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Some results on packing in Orlicz sequence spaces

by

Y. Q. Yan (Suzhou)

Abstract. We present monotonicity theorems for index functions of N -fuctions, and
obtain formulas for exact values of packing constants. In particular, we show that the
Orlicz sequence space l(N) generated by the N -function N(v) = (1 + |v|) ln(1 + |v|)− |v|
with Luxemburg norm has the Kottman constant K(l(N)) = N−1(1)/N−1(1/2), which
answers M. M. Rao and Z. D. Ren’s [8] problem.

LetN(v) = (1+|v|) ln(1+|v|)−|v|, and let l(N) and lN be the correspond-
ing Orlicz sequence spaces equipped with the Luxemburg norm and Orlicz
norm, respectively. The following problem was raised in [8] (Problems 2.7
and 3.8): What are the packing constants of l(N) and lN? We now present an
answer. We first extend the theory of quantitative indices of Orlicz spaces.

1. Index functions of N-functions. Let

Φ(u) =
|u|�

0

φ(t) dt and Ψ(v) =
|v|�

0

ψ(s) ds

be a pair of complementary N -functions, Krasnosel’skĭı and Rutickĭı [5]
studied the limit of the function tφ(t)/Φ(t) as t → ∞. Later, Rao and
Ren [7] and Lindenstrauss and Tzafriri [6] systematically investigated the
following related values which Ren [8], [10], [11] calls quantitative indices:

AΦ = lim inf
t→∞

tφ(t)
Φ(t)

, BΦ = lim sup
t→∞

tφ(t)
Φ(t)

,(1)

A0
Φ = lim inf

t→0

tφ(t)
Φ(t)

, B0
Φ = lim sup

t→0

tφ(t)
Φ(t)

,(2)

AΦ = inf
t>0

tφ(t)
Φ(t)

, BΦ = sup
t>0

tφ(t)
Φ(t)

.(3)

2000 Mathematics Subject Classification: 46E30, 46A45.
Key words and phrases: Orlicz space, indices, packing constants, Kottman constants.

[73]



74 Y. Q. Yan

The same six indices can be defined for Ψ(v). The relationships among them
are as follows (cf. [6], [7]):

Proposition 1.1. Let Φ, Ψ be a pair of complementary N -functions.
Then

1
AΦ

+
1
BΨ

= 1 =
1
AΨ

+
1
BΦ

,(4)

1
A0
Φ

+
1
B0
Ψ

= 1 =
1
A0
Ψ

+
1
B0
Φ

,(5)

1
AΦ

+
1
BΨ

= 1 =
1
AΨ

+
1
BΦ

.(6)

In 1985, on the basis of Cleaver [1], Ren studied the upper and lower
limits of the function Φ−1(u)/Φ−1(2u) as u → ∞. Later, Rao and Ren [7]
(p. 23) and Ren and Chen [11] defined the following “new” quantitative
indices:

αΦ = lim inf
u→∞

Φ−1(u)
Φ−1(2u)

, βΦ = lim sup
u→∞

Φ−1(u)
Φ−1(2u)

,(7)

α0
Φ = lim inf

u→0

Φ−1(u)
Φ−1(2u)

, β0
Φ = lim sup

u→0

Φ−1(u)
Φ−1(2u)

,(8)

αΦ = inf
u>0

Φ−1(u)
Φ−1(2u)

, βΦ = sup
u>0

Φ−1(u)
Φ−1(2u)

.(9)

The six indices of Ψ can be similarly defined. It is easy to check the following
relations among the above indices:

Theorem 1.2. Let Φ, Ψ be a pair of complementary N -functions. Then

2αΦβΨ = 1 = 2αΨβΦ,(10)

2α0
Φβ

0
Ψ = 1 = 2α0

Ψβ
0
Φ,(11)

2αΦβΨ = 1 = 2αΨβΦ.(12)

For a further study of the geometric constants, we should directly inves-
tigate the functions which produce the quantitative indices.

Theorem 1.3. Let Φ be an N -function, φ(t) being its left derivative.
Define

(13) FΦ(t) =
tφ(t)
Φ(t)

, GΦ(c, u) =
Φ−1(u)
Φ−1(cu)

(c > 1).

Then FΦ(t) is increasing (resp. decreasing) on (0, Φ−1(u0)] if and only if
GΦ(c, u) is increasing (resp. decreasing) on (0, u0/c] for every c > 1.

To prove Theorem 1.3, we first introduce two auxiliary lemmas.
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Lemma 1.4. A continuous function f is increasing if and only if both its
left derivative f ′− and its right derivative f ′+ are nonnegative.

