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A C(K) Banach space which does not have
the Schroeder–Bernstein property

by

Piotr Koszmider (Warszawa, Łódź and Granada)

Abstract. We construct a totally disconnected compact Hausdorff space K+ which
has clopen subsets K′′+ ⊆ K′+ ⊆ K+ such that K′′+ is homeomorphic to K+ and hence
C(K′′+) is isometric as a Banach space to C(K+) but C(K′+) is not isomorphic to C(K+).
This gives two nonisomorphic Banach spaces (necessarily nonseparable) of the form C(K)
which are isomorphic to complemented subspaces of each other (even in the above strong
isometric sense), providing a solution to the Schroeder–Bernstein problem for Banach
spaces of the form C(K). The subset K+ is obtained as a particular compactification of
the pairwise disjoint union of an appropriately chosen sequence (K1,n∪K2,n)n∈N of Ks for
which C(K)s have few operators. We have K′+ = K+ \K1,0 and K′′+ = K+ \ (K1,0∪K2,0).

1. Introduction. If X,Y are Banach spaces, then X ∼ Y will mean
that they are isomorphic, and X

c
↪→ Y that Y has a complemented subspace

isomorphic to X. A. Pełczyński has proved (see [19], [2]) that if two Banach
spaces X, Y satisfy X ∼ X2, Y ∼ Y 2, then the following version of the
Schroeder–Bernstein theorem holds for them:

If X
c
↪→ Y and Y

c
↪→ X, then X ∼ Y.

The problem whether this holds in general, without demanding that X
and Y are isomorphic to their squares, has been known as the Schroeder–
Bernstein problem for Banach spaces ([2]). After several decades it was solved
in the negative by T. Gowers in [11]. In this paper we give a quite differ-
ent construction of a Banach space that solves this problem in the negative,
which additionally is a classical Banach space of real valued continuous func-
tions on a compact Hausdorff space with the supremum norm.

One of the main ingredients of Gowers’ solution was the use of the Ba-
nach space XGM , obtained by Gowers himself and Maurey ([12]), with few
operators in the sense that each bounded, linear operator on XGM is of the
form λ Id+S where S is strictly singular and λ is a scalar. The space of [11]
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is an “exotic” completion of c00(XGM ⊕ XGM ) where the norm in the sum
is defined depending on the choice of a basic sequence in XGM . Also the
space XGM has quite a complex definition of the norm. Other examples of
Banach spaces which solve the Schroeder–Bernstein problem in the negative
were also based on spaces like XGM and were constructed by Gowers and
Maurey [13], Galego ([6], [7], [8]) and Galego and Ferenczi [9].

By contrast, when we deal with Banach spaces of continuous functions
on a compact Hausdorff space K, we have the simplest possible norm, the
supremum norm, and nontrivial examples are obtained through nontrivial
compact Ks.

In [15] we constructed Banach spaces of continuous functions with few
operators in the sense that any operator on them is of the form g Id+S
where g ∈ C(K) and S is weakly compact (equivalently here, a strictly
singular operator) or such that the adjoint of any operator is of the form
g Id+S where g is a Borel bounded function and S is weakly compact on
the dual.

The latter construction and its connected modification was used in [15]
to obtain results analogous to some of the results of Gowers and Maurey
but in the class of C(K) Banach spaces, like examples of indecomposable
Banach spaces or spaces nonisomorphic to their hyperplanes.

The former construction was obtained in [15] under the assumption of
the continuum hypothesis but was later modified in [21] or [24] to avoid this
assumption. Of course the former form of the operator is simpler and we will
make use of C(K) spaces with few operators in this sense. For our purpose
the construction of [24] is the most convenient because its K is perfect,
separable and totally disconnected, and the Boolean algebra Clop(K) of all
clopen subsets of K has a dense subalgebra with many automorphisms. On
the other hand by the results of [25] the approach where we deal with spaces
with few adjoint operators in the above sense should work as well but would
be formally more complicated.

The general plan of the construction follows [11] with XGM replaced
by a C(K) with few operators. However, all this must be achieved in the
C(K)-environment, that is, through an appropriate compactification of the
topological disjoint sum of compact Kis rather than the definition of a norm.
Note, also, that if K is infinite and metrizable then C(K) is isomorphic to
its square, so we must deal with nonseparable C(K)s. So, the realization
of this general plan is quite far from [11]. Another complication is that our
spaces have few operators in a different sense than those of [12]; this seems
to cause that we have been unable to obtain spaces which are isomorphic
to their cube but not isomorphic to their square as in [11]. Whether there
could be such spaces of the form C(K) remains an open problem.
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The main idea is to define a Banach space X+ as a C(K+) where K+

is an appropriate compactification of the pairwise disjoint sum of clopen
subsets Kn = K1,n ∪K2,n for n ∈ N (see Section 3) such that all operators
from C(Kn) into itself are of the form f Id+S where f ∈ C(Kn) and S is
weakly compact and all Kn are pairwise homeomorphic. It follows that all
operators from C(Ki,n) into C(K3−i,m) are weakly compact, where i = 1, 2
and n,m ∈ N.

We have Y+ = {f ∈ X+ : f |K1,0 = 0} ∼ C(K ′+) where K ′+ = K+ \K1,0.
It is clear that Y+ is complemented in X+ and the compactification is defined
in such a way that {f ∈ X+ : f |K1 = 0} ∼ C(K ′′+), where K ′+ = K+ \
(K1,0∪K2,0) is a subspace of Y+ isomorphic to X+ and clearly complemented
in Y+. Thus we only have to prove that X+ and Y+ are not isomorphic. The
remaining sections are devoted to this purpose.

Although C(Ki,n) and C(K3−i,m) are quite incomparable (there are only
weakly compact and so strictly singular operators among them), we exploit
the fact that the algebras of all clopen sets of K1,n and K2,n have isomorphic
dense subalgebras. This allows us to compare fi ∈ Ki,n for i = 1, 2 using an
isomorphism between these dense subalgebras. Finally the compactification
K+ is defined in such a way that each f ∈ C(K+) can be identified with
a sequence of functions fn ∈ C(Kn) such that fn|K1,n and fn|K2,n get
“closer” to each other (in a sense defined using the dense subalgebras and an
isomorphism between them) when n tends to infinity. This construction and
the relevant notation are described in Section 3.

The point of the proof thatX+ is not isomorphic to Y+ is to show that any
isomorphism T between these spaces would create infinitely many “bumps”,
i.e., T (fn)|K1,m(n) and T (fn)|K2,m(n) would not get closer to each other
when n and some m(n) tend to infinity. This would give T (f) outside X+,
leading to a contradiction with the existence of such an isomorphism. At
least these bumps are created when we look at the shift of the part of X+

corresponding to
⋃
n∈NK1,n, which should not be a well-defined operator

on X+. It turns out that all hypothetic isomorphisms from Y+ to X+ would
share this behaviour and so there are none. This argument is the subject of
the last section where we also prove a strengthening of the well-known fact
that {x ∈ K : T ∗(δx)({x}) 6= 0} is at most countable if T is weakly compact
(Lemma 6.2).

