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Spectral transition parameters for
a class of Jacobi matrices

by

Joanne Dombrowski and Steen Pedersen (Dayton, OH)

Abstract. This paper initially considers a class of unbounded Jacobi matrices defined
by an increasing sequence of repeated weights. Spectral parameters are then introduced
in various ways to allow the authors to study the nature and location of the spectrum as
a function of these parameters.

1. Introduction. This paper considers infinite tridiagonal matrices de-
termined by two sequences {an}, {bn}, an > 0, bn real, of the following form:

C =




b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
. 0 a3 b4 . . .
. . . . . . .


 ,(1.1)

DC = {x = {xn} ∈ `2 : Cx ∈ `2}.
Additional conditions must be imposed on the sequences {an}, {bn} to claim
that this linear transformation is self-adjoint. It is sufficient, for example, to
assume the Carleman condition

∑∞
n=1 1/an =∞.

If C is self-adjoint, then the spectral theorem asserts that it is unitarily
equivalent to a multiplication operator Mx : L2(µ) → L2(µ) defined by
Mx : f(x) 7→ xf(x). Furthermore, if C =

�
λdEλ, then the Borel measure

µ is defined by µ(β) = ‖E(β)φ1‖2, where φ1 is the first standard basis
vector. Note that this vector is a cyclic vector since the subdiagonal entries
of the matrix are strictly positive. Since every cyclic self-adjoint Hilbert
space operator has a tridiagonal matrix representation of type (1.1) with
respect to the basis generated by the cyclic vector, such operators provide
canonical models for the study of spectral behavior. It is the aim of this
paper to impose conditions on the defining sequences {an}, {bn} that will
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lead to interesting spectral phenomena. In the following, σ(C) will denote
the spectrum of the operator defined in (1.1).

The given sequences {an}, {bn} uniquely determine a set of polynomials
{Pn(x)} defined as follows:

(1.2)
P1(x) = 1, P2(x) = x/a1,

Pn+1(x) = [(x− bn)Pn(x)− an−1Pn−1(x)]/an, n ≥ 2.

When (1.1) defines a self-adjoint operator, these polynomials form an or-
thonormal basis for the corresponding Hilbert space L2(µ). They will play
a significant role in the proofs of some of the results of this paper.

The key results of this paper may be summarized as follows:

Result 1. Assume a2n−1 = a2n = nα, 0 < α < ∞, bn = 0, and let Cα
be the operator determined by (1.1). If α ≤ 1, then Cα has no eigenvalues,
and if α > 1 then Cα has pure point spectrum with no finite points of
accumulation. Furthermore, if 0 < α < 1, then σ(Cα) = R, and if α = 1,
then σ(Cα) ∩ (−1/2, 1/2) = ∅.

Result 2. Assume a2n−1 = n + c, a2n = n + d, and let C be the
operator determined by (1.1). If c = 0 and 0 < d < 1/2 then the spectral
measure µ is absolutely continuous and (−1/2 + d, 1/2− d) is a gap in the
spectrum. If c = −d and 0 < d < 1/8 then µ is absolutely continuous and
(−
√

1/4− 2d,
√

1/4− 2d) is a gap in the spectrum.

Result 3. Assume a2n−1 = n + c, a2n = n + d, and let C be the
operator determined by (1.1). If −1 < c, d + c > 0, 0 ≤ d − c ≤ 1 and
α = (d − c)2 − (d − c) + 1/4, then for α > 0, (−√α,√α) is a gap in the
essential spectrum of C. There are no non-zero eigenvalues in this gap, and
the spectral measure µ is absolutely continuous on the complement of this
interval.

These results are closely related to the following theorem, established in
[DP02], which will serve as the starting point for the development of the
ideas in this paper:

Theorem 1.1. If a2n = a2n−1 = n, n ≥ 1, bn = 0, n ≥ 1, then (1.1)
defines a self-adjoint operator whose corresponding spectral measure is ab-
solutely continuous.

