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Weak-Lp solutions for a model ofself-gravitating partiles with an external potentialbyAndrzej Razy«ski (Wroªaw)Abstrat. The existene of solutions to a nonlinear paraboli equation desribing thetemporal evolution of a loud of self-gravitating partiles with a given external potentialis studied in weak-Lp spaes (i.e. Marinkiewiz spaes). The main goal is to prove theexistene of global solutions and to study their large time behaviour.1. Introdution. We onsider the Cauhy problem for the equation(1) ut = ∆u + ∇ · (u∇φ) + ∇ · (u∇Φ),oupled with the Poisson equation ∆φ = u written in the form(2) ∇φ = ∇En ∗ u,where En(z) = −((n − 2)σn)−1|z|2−n, n ≥ 3, is the fundamental solutionof the Laplaian in R
n and σn is the area of the unit sphere in R

n. Wesupplement the system (1)�(2) with the initial ondition(3) u(x, 0) = u0(x).The system above desribes the temporal evolution of the density u(x, t)of a loud of self-gravitating partiles and the potential φ(x, t) generated bygravitational interation between them. The funtion Φ(x) in the third termon the right-hand side of (1) represents the given external potential.The model (1)�(3) an also be onsidered with eletri interations repla-ing the gravitational ones. In this ase the equation (2) should be rewrittenas
∇φ = −∇En ∗ u.Usually, the results for this model are �better� than for the gravitational one,but the methods used here for the onstrution of solutions do not allow usto obtain qualitatively di�erent results. Thus, the results we obtain for this2000 Mathematis Subjet Classi�ation: 35B40, 35K55, 35K57, 82C21.Key words and phrases: nonlinear paraboli-ellipti system, Cauhy problem, weak-Lpspae, external potential. [199℄ © Instytut Matematyzny PAN, 2007



200 A. Razy«skimodel are the same (with similar proofs) as for the model onsidered in thispaper.Let us review brie�y the basi literature and previous results onerningthe model in question.The physial interpretation of the system has a long history and goesbak to Nernst and Plank (see [7℄ and referenes therein). In the originalproblem eletri interations were assumed and the problem was onsideredin a bounded smooth domain in R
n.A very good introdution to mathematial aspets of the physial prob-lems whih are modelled by our problem and its generalizations an be foundin [18℄ (also [19℄ is useful).A good bakground and physial motivation for the gravitational inter-pretation of the system (1)�(3) an be found in [22℄.The majority of the relevant papers are devoted to the problem inbounded domains of R

n with appropriate boundary onditions (usually no-�ux boundary ondition and Dirihlet ondition for the potential φ). For suha problem the external potential Φ is usually M∗En (interpreted as puttingan additional mass or harge M∗ at the origin) and the results stronglydepend on the dimension of the spae and the type of interations.Let us brie�y overview the results obtained (they ome mainly from thepapers [6℄, [7℄, [14℄, [22℄).For the Coulomb ase (with eletrial interations assumed) the mainresults have been obtained for radially symmetri solutions with integrateddensity u as a main tool. With M0 =
T
Ω u the existene of stationary so-lutions for n = 2, M∗ < 4π and any M0 has been established. In the two-dimensional ase for M∗ ≥ 4π and any M0, and for arbitrary values of M0and M∗ in three- or more dimensions, the nonexistene of steady states hasbeen proved.Similar results have been obtained for evolution solutions (together withtheir onvergene to stationary solutions for n = 2, 3).The same results have been obtained for the problem in the whole spae.For n = 2 also self-similar solutions have been onsidered (by the de�ni-tion, suh solutions are de�ned in the whole spae R

2). Just as for radiallysymmetri solutions, the existene of solutions for M∗ < 4π and arbitrary
M0 has been proved.For more general assumptions on Φ and without radial symmetry as-sumed, the existene of loal-in-time weak solutions has also been proved,but only in bounded domains.In the gravitational ase the existene of solutions depends on the dimen-sion and the values of M∗ and M0, but in a more sophistiated way than inthe Coulomb ase.



Self-gravitating partiles with external potential 201To be more preise, for radially symmetri solutions in two dimensionsthe existene of solutions (stationary and global-in-time) depends on thequantity M0+2M∗. If this quantity is less than 8π, the existene of solutionsis guaranteed, while M0 + 2M∗ > 8π implies the nonexistene.In the three-dimensional ase the nonexistene of stationary and loal-in-time solutions has been proved for M∗ > 0.For the problem in the whole spae R
n, the nonexistene of loal-in-timesolutions has been proved for n = 2 and M∗ ≥ 4π, and for n ≥ 3 and

