· β(2−it(ω))
t(ω)

· ∂J
∂y1
· 1
J2(ω, y)

dω.

The first term on the right is clearly bounded by 2l−i (by changing coordi-
nates back to t), for the second observe that |∂J/∂y1|/|J | ≤ C/|y−te1| ≤ C,
since |y − te1| ∼ 1. This implies the bound 2l for the second term above.

The second estimate in (12) follows by the same argument, once we
observe that |∂J/∂y2|/|J | ≤ C|y − te1|4/|y2| ≤ C/δ.

We estimate the remaining terms as follows:
∣∣∣
∑

Q∈C′′i

�
bQ(−y)(Lyi a)(θ) dy

∣∣∣ ≤
∑

Q∈C′′i

�
|bQ(−y)| · |Lyi a(θ)− LyQi a(θ)| dy

≤
∑

Q∈C′′i

�
|bQ(−y)| · |Lyi a(θ)− Lyθi a(θ)| dy

+
∑

Q∈C′′i

�
|bQ(−y)| · |Lyθi a(θ)− LyQi a(θ)| dy,

where yQ is the center of Q and yθ is such that yθ − y is parallel to θ, and
yθ − yQ is parallel to θ⊥ and |yθ − yQ| ≤ 2i−s−l, |y − yθ| ≤ 2i−s. This is
possible, because |θ−e1| ≤ 2−l. Thus, according to Claim 2 and the previous
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inequality, we have∣∣∣
∑

i≤0

∑

Q∈C′′i

�
bQ(−y)Lyi a(θ) dy

∣∣∣

≤
∑

i≤0

∑

Q∈C′′i

‖bQ‖1
(

sup
y

∣∣∣∣
∂

∂θ
Lyi a(θ)

∣∣∣∣|y − yθ|+ sup
y

∣∣∣∣
∂

∂θ⊥
Lyi a(θ)

∣∣∣∣|yθ − yQ|
)

≤ λ
∑

i≤0

∑

Q∈C′′i

|Q|(2i+l−s + 2i−s/2+l)/λ1 ≤ C2−s/2λ/λ1.

5. L1 estimates. In this section we prove Lemma 3. The methods are
similar to those in [7], although we need one more decomposition in the
angular variable. In what follows, the mean value zero property of the atoms
will be crucial for us.

Proof of Lemma 3. Without loss of generality, it suffices to consider the
case eν = (1, 0). Using the construction of the function Φ in (5), we write

aj,1 − P s1 ∗ aj,1 =
l−s/4+10∑

m=1

F−1(Φ(2l−s/4−m〈ξ/|ξ|, e1〉)) ∗ aj,1,

where F−1 is the inverse Fourier transform. Introduce also a function γ ∈
C∞0 with supp γ ⊆ (1/2, 2) such that

∑
γ2(2−kξ) = 1. Define L̂k(ξ) =

γ(2−kξ). Thus

aj,1 − P s1 ∗ aj,1 =
∑

k,m

F−1[cm,sj,k ] ∗ Lk,

where
cm,sj,k (ξ) = γ(2−kξ)Φ(2l−s/4−m〈ξ/|ξ|, e1〉)âj,1(ξ).

Next, we claim that

(13) ‖Lk ∗ F−1(Φ(2l−s/4−m〈ξ/|ξ|, e1〉))‖1 ≤ C
uniformly with respect to m,k, s. To show this, observe that the following
Sobolev embedding formula holds:

‖ĥ‖1 ≤ C
∑

|α|≤2

‖∂αhQ‖2,

where hQ(x) := h(Qx) and Q is a nonsingular linear transformation. Con-
sider then a linear transformation Ak,m such that

ξ = Ak,mη = (2k−l+s/4+mη1, 2kη2).

