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On the trigonometric conjugate to the general
Franklin system

by

Gegham G. Gevorkyan (Yerevan) and Anna Kamont (Sopot)

Abstract. We investigate when the trigonometric conjugate to the periodic general
Franklin system is a basis in C(T). For this, we find some necessary and some sufficient
conditions.

1. INTRODUCTION

The current paper is a next step in the study of general Franklin sys-
tems. The classical Franklin system is an orthonormal system consisting of
piecewise linear continuous functions with dyadic knots. It was constructed
by Ph. Franklin [8] in 1928 as an example of a complete orthonormal sys-
tem which is a basis in C[0, 1]. Since then, it has been studied by several
authors from different points of view and it has been used to answer various
questions in functional and harmonic analysis. The crucial property which
allowed the study of the Franklin system are the exponential estimates ob-
tained by Z. Ciesielski [6] in 1966. It is well known that the classical Franklin
system is a basis in C[0, 1] and Lp[0, 1], 1 ≤ p < ∞, unconditional when
1 < p <∞ (S. V. Bochkarev [2]), a basis in Hp[0, 1], 1/2 ≤ p ≤ 1, uncondi-
tional for 1/2 < p ≤ 1 (P. Wojtaszczyk [16], P. Sjölin and J. O. Strömberg
[15]). Moreover, it was used by S. V. Bochkarev [1] to construct a basis in
the disc algebra. Later, S. V. Bochkarev [3] also proved that the conjugate
to the periodic Franklin system is a basis in C(T). (See also [4].)

By a general Franklin system we mean an orthonormal system consist-
ing of piecewise linear functions with an arbitrary sequence of knots. A
systematic study of properties of general Franklin systems started with the
papers of Z. Ciesielski and A. Kamont [7] and G. G. Gevorkyan and A. Ka-
mont [9]. The following general problem is considered: how the properties
of a general Franklin system depend on the regularity of the correspond-
ing sequence of knots? It turns out that some properties, like boundedness
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of partial sums in L1[0, 1], maximal inequalities, convergence a.e. or un-
conditionality in Lp[0, 1], 1 < p < ∞, hold without any conditions on the
sequence of knots (cf. Z. Ciesielski [5], Z. Ciesielski and A. Kamont [7], and
G. G. Gevorkyan and A. Kamont [10]). For other properties, being a basis
or unconditional basis in H1[0, 1], we have obtained simple geometric condi-
tions, necessary and sufficient for these properties (cf. G. G. Gevorkyan and
A. Kamont [11]). Analogous results for the periodic general Franklin system
have been obtained by K. Keryan [13] and K. Keryan and M. Pogosyan [14].

In the current paper we address the question when the conjugate sys-
tem to a periodic general Franklin system is a basis in C(T). For this, we
obtain some necessary and some sufficient condition. In contrast to the
cases mentioned above, these conditions do not have a simple geometric
form. A summary of these results, without proofs, has been announced in
G. G. Gevorkyan and A. Kamont [12].

The paper is organized as follows. In Section 2 we recall the definition of
general periodic Franklin systems and formulate the main results, Theorems
2.1 and 2.2. Section 3 is devoted to their proofs. In Section 3.1 we recall
estimates and properties of general periodic Franklin system needed in this
paper. Necessary conditions for the conjugate system to the general Franklin
system to be a basis in C(T) are discussed in Sections 3.2 and 3.4, and
sufficient conditions are discussed in Section 3.3. In particular, we prove
some estimates from above and from below for the Lebesgue functions of
the conjugate to the general periodic Franklin system. These estimates are
the content of Theorems 3.3 and 3.5. Finally, in Section 4 some particular
examples are discussed, and Corollary 4.2 contains a characterization of
quasi-dyadic sequences for which the conjugate to the corresponding general
periodic Franklin system is a basis in C(T).

2. DEFINITIONS AND NOTATION

Set T = [−π, π). In this paper, we consider the space C(T) of continuous
2π-periodic real-valued functions on R.

For x, y ∈ T the periodic distance between x, y is denoted by dist(x, y) =
min(|x− y|, 2π − |x− y|). Moreover, we use the notation a ∨ b = max(a, b),
a ∧ b = min(a, b). Writing a ∼ b means that there are positive constants
C1, C2 such that C1a ≤ b ≤ C2a, and we write a ∼γ b to emphasise that
these constants may depend only on the parameter γ.

