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A transplantation theorem for
ultraspherical polynomials at critical index

by

J. J. Guadalupe (Logroño) and V. I. Kolyada (Odessa)

Abstract. We investigate the behaviour of Fourier coefficients with respect to the sys-
tem of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz
space Lλ corresponding to the left endpoint of the mean convergence interval. The ul-
traspherical coefficients {c(λ)

n (f)} of Lλ-functions turn out to behave like the Fourier
coefficients of functions in the real Hardy space ReH1. Namely, we prove that for any
f ∈ Lλ the series

∑∞
n=1 c

(λ)
n (f) cosnθ is the Fourier series of some function ϕ ∈ ReH1

with ‖ϕ‖ReH1 ≤ c‖f‖Lλ .

1. Introduction. Let I = [−1, 1], 0 < λ < ∞ and dmλ(x) =
(1−x2)λ−1/2 dx. Denote by {ϕ(λ)

n }∞n=0 the normalized system of ultraspher-
ical polynomials, that is, the orthonormal system in L2(I,mλ) obtained
from {xn}∞n=0 by the Gram–Schmidt process. It is well known (see [18],
[19]) that {ϕ(λ)

n } is a basis in Lp(I,mλ) if and only if pλ < p < p′λ, where
pλ = (2λ + 1)/(λ + 1) (for any p ∈ (1,∞), by p′ we denote its conjugate
exponent, p′ = p/(p− 1)).

Let f ∈ L1(I,mλ) and

(1.1) an(f) =
�

I

f(x)ϕ(λ)
n (x) dmλ(x).

Form a cosine series with these coefficients:

(1.2)
∞∑

n=1

an(f) cosnθ,

and consider the following problem. Suppose that f belongs to some Lorentz

2000 Mathematics Subject Classification: 42C10, 33C45, 42A50.
Key words and phrases: transplantation, Fourier coefficients, orthogonal polynomials,

Hardy spaces, Lorentz spaces.
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space Lp,r(I,mλ). What conditions imply that the series (1.2) is the Fourier
series of a 2π-periodic integrable function ϕ and what class does ϕ belong
to?

Observe that “transplantation” problems of such type and their applica-
tions have been studied in a lot of works (see [1–3], [8], [17]). Our interest in
these problems was motivated by estimations of Fourier coefficients (1.1). It
can be easily proved that if f ∈ Lp,r(I,mλ), pλ < p < 2, then {an(f)} ∈ lq′,r,
where q = p/[(2−p)λ+1] (See Section 4 below). The related transplantation
theorem follows immediately from the results of Askey and Wainger [2] (see
also Lemma 2).

Theorem A. Given f ∈ Lp,r(I,mλ) (λ > 0, pλ < p < 2, r ≥ 1),
the series (1.2) is the Fourier series of some function ϕ ∈ Lq,r[0, 2π],
q = p/[(2− p)λ+ 1], such that

‖ϕ‖Lq,r ≤ c‖f‖Lp,r(mλ).

It is well known that for any function ϕ ∈ Lq,r[0, 2π] (1 < q < 2,
r > 0) the sequence of its trigonometric Fourier coefficients belongs to lq

′,r

(see [9], [21]).
The situation changes in the critical case p = pλ. Using the asymptotic

formula for ultraspherical polynomials (see [10, Proposition 2.3]), it is easy
to deduce that for 1 ≤ s ≤ ∞,

‖ϕ(λ)
n ‖Lp′λ,s ≥ c(lnn)1/s (c > 0).

The uniform boundedness principle then implies that for any r > 1 there
exists f ∈ Lpλ,r(I,mλ) whose sequence of Fourier coefficients with respect
to {ϕ(λ)

n } is unbounded (see also [5], [15], [18]). On the other hand, it follows
from the asymptotic formula that for any function f ∈ Lpλ,1(I,mλ),

|an(f)| ≤ c‖f‖Lpλ,1(mλ),

which in turn implies that an(f) → 0. Moreover, we prove that for each
f ∈ Lpλ,1(I,mλ),

(1.3)
∞∑

n=0

|an(f)|
n+ 1

≤ c‖f‖Lpλ,1(mλ) (λ > 0).

The known transplantation theorems cannot be applied to the limiting
case p = pλ, r = 1. Formally, in this case Theorem A should give the
corresponding function ϕ belonging to L1[0, 2π]. But it is well known that
for ϕ ∈ L1[0, 2π] the series

(1.4)
∑

n∈Z

|ϕ̂(n)|
|n|+ 1

, ϕ̂(n) =
1

2π

2π�

0

ϕ(θ)e−inθ dθ,
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may diverge. At the same time, by Hardy’s theorem, the series (1.4) con-
verges for any ϕ ∈ ReH1.

Recall that ReH1 is the real Hardy space of all 2π-periodic functions
ϕ ∈ L1[0, 2π] such that the conjugate function ϕ̃ also belongs to L1[0, 2π];
the norm in ReH1 is defined by

‖ϕ‖ReH1 = ‖ϕ‖1 + ‖ϕ̃‖1.
The main result of this paper is the following theorem.

Theorem 1. Let f ∈ Lpλ,1(I,mλ), 0 < λ < ∞, and let {an(f)} be the
sequence of Fourier coefficients of f with respect to the system {ϕ(λ)

n }. Then
the series (1.2) is the Fourier series of some function ϕ ∈ ReH1 such that

‖ϕ‖ReH1 ≤ c‖f‖Lpλ,1(mλ).