Lemma 1.5. Let φ+(t) be the right derivative of Φ. Write FΦ+(t) =
tφ+(t)/Φ(t). Then FΦ(t) is increasing if and only if FΦ+(t) is increasing.

Proof of Theorem 1.3. Necessity. In view of Lemma 1.4, it suffices to
show that both the left derivative G′Φ(c, t) and the right derivative G′Φ+

(c, t)
of GΦ(c, t) are nonnegative when FΦ(t) is increasing.

In fact, for every u ∈ (0, u0/c], let Φ−1(u) = t1 and Φ−1(u) = t2. Then
0 < t1 < t2 ≤ Φ−1(u0) and

G′Φ(c, u) =
1

[Φ−1(cu)]2

{
Φ−1(cu)
φ[Φ−1(u)]

− cΦ−1(u)
φ[Φ−1(cu)]

}

=
1

t22φ(t1)φ(t2)
[t2φ(t2)− ct1φ(t1)]

=
cu

t22φ(t1)φ(t2)

[
t2φ(t2)
Φ(t2)

− t1φ(t1)
Φ(t1)

]

=
Φ(t2)

t22φ(t1)φ(t2)
[FΦ(t2)− FΦ(t1)].

Analogously we have

G′Φ+
(c, u) =

Φ(t2)
t22φ+(t1)φ+(t2)

[FΦ+(t2)− FΦ+(t1)].

Since FΦ(t2) − FΦ(t1) ≥ 0 and FΦ+(t2) − FΦ+(t1) ≥ 0 for 0 < t1 < t2 ≤
Φ−1(u0) when u ∈ (0, u0/c] by Lemma 1.5, one has G′Φ(c, u) ≥ 0 and
G′Φ+

(c, u) ≥ 0.
Sufficiency . To show that FΦ(t) is increasing, for arbitrary 0 < t1 <

t2 ≤ Φ−1(u0), choose c1 = Φ(t2)/Φ(t1) and u1 = Φ(t1) ≤ Φ(u0)/c1. Then
G′Φ(c1, u)|u=u1 ≥ 0. Thus, FΦ(t2) − FΦ(t1) ≥ 0, which yields that FΦ(t) is
increasing on (0, Φ−1(u0)].

Theorem 1.6. Let Φ, Ψ be a pair of complementary N -functions, let φ
and ψ be their left derivatives, respectively , and C > 0. Let FΦ(t) and FΨ (s)
be defined as (13), i.e.,

FΦ(t) =
tφ(t)
Φ(t)

, FΨ (s) =
sψ(s)
Ψ(s)

, t, s > 0.

Then

(i) FΦ(t) is increasing (resp. decreasing) on (0, ψ(C)] if and only if FΨ (s)
is decreasing (resp. increasing) on (0, C].

(ii) Define

a∗Φ = inf{FΦ(t) : t ∈ (0, ψ(C)]},(14)
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b∗Ψ = sup{FΨ (s) : s ∈ (0, C]}.(15)

Then

(16)
1
a∗Φ

+
1
b∗Ψ

= 1.

Proof. (i) Since ψ(s) is always increasing, the set of discontinuity points
of ψ(s) which are leap points is nondense and at most countable.

(A) Suppose ψ(s) is continuous and strictly increasing on some subinter-
val [s1, s2] of (0, C]. Then its inverse function φ(t) is continuous and strictly
increasing on [ψ(s1), ψ(s2)] ⊂ (0, ψ(C)], and hence φ(ψ(s)) = s. Therefore

FΨ (s) =
sψ(s)
Ψ(s)

=
φ(t)ψ(φ(t))
Ψ(φ(t))

=
φ(t)t
Ψ(φ(t))

=
tφ(t)

tφ(t)− Φ(t)
=

tφ(t)/Φ(t)
tφ(t)/Φ(t)− 1

=
FΦ(t)

FΦ(t)− 1
,

i.e.,

(17)
1

FΨ (s)
+

1
FΦ(ψ(s))

= 1, s ∈ [s1, s2].

(B) Suppose ψ(s) is a constant t0 on an interval [s1, s2] ⊂ (0, C]. Then
for any s′1, s

′
2 satisfying s1 ≤ s′1 < s′2 ≤ s2, we have

FΨ (s′1)− FΨ (s′2) =
s′1ψ(s′1)
Ψ(s′1)

− s′2ψ(s′2)
Ψ(s′2)

=
[

s′1
Ψ(s′1)

− s′2
Ψ(s′2)

]
t0 > 0.

This means FΨ (s) is decreasing on [s1, s2].
(C) Suppose ψ(s) leaps at the point s0. Let ψ(s0 +0)−ψ(s0−0) = k > 0.

For any ε > 0, there are s′1, s
′
2 satisfying s′1 ≤ s0 ≤ s′2 and 0 < s′2 − s′1 < ε.

