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The rate of convergence for iterated function systems

by

Maciej Ślęczka (Katowice)

Abstract. Iterated function systems with place-dependent probabilities are consid-
ered. It is shown that the rate of convergence of transition probabilities to a unique
invariant measure is geometric.

1. Introduction. We consider the evolution of distributions due to the
action of randomly chosen transformations, so called iterated function sys-
tems (briefly IFS) with place-dependent probabilities. Iterated function sys-
tems are a fast developing topic with applications to different areas such as
fractals [1, 2, 8, 13] and learning models [4, 11]. The reader is referred to
[3, 10, 19] for historical remarks.

In [3] Barnsley et al. proved the existence and uniqueness of an attrac-
tive invariant measure for IFS on locally compact spaces. Szarek [20, 21]
generalized this result to Polish spaces. In this paper, we are interested in
the rate of convergence to the invariant measure. If the probabilities are con-
stant then this rate is known to be geometric, since, as shown by Lasota [12],
the corresponding Markov operator is contractive in the Wasserstein norm.
A similar result can be found in [16]. In the general case of place-dependent
probabilities this idea breaks down. Our approach is based on the coupling
technique (see [22] and [6, 7, 15, 25]).

The organization of the paper is as follows. In Section 2 we introduce
notation and give some basic definitions. Section 3 contains our results and
is divided into several parts. In Section 3.1 we formulate the main theorem
(Theorem 3.1) which states that the iterated function systems under consid-
eration are mixing at a geometric rate. In Sections 3.2 and 3.3 we construct a
coupling for IFS and formulate some technical lemmas. Finally, in Section 3.4
we prove the main theorem.
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2. Preliminaries

2.1. Notation and basic definitions. Let (X, d) be a Polish space, i.e.
a separable and complete metric space. We denote by B(X) the space of all
bounded Borel measurable functions f : X → R, equipped with the supre-
mum norm, and by BX the family of all Borel subsets of X. LetMfin(X) and
M1(X) be the sets of nonnegative measures on X such that µ(X) <∞ and
µ(X) = 1, respectively. The elements ofM1(X) are called probability mea-
sures. The elements ofMfin(X) such that µ(X) ≤ 1 are called subprobability
measures. We denote byMsig(X) the family of all signed measures,

Msig(X) = {µ1 − µ2 : µ1, µ2 ∈Mfin(X)}.

Fix x̄ ∈ X. LetM1
1(X) denote the set of all probability measures on X with

the first moment finite:

M1
1(X) =

{
µ ∈M1(X) :

�

X

d(x, x̄)µ(dx) <∞
}
.

By the triangle inequality this family is independent of the choice of x̄.
To simplify the notation we will write

〈f, µ〉 =
�

X

f(x)µ(dx) for f ∈ B(X), µ ∈Msig(X).

Let δx be the Dirac measure concentrated at x ∈ X.
For µ ∈Mfin(X) the support of µ is

suppµ = {x ∈ X : µ(B(x, r)) > 0 for every r > 0},

where B(x, r) is the open ball in X with center at x and radius r.
If µ is a measure on X, Y is a measurable space and f : X → Y is a

measurable transformation, then f∗µ denotes the measure on Y defined by

f∗µ(B) = µ(f−1(B)) for B ∈ BY .

Spaces of measures on X are equipped with several norms. For µ ∈
Msig(X) we denote by ‖µ‖ the total variation of µ. In particular, if µ is
nonnegative then ‖µ‖ is the total mass of µ.

InMsig(X) we also introduce the Fortet–Mourier norm

‖µ‖L = sup{|〈f, µ〉| : f ∈ L},

where L = {f ∈ B(X) : |f(x)− f(y)| ≤ 1 and |f(x)| ≤ 1 for x, y ∈ X}. The
spaceM1(X) with the metric ‖µ1 − µ2‖L is complete (see [5]).

In the spaceM1
sig(X) of all signed measures with the first moment finite

we introduce the Wasserstein norm

‖µ‖H = sup{|〈f, µ〉| : f ∈ H},
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where H = {f ∈ B(X) : |f(x) − f(y)| ≤ d(x, y) for x, y ∈ X}. The space
M1

1(X) with the metric ‖µ1 − µ2‖H is complete (see [23]). We have

‖µ‖L ≤ ‖µ‖H for µ ∈M1
1(X).