2.1. Periodic general Franklin system. Let n ∈ N and σ =
{sj , 1 ≤ j ≤ n} be a sequence of simple knots from [−π, π), with −π =
s1 < · · · < sn. These knots are 2π-periodically extended to R, i.e. we put
sm = sj + 2kπ for m = kn + j with k ∈ Z and 1 ≤ j ≤ n. We denote by
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Sσ the space of continuous piecewise linear periodic functions with knots σ.
For given σ, we put Ij = [sj , sj+1] and λj = |Ij | = sj+1 − sj ; in particular,
we have λj+n = λj . We let Pσ denote the L2(T)-orthogonal projection onto
Sσ, and by Kσ we denote the Dirichlet kernel of Pσ.

Analogous definitions make sense when double knots are allowed in σ,
i.e. σ = {sj , 1 ≤ j ≤ n} with −π = s1 ≤ · · · ≤ sn and si < si+2. Then Sσ
consists of the periodic piecewise linear functions, continuous at simple knots
(i.e. at si such that si−1 < si < si+1), and discontinuous, but left continuous
and having limits from the right at double knots (i.e. when si = si+1).

Next, let T = {tn, n ≥ 1} be a sequence of at most double knots in
T = [−π, π), with t1 = −π, and dense in T. Let

Tn = {tj , 1 ≤ j ≤ n} = {tn,j , 1 ≤ j ≤ n}

with −π = tn,1 ≤ · · · ≤ tn,n, tn,j < tn,j+2. By Sn, In,j , λn,j , Pn, Kn we mean
the space STn and Ij , λj , Pσ,Kσ coresponding to Tn.

For each n ≥ 2, there is a unique function fn ∈ Sn, orthogonal to Sn−1

in L2(T), with ‖fn‖2 = 1 and fn(tn) > 0. Put also f1(t) = 1/
√

2π. The
collection of functions {fn, n ≥ 1} is called the general general periodic
Franklin system corresponding to the sequence T of knots.

Clearly, Kn(t, s) =
∑n

j=1 fj(t)fj(s).

2.2. Regularity conditions. Now, we recall two notions of regularity
of a sequence T = {tn, n ≥ 1} of knots in T. We say that T is admissible if
it consists of at most double knots and is dense in T.

Definition 2.1. Let γ > 1 and let T = {tn, n ≥ 1} be an admissible
sequence of knots in T. Then T is said to satisfy the strong periodic regularity
condition for pairs with parameter γ if for each n ≥ 2 and 1 ≤ j ≤ n,

1
γ
≤ λn,j−1 + λn,j
λn,j + λn,j+1

≤ γ.

Definition 2.2. Let γ > 1 and let T = {tn, n ≥ 1} be an admissible
sequence of knots in T. Then T is said to satisfy the strong periodic regularity
condition with parameter γ if for each n ≥ 2 and 1 ≤ j ≤ n,

1
γ
≤ λn,j
λn,j+1

≤ γ.

Remark. The strong periodic regularity condition is the same as the
periodic version of the bounded local mesh ratio condition.

Observe that strong periodic regularity implies that all knots in T are
simple.
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Recall that for sequences of knots satisfying these regularity conditions
the corresponding general periodic Franklin system is a basis or an uncon-
ditional basis in ReH1(T) (cf. [14]); a non-periodic version of this result can
be found in [11].

In the current paper, a different type of regularity conditions will be
considered. For a sequence of points σ, k ∈ N and t ∈ T, define

J (k)
σ (t) =

n∑
j=1

(
λj

λj + dist(t, Ij)

)k
.

For given T and n, we denote by J (k)
n the function J (k)

σ corresponding to
Tn, i.e.

J (k)
n (t) =

n∑
j=1

(
λn,j

λn,j + dist(t, In,j)

)k
.

Regularity conditions discussed in this paper relate to boundedness or un-
boundedness of the collection of functions {J (k)

n (·), n ≥ 2}, for appropri-
ate k.

2.3. The trigonometric conjugate to the periodic general Fran-
klin system. The trigonometric conjugate to a periodic function f is de-
noted by f̃ , i.e.

(2.1) f̃(t) =
−1
2π

lim
ε→0

π�

|u|=ε

f(t+ u) cot
u

2
du.