To be able to detect these bumps one approximates an operator T :
X+ → X+ by a matrix of multiplications by continuous functions. This
approximation is developed in Section 5, which relies on Section 4 where we
prove general properties of operators on X+. Some of the ideas of Section 4,
which we use for dealing with compactifications of disjoint Kis where each
C(Ki) has few operators, were developed in [17] and [16].
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The next section gathers some classical results about C(K)s and some
of their corollaries needed in the rest of the paper.

2. Some fundamental results on C(K) spaces. In this section we
recall some fundamental results of Bessaga, Grothendieck, Pełczyński and
Rosenthal concerning the Banach spaces C(K). We state them in the form
most convenient for this paper, and we also give some simple corollaries.

Theorem 2.1 ([4, Cor. 2]). Let E be a Banach space and X be either
l∞ or c0, and let T : X → E be a continuous linear operator. Then exactly
one of the two possibilities holds:

(1) T (en)→ 0.
(2) There is an infinite subset M ⊆ N such that T |X(M) is an isomor-

phism.

Theorem 2.2 ([22, Thm. 1.3]). Let B be a Banach space and X an
injective Banach space. Let T : X → B be an operator such that there exists
a subspace A of X isomorphic to c0(Γ ) with T |A an isomorphism. Then there
exists a subspace Y of X isomorphic to l∞(Γ ) with T |Y an isomorphism.

Definition 2.3. Let K be a Hausdorff compact space. Suppose that
(fn) is a sequence in C(K). We say that it generates a copy of c0 if and only
if it is a basic sequence which is equivalent to the standard basis of c0.

Definition 2.4. Let K be a Hausdorff compact space. We say that
f, g ∈ C(K) are disjoint if and only if fg = 0.

Fact 2.5. Let K be a Hausdorff compact space and ε > 0. Suppose that
(fn) is a bounded pairwise disjoint sequence in C(K) such that ‖fn‖ > ε > 0
for each n ∈ N. Then (fn) generates a copy of c0.

Fact 2.6. Let K be a Hausdorff compact space. Suppose that (fn)n∈N is
a sequence in C(K) that generates a copy of c0 and suppose that an ⊆ K are
clopen sets such that ‖fnχan‖ > ε for some ε > 0. Then there is an infinite
M ⊆ N such that (fnχan)n∈M generates a copy of c0.

Proof. Let T : c0 → C(K) be an isomorphism such that T (1n) = fn.
Note that for each x ∈ K we have∑

n∈N
αnfnχan(x) =

∑
n∈N

α∗n(x)fn(x),

where α∗n(x) = αn if x ∈ an and α∗n(x) = 0 otherwise, and so such an
(α∗n(x))n∈N belongs to c0. For every ε > 0 and every k1 < k2 from N there
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is an x ∈ K such that∥∥∥ k2∑
n=k1

αnfnχan

∥∥∥ ≤ ∥∥∥ k2∑
n=k1

α∗n(x)fn

∥∥∥+ ε

≤ ‖T‖ ‖α∗k1(x), . . . , α
∗
k2(x)‖c0 + ε

≤ ‖T‖ ‖αk1 , . . . , αk2‖c0 + ε.

So, if (αn) ∈ c0, then ‖αk1 , . . . , αk2‖c0 goes to zero if k1 and k2 go to infin-
ity; hence we may conclude that

∑
n∈N αnfnχan converges uniformly and so

the limit is continuous. A similar argument shows that ‖
∑

n∈N αnfnχan‖ ≤
‖T‖ ‖(αn)‖c0 . So we may conclude that

T ′((αn)) =
∑
n∈N

αnfnχan

is a bounded linear operator defined on c0 and into C(K). Now we can use
2.1 since ‖T ′(1n)‖ = ‖fnχan‖ > ε.

Theorem 2.7 ([20, Thm. 1]). A bounded linear operator T : C(K) →
C(K) is weakly compact if and only if it is strictly singular.

Theorem 2.8 ([3]). A bounded linear operator T : C(K) → C(K) is
weakly compact if and only if for every bounded pairwise disjoint sequence
(fn) in C(K) we have T (fn)→ 0.

Theorem 2.9 ([22]). Suppose that ε > 0 and for each n, k ∈ N we have
non-negative mnk ∈ R with

∑
n∈Nmnk < ε for each k ∈ N (i.e., the sums

are uniformly bounded). Then for each δ > 0 there is an infinite M ⊆ N
such that ∑

n∈M\{k}

mnk < δ

for each k ∈M .

Corollary 2.10. Suppose (fn)n∈N is a bounded pairwise disjoint se-
quence in C(K). Suppose (ζn)n∈N is a bounded sequence in C∗(K) and let
ε > 0. There is an infinite M ⊆ N such that whenever M ′ ⊆ M and the
supremum fM ′ = supn∈M ′ fn exists in C(K), then |ζk(fM ′)− ζk(fk)| < ε if
k ∈M ′ and |ζk(fM ′)| < ε if k ∈M \M ′.

Proof. Let µk be the Radon measure on K corresponding to ζk. Define
mnk = |µk|(fn). Apply the Rosenthal lemma 2.9 for δ = ε to obtain an
infinite M1 ⊆ M such that

∑
n∈M1\{k} |ζk(fn)| < ε if k ∈ M1. Thus, it is

enough to obtain an infinite M ⊆M1 such that whenever M ′ ⊆M and the
supremum fM ′ = supn∈M ′ fn exists in C(K), then for each k ∈ N,∑

n∈M ′
ζk(fn) = ζk(fM ′).
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Note that ∑
n∈M ′

ζk(fn) =
� ∑
n∈M ′

fn dµk,

and ζk(fM ′) =
	
fM ′ dµk where

∑
n∈M ′ fn is taken pointwise and is possibly

not in C(K). Let {Nξ : ξ < ω1} be a family of infinite sets of N whose
pairwise intersections are finite. If none of them works as M , there is a
k ∈ N and there are infinite bξ ⊆ Nξ for uncountably many ξ ∈ ω1 such that

�(
fbξ −

∑
n∈bξ

fn

)
dµk 6= 0;

but this is impossible since the Borel functions which we integrate above are
pairwise disjoint as shown in [15, Thm. 5.2].

Theorem 2.11 ([1]). Let X be a Banach space, (xn) ⊆ X be a basic
sequence and (x∗n) ⊆ X∗ a sequence biorthogonal to (xn). If (yn) ⊆ X fulfills
the condition ∑

n∈N
‖xn − yn‖ ‖x∗n‖ < δ < 1,

then (yn) is a basic sequence and (xn) and (yn) are equivalent.

3. The construction and the notation. In this section we define
our Banach spaces of the form C(K) where K is a totally disconnected
compact space. These spaces are defined as the Stone spaces of Boolean
algebras, hence some basic knowledge of Boolean algebra and Stone duality
is required. This is covered, for example, in the initial chapters of [14].