The proof of Theorem 1.1 presented in [DP02] did not identify the spec-
trum of the operator. It was subsequently observed by Moszyński that there
is a gap in the spectrum. More specifically, Moszyński used properties of the
Cesàro operator to show that the interval (−1/2, 1/2) is not in the spectrum
(so that the spectral measure is identically zero in this interval). This fact
can also be established via the argument presented below. The following
lemma is needed for this and subsequent arguments.
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Lemma 1.2. If {xn} ∈ `2, then the following inequalities hold :
∞∑

n=1

n2|xn − xn+1|2 ≥
1
4

∞∑

n=1

|xn|2,
∞∑

n=1

n2|xn + xn+1|2 ≥
1
4

∞∑

n=1

|xn|2.

Proof. If {yn} ∈ `1, then yn → 0, and yn =
∑∞
i=n(yi − yi+1). Therefore,

∞∑

n=1

yn =
∞∑

n=1

∞∑

i=n

(yi − yi+1) =
∞∑

i=1

i∑

n=1

(yi − yi+1)

=
∞∑

i=1

i(yi − yi+1) ≤
∞∑

i=1

i|yi − yi+1|.

If {xn} ∈ `2 then yn = |xn|2 defines a sequence in `1 and the previous
observation implies that

∞∑

n=1

|xn|2 ≤
∞∑

n=1

∣∣|xn|2 − |xn+1|2
∣∣

=
∞∑

n=1

n
∣∣|xn| − |xn+1|

∣∣ ·
∣∣|xn|+ |xn+1|

∣∣

≤
( ∞∑

n=1

n2|xn − xn+1|2
)1/2

·
( ∞∑

n=1

∣∣|xn|+ |xn+1|
∣∣2
)1/2

≤
( ∞∑

n=1

n2|xn − xn+1|2
)1/2

· 2
( ∞∑

n=1

|xn|2
)1/2

.

Thus
∑∞
n=1 n

2|xn − xn+1|2 ≥ 1
4

∑∞
n=1 |xn|2. To obtain (ii), apply (i) to the

sequence {(−1)n+1xn}.

Theorem 1.3. If a2n = a2n−1 = n, n ≥ 1, bn = 0, n ≥ 1, then C defined
in (1.1) has a spectral gap containing the origin.

Proof. Let A+ denote the restriction of C2 to the subspace of `2 spanned
by {φ2k−1}∞k=1. Obtain A− from A+ by negating each diagonal entry. Then

A− =




−a2
2 a2

2 0 0 . . .
a2

2 −a2
2 − a2

4 a2
4 0 . . .

0 a2
4 −a2

4 − a2
6 a2

6 . . .
0 0 a2

6 −a2
6 − a2

8 . . .
. . . . .


 .

Since the row sums are identically zero, it follows from Theorem 2.2 in
[DP95] (with M = 0), that 〈A−x, x〉 = −∑∞n=1 n

2|xn+1 − xn|2. By Lemma
1.2 above, σ(A−) ⊂ (−∞,−1/4]. If W = [wij ] is a diagonal operator
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with wii = (−1)i+1, then A+ = W (−A−)W , and it follows that σ(A+) ⊂
[1/4,∞). Hence σ(C) ⊂ (−∞,−1/2] ∪ [1/2,∞), which establishes the exis-
tence of a spectral gap.

Remark. It follows from [DP95, Theorem 2.3] applied to A− with M
= 0 that if a2n−1 = a2n for all n, and a2n/n→ 0, then 0 is in the spectrum
of the operator defined in (1.1).

2. Two non-negative differences. If the diagonal sequence is identi-
cally zero, then the subdiagonal sequence {an}, an > 0, completely deter-
mines the operator C defined in (1.1). The following result characterizes the
spectrum of a class of tridiagonal operators with zero diagonal in terms of
a periodic difference sequence {dn} defined by dn = an − an−1. (Note that
in Theorem 1.1 above, d2n+1 = 1, d2n = 0.)