M∗ > 0.For self-similar solutions in R
2 the ondition M0 +2M∗ < 8π guaranteesthe existene of suh solutions.The existene of weak loal-in-time solutions has been established (forbounded domains) also for more general assumptions on Φ.In [13℄ the assumption Φ ≡ 0 is made but the paper ontains a goodintrodution to the problem in the whole R

n.Most of the results mentioned above onern the ase Φ = M∗En. Theideas used in those papers have been developed in [5℄ where the generalform of the �ux (in our paper given by ∇(φ + Φ)) has been onsidered (in abounded domain). Under some hypotheses on Lp estimates of this �ow theexistene and uniqueness of loal-in-time as well as stationary solutions havebeen proved.R. F. Streater extended the lassial Nernst�Plank�Debye�Hükel drift-di�usion system for harged but noninterating partiles (see [20℄) by intro-duing a new variable (temperature). The augmented model with an addi-tional equation for the heat �ow has been onsidered in e.g. [4℄, [8℄. SineStreater's model in the general setting is di�ult, in the present paper theexternal potential is assumed to be 0. The �rst results onerning nonunique-ness of steady states with Φ 6≡ 0 an be found in, for example, [15℄.As stated in [7℄, introduing an additional potential (even in the form
Φ = M∗En) implies that the problem is more di�ult mainly beause ofsingular terms ontaining the derivatives of the potential. This as well asexternal potentials of general form raise the question about the funtionalsetting in whih the existene of solutions should be onsidered.Results for the problem without external potentials have been given in[2℄ and [3℄.For the problem with external potential, suitable assumptions on Φ andthe proof of existene have been given in spaes of pseudomeasures ([17℄).The main aim of this paper is to point out another example of spaes inwhih global singular solutions an exist as well as to speify requirementson external potentials to obtain suh solutions.The importane of suh a hoie of spae will be disussed below.



202 A. Razy«skiAdditionally, our knowledge of spaes in whih singular solutions for theproblem without external potential an exist is also enrihed (reall that forsuh problems self-similar solutions an also be onsidered).Finally, in the last setion a result onerning asymptoti behaviour ofthe solutions obtained will be given.In this paper we look for solutions of the problem (1)�(3) in the Marin-kiewiz spae Lp,∞(Rn). Let us reall the de�nition:
Lp,∞(Rn) =

{
v ∈ L1

loc(R
n) : ‖v‖p,∞ ≡ sup

E⊂Rn
|E|−1+1/p

\
E

|v(x)| dx < ∞
}
,where p > 1, and E runs through Borel sets with �nite and positive mea-sure |E|. Sometimes, to show that f ∈ Lp,∞(Rn) it is better to use thequantity

‖f‖∗p,∞ = sup
s>0

s|{x : |f(x)| > s}|1/p(whih is not a norm), for whih the following inequalities hold:
‖f‖∗p,∞ ≤ ‖f‖p,∞ ≤ p

p − 1
‖f‖∗p,∞.The reader an �nd more properties of the spaes Lp,∞(Rn) in, e.g., [9,Se. 2℄.Notations. We denote by ‖f‖p the norm in the usual Lebesgue spae

Lp(Rn). The symbol C denotes various inessential onstants whih may varyfrom line to line.Let
Xp = Cw([0,∞); Lp,∞(Rn))be the spae of vetor-valued funtions u = u(x, t) suh that

•
T
Rn u(x, t)φ(x) dx →

T
Rn u(x, 0)φ(x) dx as t ց 0 for eah test funtion

φ ∈ S(Rn), the Shwartz lass,
• u(t) is a bounded and ontinuous funtion from (0, T ] to Lp,∞(Rn) inthe norm topology of Lp,∞(Rn).The neessity of onsidering Cw instead of the spae of strongly ontinu-ous funtions C([0,∞); Lp,∞(Rn)) is aused by the fat that the heat semi-group is not strongly ontinuous on Lp,∞(Rn) but only weakly ontinuous.To see this, it is enough to hek that ‖et∆|x|−n/p − |x|−n/p‖p,∞ = const.
Lp,∞(Rn) is an example of a spae whih is not separable but is dual to aseparable spae. In fat, for the Lorentz spae Lp′,1(Rn) (p′ is the onjugateindex to p) we have Lp,∞(Rn) = (Lp′,1)∗(Rn) and Lp′,1(Rn) is separablewith dense subset S(Rn). Examples of appliations of suh spaes to theNavier�Stokes or nonlinear heat problems an be found in [10℄, [11℄.



Self-gravitating partiles with external potential 203By a mild solution of the problem (1)�(3), we understand a solution
u ∈ Cw([0,∞); Lp,∞(Rn)) of the integral equation

u(t) = et∆u0 +

t\
0

e(t−s)∆∇ · (u(s)∇φ(s)) ds(4)
+

t\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds,where ∇φ(s) = ∇En ∗ u(s), and the integral is the Bohner integral. The�rst term is well de�ned (in the paper [1, Lemmas 2&3℄ the reader an�nd a detailed proof that et∆u0 ∈ Xp for every u0 ∈ Lp,∞(Rn) and t ≥ 0)but suh a meaning of a solution is not suitable for our onstrution ofsolutions of the Cauhy problem. The di�ulty is aused by the fat thatfor p ≥ n/2 the term e(t−s)∆∇ · (u(s)∇φ(s)) is not Bohner integrable on
[0, T ] with values in Lp,∞(Rn). To see this, it is enough to observe thatfor stationary solutions whih are homogeneous of degree −2 (see a noteabout the Chandrasekhar solution below), the term in question orrespondsto a tempered homogeneous distribution of degree −4. Thus, there existsa distribution H suh that