The Stone functor from the category of Boolean algebras and homo-
morphisms into the category of compact Hausdorff spaces with continuous
functions will be denoted S. Thus S(A) is the Stone space of the algebra A
and S(h) : S(B)→ S(A) is the continuous mapping induced by a homomor-
phism h : A→ B of Boolean algebras and is given by S(h)(x) = h−1(x).

If a is an element of a Boolean algebra A, then the basic clopen set
{u ∈ S(A) : a ∈ u} of the Stone space of A corresponding to a will be
denoted by [a].

One can also embed S(A) homeomorphically in {0, 1}A taking u ∈ S(A)
to the point x ∈ {0, 1}A such that x(A) = 1 if and only if a ∈ u. The Boolean
algebra of clopen subsets of a compact space K is denoted by Clop(K). We
will identify S(Clop(K)) with K and Clop(S(A) with A. For more on Stone
duality see Chapter 3 of [14].

Lemma 3.1. There is an infinite Boolean algebra A whose Stone space K
is a union K1,∗ ∪K2,∗ with K1,∗ and K2,∗ disjoint and clopen which satisfies
the following:

(1) K is a separable (compact totally disconnected) perfect space.
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(2) Every operator on C(K) is of the form T = f Id+S where f ∈ C(K)
and S is weakly compact.

(3) C(K) contains no copy of l∞.
(4) There is a dense subalgebra B ⊆ A such that K1,∗,K2,∗ ∈ B and

there is an automorphism j : B → B such that j(K3−i,∗) = Ki,∗ for
i = 1, 2 and j2 = IdB.

(5) Suppose that (an) is a sequence of clopen and pairwise disjoint sub-
sets of K. There is an infinite M ⊆ N such that the supremum
supn∈M an = a exists in A.

Proof. Let K be the Stone space of the algebra A obtained in Chapter 3
of [24]. By [24, 3.6.1–3.6.3] and the fact that K has property (K ′) of [24,
3.3.1] we obtain (1) without perfectness, (2) and (5). (3) follows from [15, 2.4]
because every space which contains l∞ must have all hyperplanes isomorphic
to itself. So, we are left with showing that there is a dense subalgebra B and
its automorphism j as above.

B will be a free Boolean algebra with 2ω independent generators. Namely,
the algebra A includes the algebra B of clopen subsets of {0, 1}2ω and is
included in the algebra of regular open subsets of {0, 1}2ω , hence B is dense
in A (see [24, p. 57]). As B is a free Boolean algebra, it is clear that there is
an automorphism j and K1,∗, K2,∗ as required, and that K is prefect.

Remark 3.2. In the literature there are several constructions of spaces
C(K) where all operators are of the form T = f Id+S where f ∈ C(K)
and S is weakly compact. Some of these constructions are obtained using
special set-theoretic assumptions as in Section 6 of [15], or in [5], and have
some additional properties. Other constructions are obtained without any
additional set-theoretic assumptions, like in [21] or [24]. The spaces of Sec-
tion 6 of [15] or of [5] have countable subalgebras B satisfying (4) of the
above lemma. The space of [21] is only presented in the connected version
and it is unclear to us if its totally disconnected version would have some
natural dense subalgebras with appropriate automorphisms. The separabil-
ity of K from [24] is not used in any argument in our paper but it shows that
a C(K) solution to the Schroeder–Bernstein problem could be a subspace
of l∞. We conjecture that also the space of Section 3 of [15] obtained without
any special set-theoretic assumptions can be used to obtain the main result
of this paper; the results of [25] support this conjecture, but it seems that
it would complicate the details. Thus it seems that the space of [24] is the
most optimal for our purpose.

Let A, B, K, K1,∗, K2,∗, j be as in 3.1, moreover let

• C = {b ∈ B : j(b) = b} = {b ∪ j(b) : b ∈ B, [b] ⊆ K1,∗} = {j(b) ∪ b :
b ∈ B, [b] ⊆ K2,∗},
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• L be the Stone space of C,
• τ = S(⊆) : K → L be the canonical surjection, where ⊆ : C → A is

the inclusion.
• Z ≡ C(L) considered as a subspace of C(K), i.e., Z = {f ◦ τ : f ∈
C(L)}.

Remark 3.3. Note that τ identifies, among others, the pairs x, y of
points of K1,∗ and K2,∗ respectively such that S(j)(x ∩ B) = y ∩ B. So in
particular, for each x ∈ Ki,∗ there is y ∈ K3−i,∗ such that τ(x) = τ(y).

As K is separable, we may assume that A is a subalgebra of ℘(N). For
n ∈ N let

• Nn be a copy of N, with Nm,Nn disjoint for n 6= m,
• An be the copy of A in ℘(Nn),
• Kn be the Stone space of An, with Nn,Nm disjoint for n 6= m,
• K1,n and K2,n be the copies of K1,∗ and K2,∗ in Kn,
• K−n =

⋃
i≤nKi,

• Bn be the copy of B in An ⊆ ℘(Nn),
• Cn be the copy of C in An ⊆ ℘(Nn),
• Ln be the Stone space of Cn,
• τn = S(⊆n) : Kn → Ln be the canonical surjection, where ⊆n : Cn →
An is the inclusion,
• jn be the copy of j on Bn,
• in,∗ : K → Kn, i∗,n : Kn → K, im,n : Kn → Km be homeomorphisms

preserving the above mentioned objects respectively,
• hn,∗ : L→ Ln, h∗,n : Ln → L, hm,n : Ln → Lm be homeomorphisms.

We will consider the following Boolean algebras:

• D∞ = {a ⊆
⋃
n∈NNn : ∀n ∈ N a ∩ Nn ∈ An},

• D0={a ∈ D∞ : ∃m∈N (∀n>m a∩Nn=∅) or (∀n>m a∩Nn=Nn)},
• D+ = {a ∈ D∞ : ∃m ∈ N ∀n > m a ∩ Nn ∈ Cn}.

In other words, D∞ is the product algebra of Ans, D0 is the direct sum
algebra of Ans, and finally D+ is the algebra of those elements of D∞ whose
coordinates eventually belong to Cn.

Let

• K∞, K0, K+ be the Stone spaces of D∞, D0, and D+ respectively.

And finally, let

• X∞ = C(K∞), X+ = C(K+), Zn ≡ C(Ln) considered as a subspace
of C(Kn), i.e., Zn = {f ◦ τn : f ∈ C(Ln)}.
• X0 = C0(K

0) = {f ∈ C(K0) : f(∞) = 0}, where ∞ is the only
ultrafilter of D0 which does not contain any Nn.
• K+n = K+ \K−n.
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We will also need the following notation for some natural projections and
inclusions:

• Pn : C(K+)→ C(Kn), restriction to Kn,
• In : C(Kn)→ C(K+), extension from Kn by zero,
• P−n : C(K+)→ C(K−n), restriction to K−n,
• I−n : C(K−n)→ C(K+), extension from K−n by zero,
• P+n : C(K+)→ C(K+n), restriction to K+n,
• I+n : C(K+n)→ C(K+), extension from K+n by zero.