To prove this theorem we use Mehler’s integral representation of ultra-
spherical polynomials and Weyl’s fractional integrals.

Notice that the series
∞∑

n=1

a∗n(f)
n

,

where f ∈ Lpλ,1(I,mλ) and {a∗n(f)} is the non-increasing rearrangement
of {an(f)}, may diverge (see Section 4). At the same time, applying
L1-estimates of exponential sums [12], [14] and Theorem 1, we immediately
obtain the following analogue of Littlewood’s conjecture.

Corollary. Given λ > 0, there exists a constant Aλ > 0 such that for
any set of positive integers n1 < . . . < nN ,

∥∥∥
N∑

k=1

ϕ(λ)
nk

∥∥∥
Lpλ,1(mλ)

≥ Aλ logN.

2. Auxiliary propositions. First we recall the definition of the Lorentz
space (see [4]). Let (R,µ) be a measure space with a finite measure µ. The
non-increasing rearrangement of a µ-measurable function f defined on R
will be denoted by f∗µ. The Lorentz space Lp,r(R,µ) (1 ≤ p, r <∞) consists
of all f such that

‖f‖p,r ≡
( µ(R)�

0

[t1/pf∗µ(t)]r
dt

t

)1/r

<∞.

Let f ∈ Lp,r(I,mλ), 0 < λ < ∞. Consider the measure µλ in [0, π] de-
fined by dµλ(θ) = (sin θ)2λ dθ. Set h(θ) = f(cos θ), θ ∈ [0, π]. It is easy to see
that f∗mλ(t) = h∗µλ(t). Thus, ‖f‖Lp,r(I,mλ) = ‖h‖Lp,r([0,π],µλ). Furthermore,
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we have (see (1.1))

an(f) =
π�

0

h(θ)ϕ(λ)
n (cos θ) dµλ(θ).

It will be more convenient to consider the function h(θ) instead of f(x).
Also, we define

Lλ = Lpλ,1([0, π], µλ)
(

0 ≤ λ <∞, pλ =
2λ+ 1
λ+ 1

)
.

Lemma 1. Let 0 ≤ α < β. Then for any measurable set E ⊂ [0, π],

(2.1) µα(E) ≤ 8[µβ(E)](2α+1)/(2β+1).

Proof. Let τ = µ0(E) ≡ |E|. Then

µβ(E) =
�

E

(sinx)2β dx ≥ 2
τ/2�

0

(sinx)2β dx ≥ τ2β+1

(2β + 1)π2β .

Thus, |E| ≤ 8[µβ(E)]1/(2β+1). Using this estimate, for 0 < α < β we have

µα(E) =
�

E

(sinx)2α dx ≤
( �

E

(sinx)2β dx
)α/β

|E|(β−α)/β

≤ 8[µβ(E)](2α+1)/(2β+1).

The lemma is proved.

In what follows we will write f∗α instead of f∗µα .

Lemma 2. Let σ > 0, 0 ≤ α < β and p = 2(β − α)/σ. Suppose that f
is a measurable function on [0, π] and ϕ(x) = f(x)(sinx)σ. Then

(2.2) ϕ∗α(t) ≤ c′
(

1
t

π�

ctγ

f∗β(u)p du
)1/p

, 0 < t ≤ π,

where γ = (2β + 1)/(2α+ 1) and c, c′ are some positive constants. Further-
more, if f ∈ Lβ and σ = β − α, then ϕ ∈ Lα and

(2.3) ‖ϕ‖Lα ≤ C‖f‖Lβ .
Proof. Let 0 < t < 1/4 and let Et ⊂ [0, π] be a measurable set such that

µβ(Et) = tγ and

{x ∈ [0, π] : |f(x)| > f∗β(tγ)} ⊂ Et ⊂ {x ∈ [0, π] : |f(x)| ≥ f∗β(tγ)}.
Set ft(x) = f(x)χ[0,π]\Et(x). Then (see [4], p. 49)

π�

0

|ft(x)|p dµβ(x) =
π�

tγ

f∗β (u)p du.
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By (2.1), µα(Et) ≤ 8t. Setting ϕt(x) = ft(x)(sinx)σ, we have
π�

0

|ϕt(x)|p dµα(x) =
�

[0,π]\Et
|ϕ(x)|p dµα(x)

≥
π�

µα(Et)

ϕ∗α(u)p du ≥
π�

8t

ϕ∗α(u)p du.

Taking into account that
π�

0

|ϕt(x)|p dµα(x) =
π�

0

|ft(x)|p dµβ(x),

we obtain

tϕ∗α(9t)p ≤
π�

8t

ϕ∗α(u)p du ≤
π�

tγ

f∗β (u)p du,

which implies (2.2).
Let now σ = β−α. Using (2.2) and standard estimates (see [4], p. 217),

we get

ϕ∗α(t) ≤ c′
(

1
t

π�

ctγ

f∗β (u)2 du

)1/2

≤ c′′t−1/2
π�

ctγ/2

f∗β(u)
du√
u
.

From this the inequality (2.3) follows immediately.