e(t−s)∆∇ · (u(s)∇φ(s)) = (t − s)−2H

( ·√
t − s

)
.Sine(5) ‖f(λ ·)‖p,∞ = λ−n/p‖f‖p,∞,we have

‖e(t−s)∆∇ · (u(s)∇φ(s))‖p,∞ = (t − s)−2+n/2p‖H‖p,∞,whih implies that this term is not Bohner integrable for p ≥ n/2. Toremove this di�ulty, the integrals with respet to s in equations (4) shouldbe de�ned in the weak sense (as, for example, in [3℄ and [23, Def. 2℄). For moreexplanations, we refer the reader to [3℄ and referenes therein. Nevertheless,a distributional solution of (1)�(3) whih belongs to Xp is a solution of theintegral equation (4) and vie versa. This equivalene an be proved followingthe omputations for the Navier�Stokes equations in [23, Th. 5.2℄.The importane of the spae Ln/2,∞(Rn) omes from the fat that for
n ≥ 3 there exists a stationary singular solution to the problem with noexternal potential. It is alled the Chandrasekhar solution and has the form

uC(x) = 2(n − 2)|x|−2.It is easy to hek that uC(x) belongs to Ln/2,∞(Rn) (as well as to Xn/2, if
uC is interpreted as a onstant funtion of t). Indeed, we have ‖uC‖n/2,∞ =

2(n − 2)‖ |x|−2‖n/2,∞ ≤ 2nσ
n/2
n .



204 A. Razy«skiAs stated in [3℄, it is expeted that uC is a solution with ritial singularityof the initial data in the sense that for small initial data u0 ≤ εuC, 0 < ε ≪ 1,the solution exists, and for initial onditions u0 suh that u0(x) > uC thereis no solution to the problem (1)�(3).Another advantage of the use of the spaes Lp,∞(Rn) is that this nat-ural extension of the spae Lp ontains homogeneous funtions of degree
−n/p (whih, of ourse, do not belong to Lp(Rn)). For our model this givesus an opportunity to onsider self-similar solutions to the problem (1)�(3)(with Φ ≡ 0), i.e. funtions u(t) with the saling property u(t) ≡ uλ(t) =
λ2u(λx, λ2t) for all λ > 0, in the spae Ln/2,∞(Rn).To simplify the notation, we will denote the quadrati term in (4) by
B(u, u), with the bilinear form B de�ned by

B(u, v) =

t\
0

e(t−s)∆∇ · (u(s)∇φ(s)) ds,where φ(s) is obtained from v by putting ∇φ(s) = ∇En ∗ v(s).Analogously, denote the linear term in (4) by Lu with L de�ned by
Lu =

t\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds,where Φ is a given external potential. In this way our problem an be rewrit-ten as follows:
u(t) = et∆u0 + B(u, u) + Lu.2. Main tools. A modi�ation of a well-known theorem by Y. Meyer([12℄) is the main tool whih will be used in this paper. The theorem belowgives the existene and uniqueness of the solution via a ontration mappingargument.Theorem 2.1. Let X be a Banah spae. Assume that B : X × X → Xis a bilinear form suh that
‖B(y, z)‖X ≤ K‖y‖X ‖z‖Xfor some K > 0 and all y, z ∈ X . Let L : X → X be a ontinuous linearoperator with

‖Ly‖X ≤ ℓ‖y‖Xwith some ℓ < 1.(i) For every a ∈ X suh that ‖a‖X < (1 − ℓ)2/4K, there exists a solution
x ∈ X to the equation(6) x = a + Lx + B(x, x).



Self-gravitating partiles with external potential 205This solution satis�es the estimate
‖x‖X ≤ 1 − ℓ −

√
(1 − ℓ)2 − 4K‖a‖X

2K
≤ 1 − ℓ

2K
.Moreover , for ‖a‖X < (1 − ℓ)2/4K, this solution is unique in theopen ball in X of radius (1 − ℓ)/2K.(ii) The solution obtained depends ontinuously on a in the following way.For b ∈ X suh that ‖b‖X ≤ ε < (1 − ℓ)2/4K and for v being thesolution of the equation v = b + Lv + B(v, v) we have

