On generalized property (v) for bounded linear operators

by
J. Sanabria, C. Carpintero, E. Rosas and O. García (Cumaná)

Abstract

An operator T acting on a Banach space X has property $(g w)$ if $\sigma_{a}(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)=E(T)$, where $\sigma_{a}(T)$ is the approximate point spectrum of $T, \sigma_{S B F_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of T and $E(T)$ is the set of all isolated eigenvalues of T. We introduce and study two new spectral properties (v) and $(g v)$ in connection with Weyl type theorems. Among other results, we show that T satisfies $(g v)$ if and only if T satisfies $(g w)$ and $\sigma(T)=\sigma_{a}(T)$.

1. Introduction and preliminaries. Throughout this paper, $L(X)$ denotes the algebra of all bounded linear operators acting on an infinitedimensional complex Banach space X. For $T \in L(X)$, we denote by $N(T)$ the null space of T and by $R(T)=T(X)$ the range of T. We denote by $\alpha(T):=\operatorname{dim} N(T)$ the nullity of T and by $\beta(T):=\operatorname{codim} R(T)=$ $\operatorname{dim} X / R(T)$ the defect of T.

Other two classical quantities in operator theory are the ascent $p=p(T)$, defined as the smallest non-negative integer p such that $N\left(T^{p}\right)=N\left(T^{p+1}\right)$ (if no such exists, we put $p(T)=\infty$), and the descent $q=q(T)$, defined as the smallest non-negative integer q such that $R\left(T^{q}\right)=R\left(T^{q+1}\right)$ (if no such q exists, we put $q(T)=\infty)$. It is well known that if $p(T)$ and $q(T)$ are both finite then $p(T)=q(T)$. Furthermore, $0<p(\lambda I-T)=q(\lambda I-T)<\infty$ if and only if λ is a pole of the resolvent (see [22, Prop. 50.2]).

An operator $T \in L(X)$ is said to be Fredholm (resp., upper semi-Fredholm, lower semi-Fredholm) if $\alpha(T), \beta(T)$ are both finite (resp., $R(T)$ is closed and $\alpha(T)<\infty, \beta(T)<\infty)$, and semi-Fredholm if T is either upper or lower semi-Fredholm. If T is semi-Fredholm, its index is defined by ind $T:=$ $\alpha(T)-\beta(T)$.

Other two important classes of operators in Fredholm theory are the classes of semi-Browder operators. These are defined as follows: $T \in L(X)$

[^0]is said to be Browder (resp. upper semi-Browder, lower semi-Browder) if it is Fredholm (resp., upper semi-Fredholm, lower semi-Fredholm) and both $p(T), q(T)$ are finite (resp., $p(T)<\infty, q(T)<\infty)$. An operator $T \in L(X)$ is said to be upper semi-Weyl (resp., lower semi-Weyl) if it is upper Fredholm (resp., lower semi-Fredholm) and ind $T \leq 0$ (resp., ind $T \geq 0$); T is Weyl if it is both upper and lower semi-Weyl, i.e. T is a Fredholm operator of index 0 .

The Browder spectrum and the Weyl spectrum are defined, respectively, by

$$
\begin{aligned}
\sigma_{b}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Browder }\}, \\
\sigma_{W}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Weyl }\} .
\end{aligned}
$$

Since every Browder operator is Weyl, we have $\sigma_{W}(T) \subseteq \sigma_{b}(T)$. Analogously, the upper semi-Browder spectrum, upper semi-Weyl spectrum, lower semiBrowder spectrum, and lower semi-Weyl spectrum are defined by

$$
\begin{aligned}
\sigma_{u b}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi-Browder }\}, \\
\sigma_{S F_{+}^{-}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi-Weyl }\}, \\
\sigma_{l b}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not lower semi-Browder }\}, \\
\sigma_{S F_{-}^{+}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not lower semi-Weyl }\} .
\end{aligned}
$$

From the classical Fredholm theory we have

$$
\begin{aligned}
\sigma_{S F_{+}^{-}}(T) & =\sigma_{S F_{-}^{+}}\left(T^{*}\right), & \sigma_{S F_{-}^{+}}(T) & =\sigma_{S F_{+}^{-}}\left(T^{*}\right), \\
\sigma_{u b}(T) & =\sigma_{l b}\left(T^{*}\right), & \sigma_{l b}(T) & =\sigma_{u b}\left(T^{*}\right) .
\end{aligned}
$$

Given $n \in \mathbb{N}$, we denote by T_{n} the restriction of $T \in L(X)$ to the subspace $R\left(T^{n}\right)=T^{n}(X)$. According [12] and [15], T is semi-B-Fredholm (resp., B-Fredholm, upper semi-B-Fredholm, lower semi-B-Fredholm) if for some integer $n \geq 0$, the range $R\left(T^{n}\right)$ is closed and T_{n}, viewed as an operator from $R\left(T^{n}\right)$ into itself, is semi-Fredholm (resp., Fredholm, upper semi-Fredholm, lower semi-Fredholm). Analogously, $T \in L(X)$ is said to be B-Browder (resp., upper semi-B-Browder, lower semi-B-Browder) if for some integer $n \geq 0$ the range $R\left(T^{n}\right)$ is closed and T_{n} is Browder (resp., upper semiBrowder, lower semi-Browder).

