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Abstract. It is well known that the only proper non-trivial norm closed ideal in the
algebra L(X) for X = ¢, (1 < p < c0) or X = ¢ is the ideal of compact operators.
The next natural question is to describe all closed ideals of L(¢, @ ¢4) for 1 < p,q < oo,
p # g, or equivalently, the closed ideals in L(¢,,¢,) for p < ¢. This paper shows that
for 1 < p < 2 < g < oo there are at least four distinct proper closed ideals in L(¢p, £¢y),
including one that has not been studied before. The proofs use various methods from
Banach space theory.

1. Introduction. This paper is concerned with the structure of norm
closed ideals of the algebra L(X) of all bounded linear operators on an
infinite-dimensional Banach space X. The classical result of [Calk41] asserts
that the only proper non-trivial closed ideal of L(/3) is the ideal of com-
pact operators. The same was shown to be true for £, (1 < p < oo) and
co in [GMF60]. It remains open if there are other Banach spaces with only
one proper non-trivial closed ideal. The complete structure of closed ideals
in L(X) was recently described in [LLR04] for X = (@,2, ¢3)s and in
[LSZ06] for X = (B, ¢43)e,- In both cases, there are exactly two nested
proper non-zero closed ideals. Apart from those mentioned above, there are
no other separable Banach spaces X for which the structure of the closed
ideals in L(X) is completely known. The structure of the closed ideals of
operators on non-separable Hilbert spaces was independently obtained by
Gramsch [Gram67| and Luft [Luft68]. Recently Daws [Daws06] extended
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their results to non-separable ¢,-spaces, 1 < p < 0o, and non-separable
Co-spaces.

This motivates the study of the next natural special case X = ¢, ®© {,
(1 < p,q < o0, p # q), which is our main interest here. There were sev-
eral results in this direction proved in the 1970’s concerning various special
ideals or special cases of p and q. We refer the reader to the book by Pietsch
[Piet78, Chapter 5| for details. In particular, [Piet78, Theorem 5.3.2| asserts
that L(¢, @ ¢,) (with, say, p < ¢) has exactly two proper maximal ideals
(namely, the ideal of operators which factor through ¢, and the ideals of
operators which factor through ¢;), and establishes a one-to-one correspon-
dence between the non-maximal ideals in the algebra L(¢,$¢,) and the closed
“ideals” in L(£p,¢,). Here an ideal in L(¢,,¢,;) means a linear subspace J of
L(¢y,£,) such that ATB € J whenever A € L({;), T € J, and B € L({,),
and “closed” is always understood with respect to the operator norm topol-
ogy. Consequently, the subject of the present paper is the structure of closed
ideals in L(¢p,¥¢,) with 1 < p < ¢ < o0.

In this paper we study a number of natural closed ideals in L(¢,, {,) and
relations among them. In particular we show that if 1 < p < 2 < ¢ < 0
then the following four closed ideals are proper and distinct: the ideal of all
compact operators K, the closed ideal 7' generated by the formal identity
operator I, ,: £, — {4, the ideal JF>% of all finitely strictly singular (FSS)
operators, and the closure of the ideal 72 of all ¢5-factorable operators (see
Section 2 for appropriate definitions). Although these ideals were identified
earlier, they were not known to be distinct and proper except for special
cases. The following diagram illustrates the relationship between these ideals:

LT

‘sts WE
~a -7
J?

[©)= E={7>

) ,_>‘sts Nt >‘ L(4,,¢4) ‘

Here arrows stand for inclusions. A solid arrow (= or —) between two ideals
means that there are no other ideals sitting properly between the two, while a
double arrow coming out of an ideal indicates the only immediate successor.
A hyphenated arrow (—>) indicates a proper inclusion, while a dotted one
indicates that we do not know whether or not the inclusion is proper. In
particular, the closed ideals in L(¢,, ;) are not totally ordered.

The paper is organized as follows. In Section 3 we study the ideal J'ra
for 1 < p < ¢ < oo. In [Milm70], Milman proved that J'a is FSS, and
therefore, J»e C J¥55. Since J ' is not compact, K is properly contained
in J»a. We will show that every closed ideal that contains a non-compact
operator necessarily contains 7’74, so that J'r4 is the least non-compact
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ideal. In Section 4 we consider the ideal J% when 1 < p<2<qg< 0.
We find a specific non-FSS operator T in J% such that the closed ideal J7
generated by T coincides with 72, This implies, in particular, that 755 is
a proper ideal (a result proved in [Milm70| for p = 2 < ¢g). Among results
on other related ideals we also show that J¢ - J% for all r between P
and ¢, and we prove that every closed ideal of L(¢y,¢,) which contains a
non-FSS operator must also contain /2. In Section 5 we consider the “block
Hadamard” operator U from ¢, to £, for 1 < p <2 < g < co. We show that
U ¢ T hence J is a proper ideal. Since, obviously, I, € T it follows
that Jlra - JY. We show in Section 6 that U is FSS, hence Jra - JEFSS,
We thank Gilles Pisier for suggesting to us the proof of Theorem 6.5.

2. Notation and preliminaries. We use the standard notation from
the Banach space theory as in [LT77, LT79, Tom89, DJT95] and we refer
the reader to these books for unexplained notions. Given two Banach spaces
X and Y, we write L(X,Y") for the space of all continuous linear operators
from X to Y, and L(X) for L(X, X). A linear subspace J of L(X,Y) is said
to be an ideal if ATB € J whenever A€ L(Y), T € J, and B € L(X). By
a closed ideal we mean an ideal closed in the operator norm topology. We
denote by K the closed ideal of all compact operators.

Throughout this paper, p and ¢ always satisfy 1 < p < ¢ < oco. We
denote by p’ the conjugate of p, that is, 1/p + 1/p’ = 1. It is well known
(see, e.g., |CPYT74]) that K is contained in every closed ideal of L(¢p,¢,). If
Z is a Banach space, we say that an operator T' € L(X,Y") factors through
Z if T = AB where A € L(Z,Y) and B € L(X, Z); we denote by JZ the
closure of the set of all operators in L(¥p,¢,) that factor through Z. It can be
easily verified that if Z is isomorphic to Z @& Z then JZ is a subspace, hence
an ideal. For S € L({,,¢,) we denote by J° the closed ideal in L(p,£,)
generated by S, that is, the smallest closed ideal containing S. It is easy
to see that J° consists of operators that can be approximated in norm by
operators of the form Y ;" | A;SB;, where A; € L({y) and B; € L(¢,) for
i=1,...,n. If Ais an n x n scalar matrix, we write ||A||,, for the norm
of A as an operator from £} to /7.

It is known that every operator in L(/p,¢,) is strictly singular (see,
e.g., [LT77]). We call an operator S: X — Y finitely strictly singular, or
FSS, if for every ¢ > 0 there exists n € N such that inf,cp |)=1//S7|| < ¢
for every n-dimensional subspace F of X. This class of operators already
appeared in [Milm70| where its introduction has been credited to Mityagin
and Pelczynski. It can be easily verified (see [Masc94|) that S is FSS if and
only if every ultrapower of S is strictly singular. It follows immediately that
the set of all FSS operators from X to Y is a closed ideal. Denote by JESS
the ideal of all FSS operators in L(¢,,¢,).