Theorem 2.1. Assume bn = 0, n ≥ 1. Fix a > 0, δ ≥ 0, d ≥ 0. Let

a2n+1 = a+ n(δ + d), n = 0, 1, 2, . . . ,

a2n = a+ n(δ + d)− d, n = 1, 2, . . .

Then C defined in (1.1) is self-adjoint. If

a− d+
δ

2
+
d

2
· α

2

a2 > 0,

then the corresponding spectral measure is absolutely continuous on
(−∞,−α) ∪ (α,∞). In particular , if a − d + δ/2 > 0 then the spectral
measure is absolutely continuous on (−∞, 0) ∪ (0,∞).

The proof of this theorem depends on the following result which was
proved in [DP02].

Lemma 2.2. Let C in (1.1) be a self-adjoint Jacobi matrix with a zero
diagonal , generated by a positive sequence {an}. If C =

�
λdEλ, and ∆ is a

Borel subset of (0,∞) then

(2.1)
∞∑

n=1

|〈E(∆)φ1, φ2n−1〉|2 =
∞∑

n=1

|〈E(∆)φ1, φ2n〉|2.

Proof of Theorem 2.1. The Carleman condition implies that C is self-
adjoint. A commutator equation will be used to study the corresponding
spectral measure. Let S be the unilateral shift defined on `2 by Sφn = φn+1,
n = 1, 2, . . . Let J = (S − S∗)/i. Then CJ − JC = −2iK where K = [kij ],
and k11 = a, kii = δ if i = 2n, kii = d if i = 2n+ 1, ki,i+2 = ki+2,i = δ/2 if
i = 2n− 1, ki,i+2 = ki+2,i = d/2 if i = 2n, and kij = 0 otherwise. That is,
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K =




a 0 δ/2 0 . . .
0 δ 0 d/2 . . .
δ/2 0 d 0 . . .
0 d/2 0 δ . . .
. . δ/2 . . . .


 .

Assume C =
�
λdEλ, ∆ is an interval which is a subset of (α,∞), α > 0,

and x = E(∆)φ1. Then x =
∑∞
n=1 xnφn where xn = 〈E(∆)φ1, φn〉, and

〈Kx, x〉 = a|x1|2 + d
∞∑

k=1

|x2k+1|2 + d
∞∑

k=1

x2kx2k+2

+ δ
∞∑

k=1

|x2k|2 + δ
∞∑

k=1

x2k−1x2k+2

≥ a|x1|2 + d
∞∑

k=1

|x2k+1|2 − d
∞∑

k=1

|x2k| · |x2k+2|

+ δ

∞∑

k=1

|x2k|2 − δ
∞∑

k=1

|x2k−1| · |x2k+2|

≥ a|x1|2 + d
∞∑

k=1

|x2k+1|2 −
d

2

∞∑

k=1

[|x2k|2 + |x2k+2|2]

+ δ
∞∑

k=1

|x2k|2 −
δ

2

∞∑

k=1

[|x2k−1|2 + |x2k+1|2]

≥ a|x1|2 + d
∞∑

k=1

|x2k+1|2 − d
∞∑

k=1

|x2k|2 +
d

2
|x2|2

+ δ
∞∑

k=1

|x2k|2 − δ
∞∑

k=1

|x2k−1|2 +
δ

2
|x1|2.

It now follows from Lemma 2.2 that

〈Kx, x〉 ≥ (a− d) |x1|2 +
d

2
|x2|2 +

δ

2
|x1|2.

But

x2 = 〈E(∆)φ1, E(∆)φ2〉 = �
∆

P2(x) dµ >
α

a
µ(∆) =

α

a
〈E(∆)φ1, E(∆)φ1〉.

Hence

〈Kx, x〉 >
[
a− d+

δ

2
+
d

2

(
α

a

)2]
|〈E(∆)φ1, E(∆)φ1〉|2.