The Stone–Weierstrass theorem which implies that the functions which
assume only finitely many values on clopen sets from the algebra A are dense
in C(K) whereK is the Stone space of A, gives an idea about which functions
belong to the spaces X0, X+, X∞. In particular we have the following three
descriptions:

Lemma 3.4.

X∞ ≡
{
(fn)n∈N ∈

∏
n∈N

C(Kn) : (‖fn‖)n∈N is bounded
}
.

The norm is the supremum norm.

Lemma 3.5.

X0 ≡
{
(fn)n∈N ∈

∏
n∈N

C(Kn) : lim
n→∞

‖fn‖ = 0
}
.

The norm is the supremum norm.

For f ∈ C(Kn) denote by dn(f) the distance between f and the subspace
Zn ⊆ C(Kn). Then we have:

Lemma 3.6.

X+ ≡
{
(fn)n∈N ∈

∏
n∈N

C(Kn) : (‖fn‖)n∈N is bounded and lim
n→∞

dn(fn) = 0
}
.

The norm is the supremum norm.

We will often denote elements of the above spaces using the above repre-
sentations, i.e., as a sequence (fn). Then, under the appropriate identifica-
tion, we have X0 ⊆ X+ ⊆ X∞, which will be used as well.

Definition 3.7. For x, y ∈ Kn we write x ./ y if and only if τn(x) =
τn(y).

Lemma 3.8. Suppose that f ∈ C(Kn). Then

dn(f) =
sup{|f(x)− f(y)| : x, y ∈ Kn, x ./ y}

2
.

Proof. Let s be the supremum from the lemma. If g ∈ Zn, then clearly
g(x) = g(y) for any x, y such that x ./ y, so we obtain dn(f) ≥ s/2.
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Now let f ∈ C(Kn) and δ > s. It is possible to obtain a clopen finite
partition U1, . . . , Uk of Ln such that diam(f [τ−1n [Um]]) < δ for each m =
1, . . . , k. This follows from the fact that diam(f [τ−1n [{t}]]) ≤ s for each t ∈
Ln and the continuity of f , as well as from the compactness of the spaces
involved. Now define g ∈ Zn as a function which is constant on each τ−1n [Um]
with value the arithmetic mean of the extrema of the values of f [φ−1[Um]].
This way ‖f − g‖ ≤ δ/2 and hence dn(f) ≤ s/2.

Corollary 3.9. Suppose that g ∈ Zn and f ∈ C(Kn) with ‖f − g‖ < ε.
Suppose that x, y ∈ Kn and x ./ y. Then |f(x)− f(y)| < 2ε.

Proof. Follows directly from the previous lemma.

Corollary 3.10. Suppose that (fn)n∈N ∈ X+ and xn, yn ∈ Kn with
xn ./ yn. Then |fn(xn)− fn(yn)| → 0 as n→∞.

Proof. Follows directly from the previous corollary and from Lemma
3.6.

Finally, we will need the following notation:

Y0 = {(fn) ∈ X0 : f |K1,0 = 0}, Y+ = {(fn) ∈ X+ : f |K1,0 = 0}.
Lemma 3.11. Y+ is complemented in X+, and Y+ contains a comple-

mented subspace isometric to X+. Both projections are of norm one.

Proof. Clearly

X+ = C(K+) ≡ C(K1,0)⊕ C(K2,0)⊕ {(fn) ∈ X+ : f1 = 0}
and {(fn) ∈ X+ : f1 = 0} is isometric to X+ while C(K2,0) ⊕ {(fn) ∈ X+ :
f1 = 0} is isometric to Y+.

The rest of this paper is devoted to the proof that Y+ is not isomorphic
to X+.

4. Operators on X+. First, we will define two operators which will
serve to illustrate several phenomena in Proposition 4.2 and Remarks 4.8
and 5.8.

Definition 4.1. Fix a pairwise disjoint sequence (gn) in C(K) such that
‖gn‖ = 1 and fix a dense countable subset {xn : n ∈ N} of K and for each
n ∈ N fix θn ∈ C∗(K) such that ‖θn‖ = 1 and θn|Zn = 0. Define

Λ : C(K)→ X+ by Λ(f)|Kn = f(xn)χKn for f ∈ C(K),

Θ : X+ → C(K) by Θ((fn)) =
∑
n∈N

θn(fn)gn.

Proposition 4.2. Θ and Λ are well-defined bounded linear operators.
The image of Θ is isomorphic to c0, in particular X+ is not a Grothendieck
space, and so it has a complemented copy of c0.
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Proof. The only nontrivial part of the first statement is that Θ((fn)) is
always in C(K) for any (fn) ∈ X+. It is enough to note that θn(fn) → 0.
But for each n ∈ N there is a zn ∈ Zn such that ‖fn − zn‖ → 0. Then using
the fact that θn|Zn = 0 we have

|θn(fn)| = |θn(fn − zn) + θn(zn)| ≤ ‖θn‖ ‖fn − zn‖ → 0.

So, the last statement follows as well (see [23, 5.1, 5.3]).
Note that X = {(fn) ∈ X+ : ∀n ∈ N fn|Kn is constant} is a comple-

mented copy of l∞ in X+. Thus using it and the operators Θ and Λ we may
construct many nontrivial operators from X+ into X+, which have nothing
to do with any multiplications. It was already noted in [17] that nevertheless
dealing with this kind of spaces we have strong tools (see for example 4.7
below) to analyze all the operators.

Lemma 4.3. Suppose that T : C(K)→ X+ is a bounded linear operator.
Let (fm)m∈N be a bounded pairwise disjoint sequence in C(K). Then

∀ε ∃k ∀n > k ∀m dn(T (fm)|Kn) ≤ ε.
Proof. We may assume that the norms of fm are bounded by 1. Suppose

that the lemma is false. Let ε > 0 be such that for every k ∈ N there are
n > k and mk ∈ N such that

dn(T (fmk)|Kn) > ε.

Hence we can choose increasing nks such that
dnk(T (fmk)|Knk) > ε.

Moreover as T (fmk) ∈ X+, by 3.6 the mks assume infinitely many values
and so we may assume that

dnk(T (fmk)|Knk) > ε

and mks are increasing.
By 3.8 there are points xk, yk ∈ Knk such that xk ./ yk and for each

k ∈ N,
|T (fmk)(xk)− T (fmk)(yk)| > 2ε.

Let
µk = T ∗(δxk − δyk),

so that |
	
fmk dµk| > 2ε. Since K is totally disconnected we can choose

pairwise disjoint clopen [amk ] included in the support of fmk such that
|µk([amk ])| > ε.

Now we use 2.10 for the pairwise disjoint bounded sequence (χ[amk ]
)k∈N,

ε/2 and the functionals equal to the measures µk and then 3.1(5) to obtain an
infinite M ⊆ N such that the supremum a = supk∈M amk exists in Clop(K)
and |µk(a) − µk(amk)| < ε/2 for each k ∈ M . However this implies that
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|T (χ[a])(xk)−T (χ[a])(yk)| > ε/2 for each k ∈M , which by 3.10 implies that
T (χ[a]) is not in X+, a contradiction.

