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Spectral properties of quotients of Beurling-type

submodules of the Hardy module over the unit ball

by

Kunyu Guo and Yongjiang Duan (Shanghai)

Abstract. Let M be a Beurling-type submodule of H2(Bd), the Hardy space over
the unit ball Bd of C

d, and let N = H2(Bd)/M be the associated quotient module. We
completely describe the spectrum and essential spectrum of N , and related index theory.

1. Introduction. Let Bd be the unit ball of C
d, and let H2(Bd) be the

Hardy space over Bd, which consists of the analytic functions in Bd satisfying

sup
0<r<1

\
∂Bd

|f(rξ)|2 dσ(ξ) < ∞,

where dσ is the normalized Lebesgue measure on the unit sphere ∂Bd. Let η
be an inner function on the unit ball, that is, η is a nonconstant function in
H∞(Bd) satisfying |f∗(ζ)| = 1 a.e. [σ] on ∂Bd, where f∗(ζ) = limr→1 f(rζ).
In the sixties, Rudin posed the existence problem: Do there exist inner
functions in H∞(Bd) [Rud1]? This problem was affirmatively solved in 1982
by B. Aleksandrov [Rud2].

When d = 1, B1 = U is the open unit disk, and H2(U) is the classical
Hardy space over U . Let N = H2(U) ⊖ ηH2(U) for a one-variable inner
function η, and let Nz = PNMz|N be the compression of the coordinate
multiplication operator Mz to N ; here PN is the projection onto N . Then
the Livšic–Moeller theorem [Nil, p. 62] states that the spectrum of Nz equals
the zero set of η in the open unit disk, together with the points on the unit
circle T to which η cannot be analytically continued from U , that is,

σ(Nz) = Z(η) ∪ E,

where Z(η) is the zero set of η in the unit disk and

E = {λ ∈ T | there is a sequence {ξi} ⊂ U such that

lim
i→∞

ξi = λ and lim
i→∞

η(ξi) = 0}.
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Moreover, if η is not a finite Blaschke product, then a result of Arveson
[Arv1, Theorem 3.4.3] shows that the essential spectrum of Nz is exactly E.
The proofs of these results rely heavily on the fact that each inner function η
(d = 1) has the factorization η = BS, where B is a Blaschke product and
S is a singular inner function. When d > 1, inner functions have no such
factorization. In fact, the structure of inner functions in several variables is
far from clear. In this paper, we will deal with the case d > 1.

Given a Hilbert space H, let (T1, . . . , Td) be a tuple of commuting bound-
ed operators acting on H. Then one naturally makes H into a Hilbert module
over the polynomial ring C[z1, . . . , zd] (cf. [DP]) by setting

p · ξ = p(T1, . . . , Td)ξ, p ∈ C[z1, . . . , zd], ξ ∈ H.

Now let (Mz1
, . . . , Mzd

) be the coordinate multiplication operators act-
ing on H2(Bd). Then H2(Bd) naturally becomes a Hilbert module over the
polynomial ring C[z1, . . . , zd], called the Hardy module on the unit ball Bd.
A closed subspace M of H2(Bd) is called a submodule if pM ⊂ M for any
polynomial p. In the case of one variable, Beurling’s theorem shows that
each submodule has the form M = η H2(U) for some inner function η. How-
ever, in the case of several variables, there exist a lot of submodules that
do not have the above form, for example, submodules of finite codimension
[CG, DP]. Given an inner function η on Bd, the submodule M = ηH2(Bd)
is said to be a Beurling-type submodule. Given a submodule M of H2(Bd),
the quotient module H2(Bd)/M is naturally identified with M⊥, where the
module action on M⊥ is p · ξ = PM⊥pξ for any polynomial p and ξ ∈ M⊥.

This paper mainly considers spectral properties of quotients of Beur-
ling-type submodules on the unit ball. Given an inner function η, let
N = H2(Bd) ⊖ ηH2(Bd) be the associated quotient module, and Nz =
(Nz1

, . . . , Nzd
) be the tuple of compression operators acting on N , where

Nzi
= PNMzi

|N , and PN is the projection onto N . We will determine the
spectrum and essential spectrum of the quotient module, that is, the Taylor
spectrum and essential spectrum of the tuple Nz = (Nz1

, . . . , Nzd
). Deter-

mining the spectrum and essential spectrum of a general quotient module is
very difficult since the problem is related to essential normality of the quo-
tient module [Arv5, Arv6, Dou, GW]. But even for submodules generated
by homogeneous polynomials, essential normality of submodules remains
unknown [Arv5, Arv6, Dou]. The paper also concerns K-homology defined
by quotient modules.

