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Semicontinuity and continuous selections for
the multivalued superposition operator
without assuming growth-type conditions

by

HONG THAT NGUYEN (Szczecin)

Abstract. Let {2 be a measure space, and E, F' be separable Banach spaces. Given
a multifunction f: 2 X E — 2F , denote by N f(x) the set of all measurable selections of
the multifunction f(-,z(-)) : 2 — 2F, s — f(s,2(s)), for a function = : 2 — E. First, we
obtain new theorems on H-upper/H-lower/lower semicontinuity (without assuming any
conditions on the growth of the generating multifunction f(s,u) with respect to u) for the
multivalued (Nemytskif) superposition operator Ny mapping some open domain G C X
into 2Y, where X and Y are Kéthe-Bochner spaces (including Orlicz-Bochner spaces)
of functions taking values in Banach spaces F and F respectively. Second, we obtain a
new theorem on the existence of continuous selections for N taking nonconvex values in
non-Ly-type spaces. Third, applying this selection theorem, we establish a new existence
result for the Dirichlet elliptic inclusion in Orlicz spaces involving a vector Laplacian and
a lower semicontinuous nonconvex-valued right-hand side, subject to Dirichlet boundary
conditions on a domain 2 C R

1. Introduction. Let {2 be a measure space, and E, F be separable
Banach spaces. Given a multifunction f : 2 x E — 2F, denote by Ny(z)
the set of all measurable selections of the multifunction f(-,z(-)) : 2 — 2F,
s — f(s,z(s)), for a function = : 2 — FE. In the present paper we con-
sider semicontinuity properties and the existence of continuous selections
for the so-called multivalued (Nemytskit) superposition operator Ny acting in
Kothe-Bochner spaces (Banach lattices) of measurable functions (concrete
examples: Lebesgue/Bochner spaces, Lebesgue spaces with mixed norm,
Orlicz—Bochner spaces, Lorentz spaces, Marcinkiewicz spaces, etc.).
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The multivalued operator Ny was studied recently by various mathe-
maticians in connection with its natural applications to nonlinear ellip-
tic/parabolic partial differential inclusions, abstract parabolic inclusions,
integral inclusions, and equations with discontinuous right-hand side (see
references since 1970 in [20] and [1, 2, 5, 7-16, 18, 29, 31, 32]). All semi-
continuity results for Ny obtained in the above cited references (excepting
the papers [5, 12, 31]) were established via different methods under certain
conditions on the growth of the generating multifunction f(s,u) with re-
spect to u (e.g. [|f(s,u)||r := sup{||w||F : w € f(s,u)} < a(s)+ b|lu||g for
Ny mapping the Bochner-Lebesgue space Li(f2, E) into 2L1(2.F)) In the
present paper we succeed in obtaining, via a new method, semicontinuity
results for Ny without assuming any growth-type conditions on f.

First, we obtain a new theorem (Theorem 3.2) on H-upper/H-lower /lower
semicontinuity for Ny mapping an open domain G C X into 2V where X and
Y are Kéthe-Bochner spaces of functions taking values in Banach spaces
and F respectively. Our proof of Theorem 3.2 relies crucially on the abstract
semicontinuity Theorem 3.1 (whose proof relies on Lemmas 3.1-3.2) for a
multivalued operator IV satisfying the so-called local definedness property.

Second, using Lemma 3.2 and Theorem 3.1 (together with the Frysz-
kowski-Bressan—Colombo selection theorem [7, 16], [28, Corollary 2.1]) we
obtain a first theorem (Theorem 3.3) on the existence of continuous selec-
tions for Ny taking nonconvex values in a non-L,-type space Y.

Third, applying Theorem 3.3, we establish a new existence result (The-
orem 7.1) for the Dirichlet elliptic inclusion in Orlicz spaces involving a
vector Laplacian and a lower semicontinuous nonconvex-valued right-hand
side, subject to Dirichlet boundary conditions on 2 C R? (in connection
with Pokhozhaev-Trudinger’s theorem on the exact noncompact embed-
ding of the Sobolev space H}(§2) into some “exponential” Orlicz space [17,
Theorem 7.15, Section 7.8]).

Let us point out the following comparisons. From Theorem 3.4 of Sec-
tion 3 we can deduce by a different but more simple proof (see Section 5)
the 1991 result of A. Cellina, A. Fryszkowski, and T. Rzezuchowski [12] for
Ny defined on a non-open set G C X. By the proofs of the present paper
together with the recent theory of Banach function L.-modules (see refer-
ences in [25, 27]) we can get analogs of our theorems of Section 3 for the
operator Ny acting in these modules; in this way we refine the 1991 results
of J. Appell, H. T. Nguyen, and P. P. Zabrejko [5, Theorem 4] who assume
additionally that Ny maps an order-bounded set into an order-bounded set.
By analogous arguments we can define the classes of “source spaces X” and
“target spaces Y7 for which our results in Section 3 remain valid; in this way
in particular we can refine the 1994 results of S. Rolewicz and W. Song [31]
for Ny in metric modular spaces.
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In Section 4 we collect all proofs of the results of Section 3. Some standard
facts about so-called Kéthe-Bochner spaces (Banach lattices of measurable
functions) are given in Section 2 as well as at the beginning of Section 4.
In Section 5 we deduce (from Theorems 3.2, 3.4) Corollaries 5.1-5.2 on H-
upper/H-lower/lower semicontinuity for Ny mapping a Bochner-Lebesgue
space L, (2, E) into 2L4(F) Tn Section 6 we deduce (from Theorem 3.2) a
new semicontinuity result (Corollary 6.1) for the multivalued superposition
operator acting in Lebesgue spaces with mixed norm of functions defined on
the product measure space T' x (2.