We deduce that ψ(s′2)− ψ(s′1) ≥ k, and

FΨ (s′2)− FΨ (s′1) =
s′2ψ(s′2)
Ψ(s′2)

− s′1ψ(s′1)
Ψ(s′1)

≥
[

s′2
Ψ(s′2)

− s′1
Ψ(s′1)

]
ψ(s′1) +

s′2
Ψ(s′2)

k.

When s′2 − s′1 → 0, we can see

s′2
Ψ(s′2)

− s′1
Ψ(s′1)

→ 0,
s′2

Ψ(s′2)
k → s0

Ψ(s0)
k > 0,

since the function s/Ψ(s) is continuous. Thus, FΨ (s′2) − FΨ (s′1) > 0, which
implies that FΨ (s) also leaps at the point s0.

(D) Assume that ψ(s) is a constant t0 on some maximum interval [s1, s2]
(i.e. inf{s : ψ(s) = t0} = s1, sup{s : ψ(s) = t0} = s2). We know that FΨ (s)
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decreases from FΨ (s1−0) to FΨ (s2 +0) by (B). At the same time, φ(t) leaps
at the point t0 = ψ(s1) = ψ(s2). By (C), we know FΦ(t) also leaps from
FΦ(t0−0) to FΦ(t0 +0). Letting s→ s1−0 resp. s→ s2 +0 in (17), we have

1
FΨ (s1 − 0)

+
1

FΦ(t0 − 0)
= 1,(18)

1
FΨ (s2 + 0)

+
1

FΦ(t0 + 0)
= 1.(19)

This makes it clear that when FΨ (s) continuously decreases from FΨ (s1−0)
to FΨ (s2 + 0), FΦ(t) leaps up from FΦ(t0 − 0) to FΦ(t0 + 0).

(E) When ψ(s) leaps at the point s0, φ(t) is a constant on the maximum
interval [ψ(s0), ψ(s0 +0)]. Therefore FΦ(t) decreases on that interval by (B).
As in (D), let s→ s0 − 0 resp. s→ s0 + 0 in (17) to find that

1
FΨ (s0 − 0)

+
1

FΦ(ψ(s0 − 0))
= 1,(20)

1
FΨ (s0 + 0)

+
1

FΦ(ψ(s0 + 0))
= 1,(21)

which implies that when FΨ (s) leaps up from FΨ (s0−0) to FΨ (s0 +0), FΦ(t)
continuously decreases from FΦ(ψ(s0 − 0)) to FΦ(ψ(s0 + 0)).

Consequently, we find from the above cases that FΨ (s) increases (resp.
decreases) if and only if FΦ(t) decreases (resp. increases) on the correspond-
ing intervals. The proof of (i) is complete.

(ii) From the discussion of (i) we know that if [s1, s2] is a maximum
interval of constancy of ψ(s) in (0, C] or an interval where ψ(s) is strictly
increasing continuous, we always have

(22)
1

sup{FΨ (s) : s ∈ [s1 − 0, s2 + 0]}

+
1

inf{FΦ(t) : t ∈ [t1 − 0, t2 + 0]} = 1,

where t1 − 0 = ψ(s1 − 0), t2 + 0 = ψ(s2 + 0). When s0 is a leap point of
ψ(s), we treat it as an interval [s0, s0], so that (22) still holds. Combining
the above intervals, we have

(23)
1

sup{FΨ (s) : s ∈ (0, C]} +
1

inf{FΦ(t) : t ∈ (0, ψ(C)]} = 1,

i.e., (16) holds as soon as C is a strictly increasing continuous point or the
right end of a maximum constancy interval of ψ(s). It suffices to show that
(16) holds when C is an internal point of a maximum constancy interval of
ψ(s). In that case, let s0 be the left end of that interval. Therefore, FΨ (s)
is decreasing on [s0, C] , and hence

(24) b∗Ψ = sup{FΨ (s) : s ∈ (0, C]} = sup{FΨ (s) : s ∈ (0, s0 + 0]}.



78 Y. Q. Yan

Meanwhile, FΦ(t) leaps up at the point ψ(C), so that

(25) a∗Φ = inf{FΦ(t) : t ∈ (0, ψ(C)]} = inf{FΦ(t) : t ∈ (0, ψ(s0 + 0)]}.
It follows that

(26)
1

sups∈(0,s0+0] FΨ (s)
+

1
inft∈(0,ψ(s0+0)] FΦ(t)

= 1

since (22) holds. Consequently, (16) holds in any case by (24)–(26).