Let {fn, n ≥ 1} be a periodic general Franklin system. By the trigonometric
conjugate to {fn, n ≥ 1} we mean the system {f̃n, n ≥ 1}, where f̃1(t) =
1/
√

2π, and f̃n for n ≥ 2 is defined by (2.1) with f = fn.
For convenience, we introduce the following notation. Let k̃σ denote the

conjugate to Kσ with respect to both variables, and set

K̃σ =
1

2π
+ k̃σ, L̃σ(t) =

�

T
|K̃σ(t, s)| ds.

As usual, K̃n and L̃n are K̃σ and L̃σ corresponding to Tn, i.e.

K̃n(t, s) =
n∑
j=1

f̃j(t)f̃j(s), L̃n(t) =
�

T
|K̃n(t, s)| ds.

2.4. The main results. We are interested in the following question:
when is the trigonometric conjugate to a general periodic Franklin system a
basis in C(T)? Let T be a sequence of knots in T. First, note that all knots
in T must be simple: if some knots are double, then the corresponding
Franklin functions are piecewise linear, but discontinuous at double knots,
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and then the conjugate functions are not continuous, even not bounded at
the points of discontinuity of the Franklin functions. So we assume that all
knots in T are simple. Let lip(T, α) be the space of functions from C(T)
satisfying ω(f, δ) = o(δα), where 0 < α < 1 and ω(f, δ) is the modulus
of smoothness of f (of the first order, in the uniform norm). Then density
of T in T implies that the piecewise linear functions with knots T are dense
in lip(T, α) in the corresponding Hölder norm. Hence the periodic general
Franklin system corresponding to T is linearly dense in lip(T, α). As the
trigonometric conjugate operator is an isomorphism of lip(T, α) (cf. e.g.
A. Zygmund [17, Chapter III, Theorems 13.29 and 13.30]), this implies that
the conjugate system is linearly dense in lip(T, α), and consequently also in
C(T). Thus, the question whether {f̃n, n ≥ 1} is a basis in C(T) or not is
a question of the boundedness of the corresponding partial sum operators
and Lebesgue functions. The first necessary condition is the following:

Theorem 2.1. Let T be an admissible sequence of knots such that the
conjugate to the corresponding general Franklin system is a basis in C(T).
Then T satisfies the strong periodic regularity condition.

Therefore, in further considerations we assume the strong periodic reg-
ularity condition. Under this condition we get the following result:

Theorem 2.2. Let T be an admissible sequence of knots satisfying the
strong periodic regularity condition with the corresponding periodic Franklin
system {fn, n ≥ 1}. Then:

• If supn≥1 supt∈T J
(3)
n (t) <∞, then {f̃n, n ≥ 1} is a basis in C(T).

• If supn≥1 supt∈T J
(4)
n (t) =∞, then {f̃n, n ≥ 1} is not a basis in C(T).

For the proof of Theorem 2.2 we estimate the Lebesgue functions L̃σ(t)
from above and from below by J (3)

σ (t) and J (4)
σ (t), respectively. These esti-

mates are formulated and proved as Theorems 3.4 and 3.5, respectively.

3. PROOFS OF THE THEOREMS

3.1. Estimates for Kn and fn. To prove the main results, we need
some estimates for Kn and fn. In the non-periodic case such estimates
can be found in [9] or [10]. The periodic versions have been obtained by
K. Keryan [13].

Note that if T contains at least one double knot, then the knot is a
point of discontinuity of all but finitely many functions fn corresponding
to T , and then the estimates reduce to the non-periodic case. Therefore, in
the periodic case we are interested only in the situation when all knots are
simple.
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We first estimate the kernel Kσ, where σ = {sj , 1 ≤ j ≤ n} is a sequence
of simple knots in T. Let Nj , 1 ≤ j ≤ n, be a B-spline basis in Sσ, i.e. Nj is
a piecewise linear periodic function with knots σ such that Nj(sj) = 1 and
Nj(si) = 0 for 1 ≤ i 6= j ≤ n. Observe that suppNj is the periodic interval
[tj−1, tj+1] containing tj , and |suppNj | = λj−1 + λj .

Let G = [(Ni, Nj), 1 ≤ i, j ≤ n] be the Gram matrix of the system Nj ,
1 ≤ j ≤ n, and A = [ai,j , 1 ≤ i, j ≤ n] = G−1. Clearly,

(3.1) Kσ(t, s) =
n∑

i,j=1

ai,jNi(t)Nj(s) and Kσ(si, sj) = ai,j .

