
STUDIA MATHEMATICA 212 (2) (2012)

On generalized property (v) for bounded linear operators

by

J. Sanabria, C. Carpintero, E. Rosas and O. Garćıa (Cumaná)

Abstract. An operator T acting on a Banach space X has property (gw) if σa(T ) \
σ
SBF−

+
(T ) = E(T ), where σa(T ) is the approximate point spectrum of T , σ

SBF−
+

(T ) is

the upper semi-B-Weyl spectrum of T and E(T ) is the set of all isolated eigenvalues of T .
We introduce and study two new spectral properties (v) and (gv) in connection with Weyl
type theorems. Among other results, we show that T satisfies (gv) if and only if T satisfies
(gw) and σ(T ) = σa(T ).

1. Introduction and preliminaries. Throughout this paper, L(X)
denotes the algebra of all bounded linear operators acting on an infinite-
dimensional complex Banach space X. For T ∈ L(X), we denote by N(T )
the null space of T and by R(T ) = T (X) the range of T . We denote
by α(T ) := dimN(T ) the nullity of T and by β(T ) := codimR(T ) =
dimX/R(T ) the defect of T .

Other two classical quantities in operator theory are the ascent p = p(T ),
defined as the smallest non-negative integer p such that N(T p) = N(T p+1)
(if no such exists, we put p(T ) =∞), and the descent q = q(T ), defined as
the smallest non-negative integer q such that R(T q) = R(T q+1) (if no such
q exists, we put q(T ) =∞). It is well known that if p(T ) and q(T ) are both
finite then p(T ) = q(T ). Furthermore, 0 < p(λI − T ) = q(λI − T ) < ∞ if
and only if λ is a pole of the resolvent (see [22, Prop. 50.2]).

An operator T ∈L(X) is said to be Fredholm (resp., upper semi-Fredholm,
lower semi-Fredholm) if α(T ), β(T ) are both finite (resp., R(T ) is closed
and α(T ) < ∞, β(T ) < ∞), and semi-Fredholm if T is either upper or
lower semi-Fredholm. If T is semi-Fredholm, its index is defined by indT :=
α(T )− β(T ).

Other two important classes of operators in Fredholm theory are the
classes of semi-Browder operators. These are defined as follows: T ∈ L(X)
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is said to be Browder (resp. upper semi-Browder, lower semi-Browder) if
it is Fredholm (resp., upper semi-Fredholm, lower semi-Fredholm) and both
p(T ), q(T ) are finite (resp., p(T ) <∞, q(T ) <∞). An operator T ∈ L(X) is
said to be upper semi-Weyl (resp., lower semi-Weyl) if it is upper Fredholm
(resp., lower semi-Fredholm) and indT ≤ 0 (resp., indT ≥ 0); T is Weyl
if it is both upper and lower semi-Weyl, i.e. T is a Fredholm operator of
index 0.

The Browder spectrum and the Weyl spectrum are defined, respectively,
by

σb(T ) := {λ ∈ C : λI − T is not Browder},
σW (T ) := {λ ∈ C : λI − T is not Weyl}.

Since every Browder operator is Weyl, we have σW (T ) ⊆ σb(T ). Analogously,
the upper semi-Browder spectrum, upper semi-Weyl spectrum, lower semi-
Browder spectrum, and lower semi-Weyl spectrum are defined by

σub(T ) := {λ ∈ C : λI − T is not upper semi-Browder},
σSF−

+
(T ) := {λ ∈ C : λI − T is not upper semi-Weyl},

σlb(T ) := {λ ∈ C : λI − T is not lower semi-Browder},
σSF+

−
(T ) := {λ ∈ C : λI − T is not lower semi-Weyl}.

From the classical Fredholm theory we have

σSF−
+

(T ) = σSF+
−

(T ∗), σSF+
−

(T ) = σSF−
+

(T ∗),

σub(T ) = σlb(T
∗), σlb(T ) = σub(T

∗).

Given n ∈ N, we denote by Tn the restriction of T ∈ L(X) to the subspace
R(Tn) = Tn(X). According [12] and [15], T is semi-B-Fredholm (resp.,
B-Fredholm, upper semi-B-Fredholm, lower semi-B-Fredholm) if for some
integer n ≥ 0, the range R(Tn) is closed and Tn, viewed as an operator from
R(Tn) into itself, is semi-Fredholm (resp., Fredholm, upper semi-Fredholm,
lower semi-Fredholm). Analogously, T ∈ L(X) is said to be B-Browder
(resp., upper semi-B-Browder, lower semi-B-Browder) if for some integer
n ≥ 0 the range R(Tn) is closed and Tn is Browder (resp., upper semi-
Browder, lower semi-Browder).