2. Some terminology and notation. First, we give some terminology
and notation from set-valued analysis following, e.g., [10, 15]. Let (X, o)
be a metric (vector) space. For z € X, M C X and ¢ > 0 we define
dx(z,M) = inf{o(z,y) : y € M} and U.(M) = {y € X : dx(y, M) < e}.
For A,B C X we define h’;(A, B) := sup{dx(a, B) : a € A}. Denote by
Bx (r) the closed ball in X with center 0 and radius r. Given a multifunction
I': X —2Y definedom " = {z € X : I'(x) # 0}.

Let X, Y be metric spaces and let I' : X — 2Y be a multifunction.
I' is called lower semicontinuous (or l.s.c.) at zo € X if for any open set
V C Y such that I'(zg) NV # 0, there exists an open neighbourhood
U C X of zg such that I'(x) NV # ( for all z € U. We say that I is
H-upper semicontinuous (or H-u.s.c.) at xg € X if for any € > 0 one may
find a § > 0 such that I'(B(x,9)) C U-(I'(x0)). I' is said to be H-lower
semicontinuous (or H-l.s.c.) at xg € X if for any € > 0 one may find a § > 0
such that I'(xg) C U:(I'(z)) for all x € B(zg,d). A multifunction I" is called
H-u.s.c. (resp., H-l.s.c., L.s.c.) if it is H-u.s.c. (resp., H-ls.c., L.s.c.) at every
reX.

Second, we give some terminology and notation from function space
theory following, e.g., [33] and [6, 23]. From now on, unless stated to the
contrary, F, F| etc. denote separable Banach spaces; (£2,2, 1) denotes a
fixed measure space with a complete o-finite og-additive measure p on a
o-algebra 2 of subsets of (2; u, denotes any finite measure equivalent to p
(i.e. ux(D) = 0 < (D) = 0). Further, S(§2, E') denotes the complete metric
vector space of all (equivalence classes of ) measurable functions x : 2 — E,
equipped with the metric topology of convergence in p, measure. Given a
property Pg, we shall write Ps (mod0) if Py is valid for almost all (a.a.)
s € (.

A Banach space X C S(£2,R) with norm || - ||x is called a Kdthe space
(also Banach lattice, Banach ideal space) if x € X and y € S(£2,R) and
ly(s)| < |z(s)| a.e. imply that y € X and ||y||x < ||z||x. Concrete examples
of Kothe spaces are the Lebesgue spaces and many non-L,-type spaces in-
cluding general Orlicz/Lorentz/Marcinkiewicz spaces (see [6, 24, 30]).
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Given a Kothe space X C S(£2,R), define the Kéthe—Bochner space X =
X[E] C S(§2, E) as the Banach space of all measurable functions = : 2 — E
such that ||z(-)||g € X, with norm ||z||x := ||||lz(*)|| g]/x-

Given a Kothe-Bochner space Y = Y[F] C S(£2, F), define its regular
part Y° as the Kéthe—Bochner subspace of all measurable functions y € Y
with absolutely continuous norm (or having equi-continuous norm, or equi-
integrable in the case Y = L,), i.e.

(1) Yo={yeY: lim . |Ppyl|ly = 0},

Hox -
where Pp denotes the multiplication operator by the characteristic function
xp of a measurable set D. If Y = Y°, then Y is called a regular space. The
Bochner-Lebesgue spaces L,[E] (1 < p < 0o) are regular. A set M C Y is
said to have uniformly absolutely continuous norms of Y, or briefly, u.a.c.
norms of Y (or equicontinuous norms of Y, or to be absolutely bounded, or
equi-integrable in the case Y = L,) if
2 lim  sup ||Ppyl|ly =0.
@) Jim s [ Poy|

Third, we give some notation specific for the present paper. Denote by
Sel g the set of all measurable selectors of a multifunction g : 2 — 2%, i.e.

(3) Selg={y € S(2,F) : y(s) € g(s) a.e.}.

A multifunction f: 2 x E — 2 is called [5] superpositionally measurable,
or briefly sup-measurable, if for every single-valued measurable function x :
2 — E the multifunction I' = f(-,2(-)) : 2 — 2F, s — f(s,2(s)), is
a measurable multifunction with dom I" = {2 (mod0). The measurability
of I" means that {s € 2 : I'(s) N U # (0} is measurable for every open
subset U of F. If I' : 2 — 2F is measurable such that I'(s) is nonempty
closed for a.a. s € §2 then Sel I' # () and moreover there exists a so-called
Castaing representation {yy : k € N} for I" (see [10]). Sufficient conditions
for sup-measurability are given e.g. in [1].

We denote [1, 5] by P(F) (resp., CI(F'), Bd(F'), Cp(F), BACI(F), etc.)
the family of all nonempty (resp., nonempty closed, nonempty bounded,
nonempty compact, nonempty bounded closed, etc.) subsets of F'.

3. Semicontinuity theorems in Kéthe—Bochner spaces. A multi-
valued operator N : G — P(S(£2, F)) with () # G C S(£2, E) is called locally
defined (or locally determined) provided the following condition holds:

(LD1) if Ppx = Ppy with x,y € G, D € 2, then PpbN(z) = PpN(y);
in the case Ppx € G (D € ) this is equivalent to
(LD2) PDN(ZE) = PDN(PD:L‘) (D e, xe G)
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It is surprising that being locally defined is sufficient to get general the-
orems for N. Given a Kéthe-Bochner space Y = Y[F], it is easily verified
that the multivalued superposition operator with values in Y

(4) N =N}, Nj(z):=YnSelf(-,x()),

is locally defined on its domain dom N}/.
In Lemma 3.1 we find a new property of a set N which does not satisfy
(2) (i.e. it is not equi-integrable in the case N C Y = Ly).

LEMMA 3.1. LetY = Y[F] C S(£2, F) be a regular Kithe-Bochner space
(i.e. Y =Y°) and let N C Y be a set which fails (2). Then there exist
a positive number € > 0, a sequence y, C N, and a sequence of mutually
disjoint measurable sets (2, such that

(5) pe(20) =0 (n—00), |[[Po,ynlly >>0 (Vn).

