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Spectral properties of quotients of Beurling-type
submodules of the Hardy module over the unit ball

by

KuNyu GUo and YONGJIANG DUAN (Shanghai)

Abstract. Let M be a Beurling-type submodule of H?(Bg), the Hardy space over
the unit ball By of C¢, and let N = H?*(B4)/M be the associated quotient module. We
completely describe the spectrum and essential spectrum of N, and related index theory.

1. Introduction. Let By be the unit ball of C?, and let H?(By) be the
Hardy space over B, which consists of the analytic functions in B satisfying

sup | f(re)2do(¢) < os,
0<r<1 OBy

where do is the normalized Lebesgue measure on the unit sphere dBy. Let n
be an inner function on the unit ball, that is, 7 is a nonconstant function in
H>(B,) satisfying |f*({)| =1 a.e. [0] on OBy, where f*(¢) = lim,_1 f(r().
In the sixties, Rudin posed the existence problem: Do there exist inner
functions in H*°(B;) [Rud1]? This problem was affirmatively solved in 1982
by B. Aleksandrov [Rud2].

When d = 1, By = U is the open unit disk, and H?(U) is the classical
Hardy space over U. Let N = H?*(U) © nH?(U) for a one-variable inner
function n, and let N, = PyM_,|N be the compression of the coordinate
multiplication operator M, to N; here Py is the projection onto N. Then
the Livsic—Moeller theorem [Nil, p. 62] states that the spectrum of N, equals
the zero set of n in the open unit disk, together with the points on the unit
circle T to which 1 cannot be analytically continued from U, that is,

U(NZ) = Z(n) U E')
where Z(n) is the zero set of 1 in the unit disk and
E = {X €T | there is a sequence {;} C U such that
lim & = X and lim n(§) = 0}.
1—00
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Moreover, if n is not a finite Blaschke product, then a result of Arveson
[Arvl, Theorem 3.4.3] shows that the essential spectrum of N, is exactly E.
The proofs of these results rely heavily on the fact that each inner function n
(d = 1) has the factorization n = BS, where B is a Blaschke product and
S is a singular inner function. When d > 1, inner functions have no such
factorization. In fact, the structure of inner functions in several variables is
far from clear. In this paper, we will deal with the case d > 1.

Given a Hilbert space H, let (T1,...,T4) be a tuple of commuting bound-
ed operators acting on H. Then one naturally makes H into a Hilbert module
over the polynomial ring C[zy, ..., 2z4] (cf. [DP]) by setting

p'gzp(Tla"'aTd)ga pEC[Zl,...,Zd],geH-

Now let (M,,..., M.,) be the coordinate multiplication operators act-
ing on H?(B,). Then H?(B,) naturally becomes a Hilbert module over the
polynomial ring Clz1, ..., 24|, called the Hardy module on the unit ball B,.
A closed subspace M of H?(Bg) is called a submodule if p M C M for any
polynomial p. In the case of one variable, Beurling’s theorem shows that
each submodule has the form M = n H?(U) for some inner function 7. How-
ever, in the case of several variables, there exist a lot of submodules that
do not have the above form, for example, submodules of finite codimension
[CG, DP]. Given an inner function 7 on By, the submodule M = nH?(B,)
is said to be a Beurling-type submodule. Given a submodule M of H?(By),
the quotient module H?(B;)/M is naturally identified with M, where the
module action on M= is p- £ = Py, 1p€ for any polynomial p and &€ € M+,

This paper mainly considers spectral properties of quotients of Beur-
ling-type submodules on the unit ball. Given an inner function n, let
N = H?(By) © nH?(By) be the associated quotient module, and N, =
(Nz,...,N;,) be the tuple of compression operators acting on NN, where
N, = PyM,,|N, and Py is the projection onto N. We will determine the
spectrum and essential spectrum of the quotient module, that is, the Taylor
spectrum and essential spectrum of the tuple N, = (N;,,..., N;,). Deter-
mining the spectrum and essential spectrum of a general quotient module is
very difficult since the problem is related to essential normality of the quo-
tient module [Arv5, Arv6, Dou, GW]. But even for submodules generated
by homogeneous polynomials, essential normality of submodules remains
unknown [Arv5, Arv6, Dou|. The paper also concerns K-homology defined
by quotient modules.