If Tn is a semi-Fredholm operator, it follows from [15, Proposition 2.1]
that so is Tm for every m ≥ n, and indTm = indTn. This enables us to
define the index of a semi-B-Fredholm operator T as the index of the semi-
Fredholm operator Tn.

Further T ∈ L(X) is said to be B-Weyl [13, Definition 1.1] if it is B-
Fredholm of index 0; upper semi-B-Weyl if it is upper semi-B-Fredholm
with indT ≤ 0; and lower semi-B-Weyl if it is lower semi-B-Fredholm with
indT ≥ 0.



Generalized property (v) 143

An operator T ∈ L(X) is said to be left (resp. right) Drazin invertible
if p(T ) < ∞ (resp. q(T ) < ∞) and R(T p(T )+1) (resp. R(T q(T ))) is closed.
Moreover, T is Drazin invertible if it has finite ascent and descent. We
denote by LD(X), RD(X) and D(X) the classes of left Drazin invertible,
right Drazin invertible and Drazin invertible operators respectively. It is
proved in [12, Theorem 3.6] that a B-Browder (resp., upper semi-Browder,
lower semi-Browder) operator is just a Drazin invertible (resp., left Drazin
invertible, right Drazin invertible) operator.

The classes of operators defined above motivate the definitions of several
spectra. The left Drazin invertible spectrum is defined by

σLD(T ) := {λ ∈ C : λI − T /∈ LD(X)},

the right Drazin invertible spectrum is

σRD(T ) := {λ ∈ C : λI − T /∈ RD(X)},

while the Drazin invertible spectrum is

σD(T ) = {λ ∈ C : λI − T /∈ D(X)}.

Clearly, σD(T ) = σLD(T )∪σRD(T ). The B-Weyl spectrum is defined by

σBW (T ) := {λ ∈ C : λI − T is not B-Weyl}.

The upper semi-B-Weyl spectrum and lower semi-B-Weyl spectrum are, re-
spectively,

σSBF−
+

(T ) := {λ ∈ C : λI − T is not upper semi-B-Weyl},

σSBF+
−

(T ) := {λ ∈ C : λI − T is not lower semi-B-Weyl}.

Obviously,

σBW (T ) = σSBF−
+

(T ) ∪ σSBF+
−

(T ), σSBF−
+

(T ) = σSBF+
−

(T ∗),

σSBF+
−

(T ) = σSBF−
+

(T ∗), σLD(T ) = σRD(T ∗), σRD(T ) = σLD(T ∗).

Moreover,

σBW (T ) ⊆ σD(T ), σSBF−
+

(T ) ⊆ σLD(T ), σSBF+
−

(T ) ⊆ σRD(T ).

Another class of operators related to semi-B-Fredholm operators is the
class of quasi-Fredholm operators defined below. First, we set

∆(T ) := {n ∈ N : m ≥ n,m ∈ N⇒ Tn(X) ∩N(T ) ⊆ Tm(X) ∩N(T )}.

The degree of stable iteration is defined as dis(T ) := inf ∆(T ) if ∆(T ) 6= ∅,
while dis(T ) =∞ if ∆(T ) = ∅.

Definition 1.1. T ∈ L(X) is said to be quasi-Fredholm of degree d if
there exists d ∈ N such that:
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(a) dis(T ) = d,
(b) Tn(X) is a closed subspace of X for each n ≥ d,
(c) T (X) +N(T d) is a closed subspace of X.

By Proposition 2.5 of [11] every semi-B-Fredholm operator is quasi-
Fredholm. For further information on quasi-Fredholm operators we refer
to [12] and [2].

Now, we introduce an important property in local spectral theory. The
localized version of this property has been introduced by Finch [20], and in
the framework of Fredholm theory, this property has been characterized in
several ways (see Chapter 3 of [1]). An operator T ∈ L(X) is said to have
the single valued extension property at λ0 ∈ C (abbreviated SVEP at λ0)
if for every open disc Dλ0 ⊆ C centered at λ0 the only analytic function
f : Dλ0 → X which satisfies the equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0
is f ≡ 0 on Dλ0 . The operator T is said to have SVEP if it has SVEP
at every point λ ∈ C. Evidently, every T ∈ L(X) has SVEP at each
point of the resolvent set ρ(T ) := C \ σ(T ). Moreover, from the iden-
tity theorem for analytic functions it is easily seen that T has SVEP at
every point of the boundary ∂σ(T ) of the spectrum. In particular, T has
SVEP at every isolated point of the spectrum. Note that (see [1, Theorem
3.8])

(1) p(λI − T ) <∞ ⇒ T has SVEP at λ,

and dually

(2) q(λI − T ) <∞ ⇒ T ∗ has SVEP at λ.