2. Packing in Orlicz sequence spaces with Luxemburg norm

Definition 2.1 ([4], [8]). The packing constant P (X) of a Banach space
X is

P (X) = sup{r > 0 : infinitely many balls of radius r

can be packed into the unit ball of X}.
The Kottman constant of an infinite-dimensional Banach space X is de-
fined as

K(X) = sup{inf
i6=j
‖xi − xj‖ : {xi}∞i=1 ⊂ S(X)},

where S(X) is the unit sphere of X.
Clearly, 1 ≤ K(X) ≤ 2. The following relationship was proved by

Kottman [4] (cf. Ye [14]):

Proposition 2.2. For an infinite-dimensional Banach space X, one has

(27) P (X) =
K(X)

2 +K(X)
.

Hudzik [3] verified that K(X) = 2 if X is a nonreflexive Banach lattice,
therefore P (X) = 1/2. Since l(Φ) and lΦ are Banach lattices, it suffices to
consider the Kottman constant when Φ ∈ ∆2(0) ∩ ∇2(0), i.e., when l(Φ)

and lΦ are reflexive (we calculate the packing constants P (l(Φ)) and P (lΦ)
from (27)).

In this section, we investigate K(l(Φ)) of an Orlicz sequence space with
Luxemburg norm and answer Rao and Ren’s [8] Problem 2.7.

Lemma 2.3. For an N -function Φ, Φ ∈ ∆2(0) ∩ ∇2(0) implies

(28) max
(

1
α0
Φ

,
1
α′Φ

)
≤ K(l(Φ)) ≤ 1

α̃Φ
,

where

α′Φ = inf
{
Φ−1

(
1
2k

)

Φ−1
(

1
k

) : k = 1, 2, · · ·
}

(29)

α̃Φ = inf
{
Φ−1(u)
Φ−1(2u)

: 0 < u ≤ 1
2

}
.(30)
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Proof. The inequality

(31)
1
α′Φ
≤ K(l(Φ)) ≤ 1

α̃Φ

is due to Ye [14]. Rao and Ren [8, Theorem 2.3] proved

(32) 1/α0
Φ ≤ K(l(Φ)),

so (28) holds in its entirety.

Remark 2.4. Let

(33) ÃΦ = inf{tφ(t)/Φ(t) : 0 < t ≤ Φ−1(1)}.
By using the right side of (32), it is proved in [8] (Theorem 2.3) that

(34) 21/B0
Φ ≤ K(l(Φ)) ≤ 21/ÃΦ .

If FΦ(t) = tφ(t)/Φ(t) is increasing on t ∈ (0,∞), then ÃΦ = B0
Φ = C0

Φ =
limt→0 tφ(t)/Φ(t) and by (31) we have

(35) K(l(Φ)) = 21/C0
Φ .

For a pair of complementary N -functions

(36) M(u) = e|u| − |u| − 1 and N(v) = (1 + |v|) ln(1 + |v|)− |v|,
since FM (t) = tM ′(t)/M(t) is increasing on (0,∞), the authors of [8] com-
puted that K(l(M)) =

√
2 by (32). However, FN (t) is decreasing on (0,∞).

They only estimated (cf. (24) of [8]):

1.41 ≈
√

2 ≤ K(l(N)) ≤ K(lN ) ≤ 21/(e−1) ≈ 1.50.

They asked (see [8, Problem 2.7]): What is the exact value of K(l(N))? For
the solution of the problem, we give the following lemma which follows from
Theorem 1.3 by taking c = 2.

Lemma 2.5. Let Φ be an N -function, φ(t) being its left derivative. Set

(37) FΦ(t) =
tφ(t)
Φ(t)

, GΦ(u) =
Φ−1(u)
Φ−1(2u)

for t, u > 0 (see (13)). If FΦ(t) is increasing (resp. decreasing) on
(0, Φ−1(u0)], then GΦ(u) is increasing (resp. decreasing) on (0, u0/2].

Now we establish the following

Theorem 2.6. For Φ ∈ ∆2(0) ∩ ∇2(0), we have:

(i) If FΦ(t) = tφ(t)/Φ(t) is increasing on (0, Φ−1(1)], then the Kottman
constant of the Orlicz sequence space l(Φ) equipped with the Luxemburg
norm is

(38) K(l(Φ)) = 21/C0
Φ ,

where C0
Φ = limt→0 FΦ(t).
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(ii) If FΦ(t) is decreasing on (0, Φ−1(1)], then

(39) K(l(Φ)) =
Φ−1(1)
Φ−1(1/2)

.

Proof. The proof of (i) has been given in Remark 2.4.
(ii) If FΦ(t) is decreasing on (0, Φ−1(1)], then GΦ(u) is also decreasing

on (0, 1/2] by Lemma 2.5. Therefore

(40) α′Φ = α̃Φ = [GΦ(u)]|u=1/2 =
Φ−1(1/2)
Φ−1(1)

.