Now we will consider some results related to fractional integrals.
Let ϕ ∈ L1[0, 2π] and 0 < α < 1. The Weyl fractional integrals of order

α of the function ϕ are defined by the equality (see [20], §19)

I
(α)
± ϕ(x) =

1
2π

2π�

0

Ψ
(α)
± (x− t)ϕ(t) dt,

where

(2.4) Ψ
(α)
+ (t) = ψα(t) + rα(t), −2π < t ≤ 2π,

with ψα(t) = 2π|t|α−1χ(0,∞)(t)/Γ (α) (t ∈ R) and rα(t) ∈ C∞(−2π, 2π];
furthermore,

(2.5) Ψ
(α)
− (t) = Ψ

(α)
+ (−t).

Lemma 3. Let g ∈ L1[0, a] (0 < a ≤ π), 0 < λ < 1, α ∈ R,

G(x) = eiαx
a�

x

(y − x)λ−1g(y) dy, 0 ≤ x ≤ a,
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G(x) = 0 for a < x < 2π, and G(x + 2π) = G(x). Then there exists
ϕ ∈ L1[0, 2π] such that

(2.6) ‖ϕ‖1 ≤ c‖g‖1
and for almost all x ∈ [0, 2π],

G(x) = A0 + I
(λ)
− ϕ(x).

Proof. It is easy to see that

(2.7)
a�

0

|G(x)|x−λ dx ≤ c‖g‖1.

Let

Φ(x) ≡ I(1−λ)
− G(x) =

1
2π

π�

−π
Ψ

(1−λ)
− (x− y)G(y) dy

=
1

Γ (1− λ)

π�

x

G(y)(y − x)−λ dy +
1

2π

a�

0

r1−λ(y − x)G(y) dy

≡ Φ1(x) + Φ2(x), x ∈ [−π, π]

(see (2.4), (2.5)). The function Φ is periodic with period 2π. The lemma will
be proved if we show that Φ is absolutely continuous in [−π, π] and ϕ = −Φ′
satisfies (2.6) (see [20], p. 348).

Observe that Φ2 is infinitely differentiable on [−π, π] and

(2.8) ‖Φ′2‖∞ ≤ c‖G‖1 ≤ c′‖g‖1.
Now consider the function Φ1. For x ∈ [−π, 0) we have

Φ1(x) =
1

Γ (1− λ)

π�

0

G(y)(y − x)−λ dy

and, by (2.7),

(2.9)
0�

−π
|Φ′1(x)| dx ≤ 1

Γ (1− λ)

π�

0

|G(x)|x−λ dx ≤ c‖g‖1.

Let now x ∈ [0, a). Then

Φ1(x) =
1

Γ (1− λ)

a�

x

g(y)s(x, y) dy,

where

s(x, y) =
1�

0

ξ−λ(1− ξ)λ−1eiα(x+ξ(y−x)) dξ.
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We have |s′x(x, y)| ≤ c and therefore

Φ′1(x) ≤ c (|g(x)|+ ‖g‖1), x ∈ [0, a),

and

(2.10)
a�

0

|Φ′1(x)| dx ≤ c‖g‖1.

Note also that Φ1(x) = 0 for x ∈ [a, π] and by (2.10), Φ1 is continuous at
a. Thus, Φ1 is absolutely continuous in [−π, π]. Moreover, it follows from
(2.8)–(2.10) that ‖Φ′‖1 ≤ c‖g‖1. The lemma is proved.

Similarly, we have

Lemma 4. Let g ∈ L1[0, a] (0 < a ≤ π), 0 < λ < 1, α ∈ R,

H(x) = eiαx
x�

0

(y − x)λ−1g(y) dy, 0 ≤ x ≤ a,

H(x) = 0 for a < x < 2π, and H(x + 2π) = H(x). Then there exists
ψ ∈ L1[0, 2π] such that

‖ψ‖1 ≤ c‖g‖1
and for almost all x ∈ [0, 2π],

H(x) = B0 + I
(λ)
+ ψ(x).

Lemma 5. Let λ ≥ 1 and ϕ be a measurable function in an interval [0, a],
(0 < a ≤ π) such that

(2.11)
a�

0

|ϕ(x)|xλ−1 dx <∞.

Let

Gλ(x) =
a�

x

ϕ(y)(cosx− cos y)λ−1 dy, 0 ≤ x ≤ a.

Then:

(i) for any 0 ≤ k ≤ [λ]− 1, the derivative G
(k)
λ is bounded in (0, a];

(ii) if λ ≥ 2, then for any odd k ≤ [λ]− 1,

lim
x→+0

G
(k)
λ (x) = 0.

Proof. First suppose that ϕ is an arbitrary locally integrable function
in (0, a]. We will show that for any integer ν ≥ 2 there exists a constant
Cν > 0 such that for all λ ∈ [ν, ν + 1), 1 ≤ k ≤ ν − 1 and x ∈ (0, a),

|G(k)
λ (x)| ≤ Cνx

a�

x

|ϕ(y)|y2λ−k−3 dy if k is odd,(2.12)



58 J. J. Guadalupe and V. I. Kolyada

|G(k)
λ (x)| ≤ Cν

a�

x

|ϕ(y)|y2λ−k−2 dy, if k is even.(2.13)

We have

G′λ(x) = (1− λ) sinx
a�

x

ϕ(y)(cosx− cos y)λ−2 dy = (1− λ)Gλ−1(x) sinx.

