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On norm 
losed ideals in L(ℓp, ℓq)byB. Sari (Denton, TX), Th. S
hlumpre
ht (College Station, TX),N. Tom
zak-Jaegermann (Edmonton),and V. G. Troitsky (Edmonton)Abstra
t. It is well known that the only proper non-trivial norm 
losed ideal in thealgebra L(X) for X = ℓp (1 ≤ p < ∞) or X = c0 is the ideal of 
ompa
t operators.The next natural question is to des
ribe all 
losed ideals of L(ℓp ⊕ ℓq) for 1 ≤ p, q < ∞,
p 6= q, or equivalently, the 
losed ideals in L(ℓp, ℓq) for p < q. This paper shows thatfor 1 < p < 2 < q < ∞ there are at least four distin
t proper 
losed ideals in L(ℓp, ℓq),in
luding one that has not been studied before. The proofs use various methods fromBana
h spa
e theory.1. Introdu
tion. This paper is 
on
erned with the stru
ture of norm
losed ideals of the algebra L(X) of all bounded linear operators on anin�nite-dimensional Bana
h spa
e X. The 
lassi
al result of [Calk41℄ assertsthat the only proper non-trivial 
losed ideal of L(ℓ2) is the ideal of 
om-pa
t operators. The same was shown to be true for ℓp (1 ≤ p < ∞) and
c0 in [GMF60℄. It remains open if there are other Bana
h spa
es with onlyone proper non-trivial 
losed ideal. The 
omplete stru
ture of 
losed idealsin L(X) was re
ently des
ribed in [LLR04℄ for X = (

⊕∞
n=1 ℓ

n
2 )c0 and in[LSZ06℄ for X = (

⊕∞
n=1 ℓ

n
2 )ℓ1 . In both 
ases, there are exa
tly two nestedproper non-zero 
losed ideals. Apart from those mentioned above, there areno other separable Bana
h spa
es X for whi
h the stru
ture of the 
losedideals in L(X) is 
ompletely known. The stru
ture of the 
losed ideals ofoperators on non-separable Hilbert spa
es was independently obtained byGrams
h [Gram67℄ and Luft [Luft68℄. Re
ently Daws [Daws06℄ extended2000 Mathemati
s Subje
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240 B. Sari et al.their results to non-separable ℓp-spa
es, 1 ≤ p < ∞, and non-separable
c0-spa
es.This motivates the study of the next natural spe
ial 
ase X = ℓp ⊕ ℓq(1 ≤ p, q < ∞, p 6= q), whi
h is our main interest here. There were sev-eral results in this dire
tion proved in the 1970's 
on
erning various spe
ialideals or spe
ial 
ases of p and q. We refer the reader to the book by Piets
h[Piet78, Chapter 5℄ for details. In parti
ular, [Piet78, Theorem 5.3.2℄ assertsthat L(ℓp ⊕ ℓq) (with, say, p < q) has exa
tly two proper maximal ideals(namely, the ideal of operators whi
h fa
tor through ℓp and the ideals ofoperators whi
h fa
tor through ℓq), and establishes a one-to-one 
orrespon-den
e between the non-maximal ideals in the algebra L(ℓp⊕ℓq) and the 
losed�ideals� in L(ℓp, ℓq). Here an ideal in L(ℓp, ℓq) means a linear subspa
e J of
L(ℓp, ℓq) su
h that ATB ∈ J whenever A ∈ L(ℓq), T ∈ J , and B ∈ L(ℓp),and �
losed� is always understood with respe
t to the operator norm topol-ogy. Consequently, the subje
t of the present paper is the stru
ture of 
losedideals in L(ℓp, ℓq) with 1 ≤ p ≤ q <∞.In this paper we study a number of natural 
losed ideals in L(ℓp, ℓq) andrelations among them. In parti
ular we show that if 1 < p < 2 < q < ∞then the following four 
losed ideals are proper and distin
t: the ideal of all
ompa
t operators K, the 
losed ideal J Ip,q generated by the formal identityoperator Ip,q : ℓp → ℓq, the ideal J FSS of all �nitely stri
tly singular (FSS)operators, and the 
losure of the ideal J ℓ2 of all ℓ2-fa
torable operators (seeSe
tion 2 for appropriate de�nitions). Although these ideals were identi�edearlier, they were not known to be distin
t and proper ex
ept for spe
ial
ases. The following diagram illustrates the relationship between these ideals:

J FSS

%-
SS

S
SS

S

{0} +3 K +3 J Ip,q // J FSS ∩ J ℓ2

55k
k

))SS
SS

J FSS ∨ J ℓ2 // L(ℓp, ℓq)

J ℓ2

55k
k

Here arrows stand for in
lusions. A solid arrow (⇒ or →) between two idealsmeans that there are no other ideals sitting properly between the two, while adouble arrow 
oming out of an ideal indi
ates the only immediate su

essor.A hyphenated arrow ( //__ ) indi
ates a proper in
lusion, while a dotted oneindi
ates that we do not know whether or not the in
lusion is proper. Inparti
ular, the 
losed ideals in L(ℓp, ℓq) are not totally ordered.The paper is organized as follows. In Se
tion 3 we study the ideal J Ip,qfor 1 ≤ p < q < ∞. In [Milm70℄, Milman proved that J Ip,q is FSS, andtherefore, J Ip,q ⊆ J FSS. Sin
e J Ip,q is not 
ompa
t, K is properly 
ontainedin J Ip,q . We will show that every 
losed ideal that 
ontains a non-
ompa
toperator ne
essarily 
ontains J Ip,q , so that J Ip,q is the least non-
ompa
t
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tion 4 we 
onsider the ideal J ℓ2 when 1 < p ≤ 2 ≤ q < ∞.We �nd a spe
i�
 non-FSS operator T in J ℓ2 su
h that the 
losed ideal J Tgenerated by T 
oin
ides with J ℓ2 . This implies, in parti
ular, that J FSS isa proper ideal (a result proved in [Milm70℄ for p = 2 ≤ q). Among resultson other related ideals we also show that J ℓ2 ⊆ J ℓr for all r between pand q, and we prove that every 
losed ideal of L(ℓp, ℓq) whi
h 
ontains anon-FSS operator must also 
ontain J ℓ2 . In Se
tion 5 we 
onsider the �blo
kHadamard� operator U from ℓp to ℓq for 1 < p < 2 < q <∞. We show that
U /∈ J ℓ2 , hen
e J ℓ2 is a proper ideal. Sin
e, obviously, Ip,q ∈ J ℓ2 , it followsthat J Ip,q ( J U . We show in Se
tion 6 that U is FSS, hen
e J Ip,q ( J FSS.We thank Gilles Pisier for suggesting to us the proof of Theorem 6.5.2. Notation and preliminaries. We use the standard notation fromthe Bana
h spa
e theory as in [LT77, LT79, Tom89, DJT95℄ and we referthe reader to these books for unexplained notions. Given two Bana
h spa
es
X and Y , we write L(X,Y ) for the spa
e of all 
ontinuous linear operatorsfrom X to Y , and L(X) for L(X,X). A linear subspa
e J of L(X,Y ) is saidto be an ideal if ATB ∈ J whenever A ∈ L(Y ), T ∈ J , and B ∈ L(X). Bya 
losed ideal we mean an ideal 
losed in the operator norm topology. Wedenote by K the 
losed ideal of all 
ompa
t operators.Throughout this paper, p and q always satisfy 1 ≤ p < q < ∞. Wedenote by p′ the 
onjugate of p, that is, 1/p + 1/p′ = 1. It is well known(see, e.g., [CPY74℄) that K is 
ontained in every 
losed ideal of L(ℓp, ℓq). If
Z is a Bana
h spa
e, we say that an operator T ∈ L(X,Y ) fa
tors through
Z if T = AB where A ∈ L(Z, Y ) and B ∈ L(X,Z); we denote by J Z the
losure of the set of all operators in L(ℓp, ℓq) that fa
tor through Z. It 
an beeasily veri�ed that if Z is isomorphi
 to Z⊕Z then J Z is a subspa
e, hen
ean ideal. For S ∈ L(ℓp, ℓq) we denote by J S the 
losed ideal in L(ℓp, ℓq)generated by S, that is, the smallest 
losed ideal 
ontaining S. It is easyto see that J S 
onsists of operators that 
an be approximated in norm byoperators of the form ∑n

i=1AiSBi, where Ai ∈ L(ℓq) and Bi ∈ L(ℓp) for
i = 1, . . . , n. If A is an n × n s
alar matrix, we write ‖A‖p,q for the normof A as an operator from ℓnp to ℓnq .It is known that every operator in L(ℓp, ℓq) is stri
tly singular (see,e.g., [LT77℄). We 
all an operator S : X → Y �nitely stri
tly singular , orFSS , if for every ε > 0 there exists n ∈ N su
h that infx∈E, ‖x‖=1‖Sx‖ < εfor every n-dimensional subspa
e E of X. This 
lass of operators alreadyappeared in [Milm70℄ where its introdu
tion has been 
redited to Mityaginand Peª
zy«ski. It 
an be easily veri�ed (see [Mas
94℄) that S is FSS if andonly if every ultrapower of S is stri
tly singular. It follows immediately thatthe set of all FSS operators from X to Y is a 
losed ideal. Denote by J FSSthe ideal of all FSS operators in L(ℓp, ℓq).