On the other hand, if λ is the midpoint of the interval ∆, then CJ − JC =
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(C − λI)J − J(C − λI) and it follows that

|〈KE(∆)φ1, E(∆)φ1〉| ≤ 2‖J‖ · ‖E(∆)(C − λI)φ1‖
≤ ‖J‖ · |∆| · ‖E(∆)φ1‖2

where |∆| denotes the Lebesgue measure of the interval ∆. Thus the two
inequalities can be combined to show that if µ(∆) = ‖E(∆)φ1‖2 6= 0 then

µ(∆) ≤
(

‖J‖
a− d+ δ

2 + d
2

(
α
a

)2

)
|∆|

so that the measure is absolutely continuous.

Theorem 2.3. Assume that the sequences {an}, {bn} are defined as in
Theorem 2.1. Then x = 0 is an eigenvalue for C if and only if δ > d.

Proof. It is well known that x = 0 is an eigenvalue for C if and only if∑∞
n=1 |Pn(0)|2 <∞. Note that for n = 1, 2, . . . ,

P2n(0) = 0, P2n+1(0) = (−1)n
a1a2 . . . a2n−1

a2a4 . . . a2n
.

Hence
∑∞
n=1 |P2n+1(0)|2 =

∑∞
n=1 cn and

cn+1

cn
=
(
a2n+1

a2n+2

)2

=
(

a+ n(d+ δ)
a+ δ + n(d+ δ)

)2

=
n2 + 2a

d+δn+
(

a
d+δ

)2

n2 + 2(a+δ)
d+δ n+

(
a+δ
d+δ

)2 .

By Gauss’ Test [Kno47, p. 284],
∑∞
n=1 cn converges if and only if

2a
d+ δ

− 2(a+ δ)
d+ δ

< −1.

Hence x = 0 is an eigenvalue for C if and only if 2δ/(d+ δ) > 1⇔ δ > d.

Note that Theorem 1.1 follows from Theorems 2.1 and 2.3 when d =
a = 1 and δ = 0. It is also interesting to observe that by Theorem 2.1,
a sufficiently large choice of the parameter a will imply absolute continuity
on (−∞, 0) ∪ (0,∞) for any given values of d and δ.

Theorem 2.4. Assume a2n−1 = a2n = nα, 0 < α < 1, bn = 0. Then
the operator C defined in (1.1) has no eigenvalues. The spectrum of C is the
real line.

Proof. Define α2n−1 = α2n = n1−α, n = 1, 2, . . . Let

J = −i




0 −α1 0 0 . . .
α1 0 −α2 0 . . .
0 α2 0 −α3 . . .
0 0 α3 0 . . .
. . . . . . .


 .
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If CJ−JC = −2iK, then it will be shown below that K = [kij ] is bounded.
Matrix multiplication shows that the non-zero entries of K are given by

2k2n,2n+2 = 2k2n+2,2n = (n+ 1)αn1−α − nα(n+ 1)1−α,

k2n+1,2n+1 = a2n+1α2n+1 − a2nα2n = 1.

To estimate the non-zero off-diagonal entries of K, let

f(n) = 2k2n+2,2n =
(n+ 1)α

nα
n− nα

(n+ 1)α
(n+ 1)

=
(n+ 1)2αn− n2α(n+ 1)

nα(n+ 1)α
=

(
1 + 1

n

)2α −
(
1 + 1

n

)
1
n

· 1(
1 + 1

n

)α .

So f(1) = 2α − 21−α and if g(x) = x2α − x then limn→∞ f(n) = g′(1) =
2α− 1. Observe that

(i) if 0 < α < 1/2 then f(n) decreases to −1 + 2α and −1 < f(1) < 0,
(ii) if α = 1/2 then f(n) = 0 for all n,
(iii) if 1/2 < α < 1 then f(n) increases to −1 + 2α and 0 < f(1) < 1.

Now assume that ν 6= 0 is an eigenvalue for C. If Cx = νx then
x = {Pn(ν)}, ∑∞n=1 |Pn(ν)|2 < ∞. It follows from (1.2) and the fact that
bn = 0 for all n that P2n−1(−x) = P2n−1(x), P2n(−x) = −P2n(x). Hence ν
is an eigenvalue if and only if −ν is an eigenvalue. Since eigenvectors corre-
sponding to distinct eigenvalues of self-adjoint operators are orthogonal,

0 =
∞∑

n=1

〈Pn(ν), Pn(−ν)〉 =
∞∑

n=1

|P2n−1(ν)|2 −
∞∑

n=1

|P2n(ν)|2.