We need uniform boundedness of the norms ‖Pσ‖∞ proved by Z. Ciesiel-
ski [5]:

(3.2) ‖Pσ‖∞ = sup
t∈T

�

T
|Kσ(t, s)| ds ≤ 3.

In fact, the proof in [5] concerns the non-periodic case, but the same argu-
ment applies in the periodic case.

We need the following properties of the matrix A (see Property 1 in [13]).

Theorem 3.1. Let σ = {sj , 1 ≤ j ≤ n} be a sequence of knots in T.
Then

ai,i > 0, 2.4 ≤ ai,i|suppNi| ≤ 4,

|ai,j | ≤
4

2|i−j|n
1

|suppNi| ∨ |suppNj |
,

where |i− j|n = min(|i− j|, n− |i− j|).

Combination of Theorem 3.1 and formula (3.1) implies pointwise esti-
mates for |Kσ(t, s)| for t ∈ Ii, s ∈ Ij ; we will need them only when σ satisfies
λk ∼γ λk+1. In that case we have

|Kσ(t, s)| ≤ Cγ

2|i−j|n
1

λi ∨ λj
.

Now we formulate estimates for periodic general Franklin functions. We
quote them in a simplified version, for sequences of simple knots satisfying
the strong periodic regularity condition for pairs. In [13] these estimates
have been proved for general sequences of points, but for the purpose of this
paper the special case is enough.

Let T = {tj , j ≥ 1} be a sequence of simple knots. Recall that Tm =
{tj , 1 ≤ j ≤ m} = {tj,1 < · · · < tj,m}. Since Tn is obtained by adding a
single point tn to Tn−1, for n ≥ 3 there is a unique index j, 1 ≤ j ≤ n− 1,
such that tn−1,j < tn < tn−1,j+1. For convenience we set t−n = tn−1,j and
t+n = tn−1,j+1. The points t−n , t

+
n define two periodic intervals on T; exactly



Conjugate Franklin system 209

one of them contains tn, and we denote it by In. Let in, 1 ≤ in ≤ n, be such
that

|f(tin)| = min{|fn(tk)| : 1 ≤ k ≤ n}.
Next, let t ∈ T, t 6∈ In. Then t and t−n define two periodic intervals on T;
exactly one of them contains neither tn nor t+n , and we denote it by αn(t).
Analogously, the interval βn(t) is defined as the periodic interval induced by
t and t+n which does not contain t−n , tn. If t 6= tin , then exactly one of αn(t),
βn(t) does not contain tin , and we denote this interval by Λn(t). Finally, let

dn(t) =
{

0 when t ∈ In,
#{k : tk ∈ Λn(t), 1 ≤ k ≤ n} when t 6∈ In.

In addition, set νn = |In|.
The following estimates of general periodic Franklin functions are taken

from Section 4.1 of [13].

Theorem 3.2. Let T = {tj , j ≥ 1} be a sequence of simple knots satis-
fying the strong periodic regularity condition for pairs with parameter γ. Let
{fn, n ≥ 1} be the corresponding general periodic Franklin system. Then for
n ≥ 5,

(3.3) fn(tn) > 0, fn(t−n ) < 0, fn(t+n ) < 0.

Moreover ,

(3.4) |fn(tn)| ∼γ |fn(t−n )| ∼γ |fn(t+n )| ∼γ ν−1/2
n ,

and the equivalence constants depend only on γ. Moreover ,

(3.5) |fn(t)| ≤ Cγ(1/2)dn(t)|fn(tn)|.
An immediate consequence of (3.5) is

(3.6)
n∑
k=1

max
t∈In,k

|fn(t)| ≤ Cγ |fn(tn)|.

We also need a characterization of sequences T for which the correspond-
ing general periodic Franklin system is a basis in ReH1. The following is
Theorem 1 of [14]:

Theorem 3.3. Let T be an admissible sequence of simple knots in T
with the corresponding general periodic Franklin system {fn, n ≥ 1}. Then
{fn, n ≥ 1} is a basis in ReH1 if and only if T satisfies the strong periodic
regularity condition for pairs with some parameter γ > 1.