‖u − v‖X ≤ ((1 − ℓ)2 − 4Kε)−1/2‖a − b‖X .The hoie of the funtion spae X is of ruial importane in the appli-ation of the above theorem.We reall a slight modi�ation of a theorem by E. Terraneo ([21, Prop.1.5℄) whih will be used to estimate the bilinear form B(u, v).Theorem 2.2. Let n > 1, 1 < p < n, and 1/r = 1/p − 1/n. Let f ∈
L∞((0, T ); Lp,∞(Rn)) for any 0 < T ≤ ∞.Then there exists C = C(r, p) > 0suh that for every a ∈ [0, t) with t ≤ T ,(7) ∥∥∥

t\
a

e(t−s)∆∇f(s) ds
∥∥∥

r,∞
≤ C sup

a<s<t
‖f(s)‖p,∞.Let us also reall two estimates for the norm of the produt and onvo-lution of two funtions in Marinkiewiz spaes. The proofs of the followinglemmas (even in a more general setting) an be found, e.g., in [16, Theorems3.4 and 2.5℄).Lemma 2.3 (weak Hölder inequality). For 1 < p ≤ ∞ and 1 < q, r < ∞suh that 1/r = 1/p + 1/q and for all f ∈ Lp,∞(Rn) and g ∈ Lq,∞(Rn), theprodut fg belongs to Lr,∞(Rn) and

‖fg‖r,∞ ≤ C‖f‖p,∞‖g‖q,∞,with a onstant C = C(p, q).Lemma 2.4 (weak Young inequality). For 1 < p, q < ∞ and 1 < r < ∞suh that 1 + 1/r = 1/p + 1/q and for all f ∈ Lp,∞(Rn) and g ∈ Lq,∞(Rn),the onvolution f ∗ g belongs to Lr,∞(Rn) and
‖f ∗ g‖r,∞ ≤ C‖f‖p,∞‖g‖q,∞,with a onstant C = C(p, q, n).3. Global solutions in the spae Xn/2, n > 3. In this setion weprove the existene of global solutions in the spae Xn/2, n > 3. Sine thethree-dimensional ase needs a restrition to a subspae, a ounterpart ofthe result below for that ase will be proved in the next setion.



206 A. Razy«skiFirst observe that the funtion |x|−γ for 0 < γ < n belongs to Ln/γ,∞(Rn)with
‖ |x|−γ‖n/γ,∞ ≤ n

n − γ
σγ/n

n ,so that the Chandrasekhar solution uC(x) belongs to Ln/2,∞(Rn), n ≥ 3.Next, we onsider some properties of the heat semigrup et∆u0 in the saleof Marinkiewiz spaes.Lemma 3.1. For any u0 ∈ Lp,∞(Rn), we have et∆u0 ∈ Xp with theestimate
‖et∆u0‖Xp ≤ C(n, p)‖u0‖p,∞.Proof. This is obvious due to the following inequality ([1, Lemma 1℄) for

1 < r ≤ p < ∞:(8) ‖et∆f‖p,∞ ≤ C(n, p, r)t
−n

2
( 1

r
− 1

p
)‖f‖r,∞with r = p.Combining Theorem 2.2 with the weak Hölder and Young inequalities weobtain the ruial estimate of the bilinear form B.Lemma 3.2. Let n > 3. There exists a onstant K = K(n) > 0 suh thatfor any u, v ∈ Xn/2 we have

‖B(u, v)‖Xn/2
≤ K‖u‖Xn/2

‖v‖Xn/2
.Proof. Applying Theorem 2.2 we get

‖B(u, v)(t)‖r,∞ ≤ C(r, n) sup
0<s<t

‖uw‖rn/(r+n),∞with an arbitrary r > n/(n − 1). Estimating the last norm we use the weakHölder inequality to obtain
‖uw‖rn/(r+n),∞ ≤ C(r, n)‖u‖r,∞‖w‖n,∞.Sine w = ∇En ∗ v, due to the weak Young inequality we have

‖w‖n,∞ = ‖∇En ∗ v‖n,∞ ≤ C(r, n)‖∇En‖nr/(nr+r−n),∞‖v‖r,∞.The gradient |∇En(x)| = σ−1
n |x|1−n belongs to Ln/(n−1),∞(Rn), thus

nr/(nr + r − n) must be equal to n/(n − 1), whih implies that r = n/2.This hoie of r also implies that n must be greater than 3. So we have
‖∇En‖nr/(nr+r−n),∞ = σ−1

n ‖ |x|1−n‖n/(n−1),∞ ≤ nσ−1/n
n .Summing the inequalities above we arrive at

‖B(u, v)(t)‖r,∞ ≤C(n) sup
0<s<t

‖u(s)‖n/2,∞‖v(s)‖n/2,∞ ≤C(n)‖u‖Xn/2
‖v‖Xn/2

.Taking the supremum with respet to t > 0 ompletes the proof.The next step is to prove a similar estimate for ‖Lu‖Xp .