Therefore

〈Kx, x〉 =
∞∑

n=1

|P2n−1(ν)|2 +
∞∑

n=1

f(n)P2n(ν)P2n+2(ν)(2.1)

≥
∞∑

n=1

|P2n−1(ν)|2 −
∞∑

n=1

|P2n(ν)| · |P2n+2(ν)|

≥
∞∑

n=1

|P2n−1(ν)|2 +
1
2
|P2(ν)|2 −

∞∑

n=1

|P2n(ν)|2

≥ 1
2
|P2(ν)|2.

On the other hand, if x = {Pn(ν)} and xN = {Pn(ν)}Nn=1, then it follows
from the equation (C − νI)J − J(C − νI) = −2iK that |〈JCνxN , x〉| =
2|〈KxN , x〉| where Cν = C − νI. Since K is bounded,

lim
N→∞

|〈JCνxN , x〉| = lim
N→∞

|2〈KxN , x〉| = 2|〈Kx, x〉|.
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But the following argument will show that limN→∞ |〈JCνxN , x〉| = 0. For
assume that limN→∞ |〈JCνxN , x〉| = p, p > 0. A direct computation shows
that

|〈JCνxN , x〉|
= |αN−1aNPN+1(ν)PN−1(ν)−αNaNPN (ν)PN(ν)−αNaNPN+1(ν)PN+1(ν)|.
For large N = 2k, the inequality

p

2
< |〈JCνxN , x〉| ≤ k[|PN+1(ν)PN−1(ν)|+ |PN (ν)|2 + |PN+1(ν)|2]

contradicts the fact that
∞∑

k=1

[|P2k+1(ν)P2k−1(ν)|+ |P2k(ν)|2 + |P2k+1|2] <∞.

Thus 〈Kx, x〉 = 0, which contradicts (2.1). Hence there are no non-zero
eigenvalues. A direct computation (see the proof of Theorem 2.3) shows
that 0 is also not an eigenvalue.

It now remains to locate the spectrum of C. To do that, define H by
(1.1) with an = nα, bn = 0. Then a2n = (2n)α, a2n−1 = (2n−1)α. It will be
shown below that 2αC −H is compact. To see this note that the non-zero
entries of 2αC −H are

2αnα − (2n− 1)α = 2α(nα − (n− 1/2)α) = (2n)α−1 1−
(
1− 1

2n

)α
1

2n

.

Let f(x) = xα. Then
1−

(
1− 1

2n

)α
1

2n

→ f ′(1).

Thus 2αnα − (2n − 1)α → 0. It follows that the two sets σ(C), σ(H) have
the same set of limit points. Since it is known that σ(H) is the real line (see
[JN99a] and [JN99b]), the same conclusion holds for C as claimed.

3. Spectral transition parameters. In this section we investigate the
spectrum of the operator in (1.1) as a function of a parameter which will be
introduced in the first result.

Theorem 3.1. Assume that bn = 0, a2n−1 = nα, a2n = δnα, n =
1, 2, . . . , with δ > 0, 0 < α ≤ 1. Then C defined in (1.1) is self-adjoint. If
δ = 1, then there are no eigenvalues. If δ 6= 1, then σ(C) is discrete with no
accumulation points.

Proof. Let A+ denote the restriction of C2 to the subspace of `2 spanned
by {φ2k−1}∞k=1. Then
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lim
n→∞

[a2
2n−2 + a2

2n−1]2

a2
2n−3a

2
2n−2 − a2

2n−1a
2
2n

= lim
n→∞

[δ2(n− 1)2α + n2α]2

δ2(n− 1)2α + δ2n2αn2α

=
δ4 + 2δ2 + 1

2δ2 .