In Lemma 3.2 (whose proof crucially relies on Lemma 3.1) we obtain a
new property for a locally defined multivalued operator N.

LEMMA 3.2. Let X = X[E] C S(§2, E) be a Kithe-Bochner space, Y =
Y[F] € S(£2,F) be a reqular Kothe-Bochner space, r € (0,00), and N :
Bx(r) — P(Y) be a locally defined operator such that each N(z) has u.a.c.
norms of Y. Suppose that {z, :n =1,2,...} C Bx(r) satisfies

(6) D laallx <.
n=1

Then the set M :=J.—_, N(zy) has u.a.c. norms of Y.
We shall use one of the following abstract conditions:

(LS)  if ||lxn — zollx — 0, ||zn — zollx < R(zo) < 00, x,, — ¢ a.e. and
Yo € N(xg), then there exist a subsequence ny and y,, € N(zy,)
such that y,, — yo in S(§2, F);

(HL)  if ||z, — zollx — 0, ||zn — zollx < R(zo) < 00, x,, — ¢ a.e. and
Yn € N(xp), then there exist a subsequence ny and z,, € N(z,,)
such that y,, — 2zp, — 0in S(£2, F);

(HU)  if |z, — 2ollx — 0, |lzn, — @0llx < R(w0) < 00, 2, — o a.e. and
Yn € N(z,), then there exist a subsequence ny and z,, € N(xo)
such that y,, — z,, — 0in S(£2, F).

THEOREM 3.1. Let G be a nonempty open subset of a Kothe—Bochner
space X = X[E] € S(,E), Y = Y[F] C S(£2,F) be a regular Kdthe—
Bochner space and N : G — P(Y') be a locally defined operator such that each
N(x) has u.a.c. norms of Y. Suppose that N satisfies the condition (LS)
(respectively, (HL), (HU)). Then N is l.s.c. (respectively, H-l.s.c, H-u.s.c.).
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The next Theorem 3.2 is a first concrete realization of the abstract The-
orem 3.1 for the multivalued superposition operator N = N }/ The following
simple Proposition 3.1 and Lemma 3.3 are first steps of this realization.

PROPOSITION 3.1. Let Y = Y[F| C S(§2, F) be a Kéithe-Bochner space,
and H : 2 — CL(F)U{0} be an arbitrary multifunction. Then Y N Sel H is
a closed subset of Y.

LEMMA 3.3. Let f : 2 — CIE) and g : 2 — CI(E) be measurable
multifunctions. Then the function hi(f(-),g(+)) is measurable, and for every
fixzed € > 0 and fixed selector x € Sel f there exists a selector y € Sel g such
that for all s € (2,

dp(2(s),y(s)) < (L+e)dp(x(s),9(s)) < (1+)hp(f(s), 9(s)).

THEOREM 3.2. Let G be a nonempty open subset of a Kothe—Bochner
space X = X[E] C S0, E), and Y = Y[F] C S(£2, F) be a regular Kdthe—
Bochner space. Suppose that [ : 2 x E — CL(F)U{0} is a sup-measurable
multifunction such that N(xz) = Ny(z) := Sel f(-,z(-)) C Y (Vz € G). If
f(s,2) : E— CL(F)U{0} is l.s.c. (respectively, H-l.s.c., H-u.s.c.) for a.a.
s € (2, then the operator N = Ny : G — BdCI(Y') is l.s.c. (respectively,
H-l.s.c., H-u.s.c.).

THEOREM 3.3. Let p be a complete o-finite o-additive continuous (non-
atomic) measure, G be a nonempty open subset of a Kithe—Bochner space
X =X[E]C S(,E), andY = Y[F] C S(§2, F) be a regular Kdthe-Bochner
space. Suppose that N : G — P(Y) is a locally defined operator such that
each N(x) has u.a.c. norms of 'Y,

(7) N(z) =Y NSelH(z), H:G— 29" (zeq),

and N satisfies the condition (LS) [in particular, suppose that f : 2 x E —
CL(F) U {0} is a sup-measurable multifunction such that N(z) = Ny(x) :=
Sel f(-,z(-)) C Y (Vx € G), f(s,-) : E — CL(F)U{0} is ls.c. for a.a. s € £2].
Then for every separable subset K C G (and every compact subset K C G)
the restriction N : K — Cl(Y') has a continuous selection u : K — Y, i.e.
u(x) € N(z) (Vx € K).

If G is assumed to be a nonopen set, then we cannot apply the crucial
Lemma 3.2, but modifying slightly the arguments in the proof of Theo-
rem 3.1, we get the following abstract Theorem 3.4 assuming additionally
some local property on values N(x). Analogs of Theorems 3.2-3.3 for the
case of GG nonopen with this additional assumption can be easily formulated
and proved.

THEOREM 3.4. Let G be a nonempty subset of a metric space X, Y =
Y[F] C S(£2,F) be a reqular Kithe—Bochner space, and N : G — P(Y') be
an operator such that each N(z) has u.a.c. norms of Y. Suppose that N
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satisfies the condition (LS) (respectively, (HL), (HU)). Assume additionally
that there exists a subsequence x,, as in (LS) (respectively, (HL), (HU))
such that the set |Jpoy N(zpn,) has u.a.c. norms of Y. Then N is ls.c.
(respectively, H-l.s.c, H-u.s.c.).

4. Proofs of results of Section 3. We point out that in the following
proofs we shall constantly use the following well-known Propositions 4.A—
4.C (see, e.g., [33, 6, 23]) for Kéthe-Bochner spaces X = X[E] C S(£2,E)
and Y = Y[F]| C S(£2,F), as well as the Riesz Theorem [i.e. if z,, — z¢ in
S($2, E) (in measure), then there exists a subsequence ny, such that z,, — xo
a.e.]. Note that in the simplest case of Lebesgue spaces X =Y = L,(2,R),
1 < p < o0, Proposition 4.A(i), (iii) is easily checked, Proposition 4.A(ii) is a
reformulation of the Lebesgue dominated convergence theorem, Proposition
4.B is the Vitali-Krasnosel’skii convergence criterion (see e.g. [24, Lemma
9.2]), and Proposition 4.C is a simple consequence of the Holder integral
inequality.