Definition 4.4. Let f ∈ X+. We say that f is (Cn)-simple if for every
n ∈ N the function f |Kn assumes only finitely many values on clopen sets
from Cn.

Lemma 4.5. Suppose that (fm) is a sequence of elements of X+ such
that:

(1) fm is (Cn)-simple for each m ∈ N,
(2) fm|K−m = 0,
(3) (fm) generates a copy of c0.

Suppose T : X+ → C(K) is a bounded linear operator. Then ‖T (fm)‖ → 0.

Proof. We will find an injective subspace of X+ which contains all the
fms and then assuming that the lemma is false we will apply 2.1 and 2.2 to
obtain a contradiction with 3.1(3).

Let En be the Boolean algebra of subsets of Kn generated by the preim-
ages of all possible sets under the functions fm where m ∈ N (there are
finitely many such preimages). Note that it is finite, as almost all the func-
tions fm are zero on Kn and the remaining functions are (Cn)-simple. Con-
sider the Boolean algebra

E = {a ∈ D∞ : ∀n ∈ N a ∩ Nn ∈ En},
and note that it is a complete Boolean algebra, and hence the Banach space V
of all continuous functions which are in the closure of finite linear combi-
nations of characteristic functions of elements of E is included in X+, is
injective and fm ∈ V for each m ∈ N.

Now, if ‖T (fm)‖ 9 0, then by 2.1 we may assume that T is an isomor-
phism on the copy of c0 generated by (fm). Finally apply 2.2 to conclude
that C(Kn) contains a copy of l∞, which contradicts 3.1(3).

Lemma 4.6. Suppose that S : C(K) → X+ and T : X+ → C(K) are
bounded linear operators and (fm) is a pairwise disjoint sequence in C(K)
which generates a copy of c0 such that for every n ∈ N we have

‖T ◦ I−n ◦ P−n ◦ S(fm)‖ → 0

as m→∞. Then ‖T (S(fm))‖ → 0.

Proof. Assume that ‖T (S(fm))‖9 0. Then ‖S(fm)‖9 0 and so by 2.1
we may assume that (S(fm))m∈N generates a copy of c0.

Since ‖T ◦ I−n ◦P−n ◦S(fm)‖ → 0 and ‖T (S(fm))‖9 0, for every n ∈ N
we may choose mn ∈ N such that the ‖T ◦ I+n ◦P+n ◦S(fmn)‖ are separated
from 0 and hence so also are the P+n(S(fmn)).
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Applying 2.6 we may choose a strictly increasing sequence (nk) such that
nk > k and (P+nk ◦ S(fmnk )) generates a copy of c0.

Now we will look for some basic sequence equivalent to (P+nk(S(fmnk )).
Let ρ > 1 be a bound for the norms of a sequence biorthogonal to
(P+nk(S(fmnk ))).

By 4.3 we can thin out the sequence (nk) ⊆ N so that

|dn(Pn(P+nk(S(fmnk ))))| <
1

2k+2ρ

for all n, k ∈ N.
By the above and the Weierstrass–Stone theorem we can find (gk)s which

are (Cn)-simple, satisfy P−n(gn) = 0 for each n ∈ N and

‖gk − I+nk ◦ P+nk ◦ S(fmnk )‖ <
1

2k+2ρ
,

which means by the Bessaga–Pełczyński criterion 2.11 that (gk) generates a
copy of c0. Thus ‖T (gk)‖ → 0 by 4.5. But also ‖T (gk−I+nk ◦P+nk ◦S(fmnk )‖
→ 0, which means that T ◦I+nk ◦P+nk ◦S(fmnk )→ 0, contrary to the choice
of mns.

Corollary 4.7. Suppose that S : C(K) → X+ and T : X+ → C(K)
are bounded linear operators such that for every n ∈ N either

(1) P−n ◦ S is weakly compact, or
(2) T ◦ I−n is weakly compact.

Then T ◦ S : C(K)→ C(K) is weakly compact.

Proof. Let (fm) be a bounded pairwise disjoint sequence in C(K). We
will use 2.8, and so we need to prove that (T ◦ S)(fm)→ 0. By 2.1 we may
assume that (fm) generates a copy of c0. By hypothesis T ◦ I−n ◦ P−n ◦ S is
weakly compact for each n ∈ N and so by 2.8, T ◦ I−n ◦ P−n ◦ S(fm) → 0
as m → ∞ and n ∈ N is fixed. So, we may apply 4.6 to conclude that
(T ◦ S)(fm)→ 0 and so T ◦ S is weakly compact.

Remark 4.8. Suppose that Λ : C(K) → X+ and Θ : X+ → C(K) are
as in 4.1. Note that P−n◦Λ and Θ◦P−n are finite-dimensional and so weakly
compact for all n ∈ N but neither Λ nor Θ are weakly compact. This shows
that the composition cannot be replaced by a single operator in the above
results. Note that Θ ◦ Λ = 0.

5. The matrix of multiplications of an operator. The matrix of
multiplications discussed in this section is a crucial tool in the analysis of
operators on the space X+.
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Lemma 5.1. Suppose that K ′ and K ′′ are homeomorphic perfect compact
spaces and i : K ′′ → K ′ is a homeomorphism. Let φ, ψ ∈ C(K ′) and let
S : C(K ′) → C(K ′′) be a weakly compact operator. Suppose that for every
f ∈ C(K ′) we have

(φf) ◦ i = (ψf) ◦ i+ S(f).

Then S = 0 and φ = ψ.

Proof. Suppose that φ 6= ψ and choose a clopen U ⊆ K ′ and ε > 0
such that |(φ − ψ)|U | > ε. Let (fn) be pairwise disjoint functions of norm
one whose supports are included in U . They exist since K ′ is perfect. Note
that ‖(φ− ψ)fn‖9 0 and so ‖[(φ− ψ)fn] ◦ i‖9 0 since i is onto K ′. This
contradicts the fact that S(fn)→ 0 by 2.8. Now S must be zero as well.

Recall the definition of in,m from Section 3. Suppose that T : X+ → X+

is an operator. By 3.1(2) for each n,m ∈ N there are continuous functions
φTm,n ∈ C(Kn) and weakly compact operators STm,n : C(Kn)→ C(Km) such
that for each f ∈ C(Kn),

T (f)|Km = [φTm,nf ] ◦ in,m + STm,n(f).

We will skip the superscript T if it is clear from the context. In this section
we analyze the matrix (φTm,n)m,n∈N for an operator T on X+. Note that
Lemma 5.1 implies that such a decomposition of an operator is unique.

Lemma 5.2. Let T : X+ → X+ be a bounded linear operator. For each
n ∈ N fixed, the sequence (φTm,n)m∈N converges to 0.