Hence

|G′λ(x)| ≤ (λ− 1)x
a�

x

|ϕ(y)|(1− cos y)λ−2 dy ≤ (λ− 1)x
a�

x

|ϕ(y)|y2λ−4 dy,

and therefore, for any ν ≥ 2 and k = 1, the inequality (2.12) holds. If ν ≥ 3
and k ≥ 2, then for any λ ∈ [ν, ν + 1),

G
(k)
λ (x) = (1− λ)

k−1∑

j=0

(
k − 1
j

)
sin
(
x+ (k − 1− j)π

2

)
G

(j)
λ−1(x).

Applying induction, we easily derive inequalities (2.12) and (2.13).
Now, assume that the condition (2.11) holds. It implies that Gλ is con-

tinuous in [0, a]. Further, the statements (i) and (ii) follow immediately from
(2.12) and (2.13). The proof is complete.

Lemma 6. Let α ∈ R and

Kα(x, y) =
(

cosx− cos y
sin y

)α
, 0 ≤ x < y ≤ π/2.

Then there exist numbers d0 > 1 and c0 > 0 such that for 0 ≤ x < y ≤ π/2,

(2.14) Kα(x, y) = (y − x)α
[
1 +

∞∑

n=1

An(y)(y − x)n
]
,

where

(2.15) |An(y)| ≤ c0(d0y)−n, 0 < y ≤ π/2.
Proof. Let

µθ(z) =
z − sin z

z
+

1− cos z
z

cot θ (z ∈ C, z 6= 0).

Setting |z| = %, we have (for % < 2)
∣∣∣∣
z − sin z

z

∣∣∣∣ ≤
%2

6

∞∑

n=0

(
%2

20

)n
=

10%2

3(20− %2)
,

∣∣∣∣
1− cos z

z

∣∣∣∣ ≤
%

2

∞∑

n=0

(
%2

12

)n
=

6%
12− %2 .
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Thus, for 0 < θ ≤ π/2,

|µθ(z)| ≤ 10%2

3(20− %2)
+

6%
12− %2 cot θ.

Setting d0 =
√

10/π, we can easily see that

(2.16) sup
0≤θ≤π/2

sup
|z|=d0θ

|µθ(z)| < 1.

We have
cosx− cos y = z sin y [1− µy(z)], z = y − x.

Set
ψy(z) = [1− µy(z)]α, |z| ≤ d0y, 0 ≤ y ≤ π/2.

This is an analytic function for |z| ≤ d0y (see (2.16)). Thus,

ψy(z) = 1 +
∞∑

n=1

An(y)zn,

where

An(y) =
1

2πi

�

|z|=d0y

ψy(z)
zn+1 dz.

From this we immediately obtain the estimate (2.15). The equality (2.14)
also holds, and the proof is complete.

3. Transplantation theorem. By H1 we denote the space of all
complex-valued 2π-periodic functions f ∈ L1[0, 2π] such that

f̂(n) ≡ 1
2π

2π�

0

f(x)e−inx dx = 0 for all n < 0.

The norm in H1 is defined by

‖f‖H1 =
2π�

0

|f(x)| dx.

It is well known that a complex-valued function f ∈ L1[0, 2π] with
� 2π
0 Im f(x) dx = 0 belongs to H1 if and only if R̃e f = Im f ; in this case

both Re f and Im f belong to ReH1.
The proof of Theorem 1 (for non-integer λ) is based on the following

main lemma.

Lemma 7. Let f ∈ Lλ (0 < λ < 1), 0 < a < π and α ∈ R. Set

(3.1) F (x) =
a�

x

(y − x)λ−1f(y)(sin y)λ dy, 0 ≤ x ≤ a,
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and

(3.2) cn =
nλ

2π

a�

0

F (x)e−i(n+α)x dx, n ∈ N.

Then there exists a function Φ ∈ H1 such that

(3.3) cn = Φ̂(n) for all n ∈ N
and

(3.4) ‖Φ‖H1 ≤ c‖f‖Lλ .
Proof. Set F (x) = 0 for a < x < 2π and extend F to the whole line with

period 2π. Define g(x) = f(x)(sinx)λ, x ∈ [0, π]. By Lemma 2, g ∈ L1[0, π]
and

(3.5) ‖g‖1 ≤ c‖f‖Lλ .
Let G(x) = e−iαxF (x). By Lemma 3, there exists ϕ ∈ L1[0, 2π] such that

(3.6) G(x) = A0 + I
(λ)
− ϕ(x)

almost everywhere in [0, 2π] and (see (3.5))

(3.7) ‖ϕ‖1 ≤ c‖f‖Lλ .
By (3.2), we have cn = nλĜ(n) (n ∈ N). On the other hand, by (3.6) (see
[20], p. 348),

(3.8) Ĝ(n) = ϕ̂(n)|n|−λ exp
(
λπi

2
signn

)
(n ∈ Z, n 6= 0).