A normed space X C S(£2, F) is said to have the Riesz—Fischer property
provided the inequality

D laallx < oo
n=1

implies that the series zoo := >, T, converges in S(2, E),
o0

(8) lzoollx < Y llanllx < oo

n=1
and > 7, ¥j — 2o in the norm of X.

PROPOSITION 4.A. Let X = X[E] C S(£2, E) be a Kdthe-Bochner space.
Then

(i) X is continuously embedded in S(§2, E);
(ii) X has the Riesz—Fischer property;
(iii) X has Pp-monotone norm, i.e.

9) [Ppzfx <[lzllx (z€X, De),

and the following inequality is true:

(10)  [IPpzllx <> IIPp,zllx (z€X,DCUsDn; D, D, €).
n=1
A regular space Y C S(§2, F) is said to have the Vitali property if the
fact that a sequence {y, : n =1,2,...} CY has u.a.c. norms of Y, i.e.

lim  sup | Ppyn|ly =0,
px(D)—0 neN
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and that y,, converges a.e. to y € S({2, F'), implies that y,, converges in the
normof Y toy € Y.

PROPOSITION 4.B. Let Y = Y[F]| C S(£2, F) be a regular Kéthe-Bochner
space. Then'Y has the Vitali property.

Let no € S(£2,R) be a nonnegative function. We define the Bochner—
Lebesgue space L(ng) = L(no)[F] with the weight 7y as follows:

(11)  L(no) = L(no)[F]

={y €S2 F): Iyllain) = Jmo(s)ly(s) 1 duls) < oo}
2

PROPOSITION 4.C. Let Y = Y[F]| C S(§2, F) be a Kéthe-Bochner space.
Then Y is continuously embedded in the Bochner—Lebesque space L(ng) =
L(no)[F] for some weight ny with suppny = supp Y.

We now prove the results of Section 3.

Proof of Lemma 3.1. Assume that N C Y fails (2), where Y = Y[F] C
S(£2,F) is a regular Kéthe-Bochner space. Then there exists € > 0 such
that

(12) lim sup ||Ppylly > 2 > 0.
px(D)—0 yeN

So there exist Dy € 2 and y; € N such that || Pp,y1]||y > 2¢. Since y; € Y°
has u.a.c. norm of Y, it follows from (12) that there exist Dy € 2, y2 € N
such that ju.(D2) < 272u.(D1), |Ppyyzlly > 2e > 0, |Ppyyilly < 27%.
Continuing by induction, we construct sequences Dy and yi € N such that

N*(Dk) <2_k:u’*(D1)7 ||PDkkaY>2€>07 ||PDkyi||Y <2_k€ (Z<k)
Put £2, = D,,\ Uy, Dr- Then by (10) we have

1Po,yally = 1Pp,ynlly = > [1Poyally =26 =) 27 e >e >0,
k>n k>n

pe($2n) < (D) < 27" pu(D1) = 0 (0 — 00).
Clearly, £2,, are mutually disjoint, and hence the lemma follows. m
Proof of Lemma 3.2. Since X = X[E] C S(§2,F) is a Kéthe-Bochner
space with Pp-monotone norm, Pp(Bx(r)) C Bx(r)(D € ), and so N
has property (LD2).
Suppose to the contrary that the set M = (J 7, N(z,) fails (2), although
the sequence {z,, : n =1,2,...} satisfies (6):

o0
Z |zn|x <7 < o0.
n=1
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Since each value N(z,,) is assumed to have u.a.c. norms of Y, where Y =
Y[F] C S(§2, F) is a regular Kéthe-Bochner space, by applying Lemma 3.1
for the set M we can find ¢ > 0, subsequences n;, y,, and a sequence of
mutually disjoint sets D; € 2 such that

(13) :U’*(Dj)_>0 (j—>oo), Yn; GN(mnj)7 HPD.,-ynjHY >e>0.

Since X has the Riesz—Fischer property and Pp-monotone norm (see Propo-
sition 4.A), there exists z, := Z;’il Pp,x,; satisfying (cf. (8))

oo [o@)
lzollx <> I1Pp,an; Ix <D lan,llx <7 < oo
j=1 j=1

So x, € Bx(r), and hence by assumption,
(14a) lim sup ||Ppylly =0.
Hx(D)=0 ye N ()
By (13) together with the property (LD2) of the locally defined operator N,
we get

(14b) PDjynj S PDjN(mnj) = PD].N<PDJ.QJ”].)
= PDjN(PDj'f*) = PDJN($*)

Since py(Dj) — 0 (j — o0) (see (13)), from (14a)-(14b) we obtain
lim; .o | Pp,¥n,|ly = 0, which contradicts the last inequality in (13). m

Proof of Theorem 3.1. Because H defined by H(x) := N(z — x¢) for
a fixed g € G is again a locally defined operator on the nonempty open
subset G(xo) = G — zo containing 0, which satisfies all the assumptions of
the theorem, it suffices to prove the semicontinuity of N at 0 for 0 € G. In
this case, Lemma 3.2 is applicable for N considered on any Bx(r) C G.

First, suppose to the contrary that (LS) holds but N is not l.s.c. at
0 € G. Then there exist an open set O and a sequence x,, with ||z, | <27 "r
such that N(0)NO # 0,0 < r < R(0), Bx(r) C G, and N(z,,) N O = { for
all n. Since x,, — 0 in X and X is continuously embedded in S({2, E), by
Riesz’s theorem we can assume without loss of generality that z,, — 0 a.e.
By (LS), for a fixed yo € N(0) N O there exist ny and y,, € N(z,, ) such
that y,, — yo a.e. By Lemma 3.2 for z,, satisfying

oo o0
Z”l’nkHX < ZQ‘kr:r < 00,
k=1 k=1

the sequence {y,, : k =1,2,...} C Up—; N(zn,) has w.a.c. norms of Y, so
by the Vitali property of the regular Kéthe-Bochner space Y (see Proposi-
tion 4.B), yn, — Yo in the norm of Y. Since O is open and yo € N(0)NO, it
follows that y,,, € O, yn, € N(x,, ) for sufficiently large k, which contradicts
the condition N(z,,) N O =0 for all n.