Self-gravitating partiles with external potential 207Lemma 3.3. For n > 3, any funtion u ∈ Lr,∞(Rn) and any externalpotential Φ suh that ∇Φ ∈ Ln,∞(Rn) we have
‖Lu‖Xr ≤ ℓ‖u‖Xrwith a onstant ℓ = ℓ(n, r, Φ) independent of u.Proof. Due to Theorem 2.2 we have, for any r > n/(n − 1),

‖Lu(t)‖r,∞ ≤ C(n, r) sup
0<s<t

‖u∇Φ‖rn/(r+n),∞.As in the previous lemma we estimate
‖u∇Φ‖rn/(r+n),∞ ≤ C(r, n)‖u‖Xr‖∇Φ‖n,∞,whih ompletes the proof.Remark. In Lemma 3.3 the funtion u belongs to Xr(R

n) for any r >
n/(n − 1) but in the following theorem we restrit ourselves to r = n/2 sinethe estimate for B(u, v) holds true only for that r.To apply Theorem 2.1 it remains to prove the weak ontinuity in t ofthe quantities B(u, v)(t) and Lu(t). This an be done by rewriting them ina similar way to what was done for the estimates above, so we leave this tothe reader.Applying Theorem 2.1 and Lemmas 3.2 and 3.3 we arrive at the followingtheorem:Theorem 3.4. Let n > 3 and u0 ∈ Ln/2,∞(Rn). For Φ suh that ∇Φ ∈
Ln,∞(Rn) and ‖∇Φ‖n,∞ is small enough, namely ℓ = ℓ(n, Φ) de�ned inLemma 3.3 is smaller than 1, for K = K(n) (de�ned in Lemma 3.2) and u0suh that

‖et∆u0‖Xn/2
<

(1 − ℓ)2

4K
,there exists a solution u ∈ Xn/2 of the equation(9) u = et∆u(0) + Lu + B(u, u).The solution is unique among those satisfying the ondition ‖u‖Xn/2

< 1−ℓ
2K .4. Existene of a solution in a subspae of Xn/2, n ≥ 3. In thissetion we prove the existene of solutions in a subspae of Xn/2 with aontrol of the deay of the Lr,∞(Rn) norm (r > n/2) of the solution. Suha restrition allows us not only to prove the existene of global solutionsin that subspae for n > 3 but also obtain global solutions in the three-dimensional ase.De�ne

Yα = {v ∈ L∞
loc((0,∞); Lα,∞(Rn)) : ‖v‖Yα ≡ sup

t>0
t1−n/2α‖v(t)‖α,∞ < ∞},where α > n/2.



208 A. Razy«skiLet us begin with u0.The regularizing e�et of the heat semigroup in the sale of Marinkie-wiz spaes is expressed inLemma 4.1. For any u0 ∈ Ln/2,∞(Rn) the solution of the heat equation
et∆u0 belongs to Yα for all α ≥ n/2.Proof. This is a simple onsequene of (8). Indeed,

‖et∆u0‖Yα = sup
t>0

t1−n/2α‖et∆u0‖α,∞ ≤ C(n, α)‖u0‖n/2,∞for α > n/2 and u0 ∈ Ln/2,∞.Remark. Note that u0 ∈ Ln/2,∞(Rn) implies et∆u0 ∈ Xn/2 ∩ Yα for all
α > n/2, n ≥ 3.The following lemma establishes the required estimates for the bilinearform B in the spae Yα.Lemma 4.2. Let n ≥ 3. For any n/2 < α < n there exists a onstant
K = K(n, α) suh that for all u, v ∈ Yα,

‖B(u, v)‖Yα ≤ K‖u‖Yα‖v‖Yα .Proof. Sine the semigroup et∆ ats by onvolution with the heat kernel,we have
‖B(u, v)(t)‖α,∞ ≤ C(n, α)

t\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇φ)

∥∥∥∥
α,∞

ds,

where P(x) = e−|x|2x, with ‖P(·/
√

t − s)‖p,∞ = C(n, α)(t − s)n/2p‖P‖p,∞(by (5)). Applying the weak Young and Hölder inequalities for 1/p = 1 +
1/n − 1/α and 1/q = 2/α − 1/n we get
‖B(u, v)(t)‖α,∞

≤ C(n, α)

t\
0

(t − s)−n/2α‖P‖p,∞‖(u · ∇φ)(s)‖q,∞ ds

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖α,∞‖∇φ(s)‖nα/(n−α) ds
)
‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖α,∞‖v(s)‖α,∞ ds
)
‖∇En‖n/(n−1),∞‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2αs−2+n/α ds
)
‖P‖p,∞‖u‖Yα‖v‖Yα‖∇En‖n/(n−1),∞.



Self-gravitating partiles with external potential 209The last integral onverges if and only if α ∈ (n/2, n), and is equal to
t−1+n/2α

1\
0

(1 − x)−n/2αx−2+n/α dx = t−1+n/2α
B

(
− n

2α
+ 1,−1 +

n

α

)
,where B is the Euler Beta funtion. The ondition α ∈ (n/2, n) implies thatthe required onditions p, q > 1 are also ful�lled.Multiplying both sides of the inequality by t1−n/2α and taking supremumover t > 0 we arrive at the required estimate of the bilinear form B(u, v).Now, we prove a similar estimate for the operator L.Lemma 4.3. Let n ≥ 3. For any n/2 < α < n, u ∈ Yα and any externalpotential Φ suh that ∇Φ ∈ Ln,∞(Rn) we have

‖Lu‖Yα ≤ ℓ‖u‖Yα ,where ℓ = ℓ(n, α, Φ).Proof. We split the integral into two terms:
Lu =

t\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds

=

t/2\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds +

t\
t/2

e(t−s)∆∇ · (u(s)∇Φ(s)) ds

≡ L1u + L2u.For L1 we have
‖L1u(t)‖α,∞ ≤ C(n, α)

t/2\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇Φ)

∥∥∥∥
α,∞

ds.Analogously as in Lemma 4.2 we estimate
‖L1u(t)‖α,∞

≤ C(n, α)

t/2\
0

(t − s)−1‖P‖n/(n−1),∞‖(u · ∇Φ)(s)‖nα/(n+α),∞ ds

≤ C(n, α)
( t/2\

0

(t − s)−1‖u(s)‖α,∞ ds
)
‖∇Φ‖n,∞‖P‖n/(n−1),∞

≤ C(n, α)
( t/2\

0

(t − s)−1s−1+n/2α ds
)
‖P‖n/(n−1),∞‖u‖Yα‖∇Φ‖n,∞.

The last integral onverges, and equals t−1+n/2α
T1/2
0 (1 − ξ)−1ξ−1+n/2α dξ.



210 A. Razy«skiThus we have(10) ‖L1u(t)‖α,∞ ≤ C(n, α, Φ)t−1+n/2α‖u‖Yα .Here, the singularity of the funtion (t − s)−1 auses that the aboveestimate annot be true in the whole interval (0, t). This is the reason wesplit the operator L into L1 and L2. We irumvent this di�ulty in theintegral L2 by using Theorem 2.2. Applying the inequality (7) with r =
α, p = nα/(n + α), a = t/2, and then using the weak Hölder inequality wehave
‖L2u(t)‖α,∞ ≤

∥∥∥
t\

t/2

e(t−s)∆∇(u · ∇Φ)(s) ds
∥∥∥

α,∞

≤ C(n, α) sup
t/2<s<t

‖(u · ∇Φ)(s)‖nα/(n+α),∞

≤ C(n, α) sup
t/2<s<t

‖u(s)‖α,∞‖∇Φ‖n,∞

≤ C(n, α)

(
t

2

)−(1−n/2α)

sup
t/2<s<t

s1−n/2α‖u(s)‖α,∞‖∇Φ‖n,∞

≤ C(n, α)t−(1−n/2α)‖u‖Yα‖∇Φ‖n,∞.Thus, we arrive at(11) ‖L2u(t)‖α,∞ ≤ C(n, α, Φ)t−1+n/2α‖u‖Yα .Summing up (10) and (11), multiplying the result by t1−n/2α, and �nallytaking supremum over t > 0, we arrive at the required estimate for theoperator L.Until now we used only the spae Yα, α ∈ (n/2, n), but we may havedi�ulty in de�ning the onvergene to initial data u0 (the norms ‖u(t)‖α,∞may tend to ∞ as t → 0). Therefore we restrit our onsiderations to asubspae of Xn/2, namely Xn/2 ∩ Yα, i.e. we onsider two Banah spaenorms for the onstrution of solutions.The norm in this spae is given by
‖v‖Xn/2∩Yα = ‖v‖Xn/2

+ ‖v‖Yα .To prove the existene of a global solution for n > 3 we an apply Lemmas3.2 and 4.2 to get the estimate
‖B(u, v)‖Xn/2∩Yα ≤ K‖u‖Xn/2∩Yα‖v‖Xn/2∩Yα .Then, applying Lemmas 3.3 and 4.3, we get

‖Lu‖Xn/2∩Yα ≤ ℓ‖u‖Xn/2∩Yα .These inequalities together with the weak ontinuity allow us to applyTheorem 2.1 to obtain the existene and uniqueness of global solutions for
n > 3.



Self-gravitating partiles with external potential 211But replaing Xn/2 by its subspae gives us also the opportunity to proveglobal existene in the three-dimensional ase.To do this we have to replae Lemmas 3.2 and 3.3 by their more sophis-tiated version.Lemma 4.4. For n ≥ 3 and α ∈ (n/2, n), there exists a onstant K =
K(n, α) suh that for all u ∈ Xn/2 and v ∈ Yα,

‖B(u, v)‖Xn/2
≤ K‖u‖Xn/2

‖v‖Yα .Proof. Similarly to the proof of Lemma 4.2 we begin with the estimate
‖B(u, v)(t)‖n/2,∞ ≤ C(n)

t\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇φ)

∥∥∥∥
n/2,∞

ds,where P(x) is as in the above mentioned proof. Applying one again the weakYoung and Hölder inequalities for 1/p = 1+1/n−1/α and 1/q = 1/n+1/α,we get
‖B(u, v)(t)‖n/2,∞ ≤ C(n, α)

t\
0

(t − s)−n/2α‖P‖p,∞‖(u · ∇φ)(s)‖q,∞ ds

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖n/2,∞‖∇φ(s)‖nα/(n−α) ds
)
‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖n/2,∞‖v(s)‖α,∞ ds
)
‖∇En‖n/(n−1),∞‖P‖p,∞