2. The Taylor spectrum of N,. In this section, we will determine
the spectrum of the quotient module NV, i.e. the Taylor spectrum of N, =
(Nz,...,N;,). First, let us recall the concept of the Taylor spectrum [Tay].
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For 1 <k <d, let
Ik:{(il,...,’ik) €N| 1< << Sd}
Let {e; | 1 < i < d} be an orthonormal basis for C?, and A* C% be the kth
exterior power of C? with orthonormal basis {e;, A---Ae;, | (i1, . .,i%) € Ix}.
Let AC? = @i:o A" €4, where \°C? = C. Then A C? is a Hilbert space
with orthonormal basis {1} U {e;, A---Aei | (i1,...,0k) € Iy, 1 < k < d}.
Define the canonical creation operators Cy,...,Cyq on A\ C? as follows:

Ci:€—e;NE  Ee NCL

Let T1,...,T4 be a commuting d-tuple of operators on a Hilbert space H.
Then the Koszul complez for the d-tuple (T1,...,Ty) is

0> —-2' ... > N"—0, where 02F=Hae\'C?
with cohomological boundary operator
B=T1C + - +T;®Cy.

It is easy to see B2 = 0. We denote the restriction of B to £2* by By,
and hence ran By, C ker By. Say that the tuple (T1,...,Ty) is invertible if
ran By = ker By, and (T1,...,Ty) is Fredholm if

dim(ker By /ran By,_1) < oo for 1 <k <d.

When T = (T1,...,Ty) is Fredholm, define its Fredholm index as

d
ind(T) = » (=1)*"" dim(ker Bi/ran By, _1).
k=1

The Taylor spectrum and essential spectrum of T = (T4, ...,T,) are defined
as

o(T) ={(M,...,A\q) €C| (Ty = A1,..., Ty — Ag) is not invertible},
0e(T) = {(A1,...,Aq) € CT| (T} — A1, ..., Ty — Ag) is not Fredholm}.

We begin with a lemma which may be viewed as the H* functional
calculus of N.. It is a generalization of the one-variable version in [Nil], and
the proof is omitted.

LEMMA 2.1. Let
QO(NZN"WNZd) :PN90|N7 QO(N,:) :P-l-@t’N?
where ¢ € H®, ¢! = p(z1,...,24), N} = (N} ...y NZ)), and Py is the

z z1)

projection from L?(0By) onto H*(B,). Then
(1) lleNI < lleplloos
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(2) the map ¢ — p(N,) is linear, multiplicative, and
P(N,) = ZaaN;xll - N2
«

for each P =3 anz* € Clz1,...,24]; moreover, p(N¥) = ¢'(N,)*.

PROPOSITION 2.2. o(N,)NBy= Z(n), where Z(n) ={\ € By | n(A) =0}
is the zero set of n.

Proof. From [Rudl, p. 116], one can solve Gleason’s problem in H*>°(B,),
that is, given f € H*(B;) and A € By, there exist g1, ..., 94 € H*(By) such
that

Replacing f by 1 and using the H* functional calculus for N,, we have
d

N(N:) =0(A) = D (Nz = Ai)ga(N).
i=1

Lemma 2.1 implies n(N;) = 0. Hence, if n(A) # 0, then the tuple N, is in-
vertible relative to (NV,)’, the commutant algebra of the norm closed algebra
generated by N, ..., N,. This means o/(N,)NB; C Z(n), where o/(N) de-
notes the algebra spectrum relative to the commutant algebra (N,)" [Cur2].
By [Cur2, Lemma 4.5], 0(N,) C o/(N,). This gives
o(N.)NBy C Z(n).
To prove the reverse inclusion, let A € Z(n). It suffices to show that

N # (NZI _)\1)N+"'+(de _)‘d)Na
since this implies that A € o(N,). Indeed, assume that

N = (Nzl — )\1)N—|— e 4 (de — )\d)N,
that is,

d
H2(By) & nH(Bq) = Pu (D (Mz, — N) (H2(Ba) © nH*(Ba)) ).
=1

Then, for each ¢ € N = H?(B;) © nH?*(By), there exist fi,...,f; €
H?(By) © nH?(By) and h € H?(B,) such that
h=(z1—=A)fi+- -+ (2a—Aa)fa, 9= Pnh.