242 B. Sari et al.

We denote by (e;) and (f;) the standard bases of ¢, and ¢, respec-
tively, and we denote their coordinate functionals by (ef) and (f7). If (x,,)
is a sequence in a Banach space, we write [z,] for its closed linear span.
A sequence (z,,) in a Banach space is seminormalized if inf,||z,| > 0 and
sup,, ||zn|| < oo.

The following standard lemma is immediately deduced from Proposi-
tions 1.a.12 and 2.a.1 of [LT77].

LEMMA 2.1. If X =4, (1 < p < o0) orcy and (z,) is a seminormalized
sequence in X which converges to zero coordinate-wise (that is, for every i,
ef(zn) — 0 as n — 00), then there is a subsequence (xy,) equivalent to (e;)
such that [xy,] is complemented in X .

REMARK 2.2. Suppose that 1 < p < ¢ < oo and T € L(¢,,{;). We say
that T is block-diagonal if T = @ Ty, where T,,: gy — L. Equiva-
lently, there exists a strictly increasing sequence of integers (k) such that
T =3, P.,TQn, where @, and P, are the canonical projections from £,
and £, onto the finite-dimensional subspaces spanned by ey, 11, ..., ¢€g,,, and
Jkn+1s -+ Jhny, respectively. Note that m,, = k11 —Fk;, and T}, can be identi-
fied with P, T'Q,,. It can be easily verified that if p < ¢ then ||T'|| = sup,, ||T5 |-
Indeed, ||T,,|| = |P.TQn] < ||T|| as P, and @, are contractions. On the
other hand,

> / > /
12 = (SIPT@urll?) " < (supl PaTQul) (SN Quel?)
n=1 n n=1

oo 1/
< (supl| Tl (D2 1Q@url?) ™" = supliTall) ]
n n=1 n

REMARK 2.3. Suppose that R € L({),¢,) for 1 < p < g < oo, and T
is a block-diagonal submatrix of R, that is, T = > >° | P,RQy, where (P,)
and (@) are as in Remark 2.2. Then T can be written as a convex combi-
nation of operators of the form URV, where U and V are isometries. See
Proposition 1.c¢.8 of [LT77] and Remark 1 following it for the construction.

3. The formal identity operator I, ,. In this section we consider the
formal identity operator I, ,: ¢, — £, for 1 < p < ¢ < oo. Clearly, I, is
not compact, so that X C J'»4. First, we show that J'r¢ is contained in
every closed ideal of L(¢,,¢,) except K. This result is probably known to
specialists, but we provide a short proof for completeness.

PROPOSITION 3.1. Let 1 < p < ¢ < oo. If J is any ideal in L({,,£y)
containing a non-compact operator, then I, , € J.

Proof. Assume that J contains a non-compact operator 1. There exists
a normalized sequence (z,) in ¢, such that (T'z,) has no convergent subse-
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quences. By passing to subsequences and using a standard diagonalization
argument, we can assume that (z,,) and (Tx,) converge coordinate-wise.
Let y, = x,, — xp—1; then (y,) and (T'y,) converge coordinate-wise to zero.
Since (T'xz,) has no convergent subsequences, we can assume (by passing to
a further subsequence if necessary) that (T'y,) is seminormalized. It follows
that (y,) is also seminormalized. Using Lemma 2.1 twice, we can assume (by
passing to a subsequence) that (y,) is equivalent to (e;), (T'yy,) is equivalent
to (fi), and [T'yy] is complemented in /.

Let B: ¢, — [yyn] be an isomorphism given by Be,, = yp, and A: [T'y,| —
¢, be an isomorphism given by A(Ty,) = f,. Since [T'yy] is complemented,
A can be extended to an operator on all of /,. Thus we can view B and A
as elements of L(¢,) and L({,) respectively. Observe that AT Be,, = f, for
each n, hence ATB = I, ,. It follows that I, , € J. =

COROLLARY 3.2. If a closed ideal of L({,,{,) contains a non-compact
operator, then it contains J'ra.

The following result was proved in [Milm70]. For the reader’s convenience
we provide a short proof.

PROPOSITION 3.3. Suppose that 1 < p < q < co. The formal identity
operator I, , is FSS.

We will deduce this proposition from the following lemma, which also
appeared in [Milm70].

LEMMA 3.4. If E is an n-dimensional subspace of co then there exists
x € FE such that x attains its sup-norm at at least n coordinates.

Proof. The proof is by induction. The statement is trivial for n = 1.
Suppose that it is true for n, take any subspace E of ¢y of dimension n + 1.
By induction hypothesis, there exists € F such that

(1) 0= [[@lloo = |ziy | = - - = |zi,]

for a set of distinct indices I = {i1,...,4,}. Suppose that |z;| < § for all
i ¢ I (otherwise we are done). Let Y be the subspace of ¢y consisting of
all the sequences that vanish at 4q,...,4,. Since Y has co-dimension n, it
follows that YN E # {0}. Pick a non-zero y € YN E. We claim that for some
s > 0 the sequence x + sy attains its sup-norm at at least n + 1 coordinates.
Indeed, |z; 4+ ty;| = d for all i € I and ¢ > 0. Consider the function

f(t) = max|x; + ty,|.

(6) = maxz; +
Clearly, f is continuous, f(0) < 4§, and lims—. f(tf) = oco. It follows that
f(s) = 0 for some s > 0. Then |z; + sy;| = ||z + sy|loc = I for some i ¢ I. =

Proof of Proposition 3.3. Given € > 0, pick n € N such that nt/aYp < ¢
Suppose that E' is a subspace of £, with dim £ = n. By Lemma 3.4 there
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exists x € FE and indices i1, ..., i, satisfying (1). Without loss of generality,
|2|l, = 1. Tt follows that 1 = ||z||h > ndP, so that § < n~'/P. Then

|zl < [[]| 7|z = 597 < n~a=P)/P,
so that |z|, < nt/a=1/P < ¢, Tt follows that Iy, is FSS. m

COROLLARY 3.5. Let 1 < p < q < oco. The ideal K is a proper subset
Of jFSS.

4. Operators factorable through />. In this section we consider the
ideal J% for 1 < p < 2 < . Using Pelczyniski’s decomposition, we will
construct an operator T': £, — ¢, such that J%2 = J7. That is, the closure
of the ideal of all ¢»-factorable operators is exactly the closed ideal generated
by T. Furthermore, we show that T fails to be FSS, hence the ideal JF5S
is proper. It will be obvious from the definition of T" that 7" factors through
¢, whenever p < r < g, so it follows that 7% C J%. We also show that
T factors through every non-FSS operator. It follows that any closed ideal
containing a non-FSS operator necessarily contains J2.