2.2. Measures on the pathspace. Coupling. We consider a family
{Qx : x ∈ X} of measures on X. We assume that for every Borel subset
A ⊂ X the function x 7→ Qx(A) is measurable. If n,m ∈ N are fixed, and
{Qx : x ∈ X} is a family of measures on Xn and {Rx : x ∈ X} a family
of measures on Xm, we can define a family {RQx : x ∈ X} of measures on
Xn ×Xm by

(1) (RQx)(A×B) =
�

A

Rzn(B) Qx(dz),

where A ∈ BXn , B ∈ BXm and z = (z1, . . . , zn) ∈ Xn.
Let {Px : x ∈ X} be a family of probability or, more generally, sub-

probability measures on X. We assume that for every Borel subset A ⊂ X
the transformation x 7→ Px(A) is measurable. If, in addition, all Px are
probability measures then {Px : x ∈ X} is a transition probability function.
For given x ∈ X and A ∈ BX , Px(A) is the probability of transition from x
to A.

We define a family of measures on the pathspace X∞ in the following way.
For fixed x ∈ X one-dimensional distributions {Pn

x : n ∈ N0} are defined
inductively:

P0
x = δx, Pn+1

x (·) =
�

X

Pz(·) Pn
x(dz).(2)

Two- and higher-dimensional distributions are constructed by iterating (1).
We denote the resulting family of subprobability measures on X∞ by {P∞x :
x ∈ X}.

Suppose that {Px : x ∈ X} is the transition probability function for a
Markov chain (ξn)n∈N0 taking values in X, i.e. if ν is the distribution of ξn
then

	
X Px(·) ν(dx) is the distribution of ξn+1. Then the measure P∞x is the

distribution in X∞ of the chain (ξn)n∈N0 assuming that ξ0 = x.
For any subprobability measure µ ∈Mfin(X) we define on X∞ the mea-

sure
P∞µ (·) =

�

X

P∞x (·)µ(dx).

The one-dimensional distributions of P∞µ are denoted by Pn
µ for n ∈ N0.

If µ is the starting distribution of a Markov chain (ξn)n∈N0 with transition
function {Px : x ∈ X} then P∞µ is the distribution of (ξn)n∈N0 in X∞.

Definition 2.1. A coupling for a transition probability function {Px :
x ∈ X} is a family {Cx,y : x, y ∈ X} of probability measures on X×X such
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that
Cx,y(A×X) = Px(A) and Cx,y(X ×A) = Py(A)

for all x, y ∈ X and A ∈ BX .
If {Px : x ∈ X} is the transition function for a Markov chain (ξn)n∈N0

then we say that {Cx,y : x, y ∈ X} is a coupling for (ξn)n∈N0 .

2.3. Iterated function systems. An iterated function system is given
by a sequence of continuous transformations

Si : X → X for i = 1, . . . , N

and a probability vector (p1(x), . . . , pN (x)), x ∈ X, i.e.,

pi(x) ≥ 0 and
N∑
i=1

pi(x) = 1 for x ∈ X.

We assume that pi : X → [0, 1], i = 1, . . . , N, are continuous functions. Such
a system is briefly denoted by (Si, pi)Ni=1.

The action of an IFS can be described as follows. We choose an initial
point x0 ∈ X and we randomly select from {1, . . . , N} an integer according to
the distribution (p1(x0), . . . , pN (x0)). When a number k0 is drawn we define
x1 = Sk0(x0). Having x1 we select k1 with probabilities (p1(x1), . . . , pN (x1))
and we define x2 = Sk1(x1) and so on.

We assume that the iterated function system (Si, pi)Ni=1 has the following
properties:

(i) there exists α ∈ (0, 1) such that
N∑
i=1

pi(x)d(Si(x), Si(y)) ≤ αd(x, y) for x, y ∈ X,

(ii) there exists δ > 0 such that for every x, y ∈ X,∑
i : d(Si(x),Si(y))≤αd(x,y)

pi(x)pi(y) ≥ δ,

(iii) pi : X → [0, 1], i = 1, . . . , N , are Hölder-continuous, i.e. there exist
constants L1 > 0 and νi ∈ (0, 1] such that

|pi(x)− pi(y)| ≤ Lid(x, y)νi for x, y ∈ X, i = 1, . . . , N.