242 B. Sari et al.We denote by (ei) and (fi) the standard bases of ℓp and ℓq respe
-tively, and we denote their 
oordinate fun
tionals by (e∗i ) and (f∗i ). If (xn)is a sequen
e in a Bana
h spa
e, we write [xn] for its 
losed linear span.A sequen
e (xn) in a Bana
h spa
e is seminormalized if infn‖xn‖ > 0 and
supn‖xn‖ <∞.The following standard lemma is immediately dedu
ed from Proposi-tions 1.a.12 and 2.a.1 of [LT77℄.Lemma 2.1. If X = ℓp (1 ≤ p <∞) or c0 and (xn) is a seminormalizedsequen
e in X whi
h 
onverges to zero 
oordinate-wise (that is, for every i,
e∗i (xn) → 0 as n → ∞), then there is a subsequen
e (xni) equivalent to (ei)su
h that [xni ] is 
omplemented in X.Remark 2.2. Suppose that 1 ≤ p ≤ q < ∞ and T ∈ L(ℓp, ℓq). We saythat T is blo
k-diagonal if T =

⊕∞
n=1 Tn, where Tn : ℓmn

p → ℓmn
q . Equiva-lently, there exists a stri
tly in
reasing sequen
e of integers (kn) su
h that

T =
∑∞

n=1 PnTQn, where Qn and Pn are the 
anoni
al proje
tions from ℓpand ℓq onto the �nite-dimensional subspa
es spanned by ekn+1, . . . , ekn+1 and
fkn+1, . . . , fkn+1 respe
tively. Note thatmn = kn+1−kn and Tn 
an be identi-�ed with PnTQn. It 
an be easily veri�ed that if p ≤ q then ‖T‖ = supn‖Tn‖.Indeed, ‖Tn‖ = ‖PnTQn‖ ≤ ‖T‖ as Pn and Qn are 
ontra
tions. On theother hand,

‖Tx‖ =
( ∞∑

n=1

‖PnTQnx‖
q
)1/q

≤ (sup
n
‖PnTQn‖)

( ∞∑

n=1

‖Qnx‖
q
)1/q

≤ ( sup
n
‖Tn‖)

( ∞∑

n=1

‖Qnx‖
p
)1/p

= (sup
n
‖Tn‖)‖x‖.Remark 2.3. Suppose that R ∈ L(ℓp, ℓq) for 1 ≤ p ≤ q < ∞, and Tis a blo
k-diagonal submatrix of R, that is, T =
∑∞

n=1 PnRQn, where (Pn)and (Qn) are as in Remark 2.2. Then T 
an be written as a 
onvex 
ombi-nation of operators of the form URV , where U and V are isometries. SeeProposition 1.
.8 of [LT77℄ and Remark 1 following it for the 
onstru
tion.3. The formal identity operator Ip,q. In this se
tion we 
onsider theformal identity operator Ip,q : ℓp → ℓq for 1 ≤ p < q < ∞. Clearly, Ip,q isnot 
ompa
t, so that K ( J Ip,q . First, we show that J Ip,q is 
ontained inevery 
losed ideal of L(ℓp, ℓq) ex
ept K. This result is probably known tospe
ialists, but we provide a short proof for 
ompleteness.Proposition 3.1. Let 1 ≤ p < q < ∞. If J is any ideal in L(ℓp, ℓq)
ontaining a non-
ompa
t operator , then Ip,q ∈ J .Proof. Assume that J 
ontains a non-
ompa
t operator T . There existsa normalized sequen
e (xn) in ℓp su
h that (Txn) has no 
onvergent subse-
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es. By passing to subsequen
es and using a standard diagonalizationargument, we 
an assume that (xn) and (Txn) 
onverge 
oordinate-wise.Let yn = xn − xn−1; then (yn) and (Tyn) 
onverge 
oordinate-wise to zero.Sin
e (Txn) has no 
onvergent subsequen
es, we 
an assume (by passing toa further subsequen
e if ne
essary) that (Tyn) is seminormalized. It followsthat (yn) is also seminormalized. Using Lemma 2.1 twi
e, we 
an assume (bypassing to a subsequen
e) that (yn) is equivalent to (ei), (Tyn) is equivalentto (fi), and [Tyn] is 
omplemented in ℓq.Let B : ℓp → [yn] be an isomorphism given by Ben = yn, and A : [Tyn] →
ℓq be an isomorphism given by A(Tyn) = fn. Sin
e [Tyn] is 
omplemented,
A 
an be extended to an operator on all of ℓq. Thus we 
an view B and Aas elements of L(ℓp) and L(ℓq) respe
tively. Observe that ATBen = fn forea
h n, hen
e ATB = Ip,q. It follows that Ip,q ∈ J .Corollary 3.2. If a 
losed ideal of L(ℓp, ℓq) 
ontains a non-
ompa
toperator , then it 
ontains J Ip,q .The following result was proved in [Milm70℄. For the reader's 
onvenien
ewe provide a short proof.Proposition 3.3. Suppose that 1 ≤ p < q < ∞. The formal identityoperator Ip,q is FSS.We will dedu
e this proposition from the following lemma, whi
h alsoappeared in [Milm70℄.Lemma 3.4. If E is an n-dimensional subspa
e of c0 then there exists
x ∈ E su
h that x attains its sup-norm at at least n 
oordinates.Proof. The proof is by indu
tion. The statement is trivial for n = 1.Suppose that it is true for n, take any subspa
e E of c0 of dimension n+ 1.By indu
tion hypothesis, there exists x ∈ E su
h that(1) δ := ‖x‖∞ = |xi1 | = · · · = |xin |for a set of distin
t indi
es I = {i1, . . . , in}. Suppose that |xi| < δ for all
i /∈ I (otherwise we are done). Let Y be the subspa
e of c0 
onsisting ofall the sequen
es that vanish at i1, . . . , in. Sin
e Y has 
o-dimension n, itfollows that Y ∩E 6= {0}. Pi
k a non-zero y ∈ Y ∩E. We 
laim that for some
s > 0 the sequen
e x+ sy attains its sup-norm at at least n+1 
oordinates.Indeed, |xi + tyi| = δ for all i ∈ I and t ≥ 0. Consider the fun
tion

f(t) = max
j /∈I

|xj + tyj|.Clearly, f is 
ontinuous, f(0) < δ, and limt→∞ f(t) = ∞. It follows that
f(s) = δ for some s > 0. Then |xi + syi| = ‖x+ sy‖∞ = δ for some i /∈ I.Proof of Proposition 3.3. Given ε > 0, pi
k n ∈ N su
h that n1/q−1/p < ε.Suppose that E is a subspa
e of ℓp with dimE = n. By Lemma 3.4 there



244 B. Sari et al.exists x ∈ E and indi
es i1, . . . , in satisfying (1). Without loss of generality,
‖x‖p = 1. It follows that 1 = ‖x‖p

p ≥ nδp, so that δ ≤ n−1/p. Then
‖x‖q

q ≤ ‖x‖q−p
∞ ‖x‖p

p = δq−p ≤ n−(q−p)/p,so that ‖x‖q ≤ n1/q−1/p < ε. It follows that Ip,q is FSS.Corollary 3.5. Let 1 ≤ p < q < ∞. The ideal K is a proper subsetof J FSS.4. Operators fa
torable through ℓ2. In this se
tion we 
onsider theideal J ℓ2 for 1 < p < 2 < q. Using Peª
zy«ski's de
omposition, we will
onstru
t an operator T : ℓp → ℓq su
h that J ℓ2 = J T . That is, the 
losureof the ideal of all ℓ2-fa
torable operators is exa
tly the 
losed ideal generatedby T . Furthermore, we show that T fails to be FSS, hen
e the ideal J FSSis proper. It will be obvious from the de�nition of T that T fa
tors through
ℓr whenever p ≤ r ≤ q, so it follows that J ℓ2 ⊆ J ℓr . We also show that
T fa
tors through every non-FSS operator. It follows that any 
losed ideal
ontaining a non-FSS operator ne
essarily 
ontains J ℓ2 .To 
onstru
t T , re
all that it follows from Peª
zy«ski's de
omposition the-orem that for every 1 < r <∞, ℓr is isomorphi
 to (

⊕∞
n=1 ℓ

n
2 )r, the ℓr-dire
tsum of ℓn2 's (see [LT77, p. 73℄). Let 1 < p ≤ q <∞, put U : ℓp → (

⊕∞
n=1 ℓ

n
2 )pand V : (

⊕∞
n=1 ℓ

n
2 )q → ℓq be two su
h isomorphisms. By I2,p,q : (

⊕∞
n=1 ℓ

n
2 )p→

(
⊕∞

n=1 ℓ
n
2 )q we denote the formal identity operator, that is, just the 
hangeof the norm on the dire
t sum. Then let T = V I2,p,qU , that is,(2) T : ℓp

U
−→
( ∞⊕

n=1

ℓn2

)

p

I2,p,q
−−−→

( ∞⊕

n=1

ℓn2

)

q

V
−→ ℓq.We will 
all T a Peª
zy«ski de
omposition operator.Remark 4.1. Note that T is not unique, it is de�ned up to the isomor-phisms U and V , so that we have a
tually 
onstru
ted a 
lass of operators.It is 
lear, however, that any two Peª
zy«ski de
omposition operators fa
torthrough ea
h other. Moreover, one 
an easily verify that if in the pre
eding
onstru
tion we �skip� some of the blo
ks, that is, if we 
onsider (