Proof. Fix n ∈ N. If the lemma is false, there are points xm ∈ Kn and
an ε > 0 such that |φm,n(xm)| > ε for all m from an infinite set M1 ⊆ N. We
may assume that xm ∈ K1,n for all m ∈ N or xm ∈ K2,n for all m ∈ N; say
xm ∈ K1,n, the other case is analogous. By the continuity of φm,n and the
fact that Kn is perfect we can choose pairwise disjoint open sets Um ⊆ K1,n

such that |φm,n(x)| > ε for every x ∈ Um.
For m ∈ N fixed let αk,m : Kn → R be pairwise disjoint characteristic

functions whose supports Vk,m are included in Um. Now we use the charac-
terization 2.8 of weakly compact operators on C(K) spaces, concluding for
every m ∈ M1 that ‖Sm,n(αk,m)‖ → 0 as k → ∞. So, for each m ∈ M1 we
can choose k(m) ∈ N such that

‖Sm,n(αk(m),m)‖ < ε/5.

The definitions of Sm,n and the behaviour of φn,m on Um imply that for
x ∈ im,n[Vk(m),m] we have

|T (αk(m),m)(x)| > 4ε/5

and for all x ∈ K2,m,
|T (αk(m),m)(x)| < ε/5
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for each m ∈M1. For m ∈M1 pick ym ∈ in,m[Vk(m),m] and zm ∈ K2,m such
that ym ./ zm (see 3.3). Consider ζm = T ∗(δym)|Kn and θm = T ∗(δzm)|Kn

(restrictions of measures on K+ to Kn) as functionals on C(Kn). Now apply
2.9 twice, obtaining an infinite M2 ⊆M1 such that whenever M ⊆M2 is an
infinite set such that the supremum supm∈M αk(m),m = α exists then

|ζm(α)− ζm(αk(m),m)| < ε/5, |θm(α)− θm(αk(m),m)| < ε/5,

for m ∈ M . Since |ζm(αk(m),m)| > 4ε/5 and |θm(αk(m),m)| < ε/5, in terms
of T we find that for m ∈M we have

|T (α)(zm)| > 3ε/5, |T (α)(ym)| < 2ε/5.

Of course the above suprema α exist in C(Kn) by 3.1(5). As T (α) is in X+

and ym ./ zm, this contradicts 3.10 and completes the proof of the lemma.

Lemma 5.3. Let T : X+ → X+ be a bounded linear operator. Suppose
that m ∈ N and F ⊆ N is a finite set such that ‖

∑
n∈F |φTm,n ◦ in,m| ‖ > ε.

Then there is f ∈ C(
⋃
n∈F Kn) which is (Cn)-simple and of norm one such

that ‖T (f)|Km‖ > ε.

Proof. Let x ∈ Km be such that
∑

n∈F |φTm,n ◦ in,m(x)| > ε. Either
x ∈ K1,m or x ∈ K2,m; say x ∈ K1,m, the other case is analogous. By the
continuity of φm,n and the fact that Kn is perfect we can find a clopen
U ⊆ K1,m such that

∑
n∈F |φm,n ◦ in,m(x)| > ε + ε′ for every x ∈ U and

some ε′ > 0 and such that no φm,n for n ∈ F changes its sign on in,m[U ] (if
φm,n(x) = 0 we may remove n from F ). Let Vl ⊆ U ⊆ K1,m for l ∈ N be
pairwise disjoint. By the density of Bm in Clop(K1,m) we may choose all Vls
to be in Bm. Let

αn,l = δnχin,m[Vl]

where δn = ±1 and its sign is the same as φm,n on in,m[U ] so∑
n∈F

(φm,nαn,l)(in,m(x)) > ε+ ε′

for each x ∈ Vl and each l ∈ N.
Let Wl = j[Vl] ⊆ K2,m (for the definition of j see 3.1) and let βn,l =

δnχin,m[Wl]. Then, for each l ∈ N,

fl =
∑
n∈F

(αn,l + βn,l)

is (Cn)-simple, fl ∈ C(
⋃
n∈F Kn) and∑

n∈F
(φm,nfl)(in,m(x)) > ε+ ε′

for each x ∈ Vl. Moreover fls are pairwise disjoint.



110 P. Koszmider

Now we use the characterization 2.8 of weakly compact operators on
C(K) spaces to deduce that ‖

∑
n∈F Sm,n(αn,l + βn,l)‖ → 0 as l → ∞. So,

there is an l0 ∈ N such that∥∥∥∑
n∈F

Sm,n(αn,l0 + βn,l0)
∥∥∥ < ε′.

Consequently, for x ∈ Vl we have

|T (fl0)(x)| ≥
∣∣∣∑
n∈F

(φm,nfl0)(in,m(x))
∣∣∣− ∥∥∥∑

n∈F
Sm,n(αn,l0 + βn,l0)

∥∥∥ ≥ ε,
and hence ‖T (f)|Km‖ > ε for f = fl0 .

Lemma 5.4. Let T : X+ → X+ be a bounded linear operator. For each
m ∈ N fixed, the series

∑
n∈N |φTm,n ◦ in,m| converges uniformly.

Proof. Fix m ∈ N. If the series does not converge uniformly, then there
is ε > 0, strictly increasing nk ∈ N and xk ∈ Km for k ∈ N such that∑

nk≤n<nk+1

|φm,n(in,m(xk))| > ε.

We may assume that k < nk.
By 5.3 we can find fk ∈ C(

⋃
nk≤n<nk+1

Kn) which are (Cn)-simple and
of norm one such that ‖T (fk)‖ > ε. As the supports of fks are disjoint, they
generate a copy of c0 by 2.5. This contradicts 4.5.

Lemma 5.5. Let T : X+ → X+ be a bounded linear operator and f =
(fn) ∈ X+. Then the series

∑
n∈N[φ

T
m,nfn] ◦ in,m converges uniformly to a

function g ∈ C(Km) satisfying ‖g‖ ≤ ‖T‖ ‖f‖.

Proof. Note that for each x ∈ Km,∣∣∣ ∑
nk≤n<nk+1

[φm,nfn](in,m(x))
∣∣∣ ≤ ‖f‖( ∑

nk≤n<nk+1

|φm,n(in,m(x))|
)

≤ ‖f‖
∥∥∥ ∑
nk≤n<nk+1

|φm,n ◦ in,m|
∥∥∥,

and so by Lemma 5.4 the partial sums of
∑

n∈N[φ
T
m,nfn]◦in,m satisfy the uni-

form Cauchy condition, hence
∑

m∈N[φ
T
n,mfn] ◦ in,m is uniformly convergent.

Call the limit g ∈ C(Km).
For the proof of the estimate, note that if ‖g‖ > ‖T‖ ‖f‖ for some

f ∈ X+, then by the above inequalities
∑

1≤n≤n1
|φn,m(in,m(x))| > ‖T‖

for all x ∈ Km; but this would give an f ′ ∈ C(
⋃

1≤n≤n1
Kn) of norm one

such that ‖T (f ′)‖ > ‖T‖ by 5.3, a contradiction.
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Lemma 5.6. Let T : X+ → X+ be a bounded linear operator. There is a
bounded linear operator ΠT : X0 → X0 which satisfies

ΠT (f)|Km = [φTm,nf ] ◦ in,m
for f ∈ C(Kn) and whose norm is not greater than ‖T‖.