Note that α0
Φ ≥ α′Φ, and (39) follows from Lemma 2.3 and the above.

Example 2.7. Let N(v) = (1 + |v|) ln(1 + |v|) − |v|. Then we have the
exact value:

(41) K(l(N)) =
N−1(1)
N−1(1/2)

≈ 1.48699, P (l(N)) ≈ 0.42644.

Indeed, it is easy to see that

FN (t) =
tN ′(t)
N(t)

=
t ln(1 + t)

(1 + t) ln(1 + t)− t
is decreasing on (0,∞) and C0

N = limt→0 FN (t) = 2, i.e., N ∈ ∆2(0)∩∇2(0).
Hence, (41) follows from Theorem 2.6(ii). Formula (41) solves Problem 2.7
of [8].

Remark 2.8. The index function FΦ(t) of an N -function is generally
easy to find, and is monotonic. So the exact value of the packing constant
of most Orlicz sequence spaces with Luxemburg norm can be computed in
this way. For instance, for the N -function of Krasnosel’skĭı and Rutickĭı [5,
p. 30]

Φ(u) =
u2

ln(e+ |u|) ,

we have

(42) K(l(Φ)) =
Φ−1(1)
Φ−1(1/2)

≈ 1.46987 and P (l(Φ)) ≈ 0.42361.

Indeed, since the index function

FΦ(t) =
tφ(t)
Φ(t)

= 2− t

(e+ t) ln(e+ t)

is decreasing on (0, Φ−1(1)] and C0
Φ = 2, we have Φ ∈ ∆2(0) ∩ ∇2(0). Thus

(42) follows from Theorem 2.6(ii).

Another example is the N -function of Gallardo [2]:

Φp,r(u) = |u|p lnr(1 + |u|), 1 ≤ p <∞, 0 < r <∞.
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Then one has

(43) K(l(Φp,r)) =
Φ−1
p,r(1)

Φ−1
p,r(1/2)

.

In fact,

FΦp,r (t) = p+
rt

(1 + t) ln(1 + t)

for t > 0. Since C0
Φp,r

= limt→0+ FΦp,r (t) = p + r > 1 we deduce that
Φp,r ∈ ∆2(0) ∩ ∇2(0). On the other hand,

d

dt
FΦp,r (t) =

r[ln(1 + t)− t]
(1 + t)2 ln2(1 + t)

< 0

for t > 0, i.e., FΦp,r (t) is decreasing on (0, Φ−1
p,r(1)]. Thus the exact value

(43) of K(l(Φp,r)) results from Theorem 2.6(ii). In particular, if p = r = 1,
i.e., Φ1,1(u) = |u| ln(1 + |u|), then

(44) K(l(Φ1,1)) =
Φ−1

1,1(1)

Φ−1
1,1(1/2)

≈ 1.18806 and P (l(Φ1,1)) ≈ 0.37266.

We now present an interpolation theorem which supplements the corre-
sponding results in [8].

Theorem 2.9. Let Φ be an N -function, Φ0(u) = u2, 0 < s ≤ 1, and let
Φs be the inverse of

(45) Φ−1
s (u) = [Φ−1(u)]1−s[Φ−1

0 (u)]s, 0 < s ≤ 1, u ≥ 0.

Then

(46) max
(

1
α0
Φs

,
1
α′Φs

)
≤ K(l(Φs)) ≤ 1

α̃Φs
≤ 21−s/2.

In particular , if Φ 6∈ ∇2(0), then

(47) K(l(Φs)) = 21−s/2.

Therefore, the following assertions hold :

(i) If FΦ(t) = tφ(t)/Φ(t) is increasing on (0, Φ−1(1)], then

(48) K(l(Φs)) = 2(1−s)/C0
Φ+s/2.

(ii) If FΦ(t) is decreasing on (0, Φ−1(1)], then

(49) K(l(Φs)) = 2s/2
[
Φ−1(1)
Φ−1(1/2)

]1−s
.

Proof. Ren [10] proved that Φs ∈ ∆2(0)∩∇2(0) for 0 < s ≤ 1. To prove
(46), by Lemma 2.3 we only need to show the rightmost inequality. Indeed,
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Φ−1(u)/Φ−1(2u) ≥ 1/2 for u > 0 and hence,

(50) GΦs(u) =
[
Φ−1(u)
Φ−1(2u)

]1−s[ √
u√
2u

]s
= 2−s/2[GΦ(u)]1−s, u > 0,

which implies that

(51) α̃Φs ≥ 2−s/2
(

1
2

)1−s
= 2s/2−1.