2. The Taylor spectrum of Nz. In this section, we will determine
the spectrum of the quotient module N , i.e. the Taylor spectrum of Nz =
(Nz1

, . . . , Nzd
). First, let us recall the concept of the Taylor spectrum [Tay].
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For 1 ≤ k ≤ d, let

Ik = {(i1, . . . , ik) ∈ N | 1 ≤ i1 < · · · < ik ≤ d}.
Let {ei | 1 ≤ i ≤ d} be an orthonormal basis for C

d, and
∧k

C
d be the kth

exterior power of C
d with orthonormal basis {ei1∧· · ·∧eik | (i1, . . . , ik) ∈ Ik}.

Let
∧

C
d =

⊕d
k=0

∧k
C

d, where
∧

0
C

d = C. Then
∧

C
d is a Hilbert space

with orthonormal basis {1} ∪ {ei1 ∧ · · · ∧ eik | (i1, . . . , ik) ∈ Ik, 1 ≤ k ≤ d}.
Define the canonical creation operators C1, . . . , Cd on

∧

C
d as follows:

Ci : ξ 7→ ei ∧ ξ, ξ ∈ ∧

C
d.

Let T1, . . . , Td be a commuting d-tuple of operators on a Hilbert space H.
Then the Koszul complex for the d-tuple (T1, . . . , Td) is

0 → Ω0 → Ω1 → · · · → Ωd → 0, where Ωk = H ⊗ ∧k
C

d

with cohomological boundary operator

B = T1 ⊗ C1 + · · · + Td ⊗ Cd.

It is easy to see B2 = 0. We denote the restriction of B to Ωk by Bk,
and hence ranBk−1 ⊆ kerBk. Say that the tuple (T1, . . . , Td) is invertible if
ranBk−1 = ker Bk, and (T1, . . . , Td) is Fredholm if

dim(kerBk/ranBk−1) < ∞ for 1 ≤ k ≤ d.

When T = (T1, . . . , Td) is Fredholm, define its Fredholm index as

ind(T ) =
d

∑

k=1

(−1)k+1 dim(kerBk/ranBk−1).

The Taylor spectrum and essential spectrum of T = (T1, . . . , Td) are defined
as

σ(T ) = {(λ1, . . . , λd) ∈ C
d | (T1 − λ1, . . . , Td − λd) is not invertible},

σe(T ) = {(λ1, . . . , λd) ∈ C
d | (T1 − λ1, . . . , Td − λd) is not Fredholm}.

We begin with a lemma which may be viewed as the H∞ functional
calculus of Nz. It is a generalization of the one-variable version in [Nil], and
the proof is omitted.

Lemma 2.1. Let

ϕ(Nz1
, . . . , Nzd

) = PNϕ|N, ϕ(N∗
z ) = P+ϕt|N,

where ϕ ∈ H∞, ϕt = ϕ(z1, . . . , zd), N∗
z = (N∗

z1
, . . . , N∗

zd
), and P+ is the

projection from L2(∂Bd) onto H2(Bd). Then

(1) ‖ϕ(Nz)‖ ≤ ‖ϕ‖∞;
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(2) the map ϕ 7→ ϕ(Nz) is linear , multiplicative, and

P (Nz) =
∑

α

aαNα1

z1
· · ·Nαd

zd

for each P =
∑

α aαzα ∈ C[z1, . . . , zd]; moreover , ϕ(N∗
z ) = ϕt(Nz)

∗.

Proposition 2.2. σ(Nz)∩Bd = Z(η), where Z(η) = {λ ∈ Bd | η(λ) = 0}
is the zero set of η.

Proof. From [Rud1, p. 116], one can solve Gleason’s problem in H∞(Bd),
that is, given f ∈ H∞(Bd) and λ ∈ Bd, there exist g1, . . . , gd ∈ H∞(Bd) such
that

f(z) − f(λ) =
d

∑

i=1

(zi − λi)gi.

Replacing f by η and using the H∞ functional calculus for Nz, we have

η(Nz) − η(λ) =
d

∑

i=1

(Nzi
− λi)gi(Nz).