If T_{n} is a semi-Fredholm operator, it follows from [15, Proposition 2.1] that so is T_{m} for every $m \geq n$, and ind $T_{m}=\operatorname{ind} T_{n}$. This enables us to define the index of a semi-B-Fredholm operator T as the index of the semiFredholm operator T_{n}.

Further $T \in L(X)$ is said to be B-Weyl [13, Definition 1.1] if it is BFredholm of index 0 ; upper semi-B-Weyl if it is upper semi-B-Fredholm with ind $T \leq 0$; and lower semi-B-Weyl if it is lower semi-B-Fredholm with ind $T \geq 0$.

An operator $T \in L(X)$ is said to be left (resp. right) Drazin invertible if $p(T)<\infty(\operatorname{resp} . q(T)<\infty)$ and $R\left(T^{p(T)+1}\right)$ (resp. $R\left(T^{q(T)}\right)$) is closed. Moreover, T is Drazin invertible if it has finite ascent and descent. We denote by $L D(X), R D(X)$ and $D(X)$ the classes of left Drazin invertible, right Drazin invertible and Drazin invertible operators respectively. It is proved in [12, Theorem 3.6] that a B-Browder (resp., upper semi-Browder, lower semi-Browder) operator is just a Drazin invertible (resp., left Drazin invertible, right Drazin invertible) operator.

The classes of operators defined above motivate the definitions of several spectra. The left Drazin invertible spectrum is defined by

$$
\sigma_{L D}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \notin L D(X)\}
$$

the right Drazin invertible spectrum is

$$
\sigma_{R D}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \notin R D(X)\}
$$

while the Drazin invertible spectrum is

$$
\sigma_{D}(T)=\{\lambda \in \mathbb{C}: \lambda I-T \notin D(X)\}
$$

Clearly, $\sigma_{D}(T)=\sigma_{L D}(T) \cup \sigma_{R D}(T)$. The B-Weyl spectrum is defined by

$$
\sigma_{B W}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not B-Weyl }\}
$$

The upper semi-B-Weyl spectrum and lower semi-B-Weyl spectrum are, respectively,

$$
\begin{aligned}
\sigma_{S B F_{+}^{-}} & (T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi-B-Weyl }\} \\
\sigma_{S B F_{-}^{+}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not lower semi-B-Weyl }\}
\end{aligned}
$$

Obviously,

$$
\begin{gathered}
\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T) \cup \sigma_{S B F_{-}^{+}}(T), \quad \sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{-}^{+}}\left(T^{*}\right) \\
\sigma_{S B F_{-}^{+}}(T)=\sigma_{S B F_{+}^{-}}\left(T^{*}\right), \quad \sigma_{L D}(T)=\sigma_{R D}\left(T^{*}\right), \quad \sigma_{R D}(T)=\sigma_{L D}\left(T^{*}\right)
\end{gathered}
$$

Moreover,

$$
\sigma_{B W}(T) \subseteq \sigma_{D}(T), \quad \sigma_{S B F_{+}^{-}}(T) \subseteq \sigma_{L D}(T), \quad \sigma_{S B F_{-}^{+}}(T) \subseteq \sigma_{R D}(T)
$$

Another class of operators related to semi-B-Fredholm operators is the class of quasi-Fredholm operators defined below. First, we set

$$
\Delta(T):=\left\{n \in \mathbb{N}: m \geq n, m \in \mathbb{N} \Rightarrow T^{n}(X) \cap N(T) \subseteq T^{m}(X) \cap N(T)\right\}
$$

The degree of stable iteration is defined as $\operatorname{dis}(T):=\inf \Delta(T)$ if $\Delta(T) \neq \emptyset$, while $\operatorname{dis}(T)=\infty$ if $\Delta(T)=\emptyset$.

Definition 1.1. $T \in L(X)$ is said to be quasi-Fredholm of degree d if there exists $d \in \mathbb{N}$ such that:
(a) $\operatorname{dis}(T)=d$,
(b) $T^{n}(X)$ is a closed subspace of X for each $n \geq d$,
(c) $T(X)+N\left(T^{d}\right)$ is a closed subspace of X.

By Proposition 2.5 of [11 every semi-B-Fredholm operator is quasiFredholm. For further information on quasi-Fredholm operators we refer to [12] and [2].

Now, we introduce an important property in local spectral theory. The localized version of this property has been introduced by Finch [20, and in the framework of Fredholm theory, this property has been characterized in several ways (see Chapter 3 of [1]). An operator $T \in L(X)$ is said to have the single valued extension property at $\lambda_{0} \in \mathbb{C}$ (abbreviated SVEP at λ_{0}) if for every open disc $\mathbb{D}_{\lambda_{0}} \subseteq \mathbb{C}$ centered at λ_{0} the only analytic function $f: \mathbb{D}_{\lambda_{0}} \rightarrow X$ which satisfies the equation

$$
(\lambda I-T) f(\lambda)=0 \quad \text { for all } \lambda \in \mathbb{D}_{\lambda_{0}}
$$

is $f \equiv 0$ on $\mathbb{D}_{\lambda_{0}}$. The operator T is said to have SVEP if it has SVEP at every point $\lambda \in \mathbb{C}$. Evidently, every $T \in L(X)$ has SVEP at each point of the resolvent set $\rho(T):=\mathbb{C} \backslash \sigma(T)$. Moreover, from the identity theorem for analytic functions it is easily seen that T has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of the spectrum. Note that (see [1, Theorem 3.8])

$$
\begin{equation*}
p(\lambda I-T)<\infty \Rightarrow T \text { has SVEP at } \lambda, \tag{1}
\end{equation*}
$$

and dually

$$
\begin{equation*}
q(\lambda I-T)<\infty \Rightarrow T^{*} \text { has SVEP at } \lambda . \tag{2}
\end{equation*}
$$