Remark. The proof in [14] concerns in fact the atomic H1 space on
[0, 1]. It should be noted that the atoms considered in [14] are in fact periodic
atoms, i.e. with supports contained in periodic intervals. It is well known that
atomic decomposition with periodic atoms characterizes the space ReH1.
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3.2. Necessity of strong regularity

Proof of Theorem 2.1. Suppose that {f̃n, n ≥ 1} is a basis in C(T). First,
note that continuity of all f̃n’s implies that all knots of T must be simple.
Moreover, as {f̃n, n ≥ 1} is a basis in C(T), it is also a basis in L1(T).
Now, let f ∈ L1(T) be such that also f̃ ∈ L1(T). Then f ∈ ReH1(T). As
{f̃n, n ≥ 1} is a basis in L1(T) we have

f =
∞∑
n=1

(f, f̃n)f̃n, f̃ =
∞∑
n=1

(f̃ , f̃n)f̃n,

with convergence of both series in L1(T). Since ‖f‖ReH1 ∼ ‖f‖1 +‖f̃‖1, this
implies that {f̃n, n ≥ 1} is a basis in ReH1(T). Theorem 3.3 now implies
that T satisfies the strong periodic regularity condition for pairs.

Now, suppose that T satisfies the strong periodic regularity condition for
pairs, but it does not satisfy the strong periodic regularity condition. Let
γ be the pair-regularity parameter for T . We will show that the Lebesgue
functions of {f̃n, n ≥ 1} are not bounded; more precisely, for M large enough
there is N such that

(3.7)
�

T
|f̃N (tN )f̃N (u)| du ≥ Cγ logM,

where Cγ depends only on γ.
Fix M > 2γ. As T does not satisfy the strong regularity condition, there

is a partition TN containing two neighbouring intervals ∆1 and ∆2 such
that |∆1| ≥ M |∆2|; to simplify the writing, assume that |∆1| = M |∆2|.
Let ∆3 be the other neighbour of ∆2 in TN . By strong regularity for pairs,
|∆1| + |∆2| ∼γ |∆2| + |∆3|, and consequently |∆1| ∼γ |∆3|. Moreover, we
can assume that

N = min{n : both endpoints of ∆2 are in Tn}.

This means that tN is an endpoint of ∆2. To fix ideas, assume that tN is the
common endpoint of ∆1 and ∆2, t−N is the other endpoint of ∆1, and t+N is
the other endpoint of ∆2. To prove (3.7), we need to estimate |f̃N (tN )| and
‖f̃N‖1 from below. For this, let ξi be the value of f ′N on ∆i. The estimates
for fN from Theorem 3.2 and the fact that |∆1| > |∆2| imply that

(3.8) |fN (t−N )| ∼γ |fN (tN )| ∼γ |fN (t+N )| ∼γ |∆1|−1/2,

(3.9) |ξ1| ∼γ |ξ3| ∼γ |∆1|−3/2, |ξ2| ∼γ |∆1|−1/2|∆2|.

Since fN is linear on ∆1 and |fN (t−N )| ∼γ |fN (tN )|, there is Lγ > 0, de-
pending only on γ, such that fN (t) ≥ 1

2fN (tN ) on [tN − Lγ |∆1|, tN ] ⊂ ∆1;
clearly, we can assume Lγ ≤ 1/3.
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Now, let k be such that [tN−(k+1)|∆2|, tN−k|∆2|] ⊂ [tN−Lγ |∆1|, tN ].
By the choice of ∆1 and ∆2, this is possible for 0 ≤ k ≤MLγ − 1. Let us
estimate |f̃N (t)| from below for t ∈ [tN − (k + 1)|∆2|, tN − k|∆2|]. Let

κ = max{δ > 0 : [t− δ, t+ δ] ⊂ ∆1 ∪∆2 ∪∆3}.
For M large enough, we have κ ∼γ |∆1|, and ∆2 ⊂ [t − κ, t + κ]. Now, the
integral defining f̃N (t) is split into three parts:

f̃N (t) =
−1
2π

π�

0

(fN (t+ u)− fN (t− u)) cot
u

2
du

=
−1
2π

( t+N−t�

0

+
κ�

t+N−t

+
π�

κ

)
= Q1 +Q2 +Q3.