≤ C(n, α)
( t\

0

(t−s)−n/2αs−1+n/2α ds
)
‖P‖p,∞‖u‖Xn/2

‖v‖Yα‖∇En‖n/(n−1),∞.The last integral onverges if and only if α > n/2 and equals
1\
0

(1 − x)−n/2αx−1+n/2α dx = B

(
− n

2α
+ 1,

n

α

)
,where B is the Euler Beta funtion. The onditions α ∈ (n/2, n) and n ≥ 3imply that the required onditions p, q > 1 are also full�lled. Taking thesupremum over t > 0 we arrive at the required estimate of the bilinear form

B(u, v).To prove the estimate for L for n = 3 (the proofs remain valid also for
n > 3) we modify the proof of Lemma 4.3 to get the followingLemma 4.5. Let n ≥ 3. For n/2 < α < n, u ∈ Yα and any externalpotential Φ suh that ∇Φ ∈ Ln,∞(Rn) we have

‖Lu‖Xn/2
≤ ℓ‖u‖Yα ,where ℓ = ℓ(n, α, Φ).



212 A. Razy«skiProof. To prove the lemma we do not need to split the integral into twoterms as in Lemma 4.3.In fat, for 1/p = 1 + 1/n − 1/α and any α ∈ (n/2, n) we have
‖Lu(t)‖n/2,∞

≤ C(n, α)

t\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇Φ)

∥∥∥∥
n/2,∞

ds

≤ C(n, α)

t\
0

(t − s)−n/2−1/2+n/2p‖P‖p,∞‖(u · ∇Φ)(s)‖nα/(n+α),∞ ds

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖α,∞ ds
)
‖∇Φ‖n,∞‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2αs−1+n/2α ds
)
‖P‖p,∞‖u‖Yα‖∇Φ‖n,∞.

The last integral is equal to T10(1 − ξ)−n/2αξ−1+n/2α dξ < ∞. Thus we have
‖Lu(t)‖n/2,∞ ≤ C(n, α, Φ)‖u‖Yα .Taking the supremum over t > 0 leads to the required estimate for L.Thus taking into aount Lemmas 4.2�4.5 we get(12) ‖B(u, v)‖Xn/2∩Yα ≤ K‖u‖Xn/2∩Yα‖v‖Xn/2∩Yαand(13) ‖Lu‖Xn/2∩Yα ≤ ℓ‖u‖Xn/2∩Yα .These inequalities and the weak ontinuity property (whih an beproved in a similar way) applied to Theorem 2.1 give the existene of globalsolutions in the subspae Xn/2 ∩ Yα for n = 3 as well as for n > 3.We haveTheorem 4.6. Let n ≥ 3 and n/2 < α < n. For Φ with ∇Φ ∈ Ln,∞(Rn)and u0 ∈ Ln/2,∞ suh that

ℓ = ℓ(n, α, ‖∇Φ‖n,∞) < 1, ‖et∆u0‖Xn/2∩Yα <
(1 − ℓ)2

4K
,where the onstants K = K(n, α) and ℓ ome from (12) and (13), there existsa solution u ∈ Xn/2 ∩ Yα to the problem (9). The solution is unique amongthose in the open ball entered at the origin with radius equal to (1 − ℓ)/2K.5. Conlusions and remarks. Sine for n > 3 we proved the existeneof solutions in both the whole spae Xn/2 and its subspae we obtain a simpleonsequene of the theorems above:



Self-gravitating partiles with external potential 213Proposition 5.1. Let n > 3 and n/2 < α < n. For Φ suh that ∇Φ ∈
Ln,∞(Rn) with ‖∇Φ‖n,∞ small enough that ℓ = ℓ(n, α, ‖∇Φ‖n,∞) < 1, thereis no stationary solution U = U(x) with small norm ‖U‖n/2,∞.Proof. Assume that suh a stationary solution U exists. Sine its norm
‖U‖n/2,∞ is small enough, we an obtain the unique global solution belongingto Xn/2 (due to Theorem 3.4) and to its subspae Xn/2 ∩ Yα, n/2 < α <
n (due to Theorem 4.6). From Theorem 3.4 we onlude that U must bethat global solution (but independent of time). Due to the uniqueness andTheorem 4.6, U must also belong to Yα. This implies that t1−n/2α‖U‖n/2,∞has to be bounded, whih is impossible. Thus, a stationary solution withsmall Ln/2,∞ norm annot exist.The spae of pseudomeasures. Another possible funtional setting is thespae of pseudomeasures

PMα = {v ∈ S ′(Rn) : v̂ ∈ L1
loc(R

n), ‖v‖PMα ≡ ess sup
ξ∈Rn

|ξ|α|v̂(ξ)| < ∞}.The existene and uniqueness of the global (α = n − 2) and loal (α ∈
(n − 1, n − 2]) solutions in these spaes have been onsidered in [17℄.We are mainly interested in the spae to whih the Chandrasekhar solu-tion belongs, i.e. PMn−2. The intersetion of Ln/2,∞(Rn) and PMn−2(Rn) isnot empty (e.g., the Chandrasekhar and homogeneous funtions are there).However, it is not obvious how to haraterize the sets Ln/2,∞ \ PMn−2 (or
PMn−2 \ Ln/2,∞).