Recall that $T \in L(X)$ is said to be bounded below if T is injective and has closed range. Denote by $\sigma_{a}(T)$ the classical approximate point spectrum defined by

$$
\sigma_{a}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not bounded below }\} .
$$

Note that if $\sigma_{s}(T)$ denotes the surjectivity spectrum

$$
\sigma_{s}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not onto }\},
$$

then $\sigma_{a}(T)=\sigma_{s}\left(T^{*}\right)$ and $\sigma_{s}(T)=\sigma_{a}\left(T^{*}\right)$.
It is easily seen from the definition of localized SVEP that

$$
\begin{equation*}
\lambda \notin \operatorname{acc} \sigma_{a}(T) \Rightarrow T \text { has SVEP at } \lambda, \tag{3}
\end{equation*}
$$

where acc K means the set of all accumulation points of $K \subseteq \mathbb{C}$, and

$$
\begin{equation*}
\lambda \notin \operatorname{acc} \sigma_{s}(T) \Rightarrow T^{*} \text { has SVEP at } \lambda . \tag{4}
\end{equation*}
$$

REMARK 1.2. The implications (1)-(4) are actually equivalences whenever $\lambda I-T$ is a quasi-Fredholm operator, in particular when $\lambda I-T$ is semi-B-Fredholm (see [2]).

Lemma 1.3 ([3, Lemma 2.4]). Let $T \in L(X)$. Then
(i) T is upper semi-B-Fredholm and $\alpha(T)<\infty$ if and only if $T \in$ $\Phi_{+}(X)$.
(ii) T is lower semi-B-Fredholm and $\beta(T)<\infty$ if and only if $T \in$ $\Phi_{-}(X)$.

The following lemma is a particular case of [12, Theorem 3.6].
Lemma 1.4. For $T \in L(X)$, the following statements are equivalent:
(i) $\lambda_{0} I-T \in L D(X) \Leftrightarrow \lambda_{0} I-T$ is quasi-Fredholm with finite ascent,
(ii) $\lambda_{0} I-T \in R D(X) \Leftrightarrow \lambda_{0} I-T$ is quasi-Fredholm with finite descent,
(iii) $\lambda_{0} I-T \in D(X) \Leftrightarrow \lambda_{0} I-T$ is quasi-Fredholm with finite ascent and descent.

Denote by iso K the set of all isolated points of $K \subseteq \mathbb{C}$. If $T \in L(X)$ define

$$
\begin{aligned}
E^{0}(T) & =\{\lambda \in \text { iso } \sigma(T): 0<\alpha(\lambda I-T)<\infty\} \\
E_{a}^{0}(T) & =\left\{\lambda \in \text { iso } \sigma_{a}(T): 0<\alpha(\lambda I-T)<\infty\right\} \\
E(T) & =\{\lambda \in \text { iso } \sigma(T): 0<\alpha(\lambda I-T)\} \\
E_{a}(T) & =\left\{\lambda \in \text { iso } \sigma_{a}(T): 0<\alpha(\lambda I-T)\right\}
\end{aligned}
$$

Let $\Pi^{0}(T)=\sigma(T) \backslash \sigma_{b}(T)$, i.e. $\Pi^{0}(T)$ is the set of all poles of the resolvent of T having finite rank. Clearly, for every $T \in L(X)$ we have

$$
\Pi^{0}(T) \subseteq E^{0}(T) \subseteq E_{a}^{0}(T) \quad \text { and } \quad E(T) \subseteq E_{a}(T)
$$

Let $T \in L(X)$. Following Coburn [19], T is said to satisfy Weyl's theorem, in symbols (W), if $\sigma(T) \backslash \sigma_{W}(T)=E^{0}(T)$. Following Rakočević ([24], [23]), T is said to satisfy a-Weyl's theorem, in symbols ($a W$), if $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{a}^{0}(T)$, and T is said to have property (w) if $\sigma_{a}(T) \backslash$ $\sigma_{S F_{+}^{-}}(T)=E^{0}(T)$. According to Berkani and Koliha [14], T is said to satisfy generalized Weyl's theorem, in symbols $(g W)$, if $\sigma(T) \backslash \sigma_{B W}(T)=E(T)$. Similarly, T is said to satisfy generalized a-Weyl's theorem, in symbols $(g a W)$, if $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E_{a}(T)$, and T is said to have generalized property (w), in symbols $(g w)$, if $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$.