⊕∞
n=1 ℓ

kn
2 )for some stri
tly in
reasing sequen
e of indi
es kn, then the resulting opera-tor T ′ obviously fa
tors through T . Conversely, T fa
tors through T ′ be
ause

ℓn2 is a 
omplemented subspa
e of ℓkn2 .Furthermore, let En = U−1(ℓn2 ) ⊂ ℓp be the pre-image of the nth blo
kof (
⊕
ℓn2 )p. Similarly, put Fn = V (ℓn2 ) ⊂ ℓq. Then d(En, ℓ

n
2 ) ≤ ‖U‖ · ‖U−1‖and d(Fn, ℓ

n
2 ) ≤ ‖V ‖ · ‖V −1‖, where d(X,Y ) stands for the Bana
h�Mazurdistan
e between X and Y . Hen
e, (En) and (Fn) are sequen
es of uniformlyEu
lidean subspa
es of ℓp and ℓq respe
tively. Note that T (En) = Fn, so that
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T �xes 
opies of ℓn2 for all n ∈ N. This immediately implies the followingresult.Proposition 4.2. For 1 < p ≤ q < ∞, every Peª
zy«ski de
ompositionoperator fails to be FSS.Corollary 4.3. For 1 < p ≤ q <∞, the ideal J FSS is proper.Our next goal is to show that if 1 < p ≤ 2 ≤ q < ∞ then J T = J ℓ2 .We will make use of the 
on
ept of ℓ2-fa
torable norm γ2. Re
all that if
S ∈ L(X,Y ) (X and Y Bana
h spa
es) then γ2(S) = inf ‖S1‖ ‖S2‖, wherethe in�mum is taken over all fa
torizations S = S1 S2 where S2 : X → ℓ2 and
S1 : ℓ2 → Y . It is known that γ2 is a norm on the ideal of all ℓ2-fa
torableoperators, and γ2(ASB) ≤ ‖A‖γ2(S)‖B‖ whenever X B

−→ X
S
−→ Y

A
−→ Y .See [Tom89, DJT95℄ for more information on γ2.Lemma 4.4. Suppose that R ∈ L(ℓp, ℓq), 1 < p ≤ q <∞, and ε > 0.(i) There exist two blo
k-diagonal operators V,W ∈ L(ℓp, ℓq) su
h that

‖W‖ ≤ ‖R‖ + ε, ‖V ‖ ≤ 2‖R‖ + 2ε, and ‖R− (W + V )‖ < ε.(ii) Suppose that , in addition, R is ℓ2-fa
torable. Then V and W 
anbe 
hosen to be ℓ2-fa
torable, and γ2(W ) ≤ γ2(R) + ε, γ2(V ) ≤
2γ2(R) + 2ε, and γ2(R− (W + V )) < ε.Proof. Let ri,j stand for the (i, j)th entry of the matrix of R, that is,

ri,j = f∗i (Rej). For the purpose of this proof we introdu
e the followingnotation: for Ω ⊂ N × N, we de�ne the matrix RΩ = (̺i,j) by
̺i,j =

{
ri,j if (i, j) ∈ Ω,

0 otherwise.We start by approximating R by a matrix S with �nitely many entriesin every row and every 
olumn. Namely, by trun
ating ea
h row and ea
h
olumn of R su�
iently far we 
an �nd two stri
tly in
reasing sequen
es
(Mj) and (Ni) of positive integers su
h that ‖R−RΓ ‖ < ε where Γ ⊆ N×Nis de�ned by

(i, j) ∈ Γ i� i ≤Mj and j ≤ Ni.Put S = RΓ .We will de�ne two stri
tly in
reasing sequen
es (kn) and (ln) of positiveintegers su
h that Γ is 
ontained in the union of two blo
k-diagonal sets
∆ =

⋃∞
n=1∆n and Λ =

⋃∞
n=1Λn where

∆n = {(i, j) ∈ Γ | kn−1 < i, j ≤ kn},

Λn = {(i, j) ∈ Γ | ln−1 < i, j ≤ ln}.We de�ne the sequen
es (kn) and (ln) by an interla
ed indu
tion. Put k0 = 0,
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l0 = 1. For n ≥ 0 we let

kn+1 = max{Mln , Nln}, ln+1 = max{Mkn+1 , Nkn+1}.Clearly, (kn) and (ln) are stri
tly in
reasing. Next, we show that Γ ⊆ ∆∪Λ.Let (i, j) ∈ Γ . There exists n su
h that ln < max{i, j} ≤ ln+1. If ln <
min{i, j}, then ln < i, j ≤ ln+1, so that (i, j) ∈ Λ. Suppose now that
min{i, j} ≤ ln. Then either i or j is less than or equal to ln, while theother is greater than ln. Say, i ≤ ln and j > ln. It follows that

i ≤ ln ≤ Nln ≤ kn+1 and j > ln ≥ Nkn ≥ kn.Therefore j ≤ Ni ≤ Nln ≤ kn+1. Also, Ni ≥ j > ln ≥ Nkn yields i > kn.Hen
e, kn < i, j ≤ kn+1, so that (i, j) ∈ ∆.Set W = S∆ and V = S−W . Then the non-zero entries of W and V arelo
ated in ∆ and Λ respe
tively, so that W and V are blo
k-diagonal. Bythe de�nition of S we have ‖R− (W +V )‖ < ε. Sin
e W is a blo
k-diagonalpart of S, Remark 2.3 yields ‖W‖ ≤ ‖S‖ ≤ ‖R‖+ ε. Finally, it follows from
V = S −W that ‖V ‖ ≤ 2‖R‖ + 2ε.If R is ℓ2-fa
torable, then we 
an 
hoose S with �nitely many entries inea
h row and 
olumn su
h that S is also ℓ2-fa
torable and γ2(R − S) < ε.Indeed, let R = R1R2 be a fa
torization of R through ℓ2. Approximate R1and R2 in norm by S1 and S2, respe
tively, su
h that S1 and S2 have �nitelymany entries in every row and 
olumn. Put S = S1S2; then S is as 
laimed.We use the triangle inequality to show that γ2(R− S) < ε when ‖R1 − S1‖and ‖R2 − S2‖ are su�
iently small.Set W = S∆ and V = S −W . It follows from Remark 2.3 that γ2(W ) ≤
γ2(S) ≤ γ2(R) + ε. Then γ2(V ) = γ2(S −W ) ≤ 2γ2(R) + 2ε. In parti
ular,
W and V are ℓ2-fa
torable.Remark 4.5. In a similar fashion one 
an show that every operatorbetween two Bana
h spa
es with shrinking un
onditional bases 
an be ap-proximated by a sum of two blo
k-diagonal operators.Remark 4.6. A slight modi�
ation of the proof Lemma 4.4(i) yields
‖W‖ ≤ ‖R‖. Indeed, 
hoose Mj and Ni su�
iently large so that not only
‖R−RΓ ‖ < ε but also ‖R−RΩ‖ < ε for every Ω ⊆ N×N su
h that Γ ⊆ Ω.Then, after 
onstru
ting ∆ and Λ, put W = R∆ and V = R∆∪Λ −W . Thenthe non-zero entries ofW and V are lo
ated in ∆ and Λ, respe
tively, so that
W and V are blo
k-diagonal. Sin
e ∆∪Λ ⊇ Γ we have ‖R− (W +V )‖ < ε.Sin
e W is a blo
k-diagonal part of R, Remark 2.3 yields ‖W‖ ≤ ‖R‖.Finally, ‖V ‖ ≤ ‖R∆∪Λ‖ + ‖W‖ ≤ 2‖R‖ + ε.Theorem 4.7. If 1 < p ≤ 2 ≤ q and T is a Peª
zy«ski de
ompositionoperator , then J T = J ℓ2.
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losed ideals in L(ℓp, ℓq) 247Proof. Observe that I2,p,q, being the formal identity from (
⊕∞

n=1 ℓ
n
2 )pto (

⊕∞
n=1 ℓ

n
2 )q, fa
tors through (

⊕∞
n=1 ℓ

n
2 )2 = ℓ2. It follows that T fa
torsthrough ℓ2 and, therefore, J T ⊆ J ℓ2 .We show that J ℓ2 ⊆ J T . Clearly, it su�
es to show that every ℓ2-fa
torable operator belongs to J T . In view of Lemma 4.4(ii), it su�
es toshow this for blo
k-diagonal operators. Let W be an ℓ2-fa
torable blo
k-diagonal operator. Then we 
an write W =

⊕∞
n=1AnBn, where Bn :

ℓknp → ℓkn2 and An : ℓkn2 → ℓknq su
h that supn‖An‖ and supn‖Bn‖ are �-nite. By merging 
onse
utive blo
ks if ne
essary, we 
an assume without lossof generality that (kn) is stri
tly in
reasing. Observe that the operators
B =