6. Asymptoti stability of solutions. In this setion we desribe theasymptotis of solutions to the evolution problem. The �rst observation isthat if we let u(t) be the solution with u0 ∈ Ln/2,∞, and v(t) be the solution ofthe heat equation with the same initial ondition, then, due to the estimatesfor ‖B(u, v)‖n/2,∞ and ‖Lu‖n/2,∞,
‖u(t) − v(t)‖n/2,∞

≤ ‖B(u, u)‖n/2,∞ + ‖Lu‖n/2,∞ ≤ K‖u‖2
Xn/2

+ ℓ‖u‖Xn/2
≤ const.This means that the solutions u(t) stay in a neighbourhood of v(t), i.e. u isa perturbation of v.Theorem 6.1. Let u(t) and v(t) be the solutions of the problem withthe same external potential Φ and initial data u(0) and v(0) respetively.Choose u(0) and v(0) suh that ‖et∆u(0)‖Xn/2

≤ ε < (1 − ℓ)2/4K and
‖et∆v(0)‖Xn/2

≤ ε < (1 − ℓ)2/4K. If , additionally , the solutions of the heatequation with the same initial onditions u(0), v(0) approah eah other , i.e.



214 A. Razy«ski(14) lim
t→∞

‖et∆(u(0) − v(0))‖n/2,∞ = 0,then for ε small enough we also have
lim
t→∞

‖u(t) − v(t)‖n/2,∞ = 0.Proof. Before we prove the main onlusion, let us estimate the norm
‖
Tt
0 e(t−s)∆∇(fg)(s) ds‖n/2,∞. Using similar alulations to those in Setion 4we have
∥∥∥

t\
0

e(t−s)∆∇(fg)(s) ds
∥∥∥

n/2,∞

≤
∥∥∥

t/p\
0

e(t−s)∆∇(fg)(s) ds
∥∥∥

n/2,∞
+

∥∥∥
t\

t/p

e(t−s)∆∇(fg)(s) ds
∥∥∥

n/2,∞

≤ C1(n)‖P‖n/(n−1),∞‖g‖Xn

t/p\
0

(t − s)−1‖f(s)‖n/2,∞ ds

+ C2(n)‖g‖Xn sup
t/p≤s≤t

‖f(s)‖n/2,∞

≤ C1(n)
p

p − 1
‖P‖n/(n−1),∞‖g‖Xn

1/p\
0

‖f(ts)‖n/2,∞ ds

+ C2(n)‖g‖Xn sup
t/p≤s≤t

‖f(s)‖n/2,∞.Applying the above estimate for quadrati and linear terms we get
‖u(t) − v(t)‖n/2,∞ ≤ ‖et∆(u(0) − v(0))‖n/2,∞ + ‖B(u − v, u)‖n/2,∞

+ ‖B(v, u − v)‖n/2,∞ + ‖L(u − v)‖n/2,∞

≤ ‖et∆(u(0) − v(0))‖n/2,∞

+ (2K max{‖u‖Xn/2
, ‖v‖Xn/2

} + ℓ)

×
(
C1(n)

p

p−1
‖P‖n/(n−1),∞

1/p\
0

‖(u−v)(ts)‖n/2,∞ ds

+ C2(n) sup
t/p≤s≤t

‖(u − v)(s)‖n/2,∞

)

where K and ℓ are the onstants obtained in Setion 3 (we also use theestimate for ‖∇φ‖n,∞). Thus we arrive at
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‖u(t) − v(t)‖n/2,∞ ≤ ‖et∆(u(0) − v(0))‖n/2,∞ + (1 −

√
(ℓ − 1)2 − 4Kε)

×
(

C1(n)‖P‖n/(n−1),∞
p

p − 1

1/p\
0

‖(u − v)(ts)‖n/2,∞ ds

+ C2(n) sup
t/p≤s≤t

‖(u − v)(s)‖n/2,∞

)
.Sine we want to �nd limt→∞ ‖u(t) − v(t)‖n/2,∞, let us de�ne

A = lim sup
t→∞

‖u(t) − v(t)‖n/2,∞ = lim
k→∞

sup
t≥k∈N

‖u(t) − v(t)‖n/2,∞.Observe that, due to assumption (14) and the Lebesgue dominated on-vergene theorem, the inequality above an be rewritten as
A ≤

(
C1(n)‖P‖n/(n−1),∞

1

p − 1
+ C2(n)

)
(1 −

√
(ℓ − 1)2 − 4Kε)A.Sine the seond term of the right-hand side is less than 1, and

C1(n)‖P‖n/(n−1),∞
1

p−1 → 0 as p → ∞, the asymptoti stability dependson the value of C2(n) only. If C2(n) < 1 then A = 0. Even for C2(n) ≥ 1 wean also get A = 0 but only for ε small enough. This implies that A = 0, so
lim
t→∞

‖u(t) − v(t)‖n/2,∞ = 0.
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