For $T \in L(X)$, define

$$
\begin{aligned}
\Pi_{a}^{0}(T) & =\sigma_{a}(T) \backslash \sigma_{u b}(T) \\
\Pi(T) & =\sigma(T) \backslash \sigma_{D}(T) \\
\Pi_{a}(T) & =\sigma_{a}(T) \backslash \sigma_{L D}(T)
\end{aligned}
$$

Following [16], an operator $T \in L(X)$ is said to have property (b) (resp. $(g b))$ if $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=\Pi^{0}(T)\left(\right.$ resp. $\left.\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\Pi(T)\right)$. It is shown in [16, Theorem 2.3] that ($g b$) implies (b) but not conversely. According to [17], an operator $T \in L(X)$ has property (ab) (resp. (gab)) if $\sigma(T) \backslash \sigma_{W}(T)=\Pi_{a}^{0}(T)$ (resp. $\left.\sigma(T) \backslash \sigma_{B W}(T)=\Pi_{a}(T)\right)$. It is proved in [17, Theorem 2.2] that (gab) implies (ab), but not conversely. According also to [17], $T \in L(X)$ has property (aw) (resp. (gaw)) if $\sigma(T) \backslash \sigma_{W}(T)=E_{a}^{0}(T)$ (resp. $\sigma(T) \backslash \sigma_{B W}(T)=E_{a}(T)$). In [17, Theorem 3.3], it is shown that (gaw) implies (aw), but not conversely.

Following [25], we say that $T \in L(X)$ has property (z) (resp. $(g z)$) if $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{a}^{0}(T)$ (resp. $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E_{a}(T)$). Property $(g z)$ extends (z) to the context of B-Fredholm theory. It is shown in [25, Theorem 2.2] that $(g z)$ implies (z), but not conversely. Following [25], $T \in L(X)$ is said to have property $(a z)$ (resp. $(g a z)$) if $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=\Pi_{a}^{0}(T)$ (resp. $\left.\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\Pi_{a}(T)\right)$. In [25, Corollary 3.5], it is shown that (gaz) is equivalent to $(a z)$, and [25, Corollary 3.7] states that $T \in L(X)$ satisfies $(g z)$ if and only if it satisfies $(g a z)$ and $E_{a}(T)=\Pi_{a}(T)$.

According to [5], $T \in L(X)$ has property (R) if $\Pi_{a}^{0}(T)=E^{0}(T)$. It is shown in [5, Theorem 2.4] that (w) implies (R), but not conversely. Also in [5] it is shown that property (R) and Weyl's theorem are independent. According to [6], an operator $T \in L(X)$ has the generalized property (R), abbreviated $(g R)$, if $\Pi_{a}(T)=E(T)$. In [6, Theorem 2.2], it is shown that $(g R)$ implies (R), but not conversely.
2. Generalized property (v). According to [21], $T \in L(X)$ has property $(B w)$ if $\sigma(T) \backslash \sigma_{B W}(T)=E^{0}(T)$. By [21, Theorem 2.4], if $T \in L(X)$ satisfies $(B w)$, then generalized Browder's theorem holds for T and $\sigma(T)=$ $\sigma_{B W}(T) \cup$ iso $\sigma(T)$.

In this section we introduce and study two new spectral properties that are independent of $(B w)$.

Definition 2.1. An operator $T \in L(X)$ is said to have property (v) if $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$, and generalized property (v), abbreviated ($g v$), if $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$.

Theorem 2.2. If $T \in L(X)$ has property $(g v)$, then it has property (v).
Proof. Assume that T satisfies $(g v)$ and let $\lambda \in \sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Since $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T) \subseteq \sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$, we have $\lambda \in \sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. As T satisfies $(g v)$, it follows that $\lambda \in E(T)$. Thus $\lambda \in$ iso $\sigma(T)$ and $\alpha(\lambda I-T)>0$. Since $\lambda I-T$ is upper semi-Weyl, it is upper semi-Fredholm. Therefore, $0<\alpha(\lambda I-T)<\infty$, thus $\lambda \in E^{0}(T)$. This shows $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T) \subseteq E^{0}(T)$.

Conversely, let $\lambda \in E^{0}(T)$. Then $\lambda \in$ iso $\sigma(T)$ and $0<\alpha(\lambda I-T)<$ ∞. Since T satisfies $(g v)$ and $E^{0}(T) \subseteq E(T)$, we have $\lambda \in \sigma(T)$ and $\lambda I-T$ is upper semi-B-Weyl. Thus, $\lambda I-T$ is upper semi-B-Fredholm and $\alpha(\lambda I-T)<\infty$. By Lemma 1.3, $\lambda I-T$ is upper semi-Fredholm, and hence upper semi-Weyl. Therefore, $\lambda \in \sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)$ and consequently we have $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$.

The converse of Theorem 2.2 does not hold in general, as we can see in the following example.

Example 2.3. Let Q be defined, for $x=\left(\xi_{i}\right) \in \ell^{1}$, by

$$
Q\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(0, \alpha_{1} \xi_{1}, \alpha_{2} \xi_{2}, \ldots\right)
$$

where $\left(\alpha_{i}\right)$ is a sequence of complex numbers such that $0<\left|\alpha_{i}\right| \leq 1$ and $\sum_{i=1}^{\infty} \alpha_{i}<\infty$. It follows from [14, Example 3.12] that

$$
\overline{R\left(Q^{n}\right)} \neq R\left(Q^{n}\right), \quad n=1,2, \ldots
$$

Define an operator T on $X=\ell^{1} \oplus \ell^{1}$ by $T=Q \oplus 0$. Then $N(T)=\{0\} \oplus \ell^{1}$, $\sigma(T)=\{0\}, E(T)=\{0\}, E^{0}(T)=\emptyset$. Since $R\left(T^{n}\right)=R\left(Q^{n}\right) \oplus\{0\}, R\left(T^{n}\right)$ is not closed for any $n \in \mathbb{N}$; so T is not upper semi-B-Weyl (or upper semi-Weyl) and $\sigma_{S B F_{+}^{-}}(T)=\{0\}$ (and $\sigma_{S F_{+}^{-}}(T)=\{0\}$). We thus have

$$
\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T) \neq E(T), \quad \sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)
$$

Hence, T satisfies (v), but not $(g v)$.
The following two examples show that properties $(B w)$ and (v) (or $(g v))$ are independent.