Hence, there exists g € H?(By) such that h = ng; + g. Thus, g = h — ng1,
and so

g(A) = h(A) =n(X)g1(A) = 0
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for each ¢ € N = H?(B,;) © nH?(By), which is obviously not true: if we
decompose 1 as

1:77f1+f27

where f; € H?(Bg) and f> € N, then obviously fa()) # 0. This contradiction
completes the proof of Proposition 2.2.

In the next section, we will prove that o¢(N,) = 0By. Since oo(N;)
C o(N,), it follows that o(N,) N 0By = 0B,;. Here, we want to give an
elementary proof of this result.

PROPOSITION 2.3. o(N;) N 0B, = 0By.
We need the following lemma which comes from [Rud2, Theorem 1.2].
LEMMA 2.4. Suppose that:

e [ is a nonempty open set in OBg;
o {r;} is a sequence satisfying 0 <r; <1,7; /' 1 as j — oo;
e f € H®(By,), f is nonconstant, |f*(¢)| =1 a.e. on I.

Then I' has a dense subset H such that the set
[F0) 15 =1,2,3,..}
is dense in the unit disk U for every ( € H.
For f € L*°(0B,), define the Toeplitz operator Ty with symbol f as
Ty : H*(By) — H*(By), Tyh=Pyfh, he H*By),
where Py is the projection from L?(0By) onto H?(Bg).

Proof of Proposition 2.3. Applying Lemma 2.4 to 0Bg, with f replaced
by the inner function 7, we get a dense subset H of 0By such that for each
A € H, there is a sequence {\;} C B; with A\; — X and n()\;) — 0 as j — oo.
Since o(N;) is a compact set, it follows that o(N,) N 0B, is a closed subset
of 0B,. It is enough to prove that

H C o(N,) N oBy.

Indeed, assume there exists A\g = (Ao1,...,Aoq) € H, but \g ¢ o(N,). Set
N} = (N;,,...,NZ,). It follows from [Curl, Corollary 3.14] that

U
o(NZ) ={X| A€ a(N:)}.
Thus \g & o(N7). Recall
ox(N) = {\ € C?| N — X\ is not jointly bounded below}

(a tuple (Th,...,T,) on a Hilbert space X is said to be jointly bounded
below if there exists ¢ > 0 such that % | |Tiz| > ¢|z| for all z € X.)
Since o, (N}) C o(N}) (cf. [Cur2, p. 37]), this implies \g & o (N}), that is,
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there exists €9 > 0 such that for all f €N,

d
(2.1) D O INE =X fIl = Z I(MZ, = Xoi) 1 = <ol f1I-
i=1

Now, we use (2.1) to prove that there exists 6 > 0 such that

(2:2) Z (M3, = Xoi)gll + [ Trgll = Sllgll, Vg € H*(By).

For g € H?(By), write g = h1 + nha, where hy € N and ho € H?(By). It is
easy to see that T3hy = 0, and thus

We have
d

(2:3) DM = Xoi)gll + [ Tl

i=1

d
Z — Xoi)h1 + (M, — Xog)nhal| + ||he.-

Let A = maxi<;<q || M} — Aoil| > 0, and consider the following two cases:

CAsE 1. If ||h1|| > 2Ad||h2]| /€0, then using (2.1), we obtain

d
D UM = Xoi)ha + (M2, = Noi)nhal) + ||z
=1

d
Z (M2 = Noi)hall — [[(MZ, — Noi)nha|) + || he|
€0
> eol|hall — 3 [l + llh2l = 5 Al + [|22]-

Noting that [|g||?> = ||h1]|? + ||h2||?, it is easy to see there exists d; > 0
independent of g such that

d
Z (M = Xoi)ha + (M, — Xoi)nhal| + [|h2| = é1]lg]-
=1
CASE 2. If Hh1|| < 2Ad||h2”/€0, then
d J— J—
> (M2, = Xoi)ha + (M, = Xoi)nhal)) + [Ihe]l > ||kl
=1

> [[h2||/2 + eol| P || /4Ad,
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and the same argument shows that there exists do > 0 independent of g such
that

Z (M2, = Xoi)h + (M, = Xoi)nhal| + [[hall > 82lgl].