Recall that T ∈ L(X) is said to be bounded below if T is injective and
has closed range. Denote by σa(T ) the classical approximate point spectrum
defined by

σa(T ) := {λ ∈ C : λI − T is not bounded below}.

Note that if σs(T ) denotes the surjectivity spectrum

σs(T ) := {λ ∈ C : λI − T is not onto},

then σa(T ) = σs(T
∗) and σs(T ) = σa(T

∗).

It is easily seen from the definition of localized SVEP that

(3) λ /∈ accσa(T ) ⇒ T has SVEP at λ,

where accK means the set of all accumulation points of K ⊆ C, and

(4) λ /∈ accσs(T ) ⇒ T ∗ has SVEP at λ.
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Remark 1.2. The implications (1)–(4) are actually equivalences when-
ever λI − T is a quasi-Fredholm operator, in particular when λI − T is
semi-B-Fredholm (see [2]).

Lemma 1.3 ([3, Lemma 2.4]). Let T ∈ L(X). Then

(i) T is upper semi-B-Fredholm and α(T ) < ∞ if and only if T ∈
Φ+(X).

(ii) T is lower semi-B-Fredholm and β(T ) < ∞ if and only if T ∈
Φ−(X).

The following lemma is a particular case of [12, Theorem 3.6].

Lemma 1.4. For T ∈ L(X), the following statements are equivalent:

(i) λ0I − T ∈ LD(X) ⇔ λ0I − T is quasi-Fredholm with finite ascent,
(ii) λ0I−T ∈ RD(X) ⇔ λ0I−T is quasi-Fredholm with finite descent,

(iii) λ0I − T ∈ D(X) ⇔ λ0I − T is quasi-Fredholm with finite ascent
and descent.

Denote by isoK the set of all isolated points of K ⊆ C. If T ∈ L(X)
define

E0(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T ) <∞},
E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(λI − T ) <∞},
E(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T )},
Ea(T ) = {λ ∈ isoσa(T ) : 0 < α(λI − T )}.

LetΠ0(T ) = σ(T )\σb(T ), i.e.Π0(T ) is the set of all poles of the resolvent
of T having finite rank. Clearly, for every T ∈ L(X) we have

Π0(T ) ⊆ E0(T ) ⊆ E0
a(T ) and E(T ) ⊆ Ea(T ).

Let T ∈ L(X). Following Coburn [19], T is said to satisfy Weyl’s the-
orem, in symbols (W ), if σ(T ) \ σW (T ) = E0(T ). Following Rakočević
([24], [23]), T is said to satisfy a-Weyl’s theorem, in symbols (aW ), if
σa(T ) \ σSF−

+
(T ) = E0

a(T ), and T is said to have property (w) if σa(T ) \
σSF−

+
(T ) = E0(T ). According to Berkani and Koliha [14], T is said to satisfy

generalized Weyl’s theorem, in symbols (gW ), if σ(T )\σBW (T ) = E(T ). Sim-
ilarly, T is said to satisfy generalized a-Weyl’s theorem, in symbols (gaW ),
if σa(T ) \ σSBF−

+
(T ) = Ea(T ), and T is said to have generalized property

(w), in symbols (gw), if σa(T ) \ σSBF−
+

(T ) = E(T ).

For T ∈ L(X), define

Π0
a(T ) = σa(T ) \ σub(T ),

Π(T ) = σ(T ) \ σD(T ),

Πa(T ) = σa(T ) \ σLD(T ).
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Following [16], an operator T ∈ L(X) is said to have property (b) (resp.
(gb)) if σa(T ) \ σSF−

+
(T ) = Π0(T ) (resp. σa(T ) \ σSBF−

+
(T ) = Π(T )). It

is shown in [16, Theorem 2.3] that (gb) implies (b) but not conversely. Ac-
cording to [17], an operator T ∈ L(X) has property (ab) (resp. (gab)) if
σ(T ) \ σW (T ) = Π0

a(T ) (resp. σ(T ) \ σBW (T ) = Πa(T )). It is proved in [17,
Theorem 2.2] that (gab) implies (ab), but not conversely. According also to
[17], T ∈ L(X) has property (aw) (resp. (gaw)) if σ(T ) \ σW (T ) = E0

a(T )
(resp. σ(T )\σBW (T ) = Ea(T )). In [17, Theorem 3.3], it is shown that (gaw)
implies (aw), but not conversely.