EXAMPLE 2.4. Let R be the unilateral right shift operator on $\ell^{2}(\mathbb{N})$. Then, $\sigma(R)=\mathbf{D}(0,1)$, the closed unit disc on \mathbb{C}, and so iso $\sigma(R)=E^{0}(R)=\emptyset$, $E(R)=\emptyset$. Moreover, $\sigma_{a}(R)=\Gamma, \sigma_{S B F_{+}^{-}}(R)=\Gamma, \sigma_{S F_{+}^{-}}(R)=\Gamma$, where Γ denotes the unit circle of \mathbb{C}. Then R does not satisfy (v) or ($g v$), since $\sigma(R) \backslash \sigma_{S F_{+}^{-}}(R)=\mathbf{D}(0,1) \backslash \Gamma \neq \emptyset=E^{0}(R)$ and $\sigma(R) \backslash \sigma_{S B F_{+}^{-}}(R)=$ $\mathbf{D}(0,1) \backslash \Gamma \neq \emptyset=E(R)$. On the other hand, $\sigma_{B W}(R)=\mathbf{D}(0,1)$, and so $\sigma(R) \backslash \sigma_{B W}(R)=\emptyset=E^{0}(R)$. Hence, R satisfies $(B w)$.

Example 2.5. Consider the operator $T=0$ on $\ell^{2}(\mathbb{N})$. Then $\sigma(T)=$ $\sigma_{a}(T)=\{0\}, \sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)=\emptyset$ and $E_{a}^{0}(T)=\emptyset$. Since $E^{0}(T) \subseteq$ $E_{a}^{0}(T)$, we have $E^{0}(T)=\emptyset$. Therefore, $\sigma(T) \backslash \sigma_{B W}(T)=E^{0}(T)$. Thus, T does not satisfy $(B w)$. Moreover, $E(T)=\{0\}$. Consequently, $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$ $=\{0\}=E(T)$, and so T satisfies $(g v)$ and hence (v).

Theorem 2.6. Let $T \in L(X)$. Then T has property (v) if and only if it satisfies Weyl's theorem and $\sigma_{S F_{+}^{-}}(T)=\sigma_{W}(T)$.

Proof. Sufficiency: Suppose that T satisfies (v), i.e. $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=$ $E^{0}(T)$. If $\lambda \in \sigma(T) \backslash \sigma_{W}(T)$, then $\lambda I-T$ is a Weyl operator, and hence it is upper semi-Weyl. Thus, $\lambda \in \sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$, and so $\sigma(T) \backslash \sigma_{W}(T) \subseteq$ $E^{0}(T)$.

To show the opposite inclusion, let $\lambda \in E^{0}(T)$. Then $\lambda \in \sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)$, and so $\lambda I-T$ is upper semi-Fredholm. Since $\lambda \in$ iso $\sigma(T)$, both T, T^{*} have SVEP at λ. Thus, $0<p(\lambda I-T)=q(\lambda I-T)<\infty$. This implies that $\lambda I-T$ is a Browder operator, and so a Weyl operator. Therefore, $\lambda \in \sigma(T) \backslash \sigma_{W}(T)$, and hence T satisfies Weyl's theorem. Consequently, $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$ and $\sigma(T) \backslash \sigma_{W}(T)=E^{0}(T)$. Hence, $\sigma_{S F_{+}^{-}}(T)=$ $\sigma_{W}(T)$.

Necessity: Suppose that T satisfies Weyl's theorem and $\sigma_{S F_{+}^{-}}(T)=$ $\sigma_{W}(T)$. Then $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{W}(T)=E^{0}(T)$, and hence T satisfies (v).

Similarly to Theorem 2.6 , we have the following result.
Theorem 2.7. Let $T \in L(X)$. Then T has property $(g v)$ if and only if T satisfies generalized Weyl's theorem and $\sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T)$.

Proof. Sufficiency: Suppose that T satisfies $(g v)$, i.e. $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$ $=E(T)$. If $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$, then $\lambda I-T$ is a B-Weyl operator, and hence it is upper semi-B-Weyl. Thus, $\lambda \in \sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$, and so $\sigma(T) \backslash \sigma_{B W}(T) \subseteq E(T)$.

To show the opposite inclusion, let $\lambda \in E(T)$. Then $\lambda \in \sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$, so that $\lambda I-T$ is upper semi-B-Fredholm, hence quasi-Fredholm, and both T, T^{*} have SVEP at λ. By Remark 1.2 and Lemma 1.4, $\lambda I-T$ is Drazin invertible, and hence B-Weyl. Therefore, $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$, and so $E(T) \subseteq$ $\sigma(T) \backslash \sigma_{B W}(T)$. This shows that T satisfies generalized Weyl's theorem. Consequently, $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$ and $\sigma(T) \backslash \sigma_{B W}(T)=E(T)$. Therefore, $\sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T)$.

Necessity: Suppose that T satisfies generalized Weyl's theorem and $\sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T)$. Then $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{B W}(T)=E(T)$, and so T satisfies $(g v)$.

The next example shows that, in general, Weyl's theorem (resp. generalized Weyl's theorem) does not imply property (v) (resp. $(g v)$).