Condition (i) was introduced by Isaac [9]. It is sometimes expressed in a
slightly more general form (see [3, 19]): there exists 0 < r1 < 1 such that

N∏
i=1

d(Si(x), Si(y))pi(x) ≤ r1d(x, y) for x, y ∈ X.

Werner [24] shows that if mini=1,...,N infx∈X pi(x) > 0 then the above in-
equality and (i) are equivalent. It seems that if one requires the geometric
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rate of convergence, then some kind of contraction on average cannot be
avoided. Indeed, Öberg [14] shows that without contraction on average, even
if there exists an attractive invariant measure, convergence to this measure
is not necessarily geometric.

Assumption (ii) is standard (see [3, 20, 21]). Note, however, that Stenflo
[18] gives an example of an IFS which preserves a unique attractive invariant
measure and convergence to this measure is geometric, yet condition (ii) is
not necessarily satisfied.

In order to obtain uniqueness of an invariant measure for an iterated
function system one needs some regularity assumptions on the probabili-
ties pi. Indeed, Stenflo [17] gives an example of an IFS with continuous pi’s
for which there exist two invariant measures. Our assumption (iii) is slightly
stronger than Dini continuity which implies uniqueness of the invariant mea-
sure (see [3]).

Remark. Conditions (i)–(iii) guarantee existence of an attractive invari-
ant measure for (Si, pi)Ni=1 (see [21]). We will show that convergence to this
measure is at a geometric rate.

We introduce a new metric in the space X:

d1(x, y) =
N∑
i=1

Lid(x, y)νi for x, y ∈ X.

The metrics d and d1 are equivalent, and so the classes of sets bounded in d
and d1 are equal. The space (X, d1) is a Polish space.

Define a = αmin{νi:i=1,...,N}. Since the functions [0,∞) 3 t 7→ tνi , i =
1, . . . , N , are concave, we obtain:

(i) for every x, y ∈ X,

(3)
∑

i : d1(Si(x),Si(y))≤ad1(x,y)

pi(x)pi(y) ≥ δ,

(ii) for every x, y ∈ X,

(4)
N∑
i=1

pi(x)d1(Si(x), Si(y)) ≤ ad1(x, y),

(iii) for every x, y ∈ X,

(5)
N∑
i=1

|pi(x)− pi(y)| ≤ d1(x, y).

For an iterated function system (Si, pi)Ni=1 we define a family {Px : x∈X}
of probability measures on X by
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Px =
N∑
i=1

pi(x)δSi(x) for x ∈ X.

Since for every A ∈ BX the function x 7→ Px(A) is measurable, the family
{Px : x ∈ X} may be viewed as a transition probability function on X. For
any given µ ∈M1(X) we define a measure Pµ ∈M1(X) by

Pµ(A) =
�

X

Px(A)µ(dx).

We have
Pn+1
µ = PPnµ for n ∈ N0,

where Pn
µ is the nth marginal of P∞µ .

A measure µ ∈M1(X) is called invariant if Pµ = µ.
A Lyapunov function V for the iterated function system is given by

V (x) = d1(x, x̄) for x ∈ X,

where x̄ ∈ X is fixed. From (4) it follows that

(6) 〈V,Pµ〉 ≤ a〈V, µ〉+ c for µ ∈M1
1(X),

where c = maxi=1,...,N d1(x̄, Si(x̄)).
We define V̄ : X2 → [0,∞) by

V̄ (x, y) = V (x) + V (y) for x, y ∈ X.

Fix µ, ν ∈M1
1(X). Let b ∈M1(X2) be such that

b(A×X) = µ(A) and b(X ×A) = ν(A) for A ∈ BX .

Let b̄ ∈M1(X2) be such that

b̄(A×X) = Pµ(A) and b̄(X ×A) = Pν(A) for A ∈ BX .

From (6) it follows that

(7) 〈V̄ , b̄〉 ≤ 〈V̄ , b〉+ 2c.

On the spaceM1
fin(X2) of finite measures onX2 with the first moment finite,

we define the linear functional

(8) φ(b) =
�

X2

d1(x, y) b(dx, dy) for b ∈M1
fin(X2).

For every b ∈M1
fin(X2), we have

(9) φ(b) ≤ 〈V̄ , b〉.
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3. Results

3.1. Main theorem. Now we formulate the main result of the paper.
Its proof is given in Section 3.4.

Theorem 3.1. There exist constants q ∈ (0, 1) and C > 0 such that

‖Pn
x −Pn

y‖L ≤ qnC(1 + V̄ (x, y))

for all x, y ∈ X and n ∈ N.