To prove (13), it suffices to demonstrate

‖∂αη [L̂kΦ(2l−s/4−m〈·/| · |, e1〉)(Ak,mη)]‖
2
≤ Cα
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for every multiindex α ∈ N2. It is not difficult to see that this is the case
(see Lemma 2.2 in [7] for a similar calculation). Thus by (13) and since

� a1(θ) dθ = 0, we have

‖F−1[cm,sj,k ] ∗ Lk‖1 ≤ C‖Lk ∗ aj,1‖1
= C

� ∣∣∣
�
Lk(x− y)a1(y)β(2−j|y|)|y|−2 dy

∣∣∣dx

≤ C
� � �

sup
θ
|Lk(x− rθ)− Lk(x− re1)| · |a1(θ)|β(2−jr)r−1 dr dθ dx

≤ C2j−l‖∇Lk‖1 ≤ C2k+j−l.

For large k, we need a more refined estimate. Again by Sobolev embedding
we have

‖F−1[Φ(2l−s/4−m〈ξ/|ξ|, e1〉)γ2(2−kξ)âj,1]‖1
≤
∑

|α|≤2

∥∥∥∥
∂

∂ηα
[Φ(2l−s/4−m〈·/| · |, e1〉)γ2(2−k·)âj,1(·)(Ak,mη)]

∥∥∥∥
2
.

Observe that the function has compact support ⊂ {η : |η| ≤ 10} and there-
fore the derivatives of Φ and γ with respect to η are bounded by a universal
constant. Furthermore, the L2 norm is dominated by the L∞ norm. Notice
also that if Φ(2l−s/4−m〈ξ/|ξ|, e1〉)γ(2−kξ) 6= 0, then |〈ξ/|ξ|, e1〉| ∼ 2m+s/4−l,
|ξ| ∼ 2k and thus |〈ξ, θ〉| ∼ 2m+k+s/4−l for all θ ∈ supp a1, since m, s > 0.
Having made these observations, we proceed to bound the corresponding
derivatives of âj,1. We have

âj,1(Ak,mη) =
�
a1(θ)

�
r−1β(2−jr) exp(−ir(θ12k−l+s/4+mη1+θ22kη2)) dr dθ.

After differentiating α times in η and integrating by parts three times (in r)
we get

∂

∂ηα
âj,1(Ak,mη) =

�
a1(θ)

1
(−i〈θ,Ak,mη〉)3

�
∂3
r (r−1β(2−jr))(−ir)|α|

× (θ12k+m−l+s/4)α1(θ22k)α2 exp(−ir〈θ,Ak,mη〉) dr dθ.
Thus, taking into account that |〈θ,Ak,mη〉| ∼ 2m+k+s/4−l and |θ2| ≤ 2−l we
obtain∥∥∥∥

∂

∂ηα
âj,1(Ak,mη)

∥∥∥∥
∞
≤ C

23(k+j−l+m+s/4)
(2j+k+m−l+s/4 + 2k+j−l)|α|.

Since |α| ≤ 2, we finally arrive at

‖F−1[Φ(2l−s/4−m〈ξ/|ξ|, e1〉)γ2(2−kξ)âj,1]‖1 ≤
C

2k+j−l+m+s/4
.

Thus, the needed estimate for large k is proved. We now have to combine



Weak type estimates for Calderón–Zygmund operators 13

the two estimates to obtain the final statement of Lemma 3. We have
∥∥∥
∑

k,m

F−1[cm,sj,k ] ∗ Lk
∥∥∥

1
≤

l−s/4+10∑

m=1

∑

k: k+j−l≤−s/8−m/2
‖F−1[cm,sj,k ] ∗ Lk‖1

+
l−s/4+10∑

m=1

∑

k:k+j−l≥−s/8−m/2
‖F−1[cm,sj,k ] ∗ Lk‖1

≤ C
l−s/4+10∑

m=1

2−s/8−m/2 ≤ C2−s/8.

Acknowledgements. I am indebted to Loukas Grafakos for initiating
me into this problem.
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