If Φ ∈ ∇2(0), then α0
Φ = 1/2, so that

(52) α0
Φs = lim inf

u→0
GΦs(u) = (α0

Φ)1−s2−s/2 = 2s/2−1.

Thus, (47) follows from (52) and (46).
The hypothesis of (i) implies that GΦ(u) is increasing on (0, 1/2] (cf.

Lemma 2.5). It follows from (46) that

(53) α̃Φs = α0
Φs = 2−s/2[ lim

u→0
GΦ(u)]1−s = 2−s/2−(1−s)/C0

Φ .

Hence, (48) follows from (46) and (53).
Under the condition of (ii), GΦ(u) is decreasing on (0, 1/2], so that

(54) α̃Φs = α′Φs = 2−s/2[GΦ(u)]u=1/2 = 2−s/2
[
Φ−1(1/2)
Φ−1(1)

]1−s
.

Finally, (49) holds by (46) and (54).

Remark 2.10. By using an interpolation inequality, Rao and Ren [8,
Theorem 4.3, 4.8] proved that

(55) K(l(Φs)) ≤ 21−s/2.

From the proof of Theorem 2.9 we see that (55) can be derived from (52)
without the use of the interpolation inequality.

Example 2.11. Let Φr(u) = e|u|
r − 1 with 1 < r < ∞. The inverse

function of Φs is

Φ−1
s (u) = [Φ−1

r (u)]1−s[Φ−1
0 (u)]s = us/2[ln(1+u)](1−s)/r, u > 0, 0 < s ≤ 1.

Then the Kottman constant of l(Φs) is

(56) K(l(Φs)) = 2(1−s)/r+s/2.

Indeed, Φr ∈ ∇2(0) since

C0
Φr = lim

t→0

rtret
r

etr − 1
= r.

Note that

GΦr (u) =
[

ln(1 + u)
ln(1 + 2u)

]1/r
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is increasing on (0,∞) ⊃ (0, 1/2] ∪ (0, (QΦs − 1)/2]. From (51) and (46) we
have

α̃Φs = α0
Φs = 2−s/2(α0

Φr)
1−s = 2−s/2−(1−s)/r

and
K(l(Φs)) = 2(1−s)/r+s/2.

Remark 2.12. Example 2.11 (56) strengthens the estimate

2(1−s)/r+s/2 ≤ K(l(Φs)) ≤ 21−s/2

of [8, Example 4.4] to an equality.

3. Packing in Orlicz sequence spaces with Orlicz norm. Let
N(v) = (1+ |v|) ln(1+ |v|)−|v|, and let lN be the Orlicz sequence space gen-
erated by N(v) equipped with the Orlicz norm. Rao and Ren [8, Example
2.7 and Problem 3.8] estimated

(57) 1.41 ≤ K(lN ) ≤ 1.56

and asked what is the exact value of K(lN ). In this section, we present some
supplementary results to [8] and improve the estimate (57).

Lemma 3.1. Let Φ, Ψ be a pair of complementary N -functions, with
Φ ∈ ∆2(0)∩∇2(0). Then the Kottman constant K(lΦ) of the Orlicz sequence
space lΦ equipped with the Orlicz norm can be estimated as follows:

(58) max(2β0
Ψ , 2β

′
Ψ ) ≤ K(lΦ) ≤ 1

α∗Φ
,

where

β′Ψ = sup
{
Ψ−1(1/2k)
Ψ−1(1/k)

: k = 1, 2, . . .
}
,(59)

α∗Φ = inf
{
Φ−1(u)
Φ−1(2u)

: 0 < u ≤ 1
2

(QΦ − 1)
}
,(60)

with

(61) QΦ = sup
‖x‖Φ=1

{
kx > 1 : ‖x‖Φ =

1
kx

[1 + ρΦ(kxx)]
}
.

Proof. Using Wang’s [12] result, Rao and Ren [8] proved that K(lΦ) ≤
1/α∗Φ for Φ ∈ ∆2(0) and 2β0

Ψ ≤ K(lΦ) for any N -function Φ. It follows that
if Φ 6∈ ∇2(0) then β0

Ψ = 1, K(lΦ) = 2. Thus, to show (58), it suffices to prove
that

(62) 2β′Ψ ≤ K(lΦ).

For any given k ≥ 1, let

Zk = (0, . . . , 0) and Xk = [kΨ−1(1/k)]−1(1, . . . , 1),
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with dimZk = dimXk = k, and define

xi = (Zk, . . . , Zk,Xk, Zk, Zk, . . .), i ≥ 1,

with Xk being at the ith position. Then ‖xi‖Φ = 1, i ≥ 1, and for i 6= j,

‖xi − xj‖Φ =
1

kΨ−1(1/k)

[
2kΨ−1

(
1

2k

)]
=

2Ψ−1(1/(2k))
Ψ−1(1/k)

,

so that

K(lΦ) ≥ inf
i6=j
‖xi − xj‖Φ =

2Ψ−1(1/(2k))
Ψ−1(1/k)

.