∞⊕

n=1

Bn :
( ∞⊕

n=1

ℓknp

)
p
→
( ∞⊕

n=1

ℓkn2

)
pand

A =
∞⊕

n=1

An :
( ∞⊕

n=1

ℓkn2

)
q
→
( ∞⊕

n=1

ℓknq

)
qare bounded, and W = AI0B, with I0 the formal identity from (

⊕∞
n=1 ℓ

kn
2 )pto (

⊕∞
n=1 ℓ

kn
q )q. Thus,W fa
tors through I0. It follows from Remark 4.1 that

I0 fa
tors through T . Hen
e, W fa
tors through T .Remark 4.8. A
tually, we proved that every operator in J ℓ2 
an beapproximated by sums of two T -fa
torable operators.Remark 4.9. Suppose that 1 < p < r < q. Then I2,p,q in (2) fa
torsthrough (
⊕∞

n=1 ℓ
n
2 )r, whi
h is isomorphi
 to ℓr. It follows that T fa
torsthrough ℓr. Then Theorem 4.7 implies that J ℓ2 ⊆ J ℓr when p ≤ 2 ≤ q.Next, we show that if p < 2 < q then J ℓ2 is the least 
losed idealbeyond J FSS, that is, every 
losed ideal that 
ontains a non-FSS operatoralso 
ontains J ℓ2 . For the proof we need the following well-known fa
t.Theorem 4.10. For every 1 < r < ∞ there exists K > 0 su
h that forall n ∈ N there exists N ∈ N su
h that every N -dimensional subspa
e F ⊂ ℓr
ontains an n-dimensional subspa
e E whi
h is K-
omplemented in ℓr and

2-isomorphi
 to ℓn2 .Remark 4.11. The theorem follows by simultaneous use of Dvoretzky'stheorem both in a subspa
e F ⊂ ℓr and in its dual F ∗ (see, e.g., [MS86℄). Thisgives the result with N = Cnr/2 and K = C ′
√

max{r, r′}, where C,C ′ > 0are absolute 
onstants. This theorem 
an also be viewed, for example, as aspe
ial 
ase of results in [FT79℄.We will also routinely use the following observation.



248 B. Sari et al.Remark 4.12. Suppose that (En) is a sequen
e of subspa
es of a Bana
hspa
e X whi
h are uniformly Eu
lidean and uniformly 
omplemented in X.That is, there exist a 
onstant C > 0 and sequen
es (Pn) and (Vn) su
h that
Pn is a proje
tion from X onto En with ‖Pn‖ < C, and Vn : En → ℓn2 is anisomorphism with ‖Vn‖ · ‖V −1

n ‖ ≤ C for every n. Let Gn be a subspa
e of
En (n ∈ N). Then it is easy to see that the Gn's are uniformly Eu
lideanand uniformly 
omplemented in X as well.For x ∈ ℓr we write suppx = {i ∈ N | xi 6= 0}. For A ⊆ ℓr put
suppA =

⋃
x∈A suppx.Theorem 4.13. Let 1 < p ≤ 2 ≤ q < ∞. If R ∈ L(ℓp, ℓq) is not FSS ,then every Peª
zy«ski de
omposition operator fa
tors through R.Proof. Sin
e R is not FSS, there exist a 
onstant C > 0 and a sequen
e

(En) of subspa
es of ℓp su
h that dimEn → ∞ as n → ∞, and R|En isinvertible with ‖(R|En)
−1‖ ≤ C. We 
an assume, in addition, that suppEnis �nite by trun
ating all the ve
tors in a basis of En su�
iently far (andadjusting C if ne
essary). Let Fn = R(En). Using Theorem 4.10 and Re-mark 4.12 we 
an easily obtain subspa
es E′

n ⊂ En and F ′
n ⊂ Fn whi
hare C-Eu
lidean, C-
omplemented in ℓp and ℓq respe
tively, and su
h that

F ′
n = R(E′

n). By passing to a subsequen
e we may assume that dimE′
n = n,and we relabel the sequen
es so obtained as (En) and (Fn). Let Qn : ℓq → Fnbe a proje
tion with ‖Qn‖ ≤ C.We are going to de�ne sequen
es (Ên), (F̂n) and (Q̂n) whi
h satisfy allthe properties des
ribed in the previous paragraph and, in addition, thereexists a stri
tly in
reasing sequen
e (mn) in N su
h that the following four
onditions are satis�ed:(i) mn−1 < min supp Ên and mn−1 < min supp F̂n;(ii) Q̂ny = 0 whenever max supp y ≤ mn−1;(iii) mn ≥ max supp Ên;(iv) ‖Q̂ny‖ ≤ 2−n‖y‖ whenever min supp y > mn.We 
onstru
t the sequen
es indu
tively. Let m0 = 0, and suppose that wealready 
onstru
ted Êi, F̂i, Q̂i, and mi for all i < n. Let G and G′ be thesubspa
es of ℓp and ℓq, respe
tively, 
onsisting of all ve
tors whose �rst mn−1
oordinates are zero. Put k = 2mn−1 + n. It follows from dimFk = k and

codimG′ = mn−1 that mn−1 +n ≤ dimFk∩G
′ = dimR−1(Fk∩G

′), be
ause
R|Ek is an isomorphism. Sin
e codimG = mn−1 we have G ∩ R−1(Fk ∩G′)

≥ n. Let Ên be an n-dimensional subspa
e of G ∩ R−1(Fk ∩G′), and F̂n =

R(Ên). Then Ên ⊆ G and F̂n ⊆ G′, hen
e (i) is satis�ed. Clearly, F̂n is Ĉ-
omplemented in ℓq, where Ĉ = C2. Then there exists a proje
tion Q′ : ℓq →

F̂n su
h that ‖Q′‖ ≤ Ĉ. Let Q̂n = Q′P , where P is the basis proje
tion of ℓq
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losed ideals in L(ℓp, ℓq) 249onto [fi]i≥mn−1 . Then Q̂n is again a proje
tion from ℓq onto F̂n, ‖Q̂n‖ ≤ Ĉ,and so (ii) is satis�ed. Sin
e rank Q̂n = n, we 
an write Q̂n =
∑n

j=1 zj ⊗ z∗j ,where z1, . . . , zj ∈ ℓp and z∗1 , . . . , z∗j ∈ ℓ∗q . Then we 
an �nd r ∈ N su�
ientlylarge su
h that if ‖y‖ ≤ 1 and min supp y > r then |z∗j (y)| is su�
ientlysmall for all j = 1, . . . , n, so that ‖Q̂y‖ ≤ 2−n. Let mn = max{r, s}, where
s = max supp Ên; then (iii) and (iv) are satis�ed.For 
onvenien
e, we relabel Ên, F̂n, Q̂n, and Ĉ as En, Fn, Qn, and Cagain. For every n suppose that Vn is a C-isomorphism of ℓn2 onto En with
‖Vn‖ = 1 and ‖V −1

n ‖ ≤ C. Put
V =

∞⊕

n=1

Vn :
( ∞⊕

n=1

ℓn2

)
p
→
( ∞⊕

n=1

En

)
p
.Sin
e the En's are disjointly supported, we 
an 
onsider (
⊕∞

n=1En)p as asubspa
e of ℓp. It follows that V is a C-isomorphism between (
⊕∞

n=1 ℓ
n
2 )pand a subspa
e of ℓp. De�ne

W : ℓq →
( ∞⊕

n=1

ℓn2

)
q

via x 7→ (V −1
n (R|En)

−1Qnx)
∞
n=1.We 
laim that W is bounded. Indeed, pi
k x ∈ ℓq. Then(3) ‖Wx‖ =

( ∞∑

n=1

‖V −1
n (R|En)

−1Qnx‖
q
2

)1/q
≤ C2

( ∞∑

n=1

‖Qnx‖
q
)1/q

.Let Pk be the basis proje
tion from ℓq onto [fi]
mk
i=mk−1+1. Then x =

∑∞
k=1 Pkx.It follows from (ii) that QnPkx = 0 whenever k < n. Furthermore, (iv)yields ‖Qn(

∑
k>n Pkx)‖ ≤ 2−n‖x‖. Also, ‖QnPnx‖ ≤ C‖Pnx‖. Therefore,

‖Qnx‖ ≤ C‖Pnx‖ + 2−n‖x‖. Using the Cau
hy�S
hwarz inequality, we get
( ∞∑

n=1

‖Qnx‖
q
)1/q

≤
( ∞∑

n=1

(C‖Pnx‖)
q
)1/q

+
( ∞∑

n=1

(2−n‖x‖)q
)1/q

≤ (C + 1)‖x‖.Together with (3) this shows that W is bounded.Finally, it is easy to see that WRV = I2,p,q; it follows easily that everyPeª
zy«ski de
omposition operator fa
tors through R.Corollary 4.14. Let 1 < p ≤ 2 ≤ q < ∞. If R ∈ L(ℓp, ℓq) is not FSS ,then J ℓ2 ⊆ J R.5. Operators not fa
torable through ℓ2. We employ the followingknown theorem (see [DJT95, Theorem 9.13℄ or [Tom89, Theorem 27.1℄) todedu
e 
onditions for an operator in L(ℓp, ℓq) to fa
tor through ℓr.Theorem 5.1. Let 1 ≤ r < ∞, let U : X → Y be a bounded linearoperator between Bana
h spa
es X and Y , and let C ≥ 0. The following areequivalent:



250 B. Sari et al.(i) There exists a subspa
e L of Lr(µ), µ a measure, and a fa
torization
U = V W , where V : L → Y and W : X → L are bounded linearoperators with ‖V ‖ · ‖W‖ ≤ C.(ii) Whenever �nite sequen
es (xi)

n
i=1 and (zi)

m
i=1 in X satisfy

m∑

i=1

|〈x∗, zi〉|
r ≤

n∑

i=1

|〈x∗, xi〉|
r for all x∗ ∈ X∗,then

m∑

i=1

‖Uzi‖
r ≤ Cr

n∑

i=1

‖xi‖
r.Let us use Theorem 5.1 to state a 
riterion for an operator U : ℓmp → ℓmqnot to fa
tor as U = AB with ‖B‖p,r · ‖A‖r,q ≤ C.Corollary 5.2. Let m ∈ N, C > 1, and r > 1, and assume that U isan invertible m ×m matrix. Let δ = ‖U−1‖r′,r′ . Then ‖B‖p,r‖A‖r,q ≥ δ−1for any fa
torization U = AB. Moreover , if Ũ is another m×m matrix with(4) ‖Ũ − U‖p,q ≤ (2 max

1≤i≤m
‖U−1ei‖p)

−1,then ‖B‖p,r‖A‖r,q ≥ (2δ)−1 for any fa
torization Ũ = AB.Proof. For i = 1, . . . ,m let xi = ei and zi = δ−1U−1ei and observe thatfor any x∗ ∈ Rm,
( m∑

i=1

|〈x∗, zi〉|
r
)1/r

= δ−1
( m∑

i=1

|〈(U−1)∗x∗, ei〉|
r
)1/r

= δ−1‖(U−1)∗x∗‖r

≤ δ−1‖U−1‖r′,r′‖x
∗‖r =

( m∑

i=1

|〈x∗, xi〉|
r
)1/r

,whi
h implies that the hypothesis of (ii) in Theorem 5.1 is satis�ed. Se
ondlyit follows that(5) m∑

i=1

‖Uzi‖
r
q = δ−rm = δ−r

m∑

i=1

‖xi‖
r
p,whi
h means that the 
on
lusion of (ii) in Theorem 5.1 is not satis�ed forany C < δ−1. It follows that 
ondition (i) in Theorem 5.1 fails whenever

C < δ−1.Now assume that Ũ is another m×mmatrix satisfying (4), then it followsfor i = 1, . . . ,m that
‖Ũ(zi)‖q ≥ ‖U(zi)‖q − ‖(U − Ũ)(zi)‖q

≥ 1
2‖U(zi)‖q +

(
1
2‖U(zi)‖q − ‖U − Ũ‖p,q‖zi‖p

)

= 1
2‖U(zi)‖q +

(
1
2δ − ‖U − Ũ‖p,qδ

−1‖U−1ei‖p

)
≥ 1

2‖U(zi)‖q,
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h implies, together with (5), that for Ũ the 
on
lusion of (ii) in Theo-rem 5.1 is not satis�ed for any C < δ−1/2, hen
e (i) fails in this 
ase.We will now de�ne an operator whi
h will be 
ru
ial for the rest ofthe paper, and we start with the following notations. Let Hn be the nthHadamard matrix. That is,
H1 = (1), Hn+1 =

(
Hn Hn

Hn −Hn

) for every n ≥ 1.
Then Hn is an N × N matrix where N = 2n. We use the identi�
ations
ℓp = (

⊕∞
n=1Xn)p and ℓq = (

⊕∞
n=1 Yn)q, where Xn = ℓ2

n

p and Yn = ℓ2
n

q areblo
k subspa
es of ℓp and ℓq respe
tively. We 
onsider Hn as an operatorfrom Xn to Yn. Put(6) Un = N−1/min{p′,q}Hn where N = 2n, and U =
∞⊕

n=1

Un : ℓp → ℓq.

Remark 5.3. Observe that N−1/2Hn is a unitary matrix on ℓN2 . In par-ti
ular, it is an isometry on ℓN2 , hen
e ‖Hn‖2,2 = N1/2, and H2
n = NI. One
an easily verify that ‖Hn‖1,∞ = 1 and ‖Hn‖1,1 = ‖H‖∞,∞ = N .Theorem 5.4. If 1 < p ≤ 2 ≤ q <∞, then the operator U de�ned by (6)has the following properties:(i) ‖U‖p,q = 1.(ii) U is not 
ompa
t.(iii) If p′ 6= q then U is FSS.(iv) Let p ≤ r ≤ q. Then U fa
tors through ℓr when p ≤ r ≤ q′ or

p′ ≤ r ≤ q; otherwise U /∈ J ℓr .(v) In parti
ular , if p 6= q then U /∈ J ℓ2.Remark 5.5. In Se
tion 6 we treat (iii) in the mu
h harder 
ase when
p′ = q and show that in this 
ase U is still FSS.Proof of Theorem 5.4. Using the Riesz�Thorin interpolation theorem(e.g., [BL76, LT79℄) for Hn a
ting as an operator in L(ℓ1, ℓ∞) and as anoperator in L(ℓ2, ℓ2), and using Remark 5.3, we obtain ‖Hn‖r,r′ ≤ N1/r′whenever 1 ≤ r ≤ 2. Similarly, interpolating between ‖H‖1,1 and ‖Hn‖2,2,and between ‖Hn‖2,2 and ‖H‖∞,∞, we obtain ‖H‖r,r ≤ N1/min{r,r′} when-ever 1 ≤ r ≤ ∞.De�ne U (r)

n = N−1/r′Hn and U (r) =
⊕∞

n=1 U
(r)
n ; then ‖U

(r)
n ‖r,r′ ≤ 1 forevery n, hen
e ‖U (r)‖r,r′ ≤ 1. Considering U as an operator in L(ℓp, ℓq), we
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an write
(7) U =





ℓp
U(p)

−−−→ ℓq when p′ = q,

ℓp
U(p)

−−−→ ℓp′
Ip′,q
−−−→ ℓq when p′ < q,

ℓp
Ip,q′
−−−→ ℓq′

U(q′)

−−−→ ℓq when p < q′.It follows immediately that ‖U‖p,q ≤ 1. Sin
e J FSS is an ideal, (iii) followsfrom Proposition 3.3. It also follows from (7) that U fa
tors through ℓr if
p ≤ r ≤ q′ or p′ ≤ r ≤ q,Consider �rst the 
ase p′ ≤ q. Then Un = N−1/p′Hn. Let hn,i = Hnei,the ith 
olumn of the nth Hadamard matrix. It follows from H2

n = NI that
Unhn,i = N−1/p′H2

nei = N1/pei. Thus, ‖Unhn,i‖q = N1/p = ‖hn,i‖p, so that
‖Un‖p,q = 1. Hen
e, U is not 
ompa
t, and ‖U‖p,q = 1 by Remark 2.2.Next, suppose that p < r < p′ ≤ q. We use Corollary 5.2 to show that
U /∈ J ℓr in this 
ase. Indeed, assume to the 
ontrary that U ∈ J ℓr . Thenthere exists Ũ su
h that ‖U − Ũ‖ < 1/2 and Ũ fa
tors through ℓr. Let C bethe ℓr-fa
torization 
onstant of Ũ . Sin
e p < min{r, r′} one 
an 
hoose n sothat C < 1

2N
1/p−1/min{r,r′}, where N = 2n. Let Ũn be the N ×N submatrixof Ũ 
orresponding to the nth blo
k of U , that is, Ũn = QnŨPn, where Pn(respe
tively, Qn) is the 
anoni
al proje
tion from ℓp (respe
tively, ℓq) ontothe span of eN+1, . . . , e2N . Then the ℓr-fa
torization 
onstant of Ũn is atmost C. It follows from ‖U−1

n ei‖p = ‖N−1/phn,i‖p = 1 that
‖Un − Ũn‖ ≤ ‖U − Ũ‖ < 1/2 = (2 max

1≤i≤N
‖U−1

n ei‖p)
−1.Let δ = ‖U−1

n ‖r′,r′ . It follows from H2
n = NI and Un = N−1/p′Hn that

U−1
n = N−1/pH, so that

δ = N−1/p′‖Hn‖r′,r′ ≤ N−1/p+1/min{r,r′}.Corollary 5.2 implies that the ℓr-fa
torization 
onstant of Ũn is at least
(2δ)−1 ≥ 1

2N
1/p−1/min{r,r′} > C, whi
h is a 
ontradi
tion.The 
ase p < q′ 
an be redu
ed to the previous 
ase by duality. Indeed, itfollows from (7) that U∗ = Iq,p′U

(q′) : ℓq′ → ℓp′ . Consequently, if p ≤ r ≤ q′then Iq,p′ and, therefore, U∗ fa
tors through ℓr′ . Hen
e, U fa
tors through ℓr.Furthermore, sin
e Hn is symmetri
 for every n, it follows that U∗
n 
oin
ideswith Un as a matrix and ‖U∗

n‖q′,p′ = 1. Applying the previous argument, weobserve that U∗ is non-
ompa
t and ‖U∗‖q′,p′ = 1, hen
e the same is truefor U . Furthermore, if q′ < r < q, then U∗ /∈ J ℓr′ so that U /∈ J ℓr .Finally, (v) follows immediately from (iv).Remark 5.6. If p < r < r′ < q then the operator Ũ de�ned as
ℓp

Ip,r
−−→ ℓr

U(r)

−−−→ ℓr′
Ir′,q
−−→ ℓq
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ompa
t. Indeed, as a matrix
Ũn = U (r)

n = N−1/r′Hn = N1/min{p′,q}−1/r′Un.It follows from ‖Un‖p,q = 1 and r′ < min{p′, q} that
‖Ũn‖p,q = N1/min{p′,q}−1/r′ → 0 as n→ 0.Remark 5.7. It follows from Theorem 5.4(iv) that J ℓr is proper when

max{p, q′} < r < min{p′, q}. In parti
ular, J ℓ2 is proper. It follows fromRemark 4.9 and Theorem 5.4(iv) that J ℓ2 ( J ℓr whenever p < r < q′ or
p′ < r < q. We do not know, however, whether J ℓr is proper in this 
ase.Next, we show that if U ′ is another �U -like� operator then U and U ′fa
tor through ea
h other.Again, we view ℓp = (