Letting § = m1n{51,62} proves that in both cases, the assumption (2.1)
implies (2.2). Now, we show that (2.2) is not true, which implies that (2.1)
is not either, and thus, A\g € o(N¥) and A9 € o(N,). Let us return to
the beginning of the proof: there exists a sequence {\;} C By with \; =
(Ajis .-+, Ajq) such that

Aj— X, 1n(Aj)—0 asj— oo

Let K be the reproducing kernel for H?(By) and ky = K, /|| Ky|| the nor-
malized reproducing kernel. Then

EE:H 2= o)k, ||+ | Tk, || = EE:H ji = Aoa) ko ||+ [N ) |
=1

:Z ji = Aoi)| + [7(N)| — 0.

This contradicts (2.2), and the proof of roposition 2.3 is complete.

It is not difficult to see that o(N,) C B;. Combining Propositions 2.2
and 2.3 gives the following.

THEOREM 2.5. o(N,) = Z(n) U 0B,.

3. The essential spectrum of N,. First, we prove the following propo-
sition.

ProrosiTION 3.1. The quotient module N is essentially normal, that
is, the commutators [N}, N.;] are compact for all 1 <1i,j < d.

Proof. For any f € L*>(0By), it is easy to verify that TyT,, — T, Ty is

compact for ¢ = 1,...,d. Since 7 is an inner function, this means
(3.1) Py=1- TnT;]k =1-T,T5.
Since

N;iNZj B NZ]'N; = PNT?iPNTZjPN - PNszPNTziPN
= PN(TEiPNTZj - TZjPNTZi)PN7

inserting (3.1) and using the fact that T, essentially commutes with each
Toeplitz operator for i = 1,...,d, we conclude that [N}, N,,] is compact for
1<i,j<d.

We now determine the essential spectrum oe(N;).
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LEMMA 3.2. 0.(N) C 9B,.

Proof. Set M = nH?*(B,). Since z,M C M, we have M} N C N for
i =1,...,d. This means

d d d
> N.N; => PyM,PyM;|N = Py» M,M;|N.
=1 =1 =1
Since Z?:l M., M}, — I is compact, this implies
d
(3.2) > N N;=Iy+K,

i=1

where K is a compact operator. By Proposition 3.1, we know the tuple
N, = {N,,,...,N,,} is essentially normal. Combining [Curl, Cor. 3.10]
and (3.2) gives 0e(N,) C 0B,.

LEMMA 3.3. 0By C 0¢(IVy).

Proof. As in the proof of Proposition 2.3, we get a dense subset H of
0By such that for each A\g € H, there is a sequence {\;} C By such that
Aj — Ao and n(A\j) — 0 as j — oo. Since o¢(NN;) is a closed subset of 0By,
it suffices to prove that H C go(N).

Suppose otherwise, that is, there is a point \g = (o1, - - ., Agq) € H such
that

N, —Xo= (V2 — Aoty -+, Ny — Aog)
is Fredholm. Since [N, N7 | is compact for 1 <4,j < d, and

[N., — Xois NI — Xoi] = [N, N2,

this ensures that the tuple (N, — Ao1, ..., Nz, — Aoq) is essentially normal.
By [Cur2, Corollary 3.9], (N., —Ao1, . . ., Nz, —Aoa) is Fredholm if and only if
d p—
D (V2 = Xoi) (N, = Aoi)
i=1

is Fredholm. Since this last operator is positive, there exist an invertible
positive operator A and a compact operator K such that

d
(3.3) D (N = o) (VE = Roi) = A+ K.
i=1
Recalling that ky is the normalized reproducing kernel of H?(By), we have

(3.4) PN]C)\ = (I — MUM;)]C)\ = k)\ — 7]()\)7]]@\.
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Assume A = (A1,...,Ag). Then

d
(35) Y (((Nz; — Xoi)(NZ, = Xoi) Pk, Prky))'/?
i=1
d
= \ S o VBl =D 1M (B — n(N)nka) |
i=1

M= 1 Mg

s
Il
i

[Ai — Xoi kx — n(A) M. mkAll

2

Mg

(IX: = Xoil + [ 1| Mz, mkall).

I
—

7
Replacing A in (3.5) with A\; = (X\j1,...,jq) and noting |[nk,|| = 1 and
n(A;) — 0, we see that the last two terms in (3.5) converge to 0 as j — oc.
Thus we have
d

(3:6) D {(Nz — Xoi) (N7 — Xoi) Pk, Paka,) — 0 as j — oo.

i=1
On the other hand,

= (A(kx —n(\)nky), kx —n(Nnkx) + (K (kx = n(\)nkx), kx — n(A)nky).