Therefore,

(3.9) ϕ̂(n) = e−iλπ/2cn, n ∈ N.
Now we will show that the function G can also be represented by a frac-

tional integral of a “conjugate” type. We will use the following observation.
Consider a singular integral operator

(Sv)(x) =
1
π

lim
ε→+0

( x−ε�

0

+
a�

x+ε

) v(y)
y − x dy, x ∈ (0, a),

where v ∈ L1[0, a]. Further, define the linear operator

(Tu)(x) = x−2λ(Sv)(x), v(x) = u(x)x2λ (x ∈ (0, a))

for u ∈ L1([0, a], µλ) (0 < λ < 1). If 1 < p < (2λ + 1)/(2λ), then
−1 < 2λ(1 − p) and the operator S is bounded in Lp([0, a], x2λ(1−p) dx)
(see [20], p. 200). Thus, for 1 < p < (2λ+ 1)/(2λ),

( a�

0

|(Tu)(x)|p dµλ(x)
)1/p

≤ cp
( a�

0

|u(x)|p dµλ(x)
)1/p

.
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By interpolation, T is bounded in Lpλ,1([0, a], µλ) ≡ Lλ,

(3.10) ‖Tu‖Lλ ≤ c‖u‖Lλ .
Now for any h ∈ L1[0, a] and x ∈ [0, a] define

Jλ+h(x) =
1

Γ (λ)

x�

0

(x− y)λ−1h(y) dy,

Jλ−h(x) =
1

Γ (λ)

a�

x

(y − x)λ−1h(y) dy.

We have F (x) = Γ (λ)Jλ−g(x). Note that it is sufficient to prove the lemma
in the case when f is bounded (the general case then follows by standard
arguments). Under this assumption we have the equality (see [20], p. 206)

(3.11) Jλ−g(x) = Jλ+g(x) cosλπ + Jλ+g(x) sinλπ,

where g(x) = x−λ(Sv)(x), v(x) = xλg(x) (x ∈ [0, a]). Define f(x) =
g(x)(sinx)−λ. By (3.10), ‖f‖Lλ ≤ c‖f‖Lλ . Lemma 2 shows that g ∈ L1[0, a]
and

(3.12) ‖g‖1 ≤ c‖f‖Lλ .
Now, setting h(x) = g(x) cosλπ+ g(x) sinλπ and using (3.5) and (3.12), we
find that h ∈ L1[0, a] and

(3.13) ‖h‖1 ≤ c‖f‖Lλ .
Furthermore, in view of (3.11),

F (x) =
x�

0

(x− y)λ−1h(y) dy, 0 ≤ x ≤ a.

Using Lemma 4, we obtain

G(x) = A0 + I
(λ)
+ ψ(x) a.e. in [0, 2π],

where ψ ∈ L1[0, 2π] and

(3.14) ‖ψ‖1 ≤ c‖f‖Lλ .
Thus,

(3.15) Ĝ(n) = ψ̂(n)|n|−λ exp
(
−λπi

2
signn

)
(n ∈ Z, n 6= 0).

and

(3.16) ψ̂(n) = eλπi/2cn, n ∈ N.
Set now

Φ(x) = i(2 sinλπ)−1[ϕ(x)e−λπi/2 − ψ(x)eλπi/2].
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Then Φ ∈ L1[0, 2π] and, by (3.7) and (3.14),

‖Φ‖1 ≤ c‖f‖Lλ .
Furthermore, applying (3.8), (3.9), (3.15) and (3.16), we have

Φ̂(n) = cn (n ∈ N) and Φ̂(n) = 0 (n ≤ 0).

Thus, Φ ∈ H1 and Φ satisfies the conditions (3.3) and (3.4). The proof is
complete.

Now we will prove the main theorem. By Mehler’s formula (see [6],
p. 177),

(3.17) ϕ(λ)
n (cos θ) = tn(λ)(sin θ)1−2λ

θ�

0

cos(n+ λ)ϕ
(cosϕ− cos θ)1−λ dϕ

for every θ ∈ [0, π] and λ > 0, where

tn(λ) =
22λ−1/2Γ (λ+ 1/2)

πΓ (2λ)

(
(n+ λ)Γ (n+ 2λ)

Γ (n+ 1)

)1/2

(3.18)

= cλn
λ +O(nλ−1).

Theorem 1. Let λ > 0, f ∈ Lλ and

an(f) =
π�

0

f(x)ϕ(λ)
n (cosx) dµλ(x).

Then the series

(3.19)
∞∑

n=1

an cosnx

is the Fourier series of some function ϕ ∈ ReH1such that

(3.20) ‖ϕ‖ReH1 ≤ c‖f‖Lλ .
Proof. First we suppose that f(x) = 0 for x ∈ (π/2, π]. Set g(x) =

f(x)(sinx)λ. By Lemma 2, g ∈ L1[0, π]. Using (3.17), we get

an = tn(λ)
π/2�

0

f(x) sinx dx
x�

0

cos(n+ λ)y (cos y − cosx)λ−1 dy(3.21)

= tn(λ)
π/2�

0

F (x) cos(n+ λ)x dx,

where

F (x) =
π/2�

x

g(y)K(x, y) dy, K(x, y) =
(

cosx− cos y
sin y

)λ−1
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(0 ≤ x < y ≤ π/2). By Lemma 6,

K(x, y) = (y − x)λ−1
[
1 +

∞∑

n=1

An(y)(y − x)n
]
,

where, for some d0 > 1,

(3.22) |An(y)| ≤ c0(d0y)−n, 0 < y ≤ π/2.
Thus,

F (x) =
π/2�

x

g(y)(y − x)λ−1 dy +
∞∑

n=1

Qn(x),

where

Qn(x) =
π/2�

x

g(y)An(y)(y − x)n+λ−1 dy.

Set

ξ0(y) = g(y)An(y), ξk+1(y) = −
π/2�

y

ξk(y) dy (k = 0, 1, . . .).

Applying (n− 1)-fold integration by parts to the integral Qn(x), we get

Qn(x) = (n+ λ− 1) . . . λ
π/2�

x

(y − x)λ−1ξn−1(y) dy.