Let us start with the estimate of Q3. We have∣∣∣∣ π�
κ

(fN (t+ u)− fN (t− u)) cot
u

2
du

∣∣∣∣ ≤ C π�

κ

(
|fN (t+ u)|+ |fN (t− u)|) 1

u
du

)
.

To estimate these integrals, we consider fN (t+ ·) on its intervals of linearity.
Let [tN,j−t, tN,j+1−t] be a (periodic) interval of linearity of fN (t+·) disjoint
from [−κ, κ]. Then

max
u∈[tN,j−t,tN,j+1−t]

|fN (t+ u)| = max
s∈[tN,j ,tN,j+1]

|fN (s)|.

By strong regularity for pairs (and the fact that κ ∼γ |∆1|) we have 1 ≤
(tN,j+1 − t)/(tN,j − t) ≤ Cγ , which implies

tN,j+1−t�

tN,j−t

1
u
du = log

si+1 − t
si − t

≤ Cγ .

Therefore

(3.10)
tN,j+1−t�

tN,j−t
|fN (t+ u)| 1

u
du ≤ Cγ max

s∈IN,j
|fN (s)|.

If [tN,j − t, tN,j+1 − t] is a periodic interval not included in but not disjoint
from [−κ, κ] (there are at most two such intervals), we find by an analogous
argument (and applying (3.5)) that�

[tN,j−t,tN,j+1−t]∩{u : |u|≥κ}

|fN (t+ u)| 1
u
du ≤ Cγ |fN (tN )|.

Combining (3.10) with (3.6) and the last inequality we obtain
π�

κ

|fN (t+ u)| 1
u
du ≤ Cγ |fN (tN )|.
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By an analogous argument,
π�

κ

|fN (t− u)| 1
u
du ≤ Cγ |fN (tN )|,

so we get
(3.11) |Q3| ≤ Cγ |fN (tN )|.

To estimate Q1 we use the Lipschitz condition for fN on ∆1 and ∆2, and
estimates (3.9):

|Q1| =
1

2π

∣∣∣∣ t
+
N−t�

0

(fN (t+ u)− fN (t− u)) cot
u

2
du

∣∣∣∣
≤ C

( tN−t�

0

|fN (t+ u)− fN (t− u)| 1
u
du

+
t+N−t�

tN−t
|fN (t+ u)− fN (t− u)| 1

u
du

)

≤ Cγ
( tN−t�

0

u · |ξ1| ·
1
u
du+

t+N−t�

tN−t
u · (|ξ1|+ |ξ2|) ·

1
u
du

)
≤ Cγ(|tN − t| · |∆1|−3/2 + |∆2|(|∆1|−3/2 + |∆1|−1/2|∆2|−1))

≤ Cγ |∆1|−1/2,

which in combination with (3.8) gives

(3.12) |Q1| ≤ Cγ |fN (tN )|.
Now, we turn to estimating Q2. For this, we split the integral defining

Q2 into the sum of

Q2,1 =
−1
2π

κ�

t+N−t

(fN (t+ u)− fN (t+N )) cot
u

2
du,

Q2,2 =
−1
2π

κ�

t+N−t

(fN (t+N )− fN (t)) cot
u

2
du,

Q2,3 =
−1
2π

κ�

t+N−t

(fN (t)− fN (t− u)) cot
u

2
du.

Using the Lipschitz condition for fN on ∆3 and estimate (3.9) for |ξ3| we
find

|Q2,1| ≤ C
κ�

t+N−t

t+ u− t+N
u

· |ξ3| du ≤ Cγκ|∆1|−3/2 ≤ Cγ |∆1|−1/2.



Conjugate Franklin system 213

Combining this with (3.8) we get

(3.13) |Q2,1| ≤ Cγ |fN (tN )|.
By a similar argument, using the Lipschitz condition for fN on ∆1 in com-
bination with (3.9), (3.8) we find

(3.14) |Q2,3| ≤ Cγ |fN (tN )|.
Finally, we estimate |Q2,2| from below. Since fN (t) ≥ 1

2fN (tN ) and
sgnfN (t+N ) = −sgnfN (tN ), we have |fN (t) − fN (t+N )| ∼γ |fN (tN )|. More-
over,

κ�

t+N−t

cot
u

2
du ∼

κ�

t+N−t

1
u
du = log κ− log(t+N − t).