Corollary 3.2. Let q and C be as in the statement of Theorem 3.1.
For all µ, ν ∈M1

1(X) and n ∈ N we have

‖Pn
µ −Pn

ν‖L ≤ Cqn(1 + 〈V, µ〉+ 〈V, ν〉).

Moreover, there exists a unique invariant measure µ∗ ∈ M1
1(X) such that

for all µ ∈M1
1(X) and n ∈ N,

‖Pn
µ − µ∗‖L ≤ qnC̃(1 + 〈V, µ〉),

where C̃ > 0 is constant.

Proof of Corollary. First observe that for f ∈ L and µ, ν ∈M1
1(X),�

X2

〈f,Pn
x −Pn

y 〉µ× ν(dx, dy) = 〈f,Pn
µ〉 − 〈f,Pn

ν 〉.

Theorem 3.1 gives

|〈f,Pn
µ −Pn

ν 〉| ≤
�

X2

‖Pn
x −Pn

y‖L µ× ν(dx, dy) ≤ qnC(1 + 〈V, µ〉+ 〈V, ν〉)

for all f ∈ L. This inequality, combined with the fact thatM1(X) equipped
with the metric induced by the Fortet–Mourier norm is complete, gives the
existence of an invariant measure µ∗. The proof is finished.

3.2. Construction of a coupling for IFS. We can now construct
a coupling for the iterated function system (Si, pi)Ni=1. On X2 we define
a subprobability transition function by

Qx,y =
N∑
i=1

min{pi(x), pi(y)}δ(Si(x),Si(y)) for x, y ∈ X.

For B ∈ BX we have

Qx,y(B ×X) =
N∑
i=1

min{pi(x), pi(y)}δSi(x)(B) ≤ Px(B),

Qx,y(X ×B) =
N∑
i=1

min{pi(x), pi(y)}δSi(y)(B) ≤ Py(B).
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For given b ∈Mfin(X2) we define Qb ∈Mfin(X2) by

Qb(A) =
�

X2

Qx,y(A) b(dx, dy),

where A ∈ BX2 . As above, we have

Qn+1
b = QQn

b
,

where {Qn
b : n ∈ N0} is the family of one-dimensional distributions of Q∞b .

From (4) it follows that

(10) φ(Qb) ≤ aφ(b) for b ∈Mfin(X2).

Lemma 3.3. There exists a family {Rx,y : x, y ∈ X} of measures on X2

such that if we define

Cx,y = Qx,y + Rx,y for x, y ∈ X
then:

(i) for every A ∈ BX2 the function (x, y) 7→ Rx,y(A) is measurable,
(ii) the measures Rx,y are nonnegative for x, y ∈ X,
(iii) each Cx,y is a probability measure and consequently {Cx,y : x, y∈X}

defines a transition probability function on X2,
(iv) for all B ∈ BX and x, y ∈ X we have

Cx,y(B ×X) = Px(B) and Cx,y(X ×B) = Py(B).

Proof. A short computation shows that the measure Rx,y defined on
rectangles by

Rx,y(A×B) =
1

1−Qx,y(X2)
(Px(A)−Qx,y(A×X))(Py(B)−Qx,y(X×B))

when Qx,y(X2) < 1, and Rx,y(A × B) = 0 when Qx,y(X2) = 1, has all the
required properties.

The above lemma states that one can construct a coupling {Cx,y :
x, y ∈ X} for {Px : x ∈ X} such that Qx,y ≤ Cx,y. The idea of splitting the
transition function of a coupled chain into two parts, Cx,y = Qx,y + Rx,y

where Qx,y is contractive (see [10]), is due to Hairer [6].
By the procedure described in (1) and (2) we obtain a family of proba-

bility measures C∞x,y on X∞ ×X∞ with marginals P∞x and P∞y .
For the measures {Qx,y : x, y ∈ X} we define, as above, a family {Q∞x,y :

x, y ∈ X} of subprobability measures on X∞ ×X∞.
Suppose that a Markov chain Φ on X2, with transition function {Cx,y :

x, y ∈ X}, stays at (x0, y0) at time n. The next step of Φ can be drawn
according to the measure Qx0,y0 or Rx0,y0 with probability ‖Qx0,y0‖ or
‖Rx0,y0‖, respectively. In order to distinguish these cases we introduce the
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augmented space X × {0, 1} and the transition functions

Ĉx,y,θ = Qx,y × δ1 + Rx,y × δ0,

Q̂x,y,θ = Qx,y × δ1, R̂x,y,θ = Rx,y × δ0,

where (x, y) ∈ X2 and θ ∈ {0, 1}. The parameter θ ∈ {0, 1} is responsible
for choosing either the measure Qx,y or Rx,y. For example, if the chain stays
in X2 × {1} at time n, it means that the last step was drawn according to
Qu,v for some (u, v) ∈ X2.