Following [25], we say that T ∈ L(X) has property (z) (resp. (gz)) if
σ(T ) \ σSF−

+
(T ) = E0

a(T ) (resp. σ(T ) \ σSBF−
+

(T ) = Ea(T )). Property (gz)

extends (z) to the context of B-Fredholm theory. It is shown in [25, Theorem
2.2] that (gz) implies (z), but not conversely. Following [25], T ∈ L(X) is
said to have property (az) (resp. (gaz)) if σ(T ) \ σSF−

+
(T ) = Π0

a(T ) (resp.

σ(T ) \ σSBF−
+

(T ) = Πa(T )). In [25, Corollary 3.5], it is shown that (gaz)

is equivalent to (az), and [25, Corollary 3.7] states that T ∈ L(X) satisfies
(gz) if and only if it satisfies (gaz) and Ea(T ) = Πa(T ).

According to [5], T ∈ L(X) has property (R) if Π0
a(T ) = E0(T ). It is

shown in [5, Theorem 2.4] that (w) implies (R), but not conversely. Also
in [5] it is shown that property (R) and Weyl’s theorem are independent.
According to [6], an operator T ∈ L(X) has the generalized property (R),
abbreviated (gR), if Πa(T ) = E(T ). In [6, Theorem 2.2], it is shown that
(gR) implies (R), but not conversely.

2. Generalized property (v). According to [21], T ∈ L(X) has prop-
erty (Bw) if σ(T ) \ σBW (T ) = E0(T ). By [21, Theorem 2.4], if T ∈ L(X)
satisfies (Bw), then generalized Browder’s theorem holds for T and σ(T ) =
σBW (T ) ∪ isoσ(T ).

In this section we introduce and study two new spectral properties that
are independent of (Bw).

Definition 2.1. An operator T ∈ L(X) is said to have property (v) if
σ(T ) \ σSF−

+
(T ) = E0(T ), and generalized property (v), abbreviated (gv), if

σ(T ) \ σSBF−
+

(T ) = E(T ).

Theorem 2.2. If T ∈ L(X) has property (gv), then it has property (v).

Proof. Assume that T satisfies (gv) and let λ ∈ σ(T ) \ σSF−
+

(T ). Since

σ(T ) \ σSF−
+

(T ) ⊆ σ(T ) \ σSBF−
+

(T ), we have λ ∈ σ(T ) \ σSBF−
+

(T ). As T

satisfies (gv), it follows that λ ∈ E(T ). Thus λ ∈ isoσ(T ) and α(λI−T ) > 0.
Since λI − T is upper semi-Weyl, it is upper semi-Fredholm. Therefore,
0 < α(λI − T ) <∞, thus λ ∈ E0(T ). This shows σ(T ) \ σSF−

+
(T ) ⊆ E0(T ).
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Conversely, let λ ∈ E0(T ). Then λ ∈ isoσ(T ) and 0 < α(λI − T ) <
∞. Since T satisfies (gv) and E0(T ) ⊆ E(T ), we have λ ∈ σ(T ) and
λI − T is upper semi-B-Weyl. Thus, λI − T is upper semi-B-Fredholm and
α(λI − T ) <∞. By Lemma 1.3, λI − T is upper semi-Fredholm, and hence
upper semi-Weyl. Therefore, λ ∈ σ(T ) \ σSF−

+
(T ) and consequently we have

σ(T ) \ σSF−
+

(T ) = E0(T ).

The converse of Theorem 2.2 does not hold in general, as we can see in
the following example.

Example 2.3. Let Q be defined, for x = (ξi) ∈ `1, by

Q(ξ1, ξ2, . . .) = (0, α1ξ1, α2ξ2, . . .),

where (αi) is a sequence of complex numbers such that 0 < |αi| ≤ 1 and∑∞
i=1 αi <∞. It follows from [14, Example 3.12] that

R(Qn) 6= R(Qn), n = 1, 2, . . . .

Define an operator T on X = `1⊕ `1 by T = Q⊕ 0. Then N(T ) = {0}⊕ `1,
σ(T ) = {0}, E(T ) = {0}, E0(T ) = ∅. Since R(Tn) = R(Qn) ⊕ {0}, R(Tn)
is not closed for any n ∈ N; so T is not upper semi-B-Weyl (or upper
semi-Weyl) and σSBF−

+
(T ) = {0} (and σSF−

+
(T ) = {0}). We thus have

σ(T ) \ σSBF−
+

(T ) 6= E(T ), σ(T ) \ σSF−
+

(T ) = E0(T ).