Thus,

(3.23) F (x) =
π/2�

x

(y − x)λ−1h(y) dy,

where h(y) is defined by

h(y) = g(y) +
∞∑

n=1

(n+ λ− 1) . . . λξn−1(y).

It remains to observe that

ξn−1(y) =
1

(n− 1)!

π/2�

y

(z − y)n−1g(z)An(z) dz,

which we again obtain by integration by parts. Thus,

(3.24) h(x) = g(x) +
∞∑

k=1

(k + λ− 1) . . . λ
(k − 1)!

π/2�

x

(y − x)k−1g(y)Ak(y) dy.
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Taking into account (3.22), we obtain

(3.25) |h(x)| ≤ |g(x)|+ c

π/2�

x

|g(y)|
y

dy, x ∈ [0, π/2].

Set f0(x) = h(x)(sinx)−λ, x ∈ (0, π/2] (f0(x) = 0 for x ∈ (π/2, π]). We will
show that f0 ∈ Lλ. We have

|f0(x)| ≤ |f(x)|+ cψ(x),

where

ψ(x) = x−λ
π/2�

x

|f(y)|yλ−1 dy.

For any measurable set E ⊂ [0, π/2] with µλ(E) = t we have supE >
t1/(2λ+1). Thus,

ψ∗λ(t) ≤ t−λ/(2λ+1)
π/2�

t1/(2λ+1)

|f(y)|yλ−1 dy.

It follows that

‖ψ‖Lλ =
π/2�

0

t1/pλψ∗λ(t) dt/t ≤ c
π/2�

0

|f(y)|yλ dy ≤ c′‖f‖Lλ .

Thus,

(3.26) ‖f0‖Lλ ≤ c‖f‖Lλ .
We now return to the equality (3.21). Observe that

F (x) =
π/2�

x

f(y) sin y (cosx− cos y)λ−1 dy

and the function ϕ(x) = f(x) sinx satisfies the condition (2.11). Let
λ = ν + γ, where ν ≥ 0 is an integer and 0 < γ ≤ 1. Applying ν-fold
integration by parts to the integral on the right hand side of (3.21) and
using Lemma 5, we obtain

(3.27) an = (−1)ν
tn(λ)

(n+ λ)ν

π/2�

0

F (ν)(x) cos((n+ λ)x− νπ/2) dx.

On the other hand, from (3.23),

F (ν)(x) = (−1)ν(λ− 1) . . . (λ− ν)
π/2�

x

(y − x)γ−1h(y) dy.
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Let f(x) = f0(x)(sinx)ν . Then, by Lemma 2 and (3.26), f ∈ Lγ and

(3.28) ‖f‖Lγ ≤ c‖f‖Lλ .
Moreover, h(x) = f(x)(sinx)γ .

Suppose that 0 < γ < 1. Set

(3.29) F (x) =
π/2�

x

(y − x)γ−1f(y)(sin y)γ dy.

In view of (3.18), we have

(3.30) an = nγ
(
c′λ +O

(
1
n

)) π/2�

0

F (x) cos((n+ λ)x− νπ/2) dx.

By Lemma 7, the sequence

a′n ≡ nγ
π/2�

0

F (x) cos((n+ λ)x− νπ/2) dx

is the sequence of Fourier coefficients of some σ ∈ ReH1 with

‖σ‖ReH1 ≤ c‖f‖Lλ .
Now suppose that αn = O(1/n) and βn = a′nαn. Then

( ∞∑

n=1

β2
n

)1/2
≤ cmax

n
|a′n| ≤ c‖σ‖1 ≤ c′‖f‖Lλ .

Thus, {βn} is the sequence of Fourier coefficients of some function in L2

whose L2-norm does not exceed C‖f‖Lλ . It follows that (3.19) is the Fourier
series of some ϕ ∈ ReH1 satisfying (3.20).

Now suppose that γ = 1 and ν is an even number. Then (see (3.29) and
(3.30))

(3.31) an = (−1)ν/2
(
c′λ +O

(
1
n

)) π/2�

0

f(x) sinx sin(n+ λ)x dx.

We will show that the function h(x) = f(|x|) sinx, x ∈ [−π, π], belongs to
ReH1.

Let 0 < δ ≤ π/4, Qδ = {x : δ ≤ |x| ≤ 2δ} and hδ = hχQδ . Choose some
1 < r < 3/2. Since µ1([δ, 2δ]) ≤ (2δ)3, we have

(
1
4δ

2δ�

−2δ

|hδ(x)|r dx
)1/r

≤ cδ1−3/r
( 2δ�

δ

|f(x)|r dµ1(x)
)1/r

(3.32)

≤ c1δ1−3/r
δ3�

0

f
∗
1(t)t1/r−1 dt ≡ c1

4δ
ξ(δ).
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Set aδ(x) = hδ(x)/ξ(δ). Since the function h(δ) is odd, it follows from (3.32)
that aδ is a (1, r)-atom supported in [−2δ, 2δ] (see [7], p. 247). Set now
δk = 2−k−1π (k ∈ N). Then

(3.33) h(x) =
∞∑

k=1

hδk(x) =
∞∑

k=1

ξ(δk)aδk(x).