To construct 7', recall that it follows from Petczyriski’s decomposition the-
orem that for every 1 < r < oo, ¢, is isomorphic to (P, £%),, the £,-direct

n=1
sum of ¢3’s (see [LT77, p. 73]). Let 1 < p < g < oo, put U: £, — (P, (5)p
and V': (@72, 5)q — {4 be two such isomorphisms. By Is p, o: (D, €5)p,—
(D, £5)q we denote the formal identity operator, that is, just the change

of the norm on the direct sum. Then let T = VI3, (U, that is,

2) 7.0, % (é eg)p Lo, (ézg)q Y.,
n=1 n=1

We will call T a Petczyriski decomposition operator.

REMARK 4.1. Note that T is not unique, it is defined up to the isomor-
phisms U and V, so that we have actually constructed a class of operators.
It is clear, however, that any two Pelczyriski decomposition operators factor
through each other. Moreover, one can easily verify that if in the preceding
construction we “skip” some of the blocks, that is, if we consider (P, , ES”)
for some strictly increasing sequence of indices k,, then the resulting opera-
tor T" obviously factors through 7. Conversely, T factors through 7’ because

5 is a complemented subspace of Eg".

Furthermore, let E,, = U~!(¢3) C ¢, be the pre-image of the nth block
of (¢3),. Similarly, put F,, = V(£3) C £,. Then d(E,, ¢3) < ||U| - |[U™Y|
and d(F,,¢3) < ||V - [V, where d(X,Y) stands for the Banach—Mazur
distance between X and Y. Hence, (E,) and (F},) are sequences of uniformly
Euclidean subspaces of ¢, and ¢, respectively. Note that T'(E,,) = F},, so that
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T fixes copies of ¢4 for all n € N. This immediately implies the following
result.

PROPOSITION 4.2. For 1 < p < q < 00, every Pelczynski decomposition
operator fails to be FSS.

COROLLARY 4.3. For 1 < p < q < 0o, the ideal J¥5S is proper.

Our next goal is to show that if 1 < p < 2 < ¢ < oo then JT = gt
We will make use of the concept of fo-factorable norm ~,. Recall that if
S € L(X,Y) (X and Y Banach spaces) then v5(S) = inf ||S1]| || S2||, where
the infimum is taken over all factorizations S = S; Sy where So: X — ¢5 and
S1: 4y — Y. It is known that -5 is a norm on the ideal of all ¢s-factorable
operators, and y2(ASB) < [|A||72(S)||B|| whenever X 5 xSy 4y,
See [Tom89, DJT95] for more information on ~s.

LEMMA 4.4. Suppose that R € L({,,¢,), 1 <p < q < o0, and € > 0.

(i) There exist two block-diagonal operators V,W & L(l,,4,) such that
W< IR +e, [VII < 2/[R]| +2¢, and |R — (W + V)| <e.

(ii) Suppose that, in addition, R is la-factorable. Then V and W can
be chosen to be ly-factorable, and vo(W) < 42(R) + &, 72(V) <
292(R) + 2¢, and v2(R— (W +V)) < e.

Proof. Let r;; stand for the (i,j)th entry of the matrix of R, that is,
ri; = f;(Re;j). For the purpose of this proof we introduce the following
notation: for 2 C N x N, we define the matrix R = (0;;) by

{Ti,j if (Z,j) S .Q,
Qij = .
0 otherwise.

We start by approximating R by a matrix S with finitely many entries
in every row and every column. Namely, by truncating each row and each
column of R sufficiently far we can find two strictly increasing sequences
(M;) and (NN;) of positive integers such that ||R— Rp| < e where I' C NxN
is defined by

(t,j) e I' iff i < Mjand j < N;.

Put S = Rp.

We will define two strictly increasing sequences (k) and (I,,) of positive
integers such that I" is contained in the union of two block-diagonal sets
A=A, and A= J;2 | A, where

An = {(7’7]) er | knfl < Za.] < kn}v
Ay ={0,j) €T | ln—1 < i,j <y}

We define the sequences (ky,) and (I,,) by an interlaced induction. Put kg = 0,
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lo=1. For n > 0 we let
kn+1 = maX{Mln, Nln}, ln+1 = max{Man y Nkn+1}~

Clearly, (k,,) and ({,,) are strictly increasing. Next, we show that I" C AU A.
Let (i,7) € I'. There exists n such that I, < max{i,j} < l,41. If [, <
min{i, j}, then I, < 4,5 < l,4+1, so that (i,j) € A. Suppose now that
min{i,j} < [l,. Then either i or j is less than or equal to l,, while the
other is greater than [,. Say, ¢ <1, and j > [,,. It follows that

i <lp <N, <kpy1 and j > 1, > Ng, > ky.

Therefore 7 < N; < N;, < kp41. Also, N; > j > 1, > Ny, yields i > k.
Hence, ky, < i,j < kyt1, so that (i,j) € A.

Set W =S54 and V =5 —W. Then the non-zero entries of W and V are
located in A and A respectively, so that W and V are block-diagonal. By
the definition of S we have |[R — (W +V)|| < e. Since W is a block-diagonal
part of S, Remark 2.3 yields ||W| < ||S|| < ||R]|| + €. Finally, it follows from
V =8 —W that ||V < 2||R] + 2e.

If R is fa-factorable, then we can choose S with finitely many entries in
each row and column such that S is also ¢s-factorable and 12 (R — 5) < e.
Indeed, let R = R1R> be a factorization of R through ¢5. Approximate R
and Ry in norm by S7 and Sy, respectively, such that S; and Sy have finitely
many entries in every row and column. Put S = 51.55; then S is as claimed.
We use the triangle inequality to show that v2(R — S) < € when ||R; — S1]|
and ||Re — S| are sufficiently small.

Set W =S4 and V =5 —W. It follows from Remark 2.3 that (W) <
v2(S) < v2(R) + &. Then (V) = 72(S — W) < 292(R) + 2¢. In particular,
W and V are {5-factorable. m

REMARK 4.5. In a similar fashion one can show that every operator
between two Banach spaces with shrinking unconditional bases can be ap-
proximated by a sum of two block-diagonal operators.

REMARK 4.6. A slight modification of the proof Lemma 4.4(i) yields
|W{ < ||R|. Indeed, choose M; and N; sufficiently large so that not only
|IR— Rpr|| < e but also ||R— Rg|| < ¢ for every 2 C N x N such that I" C (2.
Then, after constructing A and A, put W = Ra and V = Raua — W. Then
the non-zero entries of W and V are located in A and A, respectively, so that
W and V are block-diagonal. Since AUA D I' we have [R— (W + V)| <e.
Since W is a block-diagonal part of R, Remark 2.3 yields |[W]| < ||R].
Finally, [V < [Ravall + W] < 2[|R|| +&.

THEOREM 4.7. If 1 < p <2 < q and T is a Pelczynski decomposition
operator, then JT = J¢.
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Proof. Observe that Iy ,, being the formal identity from (€, ¢5),
to (D, 05)q, factors through (P, ¢5)2 = ¢2. It follows that T factors
through /5 and, therefore, JTr c gt

We show that J% c 7J7T. Clearly, it suffices to show that every fs-
factorable operator belongs to J7. In view of Lemma 4.4(ii), it suffices to
show this for block-diagonal operators. Let W be an {s-factorable block-
diagonal operator. Then we can write W = 6920:1 A, B,, where B,:
El;" — (b and A,: fin — Z’;" such that sup,||A,| and sup,|B,| are fi-
nite. By merging consecutive blocks if necessary, we can assume without loss
of generality that (k) is strictly increasing. Observe that the operators

B= éEBn: (ée’;n)

=1

o0

(@),

and

Azé%; @egn)ﬁ @egn)q

are bounded, and W = Al B, with I the formal identity from (@°, ¢4"),
to (Pr7, E’;n)q. Thus, W factors through Ij. It follows from Remark 4.1 that
Iy factors through T'. Hence, W factors through 7T'. u

REMARK 4.8. Actually, we proved that every operator in J% can be
approximated by sums of two T-factorable operators.