Hence, T satisfies (v), but not (gv).

The following two examples show that properties (Bw) and (v) (or (gv))
are independent.

Example 2.4. Let R be the unilateral right shift operator on `2(N).
Then, σ(R) = D(0, 1), the closed unit disc on C, and so isoσ(R)=E0(R)=∅,
E(R) = ∅. Moreover, σa(R) = Γ , σSBF−

+
(R) = Γ , σSF−

+
(R) = Γ , where Γ

denotes the unit circle of C. Then R does not satisfy (v) or (gv), since
σ(R) \ σSF−

+
(R) = D(0, 1) \ Γ 6= ∅ = E0(R) and σ(R) \ σSBF−

+
(R) =

D(0, 1) \ Γ 6= ∅ = E(R). On the other hand, σBW (R) = D(0, 1), and so
σ(R) \ σBW (R) = ∅ = E0(R). Hence, R satisfies (Bw).

Example 2.5. Consider the operator T = 0 on `2(N). Then σ(T ) =
σa(T ) = {0}, σBW (T ) = σSBF−

+
(T ) = ∅ and E0

a(T ) = ∅. Since E0(T ) ⊆
E0
a(T ), we have E0(T ) = ∅. Therefore, σ(T ) \ σBW (T ) = E0(T ). Thus, T

does not satisfy (Bw). Moreover, E(T )={0}. Consequently, σ(T )\σSBF−
+

(T )

= {0} = E(T ), and so T satisfies (gv) and hence (v).

Theorem 2.6. Let T ∈ L(X). Then T has property (v) if and only if it
satisfies Weyl’s theorem and σSF−

+
(T ) = σW (T ).
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Proof. Sufficiency : Suppose that T satisfies (v), i.e. σ(T ) \ σSF−
+

(T ) =

E0(T ). If λ ∈ σ(T ) \σW (T ), then λI −T is a Weyl operator, and hence it is
upper semi-Weyl. Thus, λ ∈ σ(T )\σSF−

+
(T ) = E0(T ), and so σ(T )\σW (T ) ⊆

E0(T ).
To show the opposite inclusion, let λ ∈ E0(T ). Then λ ∈ σ(T )\σSF−

+
(T ),

and so λI − T is upper semi-Fredholm. Since λ ∈ isoσ(T ), both T , T ∗

have SVEP at λ. Thus, 0 < p(λI − T ) = q(λI − T ) < ∞. This implies
that λI − T is a Browder operator, and so a Weyl operator. Therefore,
λ ∈ σ(T ) \ σW (T ), and hence T satisfies Weyl’s theorem. Consequently,
σ(T ) \ σSF−

+
(T ) = E0(T ) and σ(T ) \ σW (T ) = E0(T ). Hence, σSF−

+
(T ) =

σW (T ).
Necessity : Suppose that T satisfies Weyl’s theorem and σSF−

+
(T ) =

σW (T ). Then σ(T ) \ σSF−
+

(T ) = σ(T ) \ σW (T ) = E0(T ), and hence T

satisfies (v).

Similarly to Theorem 2.6, we have the following result.

Theorem 2.7. Let T ∈ L(X). Then T has property (gv) if and only if
T satisfies generalized Weyl’s theorem and σSBF−

+
(T ) = σBW (T ).

Proof. Sufficiency : Suppose that T satisfies (gv), i.e. σ(T ) \ σSBF−
+

(T )

= E(T ). If λ ∈ σ(T ) \ σBW (T ), then λI − T is a B-Weyl operator, and
hence it is upper semi-B-Weyl. Thus, λ ∈ σ(T ) \ σSBF−

+
(T ) = E(T ), and so

σ(T ) \ σBW (T ) ⊆ E(T ).
To show the opposite inclusion, let λ ∈ E(T ). Then λ ∈ σ(T )\σSBF−

+
(T ),

so that λI − T is upper semi-B-Fredholm, hence quasi-Fredholm, and both
T , T ∗ have SVEP at λ. By Remark 1.2 and Lemma 1.4, λI − T is Drazin
invertible, and hence B-Weyl. Therefore, λ ∈ σ(T )\σBW (T ), and so E(T ) ⊆
σ(T )\σBW (T ). This shows that T satisfies generalized Weyl’s theorem. Con-
sequently, σ(T )\σSBF−

+
(T ) = E(T ) and σ(T )\σBW (T ) = E(T ). Therefore,

σSBF−
+

(T ) = σBW (T ).