Furthermore, using (3.28) we have

∞∑

k=1

ξ(δk) ≤ c
∞∑

k=1

2k(3/r−2)
2−3k�

0

f
∗
1(t)t1/r−1 dt

≤ c′
π�

0

t−1/3f
∗
1(t) dt = c′‖f‖L1 ≤ c′′‖f‖Lλ .

Thus, (3.33) is a (1, r)-atomic decomposition of h ([7], p. 257). It follows
that h ∈ ReH1 and

(3.34) ‖h‖ReH1 ≤ c‖f‖Lλ .

Let

bn =
2
π

π/2�

0

h(x) sin(n+ λ)x dx.

Then
∑∞
n=1 bn cos(n + λ)x is the Fourier series of some function in ReH1

whose ReH1-norm does not exceed c‖f‖Lλ (see (3.34). It easily follows that
the same is true for

∑∞
n=1 bn cosnx, and therefore also for the series (3.19)

(see (3.31)).
It remains to consider the case when λ is a positive even number. By

Lemma 5, in this case F (λ−1)(0) = 0. Thus, by (3.27), (3.23) and (3.18),

(3.35) an =
(
c′λ +O

(
1
n

)) π/2�

0

h(x) cos(n+ λ)x dx.

Recall that the function h is defined by (3.24) for x ∈ [0, π]. Set h(x) =
h(−x) for x ∈ [−π, 0) and extend h by periodicity with period 2π. We will
show that h ∈ ReH1.

For any 0 < δ ≤ π/4 set fδ = fχ[δ,2δ], gδ(x) = fδ(x)(sinx)λ and, as
in (3.24),

(3.36) hδ(x) = gδ(x) +
∞∑

k=1

(k + λ− 1) . . . λ
(k − 1)!

π/2�

x

(y − x)k−1gδ(y)Ak(y) dy
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for x ∈ [0, π] (hδ(x) = hδ(−x) for x ∈ [−π, 0)). Let

Fδ(x) =
π/2�

x

gδ(y)K(x, y) dy.

By Lemma 5, F (λ−1)
δ (0) = 0. On the other hand, similarly to (3.23),

Fδ(x) =
π/2�

x

(y − x)λ−1hδ(y) dy,

and therefore

(3.37)
π/2�

0

hδ(y) dy = 0.

As above, the estimate (3.32) holds and, in view of (3.37), the function
aδ(x) = hδ(x)/ξ(δ) is a (1, r)-atom supported in [−2δ, 2δ]. Furthermore,
setting δk = 2−k−1π, we have

f(x) =
∞∑

k=1

fδk(x), x ∈ [0, π].

This equality, by (3.24) and (3.36), yields (3.33). As above, we have the
estimate (3.34). Finally, by (3.35), we obtain the statement of the theorem.

Thus, the theorem is proved in the case when supp f ⊂ [0, π/2]. Now
suppose that supp f ⊂ [π/2, π]. This case reduces at once to the preceding
one. Indeed, set f1(x) = f(π − x), x ∈ [0, π]. Taking into account that

ϕ(λ)
n (−z) = (−1)nϕ(λ)

n (z)

(see [6], p. 175), we get an(f) = (−1)nan(f1). As already proved,∑∞
n=1 an(f1) cosnx is the Fourier series of some ϕ1 ∈ ReH1 such that

(3.38) ‖ϕ1‖ReH1 ≤ c‖f1‖Lλ = c‖f‖Lλ .
Now, the series

∞∑

n=1

an(f) cosnx =
∞∑

n=1

(−1)nan(f1) cosnx

is the Fourier series of ϕ(x) ≡ ϕ1(π−x). Furthermore, the conjugate function
ϕ̃(x) is −ϕ̃1(π − x). Thus, ϕ ∈ ReH1 and (see (3.38))

‖ϕ‖ReH1 ≡ ‖ϕ‖1 + ‖ϕ̃‖1 = ‖ϕ1‖ReH1 ≤ c‖f‖Lλ .
The general case now follows immediately. The proof is complete.

4. Some remarks on Fourier coefficients. In this section we will
consider some estimates of Fourier coefficients with respect to the system of
ultraspherical polynomials.
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We will use the following estimate ([23], Theorem 7.33.1 and formula
(7.33.6)): for any λ > 0,

(4.1) |ϕ(λ)
n (cos θ)| ≤ Cλ min(nλ, (sin θ)−λ), θ ∈ [0, π].

Proposition 1. Let f ∈ Lp,r([0, π], µλ) (1 < p < 2, 1 ≤ r ≤ 2) and

(4.2) an(f) =
π�

0

f(x)ϕ(λ)
n (cosx) dµλ(x).

Then

(4.3)
( ∞∑

n=1

|an(f)|rnrα−1
)1/r

≤ c‖f‖Lp,r(µλ),

where α = (1 + 2λ)(1/p′ − 1/p′λ).

Proof. We apply some standard arguments (see [9], [16]). Let Ek
(k = 0, 1, . . .) be a measurable set with µλ(Ek) = 2−k(2λ+1) such that

|f(x)|
{
≥ f∗λ(2−k(2λ+1)) for all x ∈ Ek,
≤ f∗λ(2−k(2λ+1)) for all x ∈ [0, π] \Ek.

Set
fk(x) = f(x)χEk(x), gk(x) = f(x)− fk(x), x ∈ [0, π].

Then we have (setting δk = 2−k(2λ+1))

‖fk‖L1(µλ) =
δk�

0

f∗λ(t) dt, ‖gk‖L2(µλ) =
( π�

δk

f∗λ(t)2 dt
)1/2

.