REMARK 4.9. Suppose that 1 < p < r < ¢. Then I, , in (2) factors
through (6,7, ¢5),, which is isomorphic to ¢,. It follows that T factors
through ¢,. Then Theorem 4.7 implies that Jb2 C J% when p<2<yq.

Next, we show that if p < 2 < ¢ then J% is the least closed ideal
beyond J¥5S that is, every closed ideal that contains a non-FSS operator
also contains J%. For the proof we need the following well-known fact.

THEOREM 4.10. For every 1 < r < oo there exists K > 0 such that for
alln € N there exists N € N such that every N -dimensional subspace F' C £,
contains an n-dimensional subspace E which is K-complemented in ¢, and
2-isomorphic to U3 .

REMARK 4.11. The theorem follows by simultaneous use of Dvoretzky’s
theorem both in a subspace F' C ¢, and in its dual F™* (see, e.g., [MS86]). This
gives the result with N = Cn’/? and K = C’\/max{r,r'}, where C,C’ > 0
are absolute constants. This theorem can also be viewed, for example, as a
special case of results in [FT79].

We will also routinely use the following observation.
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REMARK 4.12. Suppose that (E,,) is a sequence of subspaces of a Banach
space X which are uniformly Euclidean and uniformly complemented in X.
That is, there exist a constant C' > 0 and sequences (F,,) and (V) such that
P, is a projection from X onto E, with ||P,| < C, and V,,: E,, — (3 is an
isomorphism with ||V,|| - ||V, "}|| < C for every n. Let G,, be a subspace of
E, (n € N). Then it is easy to see that the G,’s are uniformly Euclidean
and uniformly complemented in X as well.

For x € (¢, we write suppz = {i € N | ; # 0}. For A C ¢, put
supp A = J e 4 SUpp z.

THEOREM 4.13. Let 1 < p <2 < g < o0. If R € L({p,¢,) is not FSS,
then every Petczynski decomposition operator factors through R.

Proof. Since R is not FSS, there exist a constant C' > 0 and a sequence
(En) of subspaces of £, such that dim E,, — oo as n — oo, and Rjg, is
invertible with ||(Rg,) || < C. We can assume, in addition, that supp E,
is finite by truncating all the vectors in a basis of E,, sufficiently far (and
adjusting C' if necessary). Let F,, = R(FE)). Using Theorem 4.10 and Re-
mark 4.12 we can easily obtain subspaces E!, C E, and F! C F, which
are C-Euclidean, C-complemented in ¢, and /¢, respectively, and such that
F/ = R(E!)). By passing to a subsequence we may assume that dim E], = n,
and we relabel the sequences so obtained as (E,,) and (F},). Let Q,,: {;, — F,
be a projection with ||Q,| < C.

We are going to define sequences (E,), (Fj,) and (Q,) which satisfy all
the properties described in the previous paragraph and, in addition, there
exists a strictly increasing sequence (my) in N such that the following four
conditions are satisfied:

(i) mp—1 < minsupp En and my,_1 < minsupp ﬁn;
(ii) @Qny = 0 whenever maxsuppy < m,_1;
(iii) My > Max supp E,;
(iv) |@Qny|l < 27™||y|| whenever minsuppy > m,,.

We construct the sequences inductively. Let mg = 0, and suppose that we
already constructed Ei, E-, @\i, and m; for all ¢ < n. Let G and G’ be the
subspaces of £, and /,, respectively, consisting of all vectors whose first m,,_1
coordinates are zero. Put k = 2my,_1 + n. It follows from dim F} = k and
codim G’ = m,,_1 that m,,_1 +n < dim Fy NG’ = dim R~ (F,NG"), because
R, is an isomorphism. Since codim G = my_; we have GN R (F, N G')
> n. Let E, be an n-dimensional subspace of G N R~(F, N @), and F,, =
R(E,). Then E,, C G and F,, C @', hence (i) is satisfied. Clearly, F, is C-
complemented in ¢,, where C = C2. Then there exists a projection Q': {4 —
F), such that Q|| < C. Let Q,, = Q'P, where P is the basis projection of >
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onto [fili>m,_,. Then Qn is again a projection from ¢, onto Fn, HQnH < C
and so (ii) is satisfied. Since rank Qn = n, we can write Q, = > j=1% ® 2]
where 21,...,2; € {p and 27, ... ,z] € ¢;. Then we can find r € N suﬁiciently
large such that if Hy|| < 1 and minsuppy > r then |z} (y)| is sufficiently
small for all j = 1,...,n, so that ||Qy|| < 27™. Let m,, = max{r, s}, where
s = maxsupp Ep; then (iii) and (iv) are satisfied.

For convenience, we relabel En, Fn, Qn, and C as E,, F,, Qn, and C
again. For every n suppose that V;, is a C-isomorphism of ¢} onto E,, with
Vol =1 and ||V, ]| < C. Put

V= évn: (éea)p N (é En>p.

Since the E,’s are disjointly supported, we can consider (,-, Ey)p as a

subspace of £,. It follows that V is a C-isomorphism between (@, ¢5),
and a subspace of £,. Define

Wty — (é eg)q via @ (Vi (Rig,) " Qo)
n=1

We claim that W is bounded. Indeed, pick x € ¢,;. Then

/ > /
3 quu—(Zuv (Ris,) lanuz)lqsc?(znc;nxn‘I)lq

1 Then:z:zzo:1 Pyx.
It follows from (ii) that @Q,Prx = 0 whenever k < n. Furthermore, (iv)
yields [[@Qn (> psn Prr)| < 27"|z||. Also, ||QnPrz| < C|Pyz||. Therefore,
|Qnz|| < C||Pux| + 2‘””3:” Using the Cauchnychwarz inequality, we get

S 1Quel?) < (Sl + (3@ e?) ! < (© 4+ Dal.
(=

n=1 n=

Let Py be the basis projection from ¢, onto [f;];-*

Together with (3) this shows that W is bounded.
Finally, it is easy to see that WRV = I, 4; it follows easily that every
Pelczyriski decomposition operator factors through R. =

COROLLARY 4.14. Let 1 <p<2<gqg<oo. If R € L({p,{,) is not FSS,
then J% C JR.

5. Operators not factorable through /. We employ the following
known theorem (see [DJT95, Theorem 9.13| or [Tom89, Theorem 27.1]) to
deduce conditions for an operator in L(¢y, ¢,) to factor through /,.