Example 2.8. Let R be the shift operator defined in Example 2.4. Then $\sigma_{B W}(R)=\mathbf{D}(0,1), \sigma_{W}(R)=\mathbf{D}(0,1)$. Therefore, $\sigma(R) \backslash \sigma_{W}(R)=\emptyset=E^{0}(R)$ and $\sigma(R) \backslash \sigma_{B W}(R)=\emptyset=E(R)$. Thus, R satisfies both Weyl's theorem and generalized Weyl's theorem, but neither (v) nor $(g v)$.

In the next theorem we give conditions for the equivalence between (v) and (w) (resp. $(g v)$ and $(g w))$.

Theorem 2.9. Let $T \in L(X)$. Then:
(i) T has property (v) if and only if T has property (w) and $\sigma(T)=$ $\sigma_{\mathrm{a}}(T)$.
(ii) T has property $(g v)$ if and only if T has property $(g w)$ and $\sigma(T)=$ $\sigma_{\mathrm{a}}(T)$.

Proof. (i) Suppose that T satisfies (v) and let $\lambda \in \sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Since $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T) \subseteq \sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$, we have $\lambda \in \pi_{00}(T)$. Thus, $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T) \subseteq E^{0}(T)$. Now if $\lambda \in E^{0}(T)$, then $\lambda \in$ iso $\sigma(T)$ and $0<$ $\alpha(\lambda I-T)<\infty$. Consequently, $\lambda I-T$ is not injective, and hence not bounded below. So, $\lambda \in \sigma_{a}(T)$. Since T satisfies (v) and $\lambda \in E^{0}(T)$, it follows that $\lambda I-T$ is upper semi-Weyl. Therefore, $\lambda \in \sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Thus, $E^{0}(T) \subseteq$ $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$ and T satisfies (w). Consequently, $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$ and $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$. Therefore, $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$ and $\sigma(T)=\sigma_{a}(T)$.

Conversely, suppose that T satisfies (w) and $\sigma(T)=\sigma_{a}(T)$. Then $\sigma(T) \backslash$ $\sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$. Hence, $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)$ and T satisfies (v).
(ii) Suppose that T satisfies $(g v)$ and let $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Since $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq \sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$, we have $\lambda \in E(T)$. Therefore, $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq E(T)$. Now if $\lambda \in E(T)$, then $\lambda \in$ iso $\sigma(T)$ and $0<$ $\alpha(\lambda I-T)$. Consequently, $\lambda I-T$ is not injective, and hence not bounded below. Thus, $\lambda \in \sigma_{a}(T)$. As T satisfies $(g v)$ and $\lambda \in E(T)$, it follows that $\lambda I-T$ is upper semi-B-Weyl. Hence, $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$, so $E(T) \subseteq$ $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$ and T satisfies $(g w)$. Consequently, $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=$ $E(T)$ and $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$. Therefore, $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)$ and $\sigma(T)=\sigma_{a}(T)$.

Conversely, assume that T satisfies $(g w)$ and $\sigma(T)=\sigma_{a}(T)$. Then $\sigma(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$. Thus, $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$ and T satisfies $(g v)$.

The following example shows that property ($g w$) (resp. (w)) does not imply (gv) (resp. (v)).

Example 2.10. Let R be the shift operator defined in Example 2.4. Then R does not satisfy (v) or $(g v)$. On the other hand, $\sigma_{a}(R) \backslash \sigma_{S F_{+}^{-}}(R)=$
$\emptyset=E^{0}(R)$ and $\sigma_{a}(R) \backslash \sigma_{S B F_{+}^{-}}(R)=\emptyset=E(R)$. Therefore, R satisfies (w) and ($g w$).

Recall that $T \in L(X)$ is said to satisfy a-Browder's theorem (resp. generalized a-Browder's theorem) if $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=\Pi_{a}^{0}(T)$ (resp. $\sigma_{a}(T) \backslash$ $\left.\sigma_{S B F_{+}^{-}}(T)=\Pi_{a}(T)\right)$. From [10, Theorem 2.2] (see also [4, Theorem 3.2(ii)]), a-Browder's theorem and generalized a-Browder's theorem are equivalent. It is well known that a-Browder's theorem for T implies Browder's theorem for T, i.e. $\sigma(T) \backslash \sigma_{W}(T)=\Pi^{0}(T)$. Also by [10, Theorem 2.1] Browder's theorem for T is equivalent to generalized Browder's theorem for T, i.e. $\sigma(T) \backslash \sigma_{B W}(T)=\Pi(T)$.

We prove in Theorem 2.2 that property $(g v)$ implies (v). The next result gives the precise relationships between these properties.

Theorem 2.11. For $T \in L(X)$, the following statements are equivalent:
(i) T has property $(g v)$,
(ii) T has property (v) and $E(T)=\Pi_{a}(T)$.

Proof. (i) $\Rightarrow(\mathrm{ii})$. Assume that T satisfies $(g v)$; then it also satisfies (v). If $\lambda \in E(T)$, then $\lambda \in$ iso $\sigma(T)$. Since T satisfies $(g v), \lambda I-T$ is upper semi-B-Fredholm. Therefore, T has SVEP at λ and $\lambda I-T$ is quasiFredholm. By Remark 1.2 and Lemma $1.4, \lambda I-T$ is left Drazin invertible, and so $\lambda \in \sigma(T) \backslash \sigma_{L D}(T)$. By Theorem 2.9, $\sigma(T)=\sigma_{a}(T)$, and hence $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T)=\Pi_{a}(T)$. This shows the inclusion $E(T) \subseteq$ $\Pi_{a}(T)$.