Obviously

π∗X2Ĉx,y,θ = Cx,y for every (x, y, θ) ∈ X2 × {0, 1},

where πX2 : X2 × {0, 1} → X2 is the projection.
Fix (x0, y0) ∈ X2. The transition probabilities {Cx,y : x, y ∈ X} define

onX2 the Markov chain Φ starting from (x0, y0). The transition probabilities
{Ĉx,y,θ : x, y ∈ X, θ ∈ {0, 1}} define a Markov chain Φ̂ on the augmented
space X2×{0, 1}. We adopt the convention that the starting distribution of
Φ̂ is Ĉ0

x0,y0 = δ(x0,y0,1).
As above, on (X2×{0, 1})∞ we construct the measure Ĉ∞x0,y0 , associated

with Φ̂. From now on, we assume that the chains Φ and Φ̂, taking values inX2

and X2×{0, 1}, are defined on the probability space (Ω,F ,P). Expectation
with respect to C∞x0,y0 or Ĉ∞x0,y0 is denoted by Ex0,y0 .

3.3. Lemmas. For any fixed ε ∈ (0, 1− a) we define

Kε = {(x, y) ∈ X2 : V̄ (x, y) < 2c/ε}.

Let ρ : (X ×X)∞ → N denote the time of the first visit in Kε, i.e.

ρ((xn, yn)n∈N0) = inf{n ≥ 1 : (xn, yn) ∈ Kε}.

Lemma 3.4. For every γ ∈ (0, 1) there exist constants C1, C2 > 0 such
that for every (x0, y0) ∈ X2,

(11) Ex0,y0((a+ ε)−γρ) ≤ C1V̄ (x0, y0) + C2.

Proof. Fix (x0, y0) ∈ X2. Let Φ = (Xn, Yn)n∈N0 be the Markov chain
starting from (x0, y0) and with transition function {Cx,y : x, y ∈ X}. Let
Fn ⊂ F , n ∈ N0, be the filtration in Ω associated with Φ. Define

An = {ω ∈ Ω : (Xi(ω), Yi(ω)) /∈ Kε for i = 1, . . . , n} for n ∈ N0.

We have An+1 ⊂ An and An ∈ F , n ∈ N. From (7) it follows that

1An ·E(V̄ (Xn+1, Yn+1) | Fn) ≤ 1An ·(aV̄ (Xn, Yn)+2c) ≤ 1An ·(a+ε)V̄ (Xn, Yn)

P-a.e. in Ω. Further,
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�

An

V̄ (Xn, Yn) dP ≤
�

An−1

V̄ (Xn, Yn) dP =
�

An−1

E(V̄ (Xn, Yn) | Fn−1) dP

≤
�

An−1

[aV̄ (Xn−1, Yn−1) + 2c] dP

≤ (a+ ε)
�

An−1

V̄ (Xn−1, Yn−1) dP

and so�

An

V̄ (Xn, Yn) dP ≤ (a+ ε)n−1
�

A1

V̄ (X1, Y1) dP ≤ (a+ ε)n[aV̄ (x0, yo) + 2c].

Finally, by the Chebyshev inequality, for every n ∈ N we obtain

(12) P((X1, Y1) /∈ Kε, . . . , (Xn, Yn) /∈ Kε) =
�

An−1

P((Xn, Yn) /∈Kε | Fn−1) dP

≤ ε

2c

�

An−1

E(V̄ (Xn, Yn) | Fn−1) dP ≤ (a+ ε)n
ε

2c
[aV̄ (x0, y0) + 2c].

Fix γ ∈ (0, 1). Inequality (12) implies (11) with properly chosen constants
C1 and C2, which finishes the proof.