THEOREM 5.1. Let 1 < r < oo, let U: X — Y be a bounded linear
operator between Banach spaces X and Y, and let C' > 0. The following are
equivalent:
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(i) There exists a subspace L of L, (1), ;v a measure, and a factorization
U=VW, where V: L —Y and W: X — L are bounded linear
operators with |V - [|[W]| < C.

(ii) Whenever finite sequences (z;)j—, and (2;)j%, in X satisfy

m n
D Ko™z <> Hat, )" for all 2* € X7,
=1 =1
then
m n
olvzlm <y )"
=1 =1

Let us use Theorem 5.1 to state a criterion for an operator U : £} — (7"
not to factor as U = AB with ||B||, - [|A]|rq < C.

COROLLARY 5.2. Let m € N, C > 1, and r > 1, and assume that U is
an invertible m x m matriz. Let § = ||[U~||,s ... Then || B|lpr||Allrq > 071

for any factorization U = AB. Moreover, if U is another m X m matriz with

2 < —1_ -1
@ 10 = Ullng < (2 max [0 eal) ™

then || B|lpsl|Allrg > (26)71 for any factorization U = AB.

Proof. Fori=1,...,mlet x; = ¢; and z; = § U e; and observe that
for any z* € R™,

(S ar) " = 6 (i@t ear)
=1 =1

— — * % * r l/r
<O el = (Dl @)
=1

1/r — —1\*, %
=0 (O 2" s

which implies that the hypothesis of (ii) in Theorem 5.1 is satisfied. Secondly
it follows that

(5) D IUzlg=06"m =67 |aily,
=1 =1

which means that the conclusion of (i) in Theorem 5.1 is not satisfied for
any C < 6L It follows that condition (i) in Theorem 5.1 fails whenever
C <ol

Now assume that U is another m x m matrix satisfying (4), then it follows
fori=1,...,m that

1Uz)llg = [1U(zi)llg = I(U = U)(z)lg

> 31Ul + (51U Gllg = 1T = Tlpllilly)
= 31Uy + (35 = U = UllpgdHIU eillp) = 31U (i)l
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which implies, together with (5), that for U the conclusion of (i) in Theo-
rem 5.1 is not satisfied for any C' < §~!/2, hence (i) fails in this case. =

We will now define an operator which will be crucial for the rest of
the paper, and we start with the following notations. Let H,, be the nth
Hadamard matrix. That is,

H, H,

=), Hun = (Hn —H,

> for every n > 1.

Then H,, is an N x N matrix where N = 2". We use the identifications
b, = (D, Xn)p and £, = (B, Yy)q, where X,, = Egn and Y, = Egn are
block subspaces of £, and {, respectively. We consider H,, as an operator
from X, to Y,,. Put

(6) Unp=N"Ymnlt'p, where N =2", and U=@DUn: £, — .

n=1

REMARK 5.3. Observe that N~'/2H,, is a unitary matrix on ¢%. In par-
ticular, it is an isometry on £, hence ||H,||22 = N'/2, and H2 = NI. One
can easily verify that ||Hy|l1,00 =1 and ||Hy|1,1 = ||H]|co,00 = N.

THEOREM 5.4. If1 < p <2 < q < oo, then the operator U defined by (6)
has the following properties:

)
(ii) U is not compact.
iii) If p' # q then U is FSS.
)
p' <r < q; otherwise U ¢ J' .
(v) In particular, if p # q then U ¢ J%.

REMARK 5.5. In Section 6 we treat (iii) in the much harder case when
p' = ¢ and show that in this case U is still FSS.

Proof of Theorem 5.4. Using the Riesz—Thorin interpolation theorem
(e.g., [BL76, LT79|) for H,, acting as an operator in L({1,{s) and as an
operator in L(fs,fs), and using Remark 5.3, we obtain ||H,|,» < N/
whenever 1 < r < 2. Similarly, interpolating between || H||;; and ||Hpl|2,2,
and between ||H,||2.2 and || H oo 00, We obtain |[H|,, < N/™{r'} when-
ever 1 <7 < oo.

Define U\") = N~V H, and U = (4 ] U then ||U7(f)||r,,,/ <1 for
every n, hence ”U(T)Hr,r’ < 1. Considering U as an operator in L({p,{,), we
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can write
(p)
4 &E when p’ = ¢,
) I,
(7) U=q¢0, Y50, 2% 0,  whenp <q,

(a")
€—>€/L£ when p < ¢'.

It follows immediately that ||U]|,, < 1. Since J¥5 is an ideal, (iii) follows
from Proposition 3.3. It also follows from (7) that U factors through ¢, if
psr<qorp <r<g,

Consider first the case p’ < ¢q. Then U,, = N‘l/p/Hn. Let hy,; = Hpe;,
the ith column of the nth Hadamard matrix. It follows from H2 = NT that
Uphni = N~YP" H2e; = NYPe;. Thus, |Uphnilly = NP = ||hnllp, so that
|Un||p,q = 1. Hence, U is not compact, and ||U||p,q = 1 by Remark 2.2.

Next, suppose that p < r < p’ < q. We use Corollary 5.2 to show that
U ¢ jgr in thls case. Indeed, assume to the _contrary that U € J%. Then
there exists U such that ||U — UH < 1/2 and U factors through ¢,.. Let C be
the £,-factorization constant of U. Since p < min{r, 7’} one can choose n so
that C' < 1N1/p L/min{r:r'} where N = 2". Let U, be the N x N submatrix

of U corresponding to the nth block of U, that is, U, = QnUPn, where P,
(respectively, @,,) is the canonical projection from ¢, (respectively, ¢;) onto

the span of eyi1,...,ean. Then the {,-factorization constant of U, is at
most C. It follows from ||U,;  e;||, = |[N~YPh, ||, = 1 that

U < I — -1 -1
10 = Oull < 11U =01l < 1/2 = (2 max, U "ell,)

Let 6 = ‘|U51||r’,r/- It follows from H? = NI and U, = N-V? H, that
U l= N-YPH, so that
5= N~V | Hy o < N~VpHt/min{rr'y,

Corollary 5.2 implies that the ¢,.-factorization constant of U, is at least
(26)~1 > %Nl/pfl/min{’"”"l} > (', which is a contradiction.

The case p < ¢’ can be reduced to the previous case by duality. Indeed, it
follows from (7) that U* = Iq’p/U(q,): ly — ly. Consequently, if p <r < ¢
then I,y and, therefore, U* factors through /,,. Hence, U factors through /,..
Furthermore, since H,, is symmetric for every n, it follows that U} coincides
with U,, as a matrix and ||Uy;|y,» = 1. Applying the previous argument, we
observe that U* is non-compact and ||[U*||y,» = 1, hence the same is true
for U. Furthermore, if ¢ < r < ¢, then U* ¢ J% so that U ¢ J*.

Finally, (v) follows immediately from (iv). =

REMARK 5.6. If p < r <’ < ¢ then the operator U defined as

Ip,r U L g
g, 20, Uy,

ty



Norm closed ideals in L(£p, ly) 253

is compact. Indeed, as a matrix

ﬁn — Uér) — N—l/r’Hn _ Nl/min{p’,q}—l/r’U
It follows from ||U,|[pq = 1 and r’ < min{p’, ¢} that
[Unllpq = NV a=1/m" 0 asn — 0.