⊕∞
n=1Xn)p and ℓq = (

⊕∞
n=1 Yn)q, where Xn = ℓ2

n

pand Yn = ℓ2
n

q . Denote the basis ve
tors in Xn and Yn by e(n)
1 , . . . , e

(n)
2n and

f
(n)
1 , . . . , f

(n)
2n , respe
tively. We 
an view Hn and Un as operators from Xnto Yn.Theorem 5.8. Suppose that (ni) is an in
reasing sequen
e, and let Ũ =⊕∞

i=1 Uni , viewed as an operator from ℓp = (
⊕∞

i=1Xni)p to ℓq = (
⊕∞

i=1 Yni)q.Then U and Ũ fa
tor through ea
h other.Proof. Consider the following diagram:
ℓp =

( ∞⊕

i=1

Xni

)
p

ı
→֒
( ∞⊕

n=1

Xn

)
p

U
−→
( ∞⊕

n=1

Yn

)
q

R
−→
( ∞⊕

i=1

Yni

)
q

= ℓq,where ı is the 
anoni
al embedding, and R is the 
anoni
al proje
tion. We 
anview ı and R as operators on ℓp and ℓq, respe
tively. Thus, we get Ũ = RUı.Next, we prove that U fa
tors through Ũ . First, we show that whenever
n < m then there exist operators C : Xn → Xm and D : Ym → Yn su
h that
Un = DUmC and ‖C‖p,p ≤ 1 and ‖D‖q,q ≤ 1.First, we 
onsider the 
ase q ≤ p′. De�ne Cn : Xn → Xn+1 via Cne

(n)
i =

e
(n+1)
i for i = 1, . . . , 2n. Clearly, Cn is an isometry.Let Zn be the subspa
e of Yn+1 
onsisting of all the ve
tors whose �rsthalf 
oordinates are equal to the last half 
oordinates, respe
tively, thatis, Zn = span{f

(n+1)
i + f

(n+1)
i+2n | i = 1, . . . , 2n}. Let Pn be the �averaging�proje
tion from Yn+1 onto Zn given by

Pn

(2n+1∑

i=1

αif
(n+1)
i

)
=

2n∑

i=1

αi + αi+2n

2
(f

(n+1)
i + f

(n+1)
i+2n ).Then ‖Pn‖ = 1.



254 B. Sari et al.De�ne Bn : Zn → Yn via Bn(f
(n+1)
i + f

(n+1)
i+2n ) = 21/qf

(n)
i ; then Bn is anisometry. Hen
e, Dn = BnPn : Yn+1 → Yn is of norm one.Fix 1 ≤ i ≤ 2n. Sin
e Cne

(n)
i = e

(n+1)
i , Hn+1Cne

(n)
i is the ith 
olumnof Hn+1. Sin
e i ≤ 2n it follows from the 
onstru
tion of Hn's that the ith
olumn ofHn+1 is exa
tly the ith 
olumn ofHn repeated twi
e. In parti
ular,

Hn+1Cne
(n)
i ∈ Zn and, therefore, Hn+1Cne

(n)
i = PnHn+1Cne

(n)
i . Finally,

BnPnHn+1Cne
(n)
i = 21/q(the ith 
olumn of Hn) = 21/qHne

(n)
i .Consequently, we have DnHn+1Cn = 21/qHn. It follows from Hn = 2n/qUnthat DnUn+1Cn = Un. Iterating this m−n times, we get DUmC = Un where

C : Xn → Xm is an isometry, and D : Ym → Yn is of norm one.If q ≥ p′, then we 
onsider the adjoint operators. Note that U∗
n = Un asmatri
es. Applying the previous argument we �nd matri
es C and D su
hthat U∗

n = DU∗
mC with ‖C‖q′,q′ ≤ 1 and ‖D‖p′,p′ ≤ 1. Then Un = C∗UmD

∗is a required fa
torization in the 
ase q ≥ p′.It follows that for every i we have(8) D̃iUniC̃i = Uifor some 
ontra
tions C̃i : Xi → Xni and D̃i : Xni → Xi. Let
C̃ =

∞⊕

i=1

C̃i :
( ∞⊕

i=1

Xi

)
p
→
( ∞⊕

i=1

Xni

)
p
,

D̃ =
∞⊕

i=1

D̃i :
( ∞⊕

i=1

Xni

)
q
→
( ∞⊕

i=1

Xi

)
q
.

Then C̃ : ℓp → ℓp and D̃ : ℓq → ℓq are bounded, and by (8) we dedu
e that
D̃ŨC̃ = U .It follows that any two operators of type Ũ generated by di�erent se-quen
es fa
tor through ea
h other.6. The operator U is FSS. Again, let U be the operator de�ned by (6).Theorem 5.4(iii) states that U is FSS when p 6= q′. We will show in thisse
tion that U is still FSS when 1 < p = q′. The argument requires somepreparation.Re
all that the nth s-number of an operator T ∈ L(H) on a Hilbertspa
e H is de�ned via sn(T ) = inf{‖T −R‖ | rankR < n}. For 1 ≤ r < ∞,the S
hatten norm ‖T‖Sr of T equals the ℓr norm of the sequen
e of the
s-numbers. We say that T belongs to the S
hatten 
lass Sr if ‖T‖Sr < ∞.We denote by S∞ the set of all 
ompa
t operators equipped with the operatornorm.
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losed ideals in L(ℓp, ℓq) 255Lemma 6.1. If T ∈ L(H) is su
h that ‖T‖Sq = 1 and infx∈F, ‖x‖=1‖Tx‖
≥ ε for a subspa
e F of H, then dimF ≤ ε−q.Proof. Suppose that dimF = k. For every operator S of rank k−1 thereexists x ∈ F su
h that ‖x‖ = 1 and Sx = 0. It follows that ‖T − S‖ ≥
‖Tx‖ ≥ ε, so that s1 ≥ · · · ≥ sk ≥ ε. Therefore, 1 = ‖T‖q

Sq
≥ kεq. Hen
e

k ≤ ε−q.We will also utilize the following result of Maurey [Maur74, Corollary 11,p. 21℄.Theorem 6.2. Let (Ω,µ) be a measure spa
e, Y a Bana
h spa
e, 0 <
u ≤ v < ∞, 1/u = 1/v + 1/r, T a bounded operator from a 
losed subspa
e
E of Lv(µ) to Y , and C > 0. Then the following are equivalent :(i) There exists a 
losed subspa
e F of Lu(µ) su
h that T fa
tors as T =

V Mg, where V : F → Y with ‖V ‖ ≤ C, and Mg : Lv(µ) → Lu(µ) isa multipli
ation operator de�ned by Mgf = gf for every f ∈ Lv(µ),with g ∈ Lr(µ) and ‖g‖r ≤ 1.(ii) For any x1, . . . , xn in E,
( n∑

i=1

‖Txi‖
u
)1/u

≤ C
[\( n∑

i=1

|xi|
u
)v/u

dµ
]1/v

.In what follows, KG will denote the so-
alled Grothendie
k 
onstant, afundamental 
onstant in Bana
h spa
e theory (see [DJT95, Tom89, LT77℄for details).Corollary 6.3. Let (Ω,µ) be a measure spa
e. Suppose that q = p′ and
1/p = 1/2 + 1/r.(i) If T : Lq(µ) → ℓk2 then T 
an be fa
tored through a multipli
ationoperator from Lq(µ) to L2(µ), i.e., T = SMg, where S : L2(µ) → ℓk2with ‖S‖ ≤ KG‖T‖ and ‖g‖r = 1.(ii) If T : ℓk2 → Lp(µ) then T 
an be fa
tored through a multipli
ationoperator from L2(µ) to Lp(µ), i.e., T = Mh S, where S : ℓk2 → L2(µ)with ‖S‖ ≤ KG‖T‖ and ‖h‖r ≤ 1.Proof. Suppose that T : Lq(µ) → ℓk2. We verify that 
ondition (ii) ofTheorem 6.2 holds for u = 2, v = q = p′, and r > 1 su
h that 1/p = 1/2+1/r(whi
h is equivalent to 1/2 = 1/v + 1/r). Let f1, . . . , fn ∈ Lq. Then

n∑

i=1

‖Tfi‖
2 =

n∑

i=1

k∑

j=1

|(Tfi)j|
2 =

k∑

j=1

n∑

i=1

|(Tfi)j|
2 =

∥∥∥
( n∑

i=1

|Tfi|
2
)1/2∥∥∥

2

ℓ2
,

where the last expression is the norm of the sequen
e ((
∑n

i=1|(Tfi)j|
2)

1
2 )n

j=1.It follows from [LT79, Theorem 1.f.14℄ that
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∥∥∥
( n∑

i=1

|Tfi|
2
)1/2∥∥∥

ℓ2
≤ KG‖T‖

∥∥∥
( n∑

i=1

|fi|
2
)1/2∥∥∥

Lq

= KG‖T‖
[\( n∑

i=1

|fi|
2
)q/2

dµ
]1/q

.Now (i) follows from Theorem 6.2. To prove (ii), apply (i) to T ∗.For N ∈ N and 1 ≤ p ≤ ∞, by LN
p we denote the spa
e Lp(µ) where