Lemma 2.1 implies η(Nz) = 0. Hence, if η(λ) 6= 0, then the tuple Nz is in-
vertible relative to (Nz)

′, the commutant algebra of the norm closed algebra
generated by Nz1

, . . . , Nzd
. This means σ′(Nz)∩Bd ⊆ Z(η), where σ′(Nz) de-

notes the algebra spectrum relative to the commutant algebra (Nz)
′ [Cur2].

By [Cur2, Lemma 4.5], σ(Nz) ⊆ σ′(Nz). This gives

σ(Nz) ∩ Bd ⊆ Z(η).

To prove the reverse inclusion, let λ ∈ Z(η). It suffices to show that

N 6= (Nz1
− λ1)N + · · · + (Nzd

− λd)N,

since this implies that λ ∈ σ(Nz). Indeed, assume that

N = (Nz1
− λ1)N + · · · + (Nzd

− λd)N,

that is,

H2(Bd) ⊖ ηH2(Bd) = PN

(

d
∑

i=1

(Mzi
− λi)(H

2(Bd) ⊖ ηH2(Bd))
)

.

Then, for each g ∈ N = H2(Bd) ⊖ ηH2(Bd), there exist f1, . . . , fd ∈
H2(Bd) ⊖ ηH2(Bd) and h ∈ H2(Bd) such that

h = (z1 − λ1)f1 + · · · + (zd − λd)fd, g = PNh.

Hence, there exists g1 ∈ H2(Bd) such that h = ηg1 + g. Thus, g = h − ηg1,
and so

g(λ) = h(λ) − η(λ)g1(λ) = 0
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for each g ∈ N = H2(Bd) ⊖ ηH2(Bd), which is obviously not true: if we
decompose 1 as

1 = ηf1 + f2,

where f1 ∈ H2(Bd) and f2 ∈ N , then obviously f2(λ) 6= 0. This contradiction
completes the proof of Proposition 2.2.

In the next section, we will prove that σe(Nz) = ∂Bd. Since σe(Nz)
⊆ σ(Nz), it follows that σ(Nz) ∩ ∂Bd = ∂Bd. Here, we want to give an
elementary proof of this result.

Proposition 2.3. σ(Nz) ∩ ∂Bd = ∂Bd.

We need the following lemma which comes from [Rud2, Theorem 1.2].

Lemma 2.4. Suppose that :

• Γ is a nonempty open set in ∂Bd;
• {rj} is a sequence satisfying 0 ≤ rj < 1, rj ր 1 as j → ∞;
• f ∈ H∞(Bd), f is nonconstant , |f∗(ζ)| = 1 a.e. on Γ.

Then Γ has a dense subset H such that the set

{f(rjζ) | j = 1, 2, 3, . . .}
is dense in the unit disk U for every ζ ∈ H.

For f ∈ L∞(∂Bd), define the Toeplitz operator Tf with symbol f as

Tf : H2(Bd) → H2(Bd), Tfh = P+fh, h ∈ H2(Bd),

where P+ is the projection from L2(∂Bd) onto H2(Bd).

Proof of Proposition 2.3. Applying Lemma 2.4 to ∂Bd, with f replaced
by the inner function η, we get a dense subset H of ∂Bd such that for each
λ ∈ H, there is a sequence {λj} ⊆ Bd with λj → λ and η(λj) → 0 as j → ∞.
Since σ(Nz) is a compact set, it follows that σ(Nz) ∩ ∂Bd is a closed subset
of ∂Bd. It is enough to prove that

H ⊆ σ(Nz) ∩ ∂Bd.

Indeed, assume there exists λ0 = (λ01, . . . , λ0d) ∈ H, but λ0 /∈ σ(Nz). Set
N∗

z = (N∗
z1

, . . . , N∗
zd

). It follows from [Cur1, Corollary 3.14] that

σ(N∗
z ) = {λ | λ ∈ σ(Nz)}.

Thus λ0 /∈ σ(N∗
z ). Recall

σπ(N∗
z ) = {λ ∈ C

d | N∗
z − λ is not jointly bounded below}

(a tuple (T1, . . . , Td) on a Hilbert space X is said to be jointly bounded

below if there exists ε > 0 such that
∑d

i=1
‖Tix‖ ≥ ε‖x‖ for all x ∈ X.)