REMARK 5.7. Tt follows from Theorem 5.4(iv) that J% is proper when
max{p,¢'} < r < min{p/,¢}. In particular, J% is proper. It follows from
Remark 4.9 and Theorem 5.4(iv) that 7% C J% whenever p < r < ¢ or
p' < r < q. We do not know, however, whether 7 is proper in this case.

Next, we show that if U’ is another “U-like” operator then U and U’
factor through each other.

Again, we view £, = (D;2; Xn)p and £y = (P2 Y )g, where X, = (2"
and Y, = E . Denote the basis vectors in X,, and Y,, by e(n), el egn) and

fl(n), e Q(n), respectively. We can view H, and U, as operators from X,
to Y,.

THEOREM 5.8. Suppose that (n;) is an increasing sequence, and let U=
D;2 | Uy,, viewed as an operator from €, = (B;21 Xn,)p to by = (Bioq Yn,)q-
Then U and U factor through each other.

Proof. Consider the following diagram:

o= (@), (Bx), = (), (Bn), =+

where 2 is the canonical embedding, and R is the canonical projection. We can
view ¢ and R as operators on £, and /,, respectively. Thus, we get U = RU2.

Next, we prove that U factors through U. First, we show that whenever
n < m then there exist operators C': X,, — X,,, and D: Y,, — Y, such that
U, = DU,,,C and ||C||p, <1 and ||D]4q < 1.

First, we consider the case ¢ < p’. Define C,,: X,, — X,,41 via C’negn) =
el(-n—H) fori=1,...,2". Clearly, (), is an isometry.

Let Z,, be the subspace of Y, 11 consisting of all the vectors whose first
half coordinates are equal to the last half coordinates, respectively, that
is, Z, = Span{fi(nH) + flm_1 | i =1,...,2"}. Let P, be the “averaging”

+an
projection from Y, 41 onto Z, given by

2n+1 on
(n+1)\ _ Qi + Qiyon , (nt1) (n+1)
Pn(;az»fi )—;fu + £53D).

Then [|P,|| = 1.
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Define B,,: Z,, — Y, via B, (f (n+1) f(n+n1)) = 21/qfi(n); then B, is an
isometry. Hence, D,, = B, P,,: Y41 — Y, is of norm one.

Fix 1 < 4 < 2" Since C’negn) = el(.nH), Hn+1CneZ(.n) is the ith column
of H,11. Since ¢ < 2" it follows from the construction of H,’s that the ith
column of H,1 is exactly the ith column of H,, repeated twice. In particular,
Hn+1CneZ(.n) € Z, and, therefore, Hn+1C’ne£n) = PanHCneZ(.n). Finally,

BnPanHCnel(-n) = 21/q(the ith column of H,) = 21/anel(n).

Consequently, we have D, H,1Cy, = 21/‘1Hn. It follows from H,, = 2"/‘1Un
that DU, +1Cy, = U,. Iterating this m —n times, we get DU,,,C = U,, where
C: X, — X,, is an isometry, and D: Y,, — Y,, is of norm one.

If ¢ > p/, then we consider the adjoint operators. Note that U = U, as
matrices. Applying the previous argument we find matrices C' and D such
that U = DU;;,C with ||C||y ¢ <1 and ||D||,y < 1. Then U, = C*Up,D*
is a required factorization in the case q > p'.

It follows that for every i we have

(8) D;U,,C; = U;
for some contractions 5 X; — X, and IN?Z Xn, — X;. Let

o=@ (Bx),~ (Dx),
D:@D, (@X,an(@X)q

=1
Then C: ¢, — £, and D: ¢, — {4 are bounded, and by (8) we deduce that
DUC=U.n
It follows that any two operators of type U generated by different se-
quences factor through each other.

6. The operator U is FSS. Again, let U be the operator defined by (6).
Theorem 5.4(iii) states that U is FSS when p # ¢. We will show in this
section that U is still FSS when 1 < p = ¢/. The argument requires some
preparation.

Recall that the nth s-number of an operator T € L(H) on a Hilbert
space H is defined via s, (T) = inf{||T" — R|| | rank R < n}. For 1 < r < oo,
the Schatten norm ||T'||s, of T" equals the ¢, norm of the sequence of the
s-numbers. We say that T belongs to the Schatten class S, if ||T|s, < oo.
We denote by S, the set of all compact operators equipped with the operator
norm.
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LeEMMA 6.1. IfT € L(H) is such that |T||s, = 1 and inf,cp ||z =1 /| TZ]|
> ¢ for a subspace F' of H, then dim F' < ¢7 1.

Proof. Suppose that dim F' = k. For every operator S of rank k — 1 there
exists © € F such that ||z|| = 1 and Sz = 0. It follows that | T — S| >
|ITz|| > e, so that s; > -+ > s, > . Therefore, 1 = HTHqu > ked. Hence
k<e 9 m

We will also utilize the following result of Maurey [Maur74, Corollary 11,
p. 21].

THEOREM 6.2. Let ({2, 1) be a measure space, Y a Banach space, 0 <
u<v<oo, l/u=1/v+1/r, T a bounded operator from a closed subspace
E of Ly(n) to Y, and C > 0. Then the following are equivalent:

(i) There exists a closed subspace F' of L, (1) such that T factors asT =
V My, where V: F =Y with ||V| < C, and My: L,(1n) — Ly(p) is
a multiplication operator defined by Myf = gf for every f € L,(p),
with g € L,(n) and |gl}, < 1.

(ii) For any x1,...,x, in E,

(o) = el (e "

In what follows, K will denote the so-called Grothendieck constant, a
fundamental constant in Banach space theory (see [DJT95, Tom89, LT77]
for details).

COROLLARY 6.3. Let (£2, 1) be a measure space. Suppose that ¢ = p' and
1/p=1/2+1/r.

() If T: Ly(p) — €% then T can be factored through a multiplication
operator from Lq(u) to La(p), ie., T = S M,, where S: Lo(u) — €5
with ||S|| < Ka|[T|| and ||g[l- = 1.

(ii) If T: 65 — Ly(u) then T can be factored through a multiplication
operator from La(p) to Ly(p), i.e., T = My, S, where S: ¢ — La(p)
with ||S|| < K¢||T|| and ||k, < 1.

Proof. Suppose that T: Ly(u) — 5. We verify that condition (ii) of
Theorem 6.2 holds for u =2, v = ¢ = p/, and r > 1 such that 1/p =1/2+1/r
(which is equivalent to 1/2 =1/v+1/r). Let f1,..., f, € Ly. Then

SR = 3 SN = S = (S I
=1 =1 j=1 7j=11i=1 =1

where the last expression is the norm of the sequence ((Z?:1|(Tfi)j\2)%)?:1.
It follows from [LT79, Theorem 1.f.14] that
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I(Simse) ™, < warmi] (S,
= Kl [§(012)" ]
i=1

Now (i) follows from Theorem 6.2. To prove (ii), apply (i) to T*. =

For N e Nand 1 < p < o0, by L]]DV we denote the space L,(p) where

p is the uniform probability measure on 2 = {1,...,N}. Thus, Lév =
— — — N

(RN, [[-llLy) where, for T = (z;) € RN, [Ty = (N7F 3555, |wif?) /P for
p < oo and |Z[/Ly = maxi<i<n |z;|. Clearly, ||||L]10\r is a scalar multiple
of ||y

The following easy lemma is well-known to specialists. We state it exactly
in the form required later and we provide a short proof.