Necessity : Suppose that T satisfies generalized Weyl’s theorem and
σSBF−

+
(T ) = σBW (T ). Then σ(T ) \ σSBF−

+
(T ) = σ(T ) \ σBW (T ) = E(T ),

and so T satisfies (gv).

The next example shows that, in general, Weyl’s theorem (resp. genera-
lized Weyl’s theorem) does not imply property (v) (resp. (gv)).

Example 2.8. Let R be the shift operator defined in Example 2.4. Then
σBW (R) = D(0, 1), σW (R) = D(0, 1). Therefore, σ(R)\σW (R) = ∅ = E0(R)
and σ(R)\σBW (R) = ∅ = E(R). Thus, R satisfies both Weyl’s theorem and
generalized Weyl’s theorem, but neither (v) nor (gv).
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In the next theorem we give conditions for the equivalence between (v)
and (w) (resp. (gv) and (gw)).

Theorem 2.9. Let T ∈ L(X). Then:

(i) T has property (v) if and only if T has property (w) and σ(T ) =
σa(T ).

(ii) T has property (gv) if and only if T has property (gw) and σ(T ) =
σa(T ).

Proof. (i) Suppose that T satisfies (v) and let λ ∈ σa(T )\σSF−
+

(T ). Since

σa(T ) \ σSF−
+

(T ) ⊆ σ(T ) \ σSF−
+

(T ) = E0(T ), we have λ ∈ π00(T ). Thus,

σa(T ) \ σSF−
+

(T ) ⊆ E0(T ). Now if λ ∈ E0(T ), then λ ∈ isoσ(T ) and 0 <

α(λI−T ) <∞. Consequently, λI−T is not injective, and hence not bounded
below. So, λ ∈ σa(T ). Since T satisfies (v) and λ ∈ E0(T ), it follows that
λI−T is upper semi-Weyl. Therefore, λ ∈ σa(T )\σSF−

+
(T ). Thus, E0(T ) ⊆

σa(T )\σSF−
+

(T ) and T satisfies (w). Consequently, σ(T )\σSF−
+

(T ) = E0(T )

and σa(T )\σSF−
+

(T ) = E0(T ). Therefore, σ(T )\σSF−
+

(T ) = σa(T )\σSF−
+

(T )

and σ(T ) = σa(T ).

Conversely, suppose that T satisfies (w) and σ(T ) = σa(T ). Then σ(T )\
σSF−

+
(T ) = σa(T ) \σSF−

+
(T ) = E0(T ). Hence, σ(T ) \σSF−

+
(T ) = E0(T ) and

T satisfies (v).

(ii) Suppose that T satisfies (gv) and let λ ∈ σa(T ) \ σSBF−
+

(T ). Since

σa(T )\σSBF−
+

(T ) ⊆ σ(T )\σSBF−
+

(T ) = E(T ), we have λ ∈ E(T ). Therefore,

σa(T ) \ σSBF−
+

(T ) ⊆ E(T ). Now if λ ∈ E(T ), then λ ∈ isoσ(T ) and 0 <

α(λI − T ). Consequently, λI − T is not injective, and hence not bounded
below. Thus, λ ∈ σa(T ). As T satisfies (gv) and λ ∈ E(T ), it follows that
λI − T is upper semi-B-Weyl. Hence, λ ∈ σa(T ) \ σSBF−

+
(T ), so E(T ) ⊆

σa(T ) \ σSBF−
+

(T ) and T satisfies (gw). Consequently, σ(T ) \ σSBF−
+

(T ) =

E(T ) and σa(T )\σSBF−
+

(T ) = E(T ). Therefore, σ(T )\σSBF−
+

(T ) = σa(T )\
σSBF−

+
(T ) and σ(T ) = σa(T ).

Conversely, assume that T satisfies (gw) and σ(T ) = σa(T ). Then σ(T )\
σSBF−

+
(T ) = σa(T ) \ σSBF−

+
(T ) = E(T ). Thus, σ(T ) \ σSBF−

+
(T ) = E(T )

and T satisfies (gv).

The following example shows that property (gw) (resp. (w)) does not
imply (gv) (resp. (v)).

Example 2.10. Let R be the shift operator defined in Example 2.4.
Then R does not satisfy (v) or (gv). On the other hand, σa(R) \σSF−

+
(R) =
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∅ = E0(R) and σa(R) \ σSBF−
+

(R) = ∅ = E(R). Therefore, R satisfies (w)

and (gw).