We compute the two terms on the right of the above equality:
(3.7)  (A(kx —n(N)nky), kx — n(A\)nky)

= (Aka, kx) = (N {Anka, kx) =1(A) (Akx, k) + [n(A)(Ankx, nk»).
Note that A is an invertible positive operator, hence so is v/ A. Thus VA is

bounded below, i.e. there is ¢ > 0 such that ||[v/A f|| > ¢||f|| for any f € N.
Therefore,

(Akx, k) = |VAEy? > &2

With A replaced by A;, we conclude that the other three terms of the last
equality in (3.7) converge to 0 as j — oco. So we have

(3.8) (APnky,, Pxky,) > .
Moreover, since Pnk), 20, and K is compact, we have
(3.9) (KPyky,, PNky;) — 0 as j— oo.

Combining (3.3), (3.6), (3.8), and (3.9), we get a contradiction. Therefore,
0By C 0e(Ny).

From Lemmas 3.2 and 3.3, we have
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THEOREM 3.4. 0¢(N,) = 0By.

The next proposition comes from a discussion with R. Yang.

PROPOSITION 3.5. The C*algebra C*(N,) generated by {N,,...,N,, I}
is irreducible, that is, if Q) is a projection on N and QN, = N,Q for
i1=1,....d, then Q=0 or Q =1.

Proof. From the proof of Proposition 2.2 in [GZ], there exist polynomials
p;i, q; such that

m

(3.10) 1@1=> M,M; onHBy).
i=1

Set e = Py1. By (3.10), we have

m m
e®@e=Py(1®1)Py =Y PyM,M;Py=> N,N;,
i=1 i=1
where, for a polynomial p, N, = PyM,|N = p(N_,). If Q is a projection as
in the hypothesis, then QN, = N,Q and QN; = N;Q for any polynomial g.
Thus, Qe ® e)=(e ® €)@, which implies
RQe®e=—e® Qe.

Making both sides of the above equality act on e, we have

|Qe]?
(3.11) Qe = e
le]l?
CAskE 1. If Qe # 0, then
[Qell*  _ [[Qel?
Qe = Q% = e= e.
el le]l?
This implies ||Qe|| = |le||, hence Qe = e. Now for any f € N, there exists a

sequence of polynomials ¢, such that ¢, — f as n — co. Writing 1 = e + ¢
with ¢ € nH?(By), we have
dh=qn(e+§&) — f asn— oo.

Hence,

Pn(gne + an€) = Pngne — [,
that is, Ng,e — f. Therefore, QNy, e — Q f. Moreover, since

QNgy,e = Ny, Qe = Ny e — f,
we obtain @ f = f, which shows Q = 1.

Cask 2. If Qe = 0, the same reasoning gives ) = 0, and the proof is
complete.

Since C*(N,) is irreducible, and C*(N,) N K(N) # ( from (3.2), where
KC(N) denotes the compact operator ideal on N, this implies C*(N) D IC(V)
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by [Arv4]. Since the tuple N, is essentially normal, we have the following
exact sequence:

(3.12) 0 — K(N) — C*(N,) = C(6By) — 0,

where 7 is the unital *-homomorphism given by 7(N,,) = Z;.
From [BDF], the above exact sequence gives an extension of IC(NN) by
C(0By).

PROPOSITION 3.6. The short exact sequence (3.12) is split, that is, there
exists a x-homomorphism o : C(0Bg) — C*(N) such that 7o = I.

Proof. It follows from Theorem 3.4 that the tuple (N, ..., N,,) is Fred-
holm. Moreover, by [GRS, Corollary 3.5] the tuple has Fredholm index 0.
Since Ext(0Bgy) = K1(0Bg;) = Z, the short exact sequence (3.12) defines a
zero element in K7(0By). Indeed, this K-homology element is determined
by the index of the tuple (NV,,,...,N,,) (cf. [BDF, Guo2]) and thus is 0. So
the extension defined by (3.12) is a trivial element in Ext(0B4). This means
that the short exact sequence (3.12) is split.

REMARK. In the cases d = 2,3, the extensions defined by quotients of
submodules generated by homogeneous polynomials are not split [GW].
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