10 H. T. Nguyéii

Second, suppose that (HL) holds but N is not H-l.s.c. at 0 € G. Then
there exist x, with ||z,]| < 27"r such that h™(N(0),N(z,)) > & > 0
and 0 < r < R(0) and Bx(r) C G. As before, again we can assume that
zn, — 0 a.e. Since h* (N (0), N(x,)) = sup,e n (o) dist(y, N(z,)), there exists
a sequence y, € N(0) such that dist(y,, N(z,)) > ¢ > 0. By (HL) there
exist ny and z,, € N(x,,) such that y,, — z,, — 0 a.e. Since {y,, : k =
1,2,...} € N(0) has u.a.c. norms of Y by assumption, and again by Lemma
3.2 the set |J;—; N(zn,) has u.a.c. norms of Y, it follows that the sequence
{Yn, — zn, * k = 1,2,...} has uv.a.c. norms of Y. By the Vitali property,
hence y,, — 2zp, — 0 in the norm of Y, which contradicts the conditions
Zn,, € N(zy, ) with dist(yn,, N(zn,)) > € > 0 for all ny.

Third, suppose that (HU) holds but N is not H-u.s.c. at 0 € G. Then
there exist x, with [|z,| < 27"r such that h*(N(x,), N(0)) > & > 0 and
0 < r < R(0) and Bx(r) C G. As before, we can assume that z,, — 0 a.e.
Since A (N (zy), N(0)) = sup,en (s, dist(y, N(0)), there exists a sequence
Yn € N(z,) such that dist(y,, N(0)) > e > 0. By (HU) there exist n; and
Zn, € N(0) such that y,, — z,, — 0 a.e. Since {z,, : k = 1,2,...} C
N(0) has u.a.c. norms of Y by assumption, and again by Lemma 3.2 the
set Up—; N(xp,) has uwa.c. norms of Y, it follows that the sequence
{Yn,, — zn, + k = 1,2,...} has u.a.c. norms of Y. By the Vitali property,
hence y,, — 2zp, — 0 in the norm of Y, which contradicts the conditions
Zn, € N(0) with dist(y,,, N(0)) >e >0 for all nj. =

Proof of Proposition 3.1. 'This is standard by the above mentioned Riesz
theorem. =

Proof of Lemma 3.3. This is standard via the known selection theorems
[10] and Castaing representations (see the same argument, e.g., in [5]). »

Proof of Theorem 3.2. We shall show that Theorem 3.2 is a consequence
of Theorem 3.1 for N(x) = N}/(CE) = Sel f(-,z(+)).

By the assumptions of Theorem 3.2, given a fixed z € GG, the multifunc-
tion I, = f(-,z(+)) : 2 — Bd CI(F)U{0} is measurable with dom f(-,z(-)) =
2 (mod0) and Sel I, C Y =Y[F]. Then by the Kuratowski-Ryll-Nardzewski
measurable selection theorem [10] it is easy to construct a nonnegative func-
tion B, € Y such that ||y(s)||r < B:(s) a.e. for every y € SelI',, and so
IPpylly < ||PpfBsz|ly for every y € SelI,, D € 2. Since Y is regular, i.e.
Y = Y°, the function 3, € Y satisfies the equality (1) in the norm of Y.
Hence, each Nf(z) = Sel I, has u.a.c. norms of Y.

So, it remains to verify the condition (LS) (respectively, (HL), (HU)) of
Theorem 3.1 under the assumptions of Theorem 3.2.

First, suppose that f(s,:) : E — C1(F) U {0} is ls.c. for a.a. s € £2.
Let z, — xo in X, x, — x¢ a.e., x, € Bx(zo,R(z9)) C G (G is open
and 2y € G, so we can choose such R(xg) < o0). By our assumptions f is
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sup-measurable, so f(-,z,(-)) : 2 — CI(F)U {0} (n = 0,1,...) are mea-
surable with dom f(-,z,(-)) = £2 (mod0). Fix yg € N(xz¢) := Sel f(+, zo(+)).
Then, d(yo(-), f(s,zn(-))) — 0 a.e., since f(s,-) is L.s.c. By our assumption
Sel f(-,zn(-)) CY (n=0,1,...), hence by Lemma 3.3 for each yo € N(xg)
there exists a sequence y,, € N(x,,) := Sel f(-,z,(-)) C Y such that

d(yo(s),yn(s)) < 2d(yo(s), f(s,2n(s))) (mod0).

So, Yyn — Yo a.e., which proves (LS).

Second, suppose that f(s,-) : B — Cl(F)U{0} is H-ls.c. for a.a. s € (2.
Let x, € X be as above. Then ht(f(-,zo(-)), f(s,2n(-))) — 0 a.e. By our
assumption Sel f(-,z,(-)) C Y (n =0,1,...), hence by Lemma 3.3 for each
Yn € N(zg) there exists z,, € N(z,) such that

d(yn (), 2n(8)) < 207 (f(s,20(s)), f(5,2n(5))) (modO0).

So, ¥y, — 2z, — 0 a.e., which proves (HL).

Third, suppose that f(s,-): E — Cl(F)U{0} is H-u.s.c. for a.a. s € (2.
As before, for each sequence yn € N(z,) we get some sequence z, € N(xg)
such that d(yn(s), zn(s)) < 2T (f(s,2n(5)), f(s,20(s))) (mod0). Again we
get Yy, — zn, — 0 a.e., which proves (HU). m

Proof of Theorem 3.3. First, by Proposition 4.C we can choose some
no € S(£2,R) such that Y is continuously embedded in L(ng) = L(no)[F].
Then every set with u.a.c. norms of Y has u.a.c. norms of L(7y). So, we can
apply Theorem 3.1 for N : G — P(L(ng)) to deduce that N : G — CIl(L(ny))
is lower semicontinuous.