Recall that T ∈ L(X) is said to satisfy a-Browder’s theorem (resp. gen-
eralized a-Browder’s theorem) if σa(T ) \ σSF−

+
(T ) = Π0

a(T ) (resp. σa(T ) \
σSBF−

+
(T ) = Πa(T )). From [10, Theorem 2.2] (see also [4, Theorem 3.2(ii)]),

a-Browder’s theorem and generalized a-Browder’s theorem are equivalent.
It is well known that a-Browder’s theorem for T implies Browder’s theorem
for T , i.e. σ(T ) \ σW (T ) = Π0(T ). Also by [10, Theorem 2.1] Browder’s
theorem for T is equivalent to generalized Browder’s theorem for T , i.e.
σ(T ) \ σBW (T ) = Π(T ).

We prove in Theorem 2.2 that property (gv) implies (v). The next result
gives the precise relationships between these properties.

Theorem 2.11. For T ∈ L(X), the following statements are equivalent:

(i) T has property (gv),
(ii) T has property (v) and E(T ) = Πa(T ).

Proof. (i)⇒(ii). Assume that T satisfies (gv); then it also satisfies (v).
If λ ∈ E(T ), then λ ∈ isoσ(T ). Since T satisfies (gv), λI − T is up-
per semi-B-Fredholm. Therefore, T has SVEP at λ and λI − T is quasi-
Fredholm. By Remark 1.2 and Lemma 1.4, λI − T is left Drazin invert-
ible, and so λ ∈ σ(T ) \ σLD(T ). By Theorem 2.9, σ(T ) = σa(T ), and
hence λ ∈ σa(T ) \ σLD(T ) = Πa(T ). This shows the inclusion E(T ) ⊆
Πa(T ).

To show the opposite inclusion, let λ ∈ Πa(T ). Since T satisfies (gv), it
follows that λ ∈ σa(T ) \ σLD(T ) ⊆ σ(T ) \ σLD(T ) ⊆ σ(T ) \ σSBF−

+
(T ) =

E(T ). Therefore, Πa(T ) ⊆ E(T ).

(ii)⇒(i). Assume that T satisfies (v) and E(T ) = Πa(T ). By Theorem
2.9, T satisfies (w) and σ(T ) = σa(T ). Property (w) implies by [8, Theorem
2.6] that T satisfies a-Browder’s theorem, or equivalently, generalized a-
Browder’s theorem. Therefore, σSBF−

+
(T ) = σLD(T ). Since E(T ) = Πa(T ),

we have E(T ) = Πa(T ) = σa(T )\σLD(T ) = σ(T )\σSBF−
+

(T ). Thus, σ(T )\
σSBF−

+
(T ) = E(T ) and T satisfies (gv).

Corollary 2.12. Let T ∈ L(X). Then:

(i) T has property (v) if and only if T has property (z).
(ii) T has property (gv) if and only if T has property (gz).

Proof. (i) Suppose that T satisfies (v). By Theorem 2.9(i), σ(T ) = σa(T ),
and so σ(T ) \ σSF−

+
(T ) = E0(T ) = E0

a(T ). Therefore, T satisfies (z).
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Conversely, assume that T satisfies (z). By [25, Theorem 2.4(i)], σ(T ) =
σa(T ), and so σ(T ) \ σSF−

+
(T ) = E0

a(T ) = E0(T ). Therefore, T satisfies (z).

(ii) The proof is similar to the proof of (i). Just use both Theorem 2.9(ii)
and [25, Theorem 2.4(ii)].

Theorem 2.13. Suppose that T ∈ L(X) has property (gv). Then:

(i) T satisfies generalized a-Browder’s theorem and σ(T ) = σSBF−
+

(T )∪
isoσ(T ).

(ii) T satisfies generalized Browder’s theorem and σ(T ) = σBW (T ) ∪
isoσ(T ).

Proof. (i) By [7, Theorem 2.4] it is sufficient to prove that T has SVEP
at every λ /∈ σSBF−

+
(T ). Let λ /∈ σSBF−

+
(T ). We have the following two cases.

Case 1: λ /∈ σ(T ).

Case 2: λ ∈ σ(T ).

In Case 1, clearly T has SVEP at λ. In Case 2, we have λ ∈ σ(T ) \
σSBF−

+
(T ) and since T satisfies (gv), it follows that λ ∈ E(T ). Therefore,

λ ∈ isoσ(T ), and so T has SVEP at λ again.