µ is the uniform probability measure on Ω = {1, . . . , N}. Thus, LN
p =

(RN , ‖·‖LNp
) where, for x = (xi) ∈ RN , ‖x‖LNp

= (N−1
∑N

i=1|xi|
p)1/p for

p < ∞ and ‖x‖LN∞
= max1≤i≤N |xi|. Clearly, ‖·‖LNp

is a s
alar multipleof ‖·‖ℓNp
.The following easy lemma is well-known to spe
ialists. We state it exa
tlyin the form required later and we provide a short proof.Lemma 6.4. Consider a produ
t of three operators

S : LN
2

Mψ
−−→ LN

1
T
−→ ℓN∞

D
−→ ℓN2where D = diag(dj)

N
j=1, i.e., the diagonal operator with diagonal (dj). Thenthe Hilbert�S
hmidt norm of S satis�es ‖S‖HS ≤ ‖ψ‖LN2

‖T‖ ‖(dj)‖ℓN2
.Proof. Observe that, in the notation of fun
tion spa
es on (Ω,µ),

S : f 7→ ψf 7→ (〈gn, ψf〉)
N
n=1 7→ (dn〈gn, ψf〉)

N
n=1for f ∈ LN

2 and for some sequen
e (gn)N
n=1 in LN

∞, so that ‖T‖ = supn‖gn‖LN∞
.(Here 〈·, ·〉 denotes the inner produ
t with respe
t to µ.) Let (fi)

N
i=1 be anorthonormal basis of LN

2 ; then
‖S‖2

HS =
N∑

i=1

‖Sfi‖
2
ℓN2

=
N∑

i=1

N∑

n=1

d2
n〈gn, ψfi〉

2 =
N∑

n=1

d2
n

N∑

i=1

〈ψgn, fi〉
2

=
N∑

n=1

d2
n‖ψgn‖

2
LN2

≤ ‖ψ‖2
LN2

(sup
n
‖gn‖

2
LN∞

)‖(dj)‖
2
ℓN2
.

Theorem 6.5 ([Pis04℄). Suppose that T : LN
p → ℓNq for some 1 ≤ p < 2and q = p′. Let E be a k-dimensional subspa
e of LN

p , and C1, C2, and C3be positive 
onstants su
h that(i) ‖T‖LN2 ,ℓN2
≤ 1 and ‖T‖LN1 ,ℓN∞

≤ 1;(ii) E is C1-isomorphi
 to ℓk2;(iii) F = T (E) is C2-
omplemented in ℓNq ;(iv) T|E is invertible and ‖(T|E)−1‖ ≤ C3.Then k ≤ (C3
1C2C

2
3K

2
G)q.
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losed ideals in L(ℓp, ℓq) 257Proof. Suppose that T , E, and F satisfy the hypotheses for some C1, C2,and C3. Let r be su
h that 1/p = 1/2 + 1/r. There exists an isomorphism
V : ℓk2 → E su
h that ‖V ‖ ≤ 1 and ‖V −1‖ ≤ C1. By Corollary 6.3(ii),
V fa
tors through LN

2 . Namely, V = MgS with S : ℓk2 → LN
2 su
h that

‖S‖ ≤ C1KG and ‖g‖r ≤ 1. Let J : E → LN
p be the 
anoni
al in
lusion map.We have the diagram

LN
2

Mg
−−−−→ LN

p
T

−−−−→ ℓNq
D

−−−−−→
diagonal

ℓN2

S

x J

xincl. proj.

yQ

yR

ℓk2
V

−−−−−→
C1-isom.

E
T|E

−−−−→ F
W

−−−−−−−→
C1C3-isom.

ℓk2Let Q be a proje
tion from ℓNq onto F with ‖Q‖ ≤ C2. It follows from (i)that ‖T‖LNp ,ℓNq
≤ 1. Then F is C1C3-isomorphi
 to ℓk2. Let W : F → ℓk2 bean isomorphism su
h that ‖W‖ ≤ 1 and ‖W−1‖ ≤ C1C3. Corollary 6.3(i)implies that WQ fa
tors through ℓN2 , that is, WQ = RD where R : ℓN2 → ℓk2with ‖R‖ ≤ KG‖WQ‖ ≤ C2KG, and D is a multipli
ation (or diagonal)operator D = diag(dj)

N
j=1 with ‖(dj)‖ℓNr

≤ 1.We are going to show that ‖DTMg‖SNq
≤ 1, using the 
lassi
al 
omplexinterpolation argument (see, e.g., [BL76℄). For the 
onvenien
e of the readernot familiar with the subje
t, we provide the details. Let Z = {z ∈ C | 0 ≤

Re z ≤ 1}, and de�ne a fun
tion F from Z to the unit ball B(LN
2 , ℓ

N
2 ) of

L(LN
2 , ℓ

N
2 ) as follows:(9) F (z) = |D|(1−z)r/2 signDTM|g|(1−z)r/2 sign g.Here, as usual, |D| = diag(|dj|) and signD = diag(sign dj). Observe that Fis analyti
 in the interior of Z as a fun
tion from Z to CN×CN . Furthermore,

F is 
ontinuous and bounded on Z. A dire
t 
al
ulation shows that if 1/r =
(1 − θ)/2 then F (θ) = DTMg.If Re z = 1, it follows from (9) that F (1 + it) = AtTBt, where At =
|D|−itr/2 signD and Bt = M|g|−itr/2 sign g. Noti
e that At and Bt viewed asoperators from ℓN2 to ℓN2 and from LN

2 to LN
2 respe
tively are 
ontra
tions.It follows that(10) ‖F (z)‖LN2 ,ℓN2

≤ ‖T‖LN2 ,ℓN2
≤ 1 whenever Re z = 1.If Re z = 0 then we 
an write

F (it) = At|D|r/2TM|g|r/2Bt.It 
an be easily veri�ed that ‖ |g|r/2‖LN2
≤ 1 and ‖(|di|

r/2)‖ℓN2
≤ 1. Sin
e

‖T‖LN1 ,ℓN∞
≤ 1, it follows by Lemma 6.4 that(11) ‖F (z)‖HS ≤ 1 whenever Re z = 0.
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q = Sq(L

N
2 , ℓ

N
2 ). It is known (see, e.g., [GK65, Theorem 13.1℄) thatthe S
hatten 
lasses interpolate like Lp-spa
es. Sin
e

1

∞
(1 − θ) +

1

2
θ =

1

2
−

1

r
=

1

q
,it follows that (SN

∞, S
N
2 )θ = SN

q .On the other hand, by de�nition of a 
omplex interpolation spa
e,
B(SN∞,SN2 )θ

= {f(θ) | f : Z → B(LN
2 , ℓ

N
2 ) analyti
,

‖f|{Re z=0}‖S2 ≤ 1 and ‖f|{Re z=1}‖S∞ ≤ 1}.Sin
e ‖·‖S2 = ‖·‖HS and ‖·‖S∞ = ‖·‖LN2 ,ℓN2
, it follows from (10) and (11) that

DTMg = F (θ) ∈ B(SN∞,SN2 )θ
and, thus, ‖DTMg‖SNq

≤ 1. It follows that
‖WTV ‖Sq = ‖RDTMgS‖Sq ≤ ‖R‖ ‖DTMg‖Sq‖S‖ ≤ C1C2K

2
G.Note that ‖(WTV )−1‖ ≤ C2

1C
2
3 . It follows from Lemma 6.1 that

k ≤

(
1

C2
1C

2
3

1

C1C2K2
G

)−q

= (C3
1C2C

2
3K

2
G)q.This 
on
ludes the proof.We also need the following lemma, whi
h generalizes Lemma 3.4. Assumethat X is a Bana
h spa
e with an FDD (Xn)∞n=1 (see [LT77℄ for the de�nitionof FDD). Let Pn be the 
anoni
al proje
tion from X onto Xn, and assumethat X satis�es the following 
ondition, whi
h means that X is far from a

c0-sum of the Xn's:
(12) for any δ > 0 there is a k = k(δ) in N so that whenever x ∈ SX , then

card{n ∈ N | ‖Pnx‖ ≥ δ} < k.Suppose that for every n ∈ N we are given a seminorm qn on Xn su
h that
qn(x) ≤ ‖x‖, where qn(x) stands for qn(Pnx) whenever x ∈ X.Lemma 6.6. Suppose that X, (Xn), and (qn) are as in the pre
edingparagraph and 0 < r ≤ 1. Then there exists ε > 0 su
h that for every
l ∈ N there exists L ∈ N su
h that for every L-dimensional subspa
e G of Xsu
h that maxn∈N qn(x) ≥ r‖x‖ for all x ∈ G there exists an l-dimensionalsubspa
e F ⊆ G and an index n0 su
h that qn0(x) ≥ ε‖x‖ for all x ∈ F .To prove Lemma 6.6 we need the following stabilization result (see, e.g.,[MS86, p. 6℄).Theorem 6.7. For every n ∈ N, ε > 0 and c > 0 there is an N =
N(n, ε, c) ∈ N so that for any N -dimensional spa
e E, and any Lips
hitzmap f : SE → R whose Lips
hitz 
onstant does not ex
eed c, there is an n-dimensional subspa
e F of E so that

max{f(x) : x ∈ SF } − min{f(x) : x ∈ SF } ≤ ε.