LEMMA 6.4. Consider a product of three operators
M
S: LY =5 LN LN By

where D = diag(dj)é-v:l, i.e., the diagonal operator with diagonal (d;). Then
the Hilbert-Schmidt norm of S satisfies ||S|lus < [l Ly I | (dj)ll oy -

Proof. Observe that, in the notation of function spaces on ({2, i),

St f=f e ((gn, W)z = (dnlgn, ¥ F))N_)

for f € LY and for some sequence (g,,)"_; in LY, so that || T|| = supy,[|gnll Ly -
(Here (-,-) denotes the inner product with respect to p.) Let (f;)X, be an
orthonormal basis of Lé\] ; then

N N N N N
I1S|Is = ZHSfiH?év =D dalgn 0 f)* =D dr > (g, fi)°
i=1 i=1 n=1 n=l =1

N
=Y dillbgalliy < 1917y (supllgnlgp)II(d))l[7y - =
n=1 "

THEOREM 6.5 ([Pis04]). Suppose that T': L;,V — Eév for some 1 <p <2
and q = p'. Let E be a k-dimensional subspace of Lév, and Cy, Ca, and Cj
be positive constants such that

() 1Ty gy <1 and ||y ox < 15

(ii) E is Cy-isomorphic to (5;

(iii) FF =T(E) is Co-complemented in Eév;

(iv) T is invertible and ||(T)g) | < Cs.

Then k < (C3C2C3KZ)1.
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Proof. Suppose that T, E, and F’ satisfy the hypotheses for some C, Cs,
and C3. Let r be such that 1/p = 1/2 4 1/r. There exists an isomorphism
V:¢5 — E such that |[V] < 1 and [|[V™Y| < C;. By Corollary 6.3(ii),
V factors through LY. Namely, V = M,S with S: ¢ — L5 such that
||| < C1Kq and [|g||, < 1. Let J: E — L) be the canonical inclusion map.
We have the diagram

M, T D
Ly s LY o —=— 4y
p q :
diagonal
ST JTincl. prOle lR
Y g 22, W
2 C1-isom. C1C3-isom. 2

Let @ be a projection from EZIV onto F with ||Q] < Cs. It follows from (i)
that HTHL{?VléV < 1. Then F is C1Cs-isomorphic to /5. Let W: F — (& be
an isomorphism such that |[W| < 1 and |[W~!|| < C1Cs. Corollary 6.3(i)
implies that W@ factors through ¢%', that is, WQ = RD where R: ¢} — (&
with ||R| < K¢|[WQ|| < C3K¢, and D is a multiplication (or diagonal)
operator D = diag(dj)j-v:l with |[(d;)[[;v < 1.

We are going to show that HDTMgHSéV < 1, using the classical complex
interpolation argument (see, e.g., [BL76]). For the convenience of the reader
not familiar with the subject, we provide the details. Let Z ={2 € C| 0 <
Rez < 1}, and define a function F from Z to the unit ball B(LY, %) of
L(LY, 1Y) as follows:

(9) F(z) = |D|" =22 sign DT M|y 1202 g g

Here, as usual, |D| = diag(|d;|) and sign D = diag(signd;). Observe that F'
is analytic in the interior of Z as a function from Z to C¥ x C". Furthermore,
F is continuous and bounded on Z. A direct calculation shows that if 1/r =
(1 —-6)/2 then F(8) = DT M,.

If Rez = 1, it follows from (9) that F(1 + it) = A, TB;, where A, =
|D|~*/2sign D and By = M, g|-itr/2 gign 4 Notice that Ay and By viewed as
operators from £) to ¢) and from LY to LY respectively are contractions.
It follows that

(10) ||F(Z)||L§V,£§V < ”T”Lé\r’%\r <1 whenever Rez = 1.
If Re z = 0 then we can write
F(’Lt) = At’D|T/2TM‘g|r/ZBt.
It can be easily verified that || ’g’rﬂHLé\r < 1 and H(!di\’"/z)H@r < 1. Since
[Tl v gy <1, it follows by Lemma 6.4 that

(11) |IF(z)[lms <1 whenever Rez = 0.
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Put Sév = S,(LY,¢5). Tt is known (see, e.g., [GK65, Theorem 13.1]) that
the Schatten classes interpolate like L,-spaces. Since

1 1 1 1 1
—(1-0)+=-0=-—-—

00 ( )+ 2 2 r

q

it follows that (S, S )g = Sév.

On the other hand, by definition of a complex interpolation space,

By svy, = {£0)| f: Z — B(LY,¢Y) analytic,

| fi{rez=0} s <1 and [|fi{re-=1}lls.c <1}
Since [|[|s, = ||[[as and [|[[s.c = [|l| 1y ¢y it follows from (10) and (11) that
DTMgy = F(0) € Bigy vy, and, thus, [[DTMg[|gy < 1. It follows that
IWTVlis, = | RDTM,S]ls, < | B IDTM,|s, S| < C1CaK.

Note that ||[(WTV)~1|| < C2C3. 1t follows from Lemma 6.1 that

1 1 9
k< = (C30,C2K2)1.
= (c%cg clchg) (CLCC5KG)

This concludes the proof. m

We also need the following lemma, which generalizes Lemma 3.4. Assume
that X is a Banach space with an FDD (X,,)2° ; (see [LT77] for the definition
of FDD). Let P, be the canonical projection from X onto X,,, and assume
that X satisfies the following condition, which means that X is far from a
co-sum of the X,,’s:

(12)  forany 6 > 0 there is a k = k(6) in N so that whenever x € Sx, then
card{n € N | ||P,z| > 6} < k.

Suppose that for every n € N we are given a seminorm ¢, on X,, such that

gn(z) < ||z||, where g, (z) stands for ¢,(P,z) whenever z € X.

LEMMA 6.6. Suppose that X, (X,), and (g,) are as in the preceding
paragraph and 0 < r < 1. Then there exists € > 0 such that for every
[ € N there exists L € N such that for every L-dimensional subspace G of X
such that max,en qn(x) > r||z|| for all x € G there exists an l-dimensional
subspace F' C G and an index ng such that q¢n,(x) > €||z|| for all x € F.

To prove Lemma 6.6 we need the following stabilization result (see, e.g.,
[MS86, p. 6]).

THEOREM 6.7. For every n € N, € > 0 and ¢ > 0 there is an N =
N(n,e,c) € N so that for any N-dimensional space E, and any Lipschitz
map [ : Sg — R whose Lipschitz constant does not exceed c, there is an n-
dimensional subspace F' of E so that

max{f(z):x € Sp} —min{f(z): x € Sp} < e.
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Proof of Lemma 6.6. Let k(-) be the function defined in (12). Put
m=k(r’/4), 6=r/dm, s=k(0).