If δ 6= 1 then
δ4 + 2δ2 + 1

2δ2 > 2

and it follows from [JN99a, Theorem 4.1] that A+, and hence C by [DP02],
has a pure point spectrum.

4. Spectral gaps. It was shown in Theorem 1.3 that if C is defined by
(1.1) with a2n = a2n−1 = n, n ≥ 1, bn = 0, n ≥ 1, then (−1/2, 1/2) is a gap
in the spectrum of C. This section will consider a period two perturbation
of this result. Specifically it will be assumed that

a2n−1 = n+ c and a2n = n+ d, n = 1, 2, . . .

It will also be assumed that c > −1 so that a1 > 0, and that 0 < d− c < 1
so that the sequence {ak} is monotone. Further technical conditions will be
imposed on the parameters c and d to establish the existence of a spectral
gap.

Theorem 4.1. Assume that a2n−1 = n+c, a2n = n+d, for n = 1, 2, . . . ,
with fixed parameters c and d chosen so that c > −1, c+ d > 0. Let

α = (d− c)2 − (d− c) + 1/4.

Then C defined by (1.1) is self-adjoint , and if α > 0, then (−√α,√α) is a
gap in the essential spectrum of C.

Proof. Since
∑∞
n=1 1/an = ∞, the operator C defined in (1.1) is self-

adjoint. In the argument that follows it will initially be assumed that all
sequences x = {xn} have a finite number of non-zero entries. Let A+ denote
the restriction of C2 to the subspace of `2 spanned by {φ2k−1}∞k=1. Since

A+ =




a2
1 a1a2 0 0 . . .

a1a2 a2
2 + a2

3 a3a4 0 . . .
0 a3a4 a2

4 + a2
5 a5a6 . . .

0 0 a5a6 a2
6 + a2

7 . . .
. . . . . . .


 .

we have

〈A+x, x〉 = a2
1|x1|2 + a1a2x2x1

+
∞∑

k=2

[a2k−2a2k−3xk−1xk + (a2
2k−2 + a2

2k−1)|xk|2 + a2k−1a2kxk+1xk]
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= a2
1|x1|2 + a1a2x2x1

+
∞∑

k=2

(a2k−2a2k−3 + a2
2k−2 + a2

2k−1 + a2k−1a2k)|xk|2

+
∞∑

k=2

[a2k−2a2k−3(xk−1 − xk)xk + a2k−1a2k(xk+1 − xk)xk]

= (a2
1 + a1a2)|x1|2 +

∞∑

k=2

(a2k−2a2k−3 + a2
2k−2 + a2

2k−1 + a2k−1a2k)|xk|2

−
∞∑

k=1

a2k−1a2k|xk+1 − xk|2

= (−a2
1 + a1a2)|x1|2 +

∞∑

k=2

(a2k−2a2k−3 − a2
2k−2 − a2

2k−1 + a2k−1a2k)|xk|2

−
∞∑

k=1

a2k−1a2k|xk+1 − xk|2 + 2a2
1|x1|2 + 2

∞∑

k=2

[a2
2k−2 + a2

2k−1]|xk|2

=
(

(d− c)(1 + c)|x1|2 + (d− c)(1 + c− d)
∞∑

k=2

|xk|2
)

+
(

2a2
1|x1|2 + 2

∞∑

k=2

[a2
2k−2 + a2

2k−1]|xk|2 −
∞∑

k=1

a2k−1a2k|xk+1 − xk|2
)

= S1 + S2.

Clearly,

S1 = d(d− c)|x1|2 + (d− c)(1 + c− d)
∞∑

k=1

|xk|2.

On the other hand,

S2 = 2(1 + c)2|x1|2 + 2
∞∑

k=2

[(k − 1 + d)2 + (k + c)2]|xk|2

−
∞∑

k=1

(k + c)(k + d)|xk+1 − xk|2

= 2|x1|2 + 2
∞∑

k=2

[(k − 1)2 + k2]|xk|2 −
∞∑

k=1

k2|xk+1 − xk|2

+ 2(2c+ c2)|x1|2 + 2
∞∑

k=2

[2d(k − 1) + d2 + 2ck + c2]|xk|2

−
∞∑

k=1

(ck + dk + cd)|xk+1 − xk|2
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=
∞∑

k=1

k2|xk+1 + xk|2 + 2(2c+ c2)|x1|2

+ 2
∞∑

k=2

[2d(k − 1) + d2 + 2ck + c2]|xk|2

−
∞∑

k=1

(ck + dk + cd)|xk+1 − xk|2.