Since σπ(N∗
z ) ⊆ σ(N∗

z ) (cf. [Cur2, p. 37]), this implies λ0 /∈ σπ(N∗
z ), that is,
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there exists ε0 > 0 such that for all f ∈ N,

d
∑

i=1

‖(N∗
zi
− λ0i)f‖ =

d
∑

i=1

‖(M∗
zi
− λ0i)f‖ ≥ ε0‖f‖.(2.1)

Now, we use (2.1) to prove that there exists δ > 0 such that

d
∑

i=1

‖(M∗
zi
− λ0i)g‖ + ‖Tηg‖ ≥ δ‖g‖, ∀g ∈ H2(Bd).(2.2)

For g ∈ H2(Bd), write g = h1 + ηh2, where h1 ∈ N and h2 ∈ H2(Bd). It is
easy to see that Tηh1 = 0, and thus

Tηg = Tηh1 + Tηηh2 = h2.

We have

(2.3)
d

∑

i=1

‖(M∗
zi
− λ0i)g‖ + ‖Tηg‖

=

d
∑

i=1

‖(M∗
zi
− λ0i)h1 + (M∗

zi
− λ0i)ηh2‖ + ‖h2‖.

Let A = max1≤i≤d ‖M∗
zi
− λ0i‖ > 0, and consider the following two cases:

Case 1. If ‖h1‖ ≥ 2Ad‖h2‖/ε0, then using (2.1), we obtain

d
∑

i=1

(‖(M∗
zi
− λ0i)h1 + (M∗

zi
− λ0i)ηh2‖) + ‖h2‖

≥
d

∑

i=1

(‖(M∗
zi
− λ0i)h1‖ − ‖(M∗

zi
− λ0i)ηh2‖) + ‖h2‖

≥ ε0‖h1‖ −
ε0

2
‖h1‖ + ‖h2‖ =

ε0

2
‖h1‖ + ‖h2‖.

Noting that ‖g‖2 = ‖h1‖2 + ‖h2‖2, it is easy to see there exists δ1 > 0
independent of g such that

d
∑

i=1

‖(M∗
zi
− λ0i)h1 + (M∗

zi
− λ0i)ηh2‖ + ‖h2‖ ≥ δ1‖g‖.

Case 2. If ‖h1‖ ≤ 2Ad‖h2‖/ε0, then

d
∑

i=1

(‖(M∗
zi
− λ0i)h1 + (M∗

zi
− λ0i)ηh2‖) + ‖h2‖ ≥ ‖h2‖

≥ ‖h2‖/2 + ε0‖h1‖/4Ad,
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and the same argument shows that there exists δ2 > 0 independent of g such
that

d
∑

i=1

‖(M∗
zi
− λ0i)h1 + (M∗

zi
− λ0i)ηh2‖ + ‖h2‖ ≥ δ2‖g‖.

Letting δ = min{δ1, δ2} proves that in both cases, the assumption (2.1)
implies (2.2). Now, we show that (2.2) is not true, which implies that (2.1)
is not either, and thus, λ0 ∈ σ(N∗

z ) and λ0 ∈ σ(Nz). Let us return to
the beginning of the proof: there exists a sequence {λj} ⊆ Bd with λj =
(λj1, . . . , λjd) such that

λj → λ0, η(λj) → 0 as j → ∞.

Let Kλ be the reproducing kernel for H2(Bd) and kλ = Kλ/‖Kλ‖ the nor-
malized reproducing kernel. Then

d
∑

i=1

‖(M∗
zi
− λ0i)kλj

‖ + ‖Tηkλj
‖ =

d
∑

i=1

‖(λji − λ0i)kλj
‖ + ‖η(λj)kλj

‖

=
d

∑

i=1

|(λji − λ0i)| + |η(λj)| → 0.

This contradicts (2.2), and the proof of Proposition 2.3 is complete.

It is not difficult to see that σ(Nz) ⊆ Bd. Combining Propositions 2.2
and 2.3 gives the following.

Theorem 2.5. σ(Nz) = Z(η) ∪ ∂Bd.

3. The essential spectrum of Nz. First, we prove the following propo-
sition.

Proposition 3.1. The quotient module N is essentially normal , that

is, the commutators [N∗
zi

, Nzj
] are compact for all 1 ≤ i, j ≤ d.

Proof. For any f ∈ L∞(∂Bd), it is easy to verify that TfTzi
− Tzi

Tf is
compact for i = 1, . . . , d. Since η is an inner function, this means

PN = I − TηT
∗
η = I − TηTη.(3.1)

Since

N∗
zi

Nzj
− Nzj

N∗
zi

= PNTzi
PNTzj

PN − PNTzj
PNTzi

PN

= PN (Tzi
PNTzj

− Tzj
PNTzi

)PN ,

inserting (3.1) and using the fact that Tzi
essentially commutes with each

Toeplitz operator for i = 1, . . . , d, we conclude that [N∗
zi

, Nzj
] is compact for

1 ≤ i, j ≤ d.