We define N’ := T o N with Ty(s) = no(s)y(s) a.e. So, N :=T o N :
G — CI(L1[F1]). By our construction, N’ is clearly locally defined and lower
semicontinuous on G. We easily verify by (7) that N'(x) is a decomposable
set in Ly[F], i.e. if a,b € N'(xz) and D € A then y = Ppa + Po\pb €
N’(z). Now we can apply the well-known selection theorem of Bressan—
Colombo [7] or Fryszkowski [16] (see a minor modification for an unbounded
o-additive measure p in [28, Corollary 2.1]) for the lower semicontinuous
operator N’ : K — CI(L1[F]) with decomposable values on a separable
metric space K C GG or a compact metric space K C G, respectively. Hence
we can find a continuous selection v’ : K — CI(L1[F]) of N’. Then u =
T~ : K — L(no) is a continuous selection of N : K — CI(L(ny))-

Clearly, u : K — Y, since u(x) € N(z) C Y. Note that u is generally
not locally defined, but we shall establish that u : K — Y is continuous.

Assume to the contrary that w : K — Y is not continuous at some
xg € K. Then we can find some sequence z,, € K such that z,, — x¢ in
norm and

(15) |lu(x,) — u(xo)||y does not tend to 0 (n — o).
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By the same arguments as in the proof of Theorem 3.1, by using Lemma 3.2
we get a subsequence z,, C K C G such that the set M = |J;~; N(z,,) has
u.a.c. norms of Y. Since u(z) € N(z) C Y (Vx € K), the sequence {u(zy,,) :
k=1,2,...} has u.a.c. norms of Y. Since u : K — L(np) is continuous and
L(no) is continuously embedded in S(£2, F'), u(x,,) converges to u(zo) in
S(§2,F) and so by Riesz’s theorem we can assume that u(z,,) converges
to u(zo) a.e. By the Vitali property of Y (see Proposition 4.B), u(zy,)
converges to u(xo) in the norm of Y, which contradicts (15). m

Proof of Theorem 3.4. Since in Theorem 3.4 we assume additionally
that there exists a subsequence z,, as in (LS) (respectively, (HL), (HU))
such that | J;- ; N(z,,) has u.a.c. norms of Y, the arguments in the proof of
Theorem 3.1 yield the assertion of Theorem 3.4 without using Lemma 3.2. =

5. Semicontinuity results in Bochner—Lebesgue spaces

COROLLARY 5.1. Let 1 < p<o0,1 <g< oo, f:§xE — BdCI(F
U {0}, and G be a nonempty open subset of Ly[E]. Suppose that N¢(z) :=
Sel f(-,z(+)) C Ly[F] (Vx € G). If f is sup-measurable and f(s,-) : E —
BACL(F)U{0} is l.s.c. (respectively, H-l.s.c., H-u.s.c.) for a.a. s € §2, then
Ny : G — BACL,[F]) is L.s.c. (respectively, H-l.s.c., H-u.s.c.).

Proof. Since L,[F] (1 < ¢ < o0) is a regular Kéthe-Bochner space, the
corollary is a particular case of Theorem 3.2. =

In the following Corollary 5.2 we do not assume that G is open but
we must assume some additional local condition on the values of Ny. Note
that the following condition (CFR) is taken from Cellina—Fryszkowski—
Rzezuchowski [12] whose H-u.s.c. result for Ny acting in L,-type spaces was
proved by a different, complicated proof under the additional assumption of
the graph measurability of f. In Corollary 5.2 we drop this assumption, and
get also the Ls.c. and H-ls.c. results under the same condition (CFR).

COROLLARY 5.2. Let f: 2x E — BACL(F)U{0} and G be a nonempty
subset of Lp[E]. Suppose that N¢(x) := Sel f(-,x(-)) C Ly[F] (Vx € G), and
assume the following local condition:

(CFR) 1< p,q < o0, given xg € G there ezist R(xzy) > 0, a € L1(£2,R),
b >0 such that
lyo(s) = y(s)[|” < als) + bllzo(s) —x(s)[|” (for a.a. s € 2)
for every yo € N¢(z9), y € Ny(x), and x € G with ||zg — z|| <
R(:Eo)

If f is sup-measurable and f(s, ) : E — BACl(F)U{0} is l.s.c. (respectively,
H-ls.c., H-u.s.c.) for a.a. s € §2, then Ny : G — BdCl(I,[F]) is ls.c.
(respectively, H-l.s.c., H-u.s.c.).
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Proof. We shall show that the corollary is a consequence of Theorem 3.4
together with the verification given in the proof of Theorem 3.2. Without loss
of generality we may consider only the case 0 € G and prove semicontinuity
of Ny at 0, since otherwise we can pass to M (z) := Sel f(-, z(-)—zo(-)). Since
Ly[F] (1 < g < o0) is a regular Kéthe-Bochner space, it suffices to show
that for any sequence z, € GN B, (R(0)) such that 2,, — 0 in norm, there
exists a subsequence ny such that |J;—; Ny(zn,) has w.a.c. norms. To this
end we take ny such that ||z, |, < 27%"*R(0). By Lebesgue’s dominated
convergence theorem we get a(-) := >, ||zn, (-)||g € Lp. From (CFR) and
the equi-integrability of Lebesgue integrable functions we obtain

1Poyll?, < 29 (|Posoll?, + 1 Poly — vo)12.)
< 201 (|Ppyolf, + [ Poall, + bl Poall, ) — 0
(ps(D) — 0, uniformly for y € Ure | Nf(zn,))
for a fixed yo € Nf(0). Therefore, | J;—; Nf(zn,) has uw.a.c. norms. =

6. Semicontinuity results in Lebesgue spaces with mixed norm.
We now collect some known auxiliary information. Let T and {2 be two
measure spaces, and T'x {2 be the product measure space. Let E C S(£2,R™),
F C S(T,R) be two Lebesgue spaces. Define F(FE) to be the space of all
z € S(T x £2,R™) such that z(t,-) € E for a.a. t € T and the function h.,
h.(t) :=||z(t, )|, belongs to F. The space F(E) with the norm ||k, (-)|F,
where h,(t) = ||z(t,")||g (2 € F(E)), is called a Lebesgue space with mized
norm on T x (2. From e.g. [19, Theorem XI.1.2] one can get the following:

LEMMA 6.A. Let E C S(£2,R™) be a Lebesque space and let z €
S(T x 2,R™) be such that z(t,-) € E for a.a. t € T. Then the function h.,
h.(t) :==||2(t,")|| g, is measurable.