To show the opposite inclusion, let $\lambda \in \Pi_{a}(T)$. Since T satisfies $(g v)$, it follows that $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T) \subseteq \sigma(T) \backslash \sigma_{L D}(T) \subseteq \sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=$ $E(T)$. Therefore, $\Pi_{a}(T) \subseteq E(T)$.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Assume that T satisfies (v) and $E(T)=\Pi_{a}(T)$. By Theorem 2.9, T satisfies (w) and $\sigma(T)=\sigma_{a}(T)$. Property (w) implies by 8, Theorem 2.6] that T satisfies a-Browder's theorem, or equivalently, generalized a Browder's theorem. Therefore, $\sigma_{S B F_{+}^{-}}(T)=\sigma_{L D}(T)$. Since $E(T)=\Pi_{a}(T)$, we have $E(T)=\Pi_{a}(T)=\sigma_{a}(T) \backslash \sigma_{L D}(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Thus, $\sigma(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)=E(T)$ and T satisfies $(g v)$.

Corollary 2.12. Let $T \in L(X)$. Then:
(i) T has property (v) if and only if T has property (z).
(ii) T has property $(g v)$ if and only if T has property $(g z)$.

Proof. (i) Suppose that T satisfies (v). By Theorem $2.9(\mathrm{i}), \sigma(T)=\sigma_{a}(T)$, and so $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)=E_{a}^{0}(T)$. Therefore, T satisfies (z).

Conversely, assume that T satisfies (z). By [25, Theorem 2.4(i)], $\sigma(T)=$ $\sigma_{a}(T)$, and so $\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{a}^{0}(T)=E^{0}(T)$. Therefore, T satisfies (z).
(ii) The proof is similar to the proof of (i). Just use both Theorem 2.9(ii) and [25, Theorem 2.4(ii)].

Theorem 2.13. Suppose that $T \in L(X)$ has property $(g v)$. Then:
(i) T satisfies generalized a-Browder's theorem and $\sigma(T)=\sigma_{S B F_{+}^{-}}(T) \cup$ iso $\sigma(T)$.
(ii) T satisfies generalized Browder's theorem and $\sigma(T)=\sigma_{B W}(T) \cup$ iso $\sigma(T)$.

Proof. (i) By [7, Theorem 2.4] it is sufficient to prove that T has SVEP at every $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$. Let $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$. We have the following two cases.

Case 1: $\lambda \notin \sigma(T)$.
CASE 2: $\lambda \in \sigma(T)$.
In Case 1, clearly T has SVEP at λ. In Case 2, we have $\lambda \in \sigma(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)$ and since T satisfies $(g v)$, it follows that $\lambda \in E(T)$. Therefore, $\lambda \in$ iso $\sigma(T)$, and so T has SVEP at λ again.

To show the equality $\sigma(T)=\sigma_{S B F_{+}^{-}}(T) \cup$ iso $\sigma(T)$, observe first that $\sigma_{S B F_{+}^{-}}(T) \cup$ iso $\sigma(T) \subseteq \sigma(T)$ holds for every $T \in L(X)$. To show the opposite inclusion, suppose that $\lambda \in \sigma(T)$ and $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$. Then $E(T)$, since T satisfies $(g v)$. Therefore, $\lambda \in$ iso $\sigma(T)$, and so $\sigma(T) \subseteq \sigma_{S B F_{+}^{-}}(T) \cup$ iso $\sigma(T)$. This shows that $\sigma(T)=\sigma_{S B F_{+}^{-}}(T) \cup$ iso $\sigma(T)$.
(ii) Follows from (i), by using the fact that generalized a-Browder's theorem implies generalized Browder's theorem, and the equality $\sigma(T)=$ $\sigma_{S B F_{+}^{-}}(T) \cup$ iso $\sigma(T)$ implies the inclusion $\sigma(T) \subseteq \sigma_{B W}(T) \cup$ iso $\sigma(T)$, leading to $\sigma(T)=\sigma_{B W}(T) \cup$ iso $\sigma(T)$.

For $T \in L(X)$, define $\Pi_{+}(T)=\sigma(T) \backslash \sigma_{L D}(T)$. The precise relationship between generalized a-Browder's theorem and property $(g v)$ is described by the following theorem.

Theorem 2.14. If $T \in L(X)$, then the following statements are equivalent:
(i) T has property $(g v)$,
(ii) T satisfies generalized a-Browder's theorem and $\Pi_{+}(T)=E(T)$.

Proof. (i) \Rightarrow (ii). Assume that T satisfies $(g v)$. Then, by Theorem 2.13, it is sufficient to prove $\Pi_{+}(T)=E(T)$. Indeed, $E(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=$
$\sigma(T) \backslash \sigma_{L D}(T)=\Pi_{+}(T)$, since T satisfies $(g v)$ and generalized a-Browder theorem by Theorem 2.13 .
(ii) $\Rightarrow(\mathrm{i})$. If T satisfies generalized a-Browder's theorem and $\Pi_{+}(T)=$ $E(T)$, then $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{L D}(T)=\Pi_{+}(T)=E(T)$. Therefore, T satisfies $(g v)$.