We now determine the essential spectrum σe(Nz).
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Lemma 3.2. σe(Nz) ⊆ ∂Bd.

Proof. Set M = ηH2(Bd). Since ziM ⊆ M, we have M∗
zi

N ⊆ N for
i = 1, . . . , d. This means

d
∑

i=1

Nzi
N∗

zi
=

d
∑

i=1

PNMzi
PNM∗

zi
|N = PN

d
∑

i=1

Mzi
M∗

zi
|N.

Since
∑d

i=1
Mzi

M∗
zi
− I is compact, this implies

d
∑

i=1

Nzi
N∗

zi
= IN + K,(3.2)

where K is a compact operator. By Proposition 3.1, we know the tuple
Nz = {Nz1

, . . . , Nzd
} is essentially normal. Combining [Cur1, Cor. 3.10]

and (3.2) gives σe(Nz) ⊆ ∂Bd.

Lemma 3.3. ∂Bd ⊆ σe(Nz).

Proof. As in the proof of Proposition 2.3, we get a dense subset H of
∂Bd such that for each λ0 ∈ H, there is a sequence {λj} ⊆ Bd such that
λj → λ0 and η(λj) → 0 as j → ∞. Since σe(Nz) is a closed subset of ∂Bd,
it suffices to prove that H ⊆ σe(Nz).

Suppose otherwise, that is, there is a point λ0 = (λ01, . . . , λ0d) ∈ H such
that

Nz − λ0 = (Nz1
− λ01, . . . , Nzd

− λ0d)

is Fredholm. Since [Nzi
, N∗

zi
] is compact for 1 ≤ i, j ≤ d, and

[Nzi
− λ0i, N

∗
zi
− λ0i] = [Nzi

, N∗
zi

],

this ensures that the tuple (Nz1
− λ01, . . . , Nzd

− λ0d) is essentially normal.
By [Cur2, Corollary 3.9], (Nz1

−λ01, . . . , Nzd
−λ0d) is Fredholm if and only if

d
∑

i=1

(Nzi
− λ0i)(N

∗
zi
− λ0i)

is Fredholm. Since this last operator is positive, there exist an invertible
positive operator A and a compact operator K such that

d
∑

i=1

(Nzi
− λ0i)(N

∗
zi
− λ0i) = A + K.(3.3)

Recalling that kλ is the normalized reproducing kernel of H2(Bd), we have

PNkλ = (I − MηM
∗
η )kλ = kλ − η(λ)ηkλ.(3.4)
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Assume λ = (λ1, . . . , λd). Then

(3.5)
d

∑

i=1

(〈(Nzi
− λ0i)(N

∗
zi
− λ0i)PNkλ, PNkλ〉)1/2

=
d

∑

i=1

‖M∗
zi−λ0i

PNkλ‖ =
d

∑

i=1

‖M∗
zi−λ0i

(kλ − η(λ)ηkλ)‖

=
d

∑

i=1

‖λi − λ0i kλ − η(λ)M∗
zi−λ0i

ηkλ‖

≤
d

∑

i=1

(|λi − λ0i| + |η(λ)| ‖ M∗
zi−λ0i

ηkλ‖).

Replacing λ in (3.5) with λj = (λj1, . . . , λjd) and noting ‖ηkλ‖ = 1 and
η(λj) → 0, we see that the last two terms in (3.5) converge to 0 as j → ∞.
Thus we have

d
∑

i=1

〈(Nzi
− λ0i)(N

∗
zi
− λ0i)PNkλj

, PNkλj
〉 → 0 as j → ∞.(3.6)

On the other hand,

〈(A + K)PNkλ, PNkλ〉
= 〈A(kλ − η(λ)ηkλ), kλ − η(λ)ηkλ〉 + 〈K(kλ − η(λ)ηkλ), kλ − η(λ)ηkλ〉.

We compute the two terms on the right of the above equality:

(3.7) 〈A(kλ − η(λ)ηkλ), kλ − η(λ)ηkλ〉
= 〈Akλ, kλ〉−η(λ)〈Aηkλ, kλ〉−η(λ)〈Akλ, ηkλ〉+ |η(λ)|2〈Aηkλ, ηkλ〉.