To show the equality σ(T ) = σSBF−
+

(T ) ∪ isoσ(T ), observe first that

σSBF−
+

(T )∪isoσ(T ) ⊆ σ(T ) holds for every T ∈ L(X). To show the opposite

inclusion, suppose that λ ∈ σ(T ) and λ /∈ σSBF−
+

(T ). Then E(T ), since T

satisfies (gv). Therefore, λ ∈ isoσ(T ), and so σ(T ) ⊆ σSBF−
+

(T ) ∪ isoσ(T ).

This shows that σ(T ) = σSBF−
+

(T ) ∪ isoσ(T ).

(ii) Follows from (i), by using the fact that generalized a-Browder’s
theorem implies generalized Browder’s theorem, and the equality σ(T ) =
σSBF−

+
(T ) ∪ isoσ(T ) implies the inclusion σ(T ) ⊆ σBW (T ) ∪ isoσ(T ), lead-

ing to σ(T ) = σBW (T ) ∪ isoσ(T ).

For T ∈ L(X), define Π+(T ) = σ(T ) \ σLD(T ). The precise relationship
between generalized a-Browder’s theorem and property (gv) is described by
the following theorem.

Theorem 2.14. If T ∈ L(X), then the following statements are equiva-
lent:

(i) T has property (gv),
(ii) T satisfies generalized a-Browder’s theorem and Π+(T ) = E(T ).

Proof. (i)⇒(ii). Assume that T satisfies (gv). Then, by Theorem 2.13,
it is sufficient to prove Π+(T ) = E(T ). Indeed, E(T ) = σ(T ) \ σSBF−

+
(T ) =
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σ(T ) \ σLD(T ) = Π+(T ), since T satisfies (gv) and generalized a-Browder
theorem by Theorem 2.13.

(ii)⇒(i). If T satisfies generalized a-Browder’s theorem and Π+(T ) =
E(T ), then σ(T )\σSBF−

+
(T ) = σ(T )\σLD(T ) = Π+(T ) = E(T ). Therefore,

T satisfies (gv).

Corollary 2.15. If T ∈ L(X) has SVEP at each λ /∈ σSBF−
+

(T ), then

T has property (gv) if and only if E(T ) = Π+(T ).

Proof. The hypothesis that T has SVEP at each λ /∈ σSBF−
+

(T ) im-

plies that T satisfies generalized a-Browder’s theorem. Therefore, if E(T ) =
Π+(T ), then σ(T ) \ σSBF−

+
(T ) = σ(T ) \ σLD(T ) = Π+(T ) = E(T ).

For T ∈ L(X), define Π0
+(T ) = σ(T )\σub(T ). The proofs of the following

three theorems are analogous to the proofs of Theorems 2.13–2.15.

Theorem 2.16. Suppose that T ∈ L(X) has property (v). Then:

(i) T satisfies a-Browder’s theorem and σ(T ) = σSF−
+

(T ) ∪ isoσ(T ).

(ii) T satisfies Browder’s theorem and σ(T ) = σW (T ) ∪ isoσ(T ).

Theorem 2.17. If T ∈ L(X), then the following statements are equiva-
lent:

(i) T has property (v),
(ii) T satisfies a-Browder’s theorem and Π0

+(T ) = E0(T ).

Corollary 2.18. If T ∈ L(X) has SVEP at every point λ /∈ σSF−
+

(T ),

then T has property (v) if and only if E0(T ) = Π0
+(T ).

It is proved in [18, Lemma 2.1] that if T ∗ has SVEP at every λ /∈ σSF−
+

(T )

(resp., T has SVEP at every λ /∈ σSF+
−

(T )), then σW (T ) = σSF−
+

(T ) and

σa(T ) = σ(T ) (resp., σW (T ∗) = σSF−
+

(T ∗) and σa(T
∗) = σ(T ∗)). Also, it

is proved in [18, Lemma 2.4] that if T ∗ has SVEP at every λ /∈ σSBF−
+

(T )

(resp., T has SVEP at every λ /∈ σSBF+
−

(T )), then σBW (T ) = σSBF−
+

(T ) =

σD(T ) and σa(T ) = σ(T ) (resp., σBW (T ∗) = σSBF−
+

(T ∗) = σD(T ∗) and

σa(T
∗) = σ(T ∗)). By the above results, we clearly see that if T ∗ has SVEP

at every λ /∈ σSBF−
+

(T ), then properties (R), (w), (v), (z), (b), (az), (aw),

(ab), Weyl’s theorem and a-Weyl’s theorem are equivalent for T . In the same
form, we obtain equivalence for the respective “generalized” properties for T .
The same equivalences hold for T ∗ if T has SVEP at λ /∈ σSBF+

−
(T ).
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