It follows from Lemma 1.2 that

S2 ≥
∞∑

k=1

1
4
|xk|2 + 2(2c+ c2)|x1|2 + 2

∞∑

k=2

[2d(k − 1) + d2 + 2ck + c2]|xk|2

−
∞∑

k=1

(ck + dk + cd)|xk+1 − xk|2.

Since it was assumed that c+d > 0 it follows that for some k0 ≥ 1, k0(c+d)
≥ cd. Thus

〈A+x, x〉 ≥ d(d− c)|x1|2 + (d− c)(1 + c− d)
∞∑

k=1

|xk|2 +
∞∑

k=1

1
4
|xk|2

+ 2(2c+ c2)|x1|2 + 2
∞∑

k=2

[2d(k − 1) + d2 + 2ck + c2]|xk|2

− 2
∞∑

k=k0

(ck + dk + cd)[|xk+1|2 + |xk|2].

Let
α = (d− c)2 − (d− c) + 1/4.

Then 〈A+x, x〉 ≥ α〈x, x〉 for all x in the domain of A+, orthogonal to
{φ1, . . . , φk0}. By [RS78, Theorem XIII.1], (−√α,√α) is a gap in the essen-
tial spectrum of C.

The proof of the following result is almost identical to the proof of The-
orem 4.1. The assumptions, however, are mutually exclusive.

Theorem 4.2. Assume that bn = 0, a2n−1 = n − d, a2n = n + d, n =
1, 2, . . . , with 0 < d < 1/8. Then C defined by (1.1) is self-adjoint , and
(−
√

1/4− 2d,
√

1/4− 2d) is a gap in the spectrum of C.

Proof. The Carleman condition
∑∞
n=1 1/an = ∞ implies that C is self-

adjoint. The argument presented in the proof Theorem 4.1 can be used to
establish the following inequality:
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〈A+x, x〉 ≥ d(d− c)|x1|2 + (d− c)(1 + c− d)
∞∑

k=1

|xk|2 +
∞∑

k=1

1
4
|xk|2

+ 2(2c+ c2)|x1|2 + 2
∞∑

k=2

[2d(k − 1) + d2 + 2ck + c2]|xk|2

−
∞∑

k=1

(ck + dk + cd)|xk+1|xk+1 − xk|2.

Since c = −d, and hence c+ d = 0, cd ≤ 0, it follows that

〈A+x, x〉 ≥ (−2d+ 1/4)
∞∑

k=1

|xk|2.

Thus if α = −2d + 1/4, α > 0, it follows that 〈A+x, x〉 ≥ α〈x, x〉 for all x
in the domain of A+, and hence that (−√α,√α) is a gap in the spectrum
of C.

Theorems 2.1 and 4.1 can be used to prove the following result which
extends both Theorem 1.1 and Theorem 1.3.

Theorem 4.3. If bn = 0, a2n−1 = n, a2n = n+ d, n = 1, 2, . . . , and 0 ≤
d < 1/2, then the operator C defined by (1.1) is self-adjoint and absolutely
continuous, and (−1/2 + d, 1/2− d) is a gap in the spectrum.

Theorem 4.4. Assume a2n−1 = n + c, a2n = n + d, and let C be the
operator determined by (1.1). If −1 < c, d + c > 0, 0 ≤ d − c ≤ 1 and
α = (d − c)2 − (d − c) + 1/4, then for α > 0, (−√α,√α) is a gap in the
essential spectrum of C. There are no non-zero eigenvalues in this gap, and
the spectral measure µ is absolutely continuous on the complement of this
interval.
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