Since k ≥ 1 is arbitrary, by (59), one has

K(lΦ) ≥ sup
{

2Ψ−1(1/(2k))
Ψ−1(1/k)

: k = 1, 2, . . .
}

= 2β′Ψ .

Corollary 3.2 ([8]). Let Φ ∈ ∆2(0)∩∇2(0), and Ψ be its complemen-
tary N -function. Then

(63) 1 < 21/B0
Φ ≤ K(lΦ) ≤ 21/A∗Φ < 2,

where

(64) A∗Φ = inf
{
tφ(t)
Φ(t)

: 0 < t ≤ Φ−1(QΦ − 1)
}
.

In particular , if FΦ(t) = tφ(t)/Φ(t) is increasing on (0, Φ−1(QΦ − 1)], then
A∗Φ = B0

Φ = C0
Φ = limt→0 tφ(t)/Φ(t), and hence

(65) K(lΦ) = 21/C0
Φ .

For the constant QΦ of the space lΦ appearing in (60) and (64), one has
1 ≤ QΦ ≤ ∞. Wang [12] and Wu [13] proved: Φ ∈ ∇2(0) if and only if
QΦ <∞. We give a better estimate of QΦ.

Lemma 3.3. Let Φ, Ψ be a pair of complementary N -functions, with
Φ ∈ ∇2(0). Then

(66) QΦ ≤
a∗Φ

a∗Φ − 1
,

where

(67) a∗Φ = inf
{
tφ(t)
Φ(t)

: 0 < t ≤ ψ[Ψ−1(1)]
}
.

Proof. Note that Φ ∈ ∇2(0) if and only if A0
Φ = lim inft→0 tφ(t)/Φ(t)

> 1. For every 0 < t ≤ ψ[Ψ−1(1)] one has tφ(t)/Φ(t) > 1, so that a∗Φ > 1 for
Φ ∈ ∇2(0). Observe that a∗Φ ≤ t0φ(t0)/Φ(t0) < ∞, where t0 = ψ[Ψ−1(1)].
Now we show (66), which implies QΦ <∞ for Φ ∈ ∇2(0).
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For any given x = (x(i)) ∈ lΦ with ‖x‖Φ = 1, since

k∗∗x = sup
{
kx > 1 :

∞∑

i=1

Ψ [φ(kx|x(i)|)] ≤ 1
}
,

one has
∞∑

i=1

Ψ [φ((k∗∗x − ε)|x(i)|)] ≤ 1

for all ε > 0, so that (k∗∗x − ε)|x(i)| ≤ ψ[Ψ−1(1)] for any i ≥ 1. By definition
of a∗Φ,

a∗ΦΦ[(k∗∗x − ε)|x(i)|] ≤ (k∗∗x − ε)|x(i)|φ[(k∗∗x − ε)|x(i)|], i ≥ 1.

It follows that

1 ≥
∞∑

i=1

Ψ{φ[(k∗∗x − ε)|x(i)|]}

=
∞∑

i=1

{(k∗∗x − ε)|x(i)|φ[(k∗∗x − ε)|x(i)|]− Φ[(k∗∗x − ε)|x(i)|]}

≥ (a∗Φ − 1)
∞∑

i=1

Φ[(k∗∗x − ε)|x(i)|]

≥ (a∗Φ − 1)[‖(k∗∗x − ε)x‖Φ − 1]

= (a∗Φ − 1)[(k∗∗x − ε)− 1],

i.e.,

k∗∗x ≤
a∗Φ

a∗Φ − 1
+ ε,

which proves (66) since QΦ = sup‖x‖Φ=1 k
∗∗
x and ε is arbitrary.

Remark 3.4. The constant a∗Φ was introduced by Rao and Ren (cf. (36)
of [8]). The estimate (66) is an improvement of [8, Remark 3.4]. Wu, Chen
and Wang [13, Lemma 2(b)] gave the following estimate of QΦ:

QΦ ≤ max
(

2,
2

a∗Φ − 1

)
=
{

2, a∗Φ ≥ 2,
2/(a∗Φ − 1), 1 < a∗Φ < 2.

(66) also improves the above estimate. In fact, since a∗Φ/(a
∗
Φ − 1) < 2 if and

only if a∗Φ > 2, and a∗Φ/(a
∗
Φ − 1) < 2/(a∗Φ − 1) for 1 < a∗Φ < 2, we see that

a∗Φ 6= 2 implies
a∗Φ

a∗Φ − 1
< max

(
2,

2
a∗Φ − 1

)
.