We also have (see (4.1) and (4.2))

|an(fk)| ≤ cnλ‖fk‖L1(µλ),

∞∑

n=0

an(gk)2 ≤ ‖gk‖2L2(µλ).

Thus,

σk ≡
(

1
2k

2k+1−1∑

n=2k

an(f)2
)1/2

≤ c2kλ
δk�

0

f∗λ(t) dt+ 2−k/2
( π�

δk

f∗λ(t)2 dt
)1/2

.

Using this estimate and applying Hardy type inequalities (see, for example,
[11], Lemma 2), we easily get

∞∑

k=0

(2kασk)r ≤ ‖f‖Lp,r(µλ).

This implies (4.3).

Note that for r = p the inequality (4.3) follows from the Marcinkiewicz–
Zygmund inequality [13] (see also [11], [22]).
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In the case p = pλ, r = 1 we have the inequality (see (1.3))

(4.4)
∞∑

n=0

|an(f)|
n+ 1

≤ c‖f‖Lλ .

If pλ < p < 2, 1 ≤ r ≤ 2, then 0 < αr < 1. In this case the inequal-
ity (4.3) can be strengthened.

For any sequence {αn} with αn → 0 denote by {α∗n} its non-increasing
rearrangement. By the Hardy–Littlewood inequality [4, p. 44],

(4.5)
∞∑

n=1

|αnβn| ≤
∞∑

n=1

α∗nβ
∗
n.

Proposition 2. Let f ∈ Lp,r([0, π], µλ) (λ > 0, pλ < p < 2, r ≥ 1) and
α = (1 + 2λ)(1/p′ − 1/p′λ). Then

(4.6)
( ∞∑

n=1

(a∗n(f))rnrα−1
)1/r

≤ c‖f‖Lp,r(µλ).

Proof. Let q = p/[(2− p)λ+ 1]. Then 1 < q < p and α = 1/q′. Observe
that the left hand side of (4.6) is the lq

′,r-norm of the sequence {an(f)}.
Set g(x) = f(x)(sinx)λ. It follows from (2.2) that

g∗(t) ≤ c′
(

1
t

π�

ct2λ+1

f∗λ(u)2 du

)1/2

.

Applying this inequality, we easily see that g ∈ Lq,r[0, π] and

(4.7) ‖g‖Lq,r ≤ c‖f‖Lp,r(µλ).

Let now u
(λ)
n (θ) = ϕ

(λ)
n (cos θ)(sin θ)λ, θ ∈ [0, π]. The system {u(λ)

n } is or-
thonormal in L2[0, π]. Moreover, by (4.1), it is uniformly bounded. Also
(see (4.2)),

an(f) =
π�

0

g(θ)u(λ)
n (θ) dθ.

Thus, using the generalized Paley inequality (see [9], [21]), we get

(4.8) ‖an(f)‖lq′,r ≤ c‖g‖Lq,r .
Applying (4.7), we obtain (4.6).

Actually, to prove (4.8) it would be sufficient to apply the same reasoning
as in the proof of Proposition 1.

By (4.5), for r < q′ the inequality (4.6) is stronger than (4.3).
Now consider the case p = pλ, r = 1. In this case we have the inequal-

ity (4.4). It is natural to ask whether it is possible to replace an(f) by a∗n(f)
in (4.4). The answer is negative.
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Proposition 3. For each λ > 0 there exists a function f ∈ Lλ such
that the series

(4.9)
∞∑

n=1

a∗n(f)
n

diverges.

Proof. Let νj = 22j , Nj = νj+1 − νj (j ∈ N). Set

b(j)n =
{

(n+ νj −Nj)−1 if Nj ≤ n ≤ 2Nj ,
0 if n 6∈ [Nj , 2Nj ].

We have

(4.10) b(j)∗n ≤ 1/n and
2Nj∑

n=Nj

b(j)n ≥ 2j−1.

Further, it follows from (3.17) that for 0 ≤ θ ≤ π/[4(n+ λ)],

(4.11) ϕ(λ)
n (cos θ) ≥ cλnλ,

where cλ is a positive constant.
Let

gj(θ) =
2Nj∑

n=Nj

b(j)n ϕ(λ)
n (cos θ).

Then, by (4.10) and (4.11),

gj(θ) ≥ cλ2j−1Nλ
j for θ ∈

[
π

16(Nj + λ)
,

π

8(Nj + λ)

]
≡ Ij .

Since µλ(Ij) ≥ c′λN
−(2λ+1)
j (c′λ > 0), we have

(4.12) ‖gj‖Lp′λ,∞(µλ)
≥ Aλ2j (Aλ > 0).

Now suppose that for any f ∈ Lλ the series (4.9) converges. Define a
sequence of linear functionals on Lλ by

Λj(f) =
π�

0

f(θ)gj(θ) dµλ(θ).

By (4.10) and (4.5), for each f ∈ Lλ we have

|Λj(f)| =
∣∣∣

2Nj∑

n=Nj

an(f)b(j)n
∣∣∣ ≤

∞∑

n=1

a∗n(f)
n

.

By the uniform boundedness principle, {‖Λj‖} is bounded. At the same time
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(see [4, p. 220] and (4.12)),

‖Λj‖ ≥ C‖gj‖Lp′λ,∞(µλ)
≥ C ′2j (C ′ > 0).

This completes the proof.
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