By Lemma 6.A one can easily check (see, e.g., [19]) that F'(E) is a Kéthe-
Bochner space in S(T x £2,R™), and F(FE) is regular if both F' and E are
regular.

Hence we may apply all results of Section 3 to the multivalued superposi-
tion operator N, generated by a multivalued function g : (T'x 2) xR™ — oR™
and acting in two Lebesgue spaces with mixed norm, i.e. Ny : F(E) —
2Fo(Eo) So from Theorem 3.2 we deduce immediately Corollary 6.1 below,
since the Kéthe-Bochner space Fy(Ep) is regular.

COROLLARY 6.1. Let G be a nonempty open subset of a Lebesque space
with mized norm X = F(E) C S(T x 2,R™), and let Y = Fy(Ep) C
S(Tx 2,R™) be another Lebesgue space with mized norm such that both Fy C
S(T,R) and Ey C S(§2,R™) are regular spaces. Suppose that g : (T x £2) x
R™ — Cp(R™) U {0} is a sup-measurable multifunction such that Ny(x) :=
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Selg(+,,z(-,)) CY (Vz € G). If g(t,w,-) : (T x 2) x R™ — Cp(R™) U {0}
is l.s.c. (respectively, H-l.s.c., H-u.s.c.) for a.a. (t,w) € T x (2, then the
operator Ny : G — BACI(Y') is l.s.c. (respectively, H-l.s.c., H-u.s.c.).

7. The Dirichlet problem for quasilinear elliptic differential
systems with lower semicontinuous nonconvex-valued right-hand
side. Let 2 be a bounded domain in R2, and f: 2 x R™ — 28" be a mul-

tifunction of two variables (s,u) € £2 x R™. We shall consider the problem

(16) { —Ax(s) € f(s,x2(s)) for a.a. s € 2,

z|an =0,
where A, = (4,...,A) is the m-vector Laplacian. In what follows, we
denote the scalar product and norm in the Euclidean space R™ by (-,-)
and | - |, respectively, and the scalar product and norm in the Lebesgue
space Lo = Lo(2,R™) by (-,-) and || - ||, respectively. As usual, H! =

H'Y(£2,R™) is the Sobolev space defined by the norm ||z||; = ||z|| + ||Vimz]],
while Hi = H(£2,R™) is the closure of C§°(£2,R™) with respect to this
norm. Denote by H~! the dual space to H} with respect to the Lo-pairing
(+,+). Given a Young function M : R — [0,00), the term Orlicz space (e.g.
[21, 24]) will refer to the space Ly = Lps(§2,R™) (of equivalence classes) of
measurable functions v on {2 taking values in R™, which is equipped with
the Luxemburg norm ||z = inf{k > 0: {, M(k~!{|z(s)||gm)ds < 1}; in
this case the regular part L}, coincides with the closure Eys in Lj/-norm of
the set of all continuous functions (see e.g. [21, Subsection 1.8], [30]).

Throughout this section, we denote by Z and X the “exponential” Orlicz
spaces:

(17) Z = L@, X = L@;
dla)=clf -1, W)= —1, aeR 1<po<2

By Pokhozhaev-Trudinger’s exact embedding theorem (see e.g. [17, The-
orem 7.15, Section 7.8]), the Sobolev space H} (on 2 C R?) is always
continuously non-compactly embedded in Z. By e.g. [3, Lemma 1], H} is
compactly embedded in X, since Z C X and the unit ball of Z has u.a.c.
norms of X (see e.g. [21, Lemma 2.5], [30]).

Note that
(18) HycZcXcCly,cX'czZ cH™!
continuously. Here, Z’ denotes the Kdthe associate space of all integral linear
functionals on Z: Z' := {2’ : 2/ : 2 — R™ is measurable, (z,2’) < oo

(Vz € Z)} with the norm

|2|| z2 = sup {(z,z/) = S(z(s),z/(s))ds zllz < 1}.

)
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Later on, we denote by pua the first Dirichlet eigenvalue of the Lapla-
cian —A.
The main result of this section is

THEOREM 7.1. Let Z, X be the Orlicz spaces in (17). Suppose that the
following conditions are satisfied:

(E1)  The multivalued superposition operator Ny maps X into 2Z/, where
7' = Lg+ with &* the dual to the Young function ®.

(E2)  The multifunction f : 2 x R™ — Cp(R™) U {0} is sup-measurable
such that f(s,-) : R™ — Cp(R™) U {0} is lower semicontinuous for
a.a. s € §2.

(E3)  The following one-sided inequality holds:

(19) (u,w) < y(u,u) +6(s) (for a.a. s € 2 and all w € F(s,u)),
where 0 < v < pa, 6 € L1(§2,R) is non-negative.
Then the problem (16) has at least one solution x, € H} C Z.