Note that A is an invertible positive operator, hence so is
√

A. Thus
√

A is
bounded below, i.e. there is c > 0 such that ‖

√
Af‖ ≥ c‖f‖ for any f ∈ N.

Therefore,

〈Akλ, kλ〉 = ‖
√

Akλ‖2 ≥ c2.

With λ replaced by λj , we conclude that the other three terms of the last
equality in (3.7) converge to 0 as j → ∞. So we have

〈APNkλj
, PNkλj

〉 ≥ c2.(3.8)

Moreover, since PNkλj

w→ 0, and K is compact, we have

〈KPNkλj
, PNkλj

〉 → 0 as j → ∞.(3.9)

Combining (3.3), (3.6), (3.8), and (3.9), we get a contradiction. Therefore,
∂Bd ⊆ σe(Nz).

From Lemmas 3.2 and 3.3, we have
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Theorem 3.4. σe(Nz) = ∂Bd.

The next proposition comes from a discussion with R. Yang.

Proposition 3.5. The C∗-algebra C∗(Nz) generated by {Nz1
, . . . , Nzd

, I}
is irreducible, that is, if Q is a projection on N and QNzi

= Nzi
Q for

i = 1, . . . , d, then Q = 0 or Q = I.

Proof. From the proof of Proposition 2.2 in [GZ], there exist polynomials
pi, qi such that

1 ⊗ 1 =

m
∑

i=1

Mpi
M∗

qi
on H2(Bd).(3.10)

Set e = PN1. By (3.10), we have

e ⊗ e = PN (1 ⊗ 1)PN =
m

∑

i=1

PNMpi
M∗

qi
PN =

m
∑

i=1

Npi
N∗

qi
,

where, for a polynomial p, Np = PNMp|N = p(Nzi
). If Q is a projection as

in the hypothesis, then QNq = NqQ and QN∗
q = N∗

q Q for any polynomial q.
Thus, Q(e ⊗ e)=(e ⊗ e)Q, which implies

Qe ⊗ e = e ⊗ Qe.

Making both sides of the above equality act on e, we have

Qe =
‖Qe‖2

‖e‖2
e.(3.11)

Case 1. If Qe 6= 0, then

Qe = Q2e =
‖Qe‖4

‖e‖4
e =

‖Qe‖2

‖e‖2
e.

This implies ‖Qe‖ = ‖e‖, hence Qe = e. Now for any f ∈ N, there exists a
sequence of polynomials qn such that qn → f as n → ∞. Writing 1 = e + ξ
with ξ ∈ ηH2(Bd), we have

qn = qn(e + ξ) → f as n → ∞.

Hence,
PN (qne + qnξ) = PNqne → f,

that is, Nqne → f. Therefore, QNqne → Qf. Moreover, since

QNqne = NqnQe = Nqne → f,

we obtain Qf = f, which shows Q = I.

Case 2. If Qe = 0, the same reasoning gives Q = 0, and the proof is
complete.

Since C∗(Nz) is irreducible, and C∗(Nz) ∩ K(N) 6= ∅ from (3.2), where
K(N) denotes the compact operator ideal on N, this implies C∗(Nz) ⊇ K(N)
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by [Arv4]. Since the tuple Nz is essentially normal, we have the following
exact sequence:

0 → K(N) →֒ C∗(Nz)
π→ C(∂Bd) → 0,(3.12)

where π is the unital ∗-homomorphism given by π(Nzi
) = Zi.

From [BDF], the above exact sequence gives an extension of K(N) by
C(∂Bd).

Proposition 3.6. The short exact sequence (3.12) is split , that is, there

exists a ∗-homomorphism σ : C(∂Bd) → C∗(Nz) such that πσ = I.

Proof. It follows from Theorem 3.4 that the tuple (Nz1
, . . . , Nzd

) is Fred-
holm. Moreover, by [GRS, Corollary 3.5] the tuple has Fredholm index 0.
Since Ext(∂Bd) = K1(∂Bd) = Z, the short exact sequence (3.12) defines a
zero element in K1(∂Bd). Indeed, this K-homology element is determined
by the index of the tuple (Nz1

, . . . , Nzd
) (cf. [BDF, Guo2]) and thus is 0. So

the extension defined by (3.12) is a trivial element in Ext(∂Bd). This means
that the short exact sequence (3.12) is split.

Remark. In the cases d = 2, 3, the extensions defined by quotients of
submodules generated by homogeneous polynomials are not split [GW].
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