Proof. Let f ∈ X0 and fn = f |Kn. Fix n ∈ N. By 5.5 for every m ∈ N
the series

∑
n∈N[φm,nfn] ◦ in,m converges uniformly and its norm does not

exceed ‖T‖ ‖f‖. So for f = (fn) ∈ X0 we can define ΠT (f) by requiring

ΠT (f)|Km =
[∑
n∈N

φTm,nfn

]
◦ in,m,

which agrees with the condition of the lemma for f ∈ C(Kn). It is a bounded
operator into X∞ whose norm is not greater than ‖T‖ by 5.4. However, its
restriction to any C(Kn) is into X0 by Lemma 5.2, so on X0, it is into X0.

Lemma 5.7. Let T,R : X+ → X+ be any operators and m,n ∈ N. The
operators from C(Kn) into C(Km) given by

• Pm(ΠT − T )RIn,
• Pm(ΠR −R)TIn,
• Pm(ΠT − T )(ΠR −R)In,
• Pm(ΠR −R)(ΠT − T )In,
• PmR(ΠT − T )In,
• PmT (ΠR −R)In,

are all weakly compact.

Proof. Note that for each k ∈ N the operators

[Pm(Π
T − T )]I−k =

∑
l≤k

STm,l,

[Pm(Π
R −R)]I−k =

∑
l≤k

SRm,l,

P−k[(Π
T − T )In] =

∑
l≤k

STl,n,

P−k[(Π
R −R)In] =

∑
l≤k

SRl,n

are all weakly compact because the right hand sides are finite sums of weakly
compact operators. So by 4.7 we may conclude the proof.

Remark 5.8. If Λ : C(K) → X+ and Θ : X+ → C(K) are as in 4.1
then they decompose so that all φΛn,∗ and φΘ∗,m are zero. This proves that the
approximation of a single operator T by ΠT is not always modulo a weakly
compact operator.
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Corollary 5.9. Suppose that T,R : X+ → X+ are operators such that
R◦T = 0C(K1,0)⊕IdY+ and T ◦R = IdX+ . Then ΠRΠT = 0C(K1,0)⊕IdY0and
ΠTΠR = IdX0.

Proof. Note that
ΠTΠR = (ΠT − T + T )(ΠR −R+R)

= (ΠT − T )(ΠR −R) + (ΠT − T )R+ T (ΠR −R) + TR

and
ΠRΠT = (ΠR −R+R)(ΠT − T + T )

= (ΠR −R)(ΠT − T ) + (ΠR −R)T +R(ΠT − T ) +RT.

So by Lemma 5.7 we have
PmΠ

TΠRIn = S′m,n + PmIn

for all m,n ∈ N where S′m,ns are all weakly compact, and

PmΠ
RΠT In = S′′m,n + PmIn

for all n,m ∈ N \ {0} where S′′m,ns are all weakly compact. Moreover

P0Π
RΠT I0 = S′′0,0 + P00C(K1,0) ⊕ IdY+ I0 = S′′0,0 + 0C(K1,0) ⊕ IdC(K2,0) .

Of course PmIn is zero or the identity operator depending on whether
m 6= n or not, but in both cases it is multiplication by a continuous function;
also multiplying by 0 on K1,0 and by 1 on K2,0 is multiplication by a contin-
uous function, so by 5.1 all the operators S′m,n and S′′m,n are zero operators,
concluding the proof.

Corollary 5.10. Suppose that T,R : X+ → X+ are operators such that
R ◦ T = 0C(K1,0) ⊕ IdY+ and T ◦R = IdX+ . Then we have the following:

•
∑

k∈N(φ
R
m,k ◦ ik,n)φTk,n(x) = 0 for distinct n,m ∈ N and all x ∈ Kn,

•
∑

k∈N(φ
R
n,k ◦ ik,n)φTk,n(x) = 1 for all (n, x) ∈ (N \ {0} × K+ \ K0) ∪

({0} ×K2,0),
•
∑

k∈N(φ
R
0,k ◦ ik,0)φTk,0(x) = 0 for all x ∈ K1,0,

•
∑

k∈N(φ
T
m,k ◦ ik,n)φRk,n(x) = 0 for distinct n,m ∈ N and all x ∈ Kn,

•
∑

k∈N(φ
T
n,k ◦ ik,n)φRk,n(x) = 1 for all n ∈ N and x ∈ Kn.

Lemma 5.11. Let x ∈ K and xn = in,∗(x) and A = {xn : n ∈ N}.
Let T : X+ → X+ be a bounded linear operator. There is a bounded linear
operator ΠT

x : c0(A)→ c0(A) which satisfies

ΠT
x (1xn)(xm) = φTm,n(xn),

and whose norm is not greater than ‖T‖.
Proof. Note that if ~1n denotes the constant function on Kn whose value

is one, then ΠT (~1n)(xm) = φTm,n(xn). Since the range of ΠT is X0 we may
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conclude that (φTm,n(xn))m∈N belongs to c0(A) and its norm is not greater
than ‖T‖ by 5.6. So the above formula well defines ΠT

x : c0(A)→ c0(A).

Lemma 5.12. Suppose that T,R : X+ → X+ are operators such that
R◦T = 0C(K1,0)⊕IdY+ and T◦R = IdX+. Let x ∈ K1,∗, y ∈ K2,∗, xn = in,∗(x)
yn = in,∗(y), A = {xn : n ∈ N}, A′ = {xn : n ∈ N \ {0}}, B = {yn : n ∈ N}.
Let

ΠT
x,y = (ΠT

x , Π
T
y ) : c0(A ∪B)→ c0(A ∪B),

ΠR
x,y = (ΠR

x , Π
R
y ) : c0(A ∪B)→ c0(A ∪B).

Then ΠR
x,y ◦ΠT

x,y = 0x0 ⊕ Idc0(A′∪B) and ΠT
x,y ◦ΠR

x,y = Idc0(A∪B).

Proof. Apply Corollary 5.10 pointwise.

6. Detecting shifts in isomorphisms. If I is a set and f ∈ c0(I), by
the support of f we mean {i : f(i) 6= 0}.

Lemma 6.1. Let A = {xn : n ∈ N} and B = {yn : n ∈ N}. Suppose that
T : c0(A ∪ B) → c0(A ∪ B) is an operator such that T (1x0) = 0, T |({f ∈
c0(A) : f(1x0) = 0}) is an isomorphism onto c0(A) and T2 = T |c0(B) is
an isomorphism onto c0(B). Then there are fk ∈ c0(A ∪ B) with pairwise
disjoint and finite supports and there is an ε > 0 for which

fk(xn) = fk(yn)

for every n ∈ N, and for some distinct mks we have

|T (fk)(xmk)− T (fk)(ymk)| > ε.