Norm 
losed ideals in L(ℓp, ℓq) 259Proof of Lemma 6.6. Let k(·) be the fun
tion de�ned in (12). Put
m = k(r2/4), δ = r/4m, s = k(δ).It su�
es to show that for l′ ∈ N there exists L so that, if G is a subspa
eof X of dimension L and maxn∈N qn(x) ≥ r‖x‖ for all x ∈ G, then G hasan l′-dimensional subspa
e F ′ and a set I ⊂ N with card I = s su
h that

maxn∈I qn(x) ≥ δ‖x‖ for all x ∈ F ′.Indeed, on
e we prove this formally weaker 
laim, we 
an take a number
l′ large enough so that Theorem 6.7 
an be applied s times to dedu
e that F ′has an l-dimensional subspa
e F whi
h has the property that, for all n ∈ I,

max
x∈SF

qn(x) − min
x∈SF

qn(x) ≤ δ/2.Now pi
k any y ∈ SF ; then qn0(y) = maxn∈I qn(y) ≥ δ for some n0 ∈ I.Then for every x ∈ SF we have
qn0(x) ≥ min

z∈SF
qn0(z) ≥ max

z∈SF
qn0(z) − δ/2 ≥ qn0(y) − δ/2 ≥ δ/2,so that the statement of our lemma is satis�ed for ε = δ/2.Let l′ ∈ N and de�ne numbers L0, L1, . . . , Lm as follows. Put L0 = l′,and, assuming that L0, L1, . . . , Ln, n < m, have already been de�ned, useTheorem 6.7 to 
hoose Ln+1 large enough so that for every Ln+1-dimensionalsubspa
e G of X and every Lips
hitz-1 map f : SG → R there is an Ln-dimensional subspa
e G′ ⊆ G su
h that

max
x∈G′

f(x) − min
x∈G′

f(x) ≤ δ.Let L = Lm. Assume that our 
laim is false. This would mean that thereexists a subspa
e G of X with dimG = L su
h that
(13) max

n∈N

qn(x) ≥ r‖x‖ for all x ∈ G, and
(14) for ea
h I ⊂ N of card I = s and ea
h subspa
e F ′ ⊆ G of dimF ′ = l′there exists x ∈ SF ′ su
h that maxn∈I qn(x) ≤ δ.Choose an arbitrary ve
tor x1 ∈ SG and a subset I1 ⊂ N with card I1 = sso that minn∈I1 qn(x1) ≥ maxn∈N\I1 qn(x1). It follows from (13) that thereexists an index n1 su
h that qn1(x1) ≥ r; we 
an assume that n1 ∈ I1. Onthe other hand, the de�nition of s implies that qn(x1) ≤ δ whenever n /∈ I1.It follows from the de�nition of Lm that there exists a subspa
e Gm−1 of Gof dimension Lm−1 so that(15) max

x∈SGm−1

max
n∈I1

qn(x) ≤ min
x∈SGm−1

max
n∈I1

qn(x) + δ ≤ 2δ,where the last inequality follows from (14).Next, pi
k an x2 ∈ SGm−1 and I2 ⊂ N \ I1 so that card I2 = s and
minn∈I2 qn(x2) ≥ maxn/∈I1∪I2 qn(x2). Again, it follows from (13) that there



260 B. Sari et al.exists an index n2 su
h that qn2(x2) ≥ r; we 
an assume that n2 ∈ I1 ∪ I2.By (15), qn(x2) ≤ 2δ < r for ea
h n ∈ I1, so that n2 ∈ I2. Again, qn(x2) ≤ δwhenever n /∈ I1∪I2. We 
an 
hoose a subspa
e Gm−2 of Gm−1 of dimension
Lm−2 so that

max
x∈SGm−2

max
n∈I2

qn(x) ≤ 2δ.Pro
eeding this way, we obtain a sequen
e of ve
tors x1, . . . , xm anddisjoint sets I1, . . . , Im of 
ardinality s, and indi
es n1, . . . , nm, su
h that forea
h i = 1, . . . ,m we have ni ∈ Ii and qni(xi) ≥ r. Also,
qn(xi) ≤

{
2δ if n ∈ I1 ∪ · · · ∪ Ii−1,

δ if n /∈ I1 ∪ · · · ∪ Ii,hen
e qn(xi) ≤ 2δ whenever n /∈ Ii. If n ∈ Ii then qn(xi) ≤ ‖xi‖ = 1.Put x =
∑m

i=1 xi; then for every n ∈ N we have qn(x) ≤ 1 +m · 2δ ≤ 2.On the other hand,
r ≤ qni(xi) ≤ qni(x) + qni(x− xi) ≤ qni(x) + 2mδ,so that qni(x) ≥ r − 2mδ = r/2 for ea
h i = 1, . . . ,m. It follows fromthe de�nition of m that there 
an be at most m − 1 indi
es n su
h that

qn(x) ≥ r2‖x‖/4, hen
e r2‖x‖/4 > r/2. It follows that ‖x‖ > 2/r, so that
qn(x) ≤ 2 < r‖x‖ for every n ∈ N, whi
h is a 
ontradi
tion.Now we are ready to prove that U is FSS.Theorem 6.8. The operator U 
onstru
ted in (6) is FSS for all 1 < p ≤
2 ≤ q <∞, unless p = q = 2.Proof. In view of Theorem 5.4(iii) we may assume that q = p′. Re
allthat U =

⊕∞
n=1 Un is 
omposed of blo
ks Un : Xn → Yn, where Xn = ℓ2

n

pand Yn = ℓ2
n

q . For ea
h n, let Pn : ℓp → Xn be the 
anoni
al proje
tion. For
x ∈ ℓp put qn(x) = ‖UnPnx‖. By Theorem 5.4(i) we have qn(x) ≤ ‖x‖.Assume that U is not FSS. Then there exists a 
onstant C su
h that thereare subspa
es G of ℓp of arbitrarily large dimension su
h that the restri
tionof U to G is a C-isomorphism. Let x ∈ SG, and write x =

∑∞
n=1 xn where

xn ∈ Xn; then ‖Ux‖ ≥ 1/C. On the other hand,
‖Ux‖q =

∞∑

n=1

‖Unxn‖
q ≤ max

n∈N

‖Unxn‖
q−p

∞∑

n=1

‖Unxn‖
p ≤ max

n∈N

qn(x)q−p.Hen
e, maxn∈N qn(x) ≥ Cq/(p−q).It follows from Lemma 6.6 that there exists ε > 0 su
h that for every kand for every G ⊆ ℓp of su�
iently large dimension there exists a subspa
e
F of G and an index n su
h that dimF = k and qn(x) ≥ ε for all x ∈ SF .This implies that the restri
tion of UnPn to F is a 1/ε-isomorphism. Put
E = Pn(F ); then E is a k-dimensional subspa
e of Xn, and Un is a 1/ε-
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losed ideals in L(ℓp, ℓq) 261isomorphism on E. In view of Theorem 4.10 we may assume that E is 2-isomorphi
 to ℓk2 and Un(E) is K-
omplemented in ℓ2nq .Let Vn be the 
anoni
al isometry between LN
p and Xn = ℓNp , where

N = 2n. It follows that ‖Vnx‖ℓNr
= N1/r−1/p‖x‖LNr

for every x ∈ LN
p andevery r ∈ [p, q]. It follows from the de�nition of Un and Remark 5.3 that

‖UnVn‖LN2 ,ℓN2
= N1/2−1/p‖Un‖ℓN2 ,ℓN2

= N1/2−1/p−1/q‖Hn‖ℓN2 ,ℓN2
= 1,

‖UnVn‖LN1 ,ℓN∞
= N1−1/p‖Un‖ℓN1 ,ℓN∞

= N1−1/p−1/q‖Hn‖ℓN1 ,ℓN∞
= 1.Now applying Theorem 6.5 to UnVn and V −1

n (E) we obtain a 
ontradi
tionwith the fa
t that k = dimE was 
hosen arbitrarily.Remark 6.9. If p = q = 2 then U is an isometry, hen
e not FSS. Con-sider the 
ase when p = 1 and q = ∞. The pre
eding proof does not work,sin
e now we 
annot use Theorem 4.10. A
tually, U is not FSS in this 
ase.Indeed, we now have Un = Hn. It is easy to see that among the 
olumns of
Hn one �nds all the Radema
her ve
tors (of length N = 2n). Sin
e the spanof these ve
tors in ℓN∞ is isometri
ally isomorphi
 to ℓn1 , it follows that therestri
tion of Hn to the appropriate subspa
e of ℓN1 preserves a 
opy of ℓn1 .Question. Are there any other 
losed ideals in L(ℓp, ℓq)? In view of thediagram at the beginning of our paper this question 
an be subdivided intothe following subquestions:(i) Is J Ip,q equal to J FSS ∩ J ℓ2? If not, is J FSS ∩ J ℓ2 an immediatesu

essor of J Ip,q?(ii) Is J FSS an immediate su

essor of J FSS ∩J ℓ2? More generally, arethere any immediate su

essors of J FSS ∩ J ℓ2 other than J ℓ2?(iii) Is J FSS ∨ J ℓ2 an immediate su

essor of J ℓ2?(iv) Is J FSS ∨ J ℓ2 equal to L(ℓp, ℓq)?Question. Suppose again that U is the operator de�ned in (6). Sin
e
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