For every r > 0 we define

Cr = {(x, y) ∈ X2 : d1(x, y) < r}.
Lemma 3.5. If a measure b ∈Mfin(X2) is such that supp b ⊂ Cr then

Qb(Car) ≥ δ‖b‖.
Proof. Fix r > 0 and (x, y) ∈ Cr. From (3) we obtain∑

i : d1(Si(x),Si(y))≤ad1(x,y)

min{pi(x), pi(y)} ≥
∑

i : d1(Si(x),Si(y))≤ad1(x,y)

pi(x)pi(y) ≥ δ

and so
Qx,y(Car) ≥ δ.

Now, let b ∈Mfin(X2) satisfy supp b ⊂ Cr. Then

Qb(Car) =
�

supp b

Qu,v(Car) b(du, dv) ≥ δ‖b‖.

Lemma 3.6. For every ε ∈ (0, 1− a) there exists n0 ∈ N such that

‖Q∞x,y‖ ≥
1
2
δn0 for (x, y) ∈ Kε.

Proof. For every (x, y) ∈ X2 we have

‖Qx,y‖+
∑

i : pi(x)≥pi(y)

|pi(x)− pi(y)| = 1,
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which implies by (5) that

‖Qx,y‖ ≥ 1− d1(x, y).

For any b ∈Mfin(X2) we thus obtain

‖Qb‖ ≥ ‖b‖ − φ(b),

where φ is defined in (8). Since (10) holds, iterating the above inequality
leads to

‖Qn+1
b ‖ ≥ ‖b‖ −

( n∑
k=0

ak
)
φ(b) for n ∈ N.

This implies that

(13) ‖Qn
b ‖ ≥ ‖b‖ −

φ(b)
1− a

for n ∈ N.

Let r = 1
2(1− a) and supp b ⊂ Cr. From (13) it follows that

(14) ‖Q∞b ‖ ≥ ‖b‖/2.
Now fix ε ∈ (0, 1 − a). We have Kε ⊂ C2c/ε by the definition of these sets.
If we define n0 = min{n ≥ 1 : an · 2c/ε < r} then Can0 ·2c/ε ⊂ Cr. By
Lemma 3.5 we obtain

Qn0
x,y(Cr) ≥ Qn0

x,y(Can0 ·2c/ε) ≥ δn0

for every (x, y) ∈ Kε. Finally (14) shows that ‖Q∞x,y‖ ≥ 1
2δ
n0 .

Definition 3.7. The coupling time τ : (X2 × {0, 1})∞ → N0 is defined
by

τ((xn, yn, θn)n∈N0) = inf{n ≥ 1 : ∀k≥nθk = 1}.

The coupling time of the Markov chain Φ̂ is the random time from which
the movement of Φ̂ is controlled exclusively by the measures {Qx,y :x, y∈X}.
The proof of the following lemma can be found in [15], but in a different
setup. For the convenience of the reader we give it here.

Lemma 3.8. There exist constants q̃ ∈ (0, 1) and C3 > 0 such that for
every (x, y) ∈ X2 we have

Ex,y(q̃ −τ ) ≤ C3(1 + V̄ (x, y)).

Proof. Fix ε ∈ (0, 1 − a) and x, y ∈ X. For simplicity we denote β =
(a + ε)−1/2. Let ρ be the random time of the first visit in Kε. Define the
random time of the nth visit in Kε:

ρ1 = ρ, ρn+1 = ρn + ρ ◦ Tρn for n > 1,

where Tn are the shift operators on (X2 × {0, 1})∞, i.e.

Tn((xk, yk, θk)k∈N0) = (xk+n, yk+n, θk+n)k∈N0 .
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Since, by Lemma 3.4, every ρn is C∞x,y-a.e. finite, the strong Markov property
gives

Ex,y(βρ ◦ Tρn | Fρn) = E(Xρn ,Yρn )(β
ρ) for n ∈ N,

where Fρn is the σ-algebra in (X2 × {0, 1})∞ generated by ρn, and Φ =
(Xn, Yn)n∈N0 is the Markov chain with distribution C∞x,y.

It follows from Lemma 3.4 and the definition of Kε that

Ex,y(βρn+1) = Ex,y(βρnE(Xρn ,Yρn )(β
ρ)) ≤ Ex,y(βρn)

[
C1

2c
ε

+ C2

]
.