Proof. Let T1 = T |c0(A). Consider T3 : c0(B) → c0(B) so that
T3(1{yn})(ym) = T1(1{xn})(xm) for every m,n ∈ N. That is, we consider
a copy of T1 copied from c0(A) on c0(B).

Claim. T3 − T2 : c0(B)→ c0(B) is not weakly compact.

Proof of the Claim. If it is, then it is strictly singular by 2.7, and so
we can apply Fredholm theory (see [18]). Namely, the Fredholm index of
T = (T1, T2) : c0(A ∪ B) → c0(A ∪ B) is equal to the Fredholm index of
(T1, T2)+(0, T3−T2) = (T1, T3), which must be an even integer since T1 and
T3 are copies of the same operator. However, T2 is an isomorphism and T1
is onto and has kernel of dimension one, and so T = (T1, T2) must have odd
Fredholm index, a contradiction which completes the proof of the claim.

Now use 2.8 to find pairwise disjoint ek ∈ c0(B) such that there are mks
such that

|[(T3 − T2)(ek)](ymk)| > ε
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for some ε > 0. Since the operator is bounded, and the norms of sums of eks
are bounded as well since they are disjoint, we may assume that all mks are
distinct.

Now define fk ∈ c0(A ∪ B) by fk|B = ek and fk(xn) = ek(yn) for each
n ∈ N. So we have fk(xn) = fk(yn) for all k, n ∈ N. Also

T (fk)(xmk) = T1(fk|A)(xmk) = T3(ek)(ymk), T (fk)(ymk) = T2(ek)(ymk),

so we obtain
|T (fk)(xmk)− T (fk)(ymk)| > ε

as required.

Lemma 6.2. Suppose that n,m ∈ N and that S : C(Kn) → C(Km) is a
weakly compact operator. Let τn : Kn → Ln be the canonical surjection as in
Section 3. Then for each j ∈ N, the set

Γ (S, j) = {t ∈ Ln : ∃x ∈ τ−1n [{t}] |S∗(δim,n(x))(τ
−1
n [{t}])| > 1/j}

is finite.

Proof. If Γ (S, j) ⊆ Ln is infinite, we can choose a discrete sequence
{tl : l ∈ N} ⊆ Γ (S, j). Let xl ∈ Kn be such that τn(xl) = tl and

|S∗(δim,n(xl))(τ
−1
n [{tl}])| > 1/j.

Recall that [a] denotes the basic clopen set of the Stone space of a Boolean
algebra which is determined by its element a. Now use the fact that

τ−1[{t}] =
⋂
{τ−1[[a]] : t ∈ [a], a ∈ Cn}

and the family whose intersection appears above is directed to conclude that
for each l ∈ N there is an al ∈ Cn such that tl ∈ [al] and

|S∗(δim,n(xl))(τ
−1
n [[al]])| > 1/j.

Moreover, as {tl : l ∈ N} is discrete we may assume that als are pairwise
disjoint. This means that

|S(χτ−1
n [[al]]

)(im,n(xl))| > 1/j

for each l ∈ N, which contradicts 2.8 since als are pairwise disjoint.

Theorem 6.3. Y+ and X+ are not isomorphic.

Proof. Suppose T1 : Y+ → X+ and R1 : X+ → Y+ are mutually inverse
isomorphisms. Define T,R : X+ → X+ by R = R1 and T = 0C(K1,0) ⊕ T1.
We have R ◦ T = 0C(K1,0) ⊕ IdY+ and T ◦R = IdX+ .

By 5.12, ΠT
x,y satisfies the hypothesis of 6.1 To use it successfully we still

need to make an appropriate choice of x and y. Let

Γ = {t ∈ L : ∃n,m, j ∈ N hn,∗(t) ∈ Γ (Sm,n, j)}.
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By 6.2, Γ is countable where Sm,n = STm,n. Pick t ∈ L \ Γ and x ∈ K1,∗,
y ∈ K2,∗ such that τ(x) = τ(y) = t (see 3.3). As usual let xn = in,∗(x),
yn = in,∗(y), and tn = hn,∗(t).

Now use 6.1 to obtain αk ∈ c0(A ∪ B) with pairwise disjoint and finite
supports Fk and an ε > 0 such that αk(xn) = αk(yn) for every n ∈ N and
for some distinct mks,

|ΠT
x,y(αk)(xmk)−Π

T
x,y(αk)(ymk)| > ε.

For n ∈ Fk we will find an ∈ Cn such that the operator T will have
approximately the same behavior on the vectors

fk =
∑
n∈Fk

αk(xn)χτ−1
n [[an]]

∈ X0 as ΠT
x,y on αks.

Note that for each zn satisfying τ(zn) = tn (in particular zn = xn, yn),
by the choice of t outside Γ , the measure S∗m,n(δim,n(zn)) of the set τ

−1
n [{tn}]

is zero. So, using the fact that τ−1n [{tn}] =
⋂
{τ−1n [[a]] : tn ∈ [a], a ∈ Cn} for

each n ∈ Fk we can find an ∈ Cn such that tn ∈ [an] and

|S∗mk,n(δxmk )(τ
−1
n [[an]])|, |S∗mk,n(δymk )(τ

−1
n [[an]])| <

ε

3|Fk| |αk(xn)|
,

so, for each k ∈ N and n ∈ Fk we have

|αk(xn)Smk,n(χτ−1
n [[an]]

)(xmk)|, |αk(xn)Smk,n(χτ−1
n [[an]]

)(ymk)| <
ε

3|Fk|
,

and hence∣∣∣Smk,n(∑
n∈Fk

αk(xn)χτ−1
n [[an]]

(xmk)
)∣∣∣, ∣∣∣Smk,n(∑

n∈Fk

αk(xn)χτ−1
n [[an]]

(ymk)
)∣∣∣< ε

3

and finally
|Smk,n(fk)(xmk)|, |Smk,n(fk)(ymk)| < ε/3

for each k ∈ N and each n ∈ Fk. On the other hand,
|ΠT (fk)(xmk)−Π

T (fk)(ymk)| = |Π
T
x,y(fk)(xmk)−Π

T
x,y(fk)(ymk)| > ε,

hence for each k we have
|T (fk)(xmk)− T (fk)(ymk)| > ε/3

where mks are distinct and fks are bounded (Cn)-simple and have disjoint
supports.

Now note that for any infinite M ⊆ N the supremum fM of {fk : k ∈ N}
exists in X+.

Let ζk = T ∗(δxmk − δymk ). In particular, |ζk(fk)| > ε/3. Apply 2.10 to
obtain an infinite M such that |ζk(fM )| > ε/4 for each k ∈ M . But this
means that

|T (fM )(xmk)− T (fM )(ymk)| > ε/4

for each k ∈M . This finally contradicts 3.10 since xmk ./ ymk .
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Corollary 6.4. X+ and Y+ are not isomorphic but each is isomorphic
to a complemented subspace of the other.
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