REMARKS 7.1. (i) In [1-2] the problem (16) was treated only in the case
of f(s,-) upper semicontinuous. In [9, 18] (and references cited therein) the
problem (16) for f(s,-) lower semicontinuous was treated only if Ny maps
L, into 2%» (2 < ¢ < 00, 1 < p < 2) (via the Fryszkowski-Bressan—Colombo
selection theorem [7, 16]). Since X is contained properly in Uy« o, Lg, and
Ui p<2 Lyp is contained properlyin Z " by our choice (17), no existence results
from [1-2, 9, 18] can be applied in the situation of Theorem 7.1 when Ny
satisfies the conditions (E1)—(E2).

(ii) One cannot immediately apply the known scheme e.g. of [1-3, 9,
18] to prove Theorem 7.1, since the Orlicz space X is nonseparable [21,
Subsections 1.8, 1.4], [24, Theorem 8.14] by our choice of X in (17) and so
it is impossible to establish the existence of a “global” continuous selection
u:X — Z' of Ny : X — 27 (cf. Theorem 3.3). Later on, we shall modify
this scheme to prove Theorem 7.1.

(iii) A sufficient condition guaranteeing that the multivalued superposi-
tion (Nemytskii) operator Ny acts as desired in the condition (E1) is the
following inequality:

sup  |w|(In(e + sup |w]))? < a(s) + becl¥l®™"
we f(s,u) we f(s,u)
(for a.a. s € £2 and all u € R™)

with some a € L1(£2,R), b € [0,00), ¢ € (0,00), and € € (0,0 — 1).

(iv) The analogous existence results are valid for more complicated non-
linear inclusions in Orlicz spaces such as multivalued versions of nonlinear
elliptic boundary value problems, which were studied e.g. in [3, 27] and
references cited therein.
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Proof of Theorem 7.1. We divide the proof of Theorem 7.1 into six steps.

STEP 1. As is well known (see e.g. [17, Section 8.2, Theorem 5.8]), the
operator L generated by the Laplacian —A,, is continuous and invertible
from H} into H~!, and

(20) (La,z) > ollzll (v € Hy)

for some a > 0. Recall that the solvability of (16) in Hg means the existence
of ¥ € H} and y € N¢(x) such that y € H~! and Lz = y. Via (18) together
with the condition (E1), we see that x is a solution of the problem (16) if
and only if x is a solution of the inclusion x € L™'N(z) in X. Since H{}
is compactly embedded in X, the linear inverse operator L= : Z/ — X is
compact.

STEP 2. Suppose that there exist x € X, 2 € Z/, 0 < XA < 1, and
Q(z) € Z' such that z = L71(2), 2 = A\Q() and

(21) (Q(z), z) < y{z, x) +d,
where d :=||0(+)||,. We claim that
(22) 2]y < d"2e7V2 lzllx <7 =r(e,d,h) < oo,

where ¢ := a(ua —y)px" € (0,00), and 7 depends on ¢, d and on the norm
h of the continuous embedding H} C X.

To see this, by [3, Lemma 4, (16)] together with 0 < v < pa in the
condition (E3) we see that ¢ € (0,00) and

(23) Yo, x) < (L, z) — cll=l7.
By (21) and (23) we get

(Q(),2) +cl|z]|} < (La,z) +d.
Then by the same proof of [3, Lemma 3] we obtain (22).

STEP 3. Since X = Ly is a split space (see e.g. [6, Lemmas 2.5 and 4.2])
and Z' = Lg« is perfect, i.e. Z/ = (Z')" (see e.g. [24, Theorem 13.18]) by
(17), applying [4, Theorem 5] for Ny satisfying (E1)-(E2), we find that Ny
is bounded in Z’ on bounded subsets of X. Hence,

(24) re = sup{llyllz : y € Ny (), [|lz[x <r} <oo.

STEP 4. Since L~! : Z/ — X is a compact linear operator, the set

(25) C:=cleo{L 'y : |lylly <re+1}

is, by the well-known Mazur theorem [19], a compact metric subspace of X,
where clco(D) is the convex closure of D. Since the Orlicz space Z' is regular
(see e.g. [21, Subsections 1.4, 1.6, 1.8, 1.9], [24, Theorem 8.14]), we can
apply Theorem 3.3 to find a continuous single-valued selection Q1 : C — Z’
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for N¢|¢ : C — BdACI(Z’). Hence, by (19), we conclude that Qq(z)(s) €
f(s,z(s)) a.e. (x € C) and

(26) (@Qi(2),2) <y(z,2) +d (Vzel),

where d = ||0(+)||, -

By the Dugundji-Tietze-Urysohn theorem [22, Theorem 18.1], we can
find a continuous nonlinear projection R from X onto the closed convex set
C such that R(z) = z (x € C). Then the continuous single-valued map

Q1 := Q1R : X — Z' is a continuous extension of Q1 : C' — Z'.

STEP 5. We claim that
(27) y#EMQL(y) (0 A<, [lylz =7 +1).

To see this, suppose that on the contrary there exist z € Z’ and X such
that z = AQ1L~1(2), ||z|ly = r«+1,and 0 < A < 1. Then, z := L™1(2) € C,
and so Q1(z) = Q1(x). Therefore, by (26), Q(z) := Q1(x) = Q1(x) satisfies
(21) and z = AQ(z). Applying the result of Step 2, we get ||z||x < 7 (see
(22)). From (24) together with Q1(z) € Nf(z) we obtain

12l z = [A@1(2)] 2 < |Q1()[| 2 < 7v < 00,
which contradicts the equality ||z||z = 7« + 1.

STEP 6. Since the linear inverse operator L=': 7' — X is compact,
the single-valued operator A := QL= : Z/ — Z' is clearly completely
continuous. By (27) together with the classical Leray—Schauder principle
(see e.g. [22, Theorem 42.1]) it follows that A has a fixed point z, with
lzellzr < 7rs + 1, ie. 2 = A(2) = Q1L (2,).

Using arguments analogous to those from Step 5, we get

lzellzr <o +1, @=L Y2) €C, 2z =Qix)=Q1(x),

and therefore since Q1(x.) € Ny¢(z.) we get x, € L‘le(x*). Via Step 1
we deduce that z, is a solution of the system (16). m
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