Setting η = C1
2c
ε + C2 we obtain

(15) Ex,y(βρn+1) ≤ ηnEx,y(βρ) ≤ ηn[C1V̄ (x, y) + C2].

Define

τ̂((xn, yn, θn)n∈N0) = inf{n ≥ 1 : (xn, yn) ∈ Kε, ∀k≥n θk = 1},
σ = inf{n ≥ 1 : τ̂ = ρn}.

Lemma 3.6 implies that there exists n0 ∈ N such that

(16) Ĉ∞x,y(σ > n) ≤ (1− δn0/2)n for n ∈ N.
Let p > 1. From the Hölder inequality, (15) and (16) it follows that

Ex,y(βbτ/p) ≤ ∞∑
k=1

Ex,y(βρk/p1σ=k) ≤
∞∑
k=1

[Ex,y(βρk)]1/pĈ∞x,y(σ = k)1−1/p

≤ [C1V̄ (x, y) + C2]1/pη−1/p
∞∑
k=1

ηk/p(1− δn0/2)(k−1)(1−1/p)

= [C1V̄ (x, y) + C2]1/pη−1/p(1− δn0/2)−(1−1/p)

×
∞∑
k=1

[(
η

1− δn0/2

)1/p

(1− δn0/2)
]k
.

Choosing sufficiently large p and setting q̃ = β−1/p we observe that

Ex,y(q̃ −bτ ) = Ex,y(βbτ/p) ≤ (1 + V̄ (x, y))C3

for some C3 > 1. Since τ ≤ τ̂ , the proof is complete.

3.4. Proof of Theorem 3.1. For every n ∈ N we define

An/2 = {t ∈ (X2 × {0, 1})∞ : τ(t) ≤ n/2},
Bn/2 = {t ∈ (X2 × {0, 1})∞ : τ(t) > n/2}.

Since An/2 and Bn/2 are disjoint and their union is the whole pathspace
(X2 × {0, 1})∞ for every n ∈ N, we can write

Ĉ∞x,y = Ĉ∞x,y|An/2 + Ĉ∞x,y|Bn/2 for n ∈ N.



Rate of convergence for IFS 213

From the fact that ‖ · ‖L ≤ ‖ · ‖H it follows that

(17) ‖Pn
x −Pn

y‖L = sup
f∈L

∣∣∣ �

X2

(f(z1)− f(z2)) (π∗X2π
∗
nĈ
∞
x,y)(dz1, dz2)

∣∣∣
≤ sup

f∈H

∣∣∣ �

X2

(f(z1)− f(z2)) (π∗X2π
∗
n(Ĉ∞x,y|An/2))(dz1, dz2)

∣∣∣+ 2Ĉ∞x,y(Bn/2),

where πn : (X2×{0, 1})∞ → X2×{0, 1} are projections on the nth compo-
nent.

By iterative application of (10) we have

(18) sup
f∈H

∣∣∣ �

X2

(f(z1)− f(z2)) (π∗X2π
∗
n(Ĉ∞x,y|An/2))(dz1, dz2)

∣∣∣
≤ φ(π∗X2π

∗
n(Ĉ∞x,y|An/2)) ≤ an/2φ(π∗X2π

∗
n/2(Ĉ∞x,y|An/2)).

It follows from (7) and (9) that

(19) φ(π∗X2π
∗
n/2(Ĉ∞x,y|An/2)) ≤ an/2V̄ (x, y) +

2c
1− a

.

Then combining (17), (18) and (19) gives

(20) ‖Pn
x −Pn

y‖L ≤ an/2
[
an/2V̄ (x, y) +

2c
1− a

]
+ 2Ĉ∞x,y(Bn/2).

From Lemma 3.8 and the Chebyshev inequality we get

(21) Ĉ∞x,y(Bn/2) = Ĉ∞x,y({τ > n/2}) ≤ q̃n/2C4(1 + V̄ (x, y))

for some q̃ ∈ (0, 1) and C4 > 0. Finally, it follows from (20) and (21) that

‖Pn
x −Pn

y‖L ≤ an/2C5(1 + V̄ (x, y)) + q̃n/2C4(1 + V̄ (x, y)),

where C5 = max{1, 2c/(1− a)}. Setting q = max{a1/2, q̃1/2} completes the
proof.

Remark. The general idea of the above proof is due to M. Hairer. A cen-
tral role is played by inequality (20), called the coupling inequality, which
can be found in [6].
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