Corollary 3.5. For any N -function Φ, we have

(68) QΦ ≤ b∗Ψ ,
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where

(69) b∗Ψ = sup
{
sψ(s)
Ψ(s)

: 0 < s ≤ Ψ−1(1)
}
.

Proof. If Φ 6∈ ∇2(0), Ψ 6∈ ∆2(0), and b∗Ψ ≥ B0
Ψ = lim sups→0 sψ(s)/Ψ(s)

=∞, then (68) naturally holds. If Φ ∈ ∇2(0), Ψ ∈ ∆2(0), and b∗Ψ <∞,

(70)
1
a∗Φ

+
1
b∗Ψ

= 1,

i.e., a∗Φ/(a
∗
Φ − 1) = b∗Ψ by Theorem 1.5(ii). Therefore (68) follows from

(66).

Theorem 3.6. Let Φ, Ψ be a pair of complementary N -functions with
Φ ∈ ∆2(0) ∩ ∇2(0).

(i) If FΦ(t) = tφ(t)/Φ(t) is increasing on (0, Φ−1(b∗Ψ − 1)], then

(71) K(lΦ) = 21/C0
Φ , C0

Φ = lim
t→0+

FΦ(t).

(ii) If FΦ(t) is decreasing on (0, ψ[Ψ−1(1)]], then

(72)
2Ψ−1(1/2)
Ψ−1(1)

≤ K(lΦ) ≤ ψ[Ψ−1(1)]
Φ−1

{
1
2Φ(ψ[Ψ−1(1)])

} .

Proof. (i) From Corollary 3.5, FΦ(t) is increasing on (0, Φ−1(QΦ − 1)],
and (71) follows from Corollary 3.2 (61).

(ii) By Theorem 1.6(i), FΨ (s) is increasing on (0, Ψ−1(1)]. It follows from
Theorem 1.3 that GΨ (v) is increasing on (0, 1/2] , and GΦ(u) is decreasing
on
(
0, 1

2Φ(ψ[Ψ−1(1)])
]

and hence

b∗Ψ = [FΨ (s)]s=Ψ−1(1) = Ψ−1(1)ψ[Ψ−1(1)]

= Φ{ψ[Ψ−1(1)]}+ Ψ [Ψ−1(1)] = Φ{ψ[Ψ−1(1)]}+ 1,

i.e.,

(73) b∗Ψ − 1 = Φ{ψ[Ψ−1(1)]}.
It follows that

(74)
(
0, 1

2 (QΦ − 1)
]
⊂
(
0, 1

2 (b∗Ψ − 1)
]

=
(
0, 1

2Φ(ψ[Ψ−1(1)])
]
.

Since GΦ(u) is decreasing, one has

(75) α∗Φ =
Φ−1

{
1
2 (QΦ − 1)

}

Φ−1(QΦ − 1)
≥ Φ−1

{
1
2Φ(ψ[Ψ−1(1)])

}

ψ[Ψ−1(1)]
.

Then by Lemma 3.1,

(76) K(lΦ) ≤ 1
α∗Φ
≤ ψ[Ψ−1(1)]
Φ−1

{
1
2Φ(ψ[Ψ−1(1)])

} .
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On the other hand, again by Theorem 1.3, GΨ (v) is increasing on (0, 1/2],
thus

(77) K(lΦ) ≥ max(2β0
Ψ , 2β

′
Ψ ) = 2β′Ψ =

2Ψ−1(1/2)
Ψ−1(1)

.

Finally, (72) follows from (76) and (77).

Example 3.7 (Rao and Ren [8, Problem 3.8]). Let

M(u) = e|u| − |u| − 1, N(v) = (1 + |v|) ln(1 + |v|)− |v|.
Then FN (t) = tN ′(t)/N(t) is decreasing on (0,∞). Now we estimate K(lN )
by Theorem 3.6.

Note that M ′(u) = eu − 1. Let v0 = M−1(1) and v1 = M−1(1/2). Then
v0 is a root of ev0 − v0 − 1 = 1, and v1 is a root of ev1 − v1 − 1 = 1/2. We
have M ′[M−1(1)] = ev0 − 1 = v0 + 1, and hence by (72) one gets

(78)
2v1

v0
≤ K(lN ) ≤ v0 + 1

N−1
[

1
2N(v0 + 1)

] .

By a simple computation, v0 = 1.14619, v1 = 0.85767, therefore,

(79) 1.496 ≤ K(lN ) ≤ 1.498.

This improves the estimate of Rao and Ren [8, Example 3.7]: 1.41 ≤ K(lN )
≤ 1.56.

The author would like to thank Prof. Z. D. Ren for his advice and help.
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