Corollary 2.15. If $T \in L(X)$ has SVEP at each $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$, then T has property $(g v)$ if and only if $E(T)=\Pi_{+}(T)$.

Proof. The hypothesis that T has SVEP at each $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ implies that T satisfies generalized a-Browder's theorem. Therefore, if $E(T)=$ $\Pi_{+}(T)$, then $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{L D}(T)=\Pi_{+}(T)=E(T)$.

For $T \in L(X)$, define $\Pi_{+}^{0}(T)=\sigma(T) \backslash \sigma_{u b}(T)$. The proofs of the following three theorems are analogous to the proofs of Theorems $2.13-2.15$.

Theorem 2.16. Suppose that $T \in L(X)$ has property (v). Then:
(i) T satisfies a-Browder's theorem and $\sigma(T)=\sigma_{S F_{+}^{-}}(T) \cup$ iso $\sigma(T)$.
(ii) T satisfies Browder's theorem and $\sigma(T)=\sigma_{W}(T) \cup$ iso $\sigma(T)$.

Theorem 2.17. If $T \in L(X)$, then the following statements are equivalent:
(i) T has property (v),
(ii) T satisfies a-Browder's theorem and $\Pi_{+}^{0}(T)=E^{0}(T)$.

Corollary 2.18. If $T \in L(X)$ has SVEP at every point $\lambda \notin \sigma_{S F_{+}^{-}}(T)$, then T has property (v) if and only if $E^{0}(T)=\Pi_{+}^{0}(T)$.

It is proved in [18, Lemma 2.1] that if T^{*} has SVEP at every $\lambda \notin \sigma_{S F_{+}^{-}}(T)$ (resp., T has SVEP at every $\lambda \notin \sigma_{S F_{-}^{+}}(T)$), then $\sigma_{W}(T)=\sigma_{S F_{+}^{-}}(T)$ and $\sigma_{a}(T)=\sigma(T)$ (resp., $\sigma_{W}\left(T^{*}\right)=\sigma_{S F_{+}^{-}}\left(T^{*}\right)$ and $\left.\sigma_{a}\left(T^{*}\right)=\sigma\left(T^{*}\right)\right)$. Also, it is proved in [18, Lemma 2.4] that if T^{*} has SVEP at every $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ (resp., T has SVEP at every $\lambda \notin \sigma_{S B F_{-}^{+}}(T)$), then $\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)=$ $\sigma_{D}(T)$ and $\sigma_{a}(T)=\sigma(T)$ (resp., $\sigma_{B W}\left(T^{*}\right)=\sigma_{S B F_{+}^{-}}\left(T^{*}\right)=\sigma_{D}\left(T^{*}\right)$ and $\left.\sigma_{a}\left(T^{*}\right)=\sigma\left(T^{*}\right)\right)$. By the above results, we clearly see that if T^{*} has SVEP at every $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$, then properties $(R),(w),(v),(z),(b),(a z),(a w)$, ($a b$), Weyl's theorem and a-Weyl's theorem are equivalent for T. In the same form, we obtain equivalence for the respective "generalized" properties for T. The same equivalences hold for T^{*} if T has SVEP at $\lambda \notin \sigma_{S B F_{-}^{+}}(T)$.

Acknowledgements. The authors thank the referee for his valuable comments and suggestions which have greatly contributed to this paper.

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004.
[2] P. Aiena, Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged) 73 (2007), 251-263.
[3] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), 1-20.
[4] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839-2848.
[5] P. Aiena, J. Guillen and P. Peña, Property (R) for bounded linear operators, Mediterr. J. Math. 8 (2011), 491-508.
[6] P. Aiena, J. Guillen and P. Peña, Property $(g R)$ and perturbations, submitted.
[7] P. Aiena and L. Miller, On generalized a-Browder's theorem, Studia Math. 180 (2007), 285-299.
[8] P. Aiena and P. Peña, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
[9] M. Amouch and M. Berkani, On the property ($g w$), Mediterr. J. Math. 5 (2008), 371-378.
[10] M. Amouch and H. Zguitti, On the equivalence of Browder's theorem and generalized Browder's theorem, Glasgow Math. J. 48 (2006), 179-185.
[11] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), 244-249.
[12] M. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140 (2000), 163-175.
[13] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[14] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.
[15] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
[16] M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica 134 (2009), 369-378.
[17] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik 62 (2010), 145-154.
[18] M. Berkani, M. Sarih and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399-409.
[19] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
[20] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
[21] A. Gupta and N. Kashayap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl. 3 (2011), 1-7.
[22] H. Heuser, Functional Analysis, Dekker, New York, 1982.
[23] V. Rakočević, On a class of operators, Mat. Vesnik 37 (1985), 423-426.
[24] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.
[25] H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik 65 (2013), 94-103.
J. Sanabria, C. Carpintero, E. Rosas, O. García

Departamento de Matemáticas
Escuela de Ciencias
Núcleo de Sucre
Universidad de Oriente
Cumaná, Venezuela
E-mail: jesanabri@gmail.com
carpintero.carlos@gmail.com
ennisrafael@gmail.com
ogarciam554@gmail.com

Received April 25, 2012
Revised version October 5, 2012

[^0]: 2010 Mathematics Subject Classification: Primary 47A10, 47A11; Secondary 47A53, 47A55.
 Key words and phrases: property (v), property (gv), generalized Weyl's theorem, semi-BFredholm operator.