It suffices to show that for I’ € N there exists L so that, if G is a subspace
of X of dimension L and max,en ¢n(z) > r||z|| for all z € G, then G has
an [’-dimensional subspace F’ and a set I C N with card I = s such that
maxpes gn(z) > 0||z| for all z € F.

Indeed, once we prove this formally weaker claim, we can take a number
I' large enough so that Theorem 6.7 can be applied s times to deduce that F’
has an [-dimensional subspace F' which has the property that, for all n € I,

~ mi < 5/2.
max gn () — min gn(x) < 4/

Now pick any y € Sp; then ¢,,(y) = maxper ¢n(y) > d for some ng € I.
Then for every = € Sr we have

dng (x) > min g, (Z) > MAaX (n, (Z) - 5/2 = Gng (y) - 6/2 > 6/25
2€SE z2ESE

so that the statement of our lemma is satisfied for € = /2.

Let I’ € N and define numbers Lo, L1,...,L,, as follows. Put Ly = [/,
and, assuming that Lo, L1,...,L,, n < m, have already been defined, use
Theorem 6.7 to choose L1 large enough so that for every L,,1-dimensional
subspace G of X and every Lipschitz-1 map f: Sg — R there is an L,-
dimensional subspace G’ C G such that

max f(z) — min f(z) < 0.

Let L = L,,. Assume that our claim is false. This would mean that there
exists a subspace G of X with dim G = L such that

(13)  maxgy(x) > r|lz|| for all z € G, and
neN

(14)  for each I C Nof card I = s and each subspace F’ C G of dim F' = [’
there exists € Sgs such that max,ecs ¢, (z) < 0.

Choose an arbitrary vector 1 € Sg and a subset [; C N with cardl; = s
so that minper, ¢n(71) > max, e 7, gn(71). It follows from (13) that there
exists an index ny such that ¢,, (1) > r; we can assume that n; € I;. On
the other hand, the definition of s implies that ¢,(x1) < § whenever n ¢ I.
It follows from the definition of L,, that there exists a subspace G,,_1 of G
of dimension L,,,_1 so that
US) e e = g mapa @)+ 0 <20
where the last inequality follows from (14).

Next, pick an z9 € Sg,, , and I C N\ [; so that cardI; = s and
Minger, ¢n(T2) > max,¢r, ur, ¢n(72). Again, it follows from (13) that there
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exists an index mg such that g,,(z2) > r; we can assume that ng € I; U Is.
By (15), gn(x2) < 26 < r for each n € Iy, so that ng € I5. Again, g,(x2) <0
whenever n ¢ I; UIy. We can choose a subspace G,,,—3 of Gy,—1 of dimension
Ly,—o so that

max max g, (z) < 20.
mESGm—Z nels

Proceeding this way, we obtain a sequence of vectors x1,...,x, and
disjoint sets Iy, ..., I, of cardinality s, and indices ny, ..., n,,, such that for
each i =1,...,m we have n; € I; and gy, (z;) > r. Also,

26 ianIlLJ'--UIZ'_l,
0 ifn¢hU---UIL,
hence gp(z;) < 20 whenever n ¢ I;. If n € I; then ¢, (z;) < ||z;|| = 1.

T
Put z = > | x;; then for every n € N we have ¢,(z) <14+ m-26 < 2.
On the other hand,

7 < g (@) < gy () + g, (2 — 23) < g, (x) + 2m6,

so that gn,(z) > r —2md = r/2 for each i = 1,...,m. It follows from
the definition of m that there can be at most m — 1 indices n such that
qn(z) > 72||z||/4, hence r2||z||/4 > r/2. It follows that ||z| > 2/r, so that
gn(z) < 2 < r||z| for every n € N, which is a contradiction. =

Now we are ready to prove that U is FSS.

THEOREM 6.8. The operator U constructed in (6) is FSS for all1 < p <
2 < q < o0, unless p=q = 2.

Proof. In view of Theorem 5.4(iii) we may assume that ¢ = p’. Recall
that U = @le » 1s composed of blocks U,: X,, — Y,,, where X,, = E%n
and Y, = Kgn. For each n, let P,: £, — X, be the canonical projection. For
x € 4, put ¢,(x) = |UpPyx||. By Theorem 5.4(i) we have g,(z) < ||z

Assume that U is not F'SS. Then there exists a constant C' such that there
are subspaces G of £}, of arbitrarily large dimension such that the restriction
of U to G is a C-isomorphism. Let x € S, and write x = Y~ | x,, where
Tp € Xy; then ||[Uz|| > 1/C. On the other hand,

%) )
U] = | Unzn]|? < max |Upan |97 [Unzn]|? < max g ()97
neN neN

n=1 n=1

Hence, max,en ¢ () > cvv=a),

It follows from Lemma 6.6 that there exists € > 0 such that for every k
and for every G C /, of sufficiently large dimension there exists a subspace
F of G and an index n such that dim F' = k and ¢, (x) > ¢ for all z € Sp.
This implies that the restriction of U,P, to F is a 1/e-isomorphism. Put
E = P,(F); then E is a k-dimensional subspace of X,,, and U, is a 1/e-
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isomorphism on E. In view of Theorem 4.10 we may assume that F is 2-
isomorphic to /5 and U,(FE) is K-complemented in Egn.

Let V,, be the canonical isometry between LIZ,V and X, = EZJ,V, where
N = 2" It follows that [|[V,z| v = Nl/’"_l/pHxHLg for every z € LY and
every r € [p, q]. It follows from the definition of U,, and Remark 5.3 that

1T Vally ey = N2V Unll gy o = NP7V Hy gy o = 1,
1T Vallpy e = N'7VPN Ul o = NYTYP 9 Hy g g = 1.

Now applying Theorem 6.5 to U,V,, and Vn_l(E) we obtain a contradiction
with the fact that £ = dim £ was chosen arbitrarily. =

REMARK 6.9. If p = ¢ = 2 then U is an isometry, hence not FSS. Con-
sider the case when p = 1 and ¢ = co. The preceding proof does not work,
since now we cannot use Theorem 4.10. Actually, U is not FSS in this case.
Indeed, we now have U,, = H,. It is easy to see that among the columns of
H,, one finds all the Rademacher vectors (of length N = 2™). Since the span
of these vectors in ¢Y is isometrically isomorphic to 7, it follows that the
restriction of H,, to the appropriate subspace of EJIV preserves a copy of £7.

QUESTION. Are there any other closed ideals in L(,, £,)? In view of the
diagram at the beginning of our paper this question can be subdivided into
the following subquestions:

(i) Is Jra equal to J¥5S N 727 If not, is J¥55 N J% an immediate
successor of Jlra?
(i) Is JF5S an immediate successor of J¥55 N 7%2? More generally, are
there any immediate successors of JESS N 7% other than J%2?
(iii) Is JFSS v 742 an immediate successor of J%27?
(iv) Is J¥5S v 7% equal to L(€y,0,)?

QUESTION. Suppose again that U is the operator defined in (6). Since
U is FSS, we have JY C JFSS Does JV equal JESS?
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