Set wk = log κ
(k+1)|∆2| . Since t ∈ [tN − (k+ 1)|∆2|, tN − k|∆2|], these consid-

erations imply
(3.15) |Q2,2| ≥ Dγwk|fN (tN )|.
Summarizing (3.11)–(3.14) we have

(3.16) |Q1|+ |Q2,1|+ |Q2,3|+ |Q3| ≤ Bγ |fN (tN )|.
Now, we need 1

2Dγwk ≥ Bγ . Let Rγ , Aγ be constants, depending only on γ,
such that κ ≥ (1/Aγ)|∆1| and logRγ = 2Bγ/Dγ . Observe that if k + 1 ≤
M/(Rγ ·Aγ) then 1

2Dγwk ≥ Bγ , and consequently

(3.17) |f̃N (t)| ≥ |Q2,2|− (|Q1|+ |Q2,1|+ |Q2,3|+ |Q3|) ≥
1
2
Dγwk|fN (tN )|.

We are ready to estimate
	
T |f̃N (t)| dt. Setting %γ = min(Lγ , 1/(AγRγ)) we

have
�

T
|f̃N (t)| dt ≥

M%γ−1∑
k=0

tN−k|∆2|�

tN−(k+1)|∆2|

|f̃N (t)| dt ≥
M%γ−1∑
k=0

1
2
Dγwk|∆2| |fN (tN )|.

For 0 ≤ k ≤M%γ − 1 we have

wk = log
κ

(k + 1)|∆2|
≥ log

1
Aγ
|∆1|

M%γ |∆2|

≥ log
1

Aγ%γ
≥ logRγ =

2Bγ
Dγ

> 0.

Putting together these estimates we get�

T
|f̃N (t)| dt ≥ CγM%γ |∆2| |fN (tN )| ≥ Cγ |∆1| |fN (tN )|.

Since |fN (tN )| ∼γ |∆1|−1/2, we have obtained

(3.18)
�

T
|f̃N (t)| dt ≥ Cγ |∆1|1/2.
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Moreover, applying (3.17) to tN (with k = 0) we find

(3.19) |f̃N (tN )| ≥ Cγ |∆1|−1/2 logM.

Now, (3.18) and (3.19) give (3.7). Define Sn(t, s) =
∑n

i=1 f̃i(t)f̃i(s). It follows
from (3.7) that

max(‖SN (tN , ·)‖1, ‖SN−1(tN , ·)‖1) ≥ 1
2

�

T
|f̃(tN )| |f̃N (t)| dt ≥ Cγ logM.

As M is arbitrary, this means that the Lebesgue functions of {f̃n, n ≥ 1}
are not bounded. Consequently, {f̃n, n ≥ 1} is not a basis in C(T).

3.3. Estimate of L̃σ(t) from above by J (3)
σ (t). Now, we turn to the

sufficiency part. By Theorem 2.1, we assume the strong regularity condition.
We prove the following upper estimate for the Lebesgue functions of the
conjugate of the general Franklin system:

Theorem 3.4. Let γ > 1. Let σ = {si, 1 ≤ i ≤ n} be a sequence of
simple knots in T such that

1/γ ≤ λi/λi+1 ≤ γ for all 1 ≤ i ≤ n.

Then there is a constant Cγ , depending only on γ, such that for t ∈ T,

L̃σ(t) ≤ CγJ (3)
σ (t).

Proof. Following S. V. Bochkarev (cf. the proof of Theorem 3 in [4]), for
fixed ε > 0, decompose ϕ(u) = cot(u/2) = ϕ1,ε(u) + ϕ2,ε(u), with

(3.20)

ϕ1,ε(u) =
{ cot(u/2) for |u| ≤ ε,

0 for ε ≤ |u| ≤ π,

ϕ2,ε(u) =
{ 0 for |u| ≤ ε,

cot(u/2) for ε ≤ |u| ≤ π,

and extend both ϕ1,ε, ϕ2,ε 2π-periodically to R.
Then we have the following decomposition of the kernel K̃:

K̃σ(t, s) =
1

2π
+

1
4π2

π�

0

π�

0

∆u,vKσ(t, s) cot
u

2
cot

v

2
du dv(3.21)

=
1

2π
+ V1(t, s) + V2(t, s) + V3(t, s),

where

∆u,vKσ(t, s) = Kσ(t+ u, s+ v)−Kσ(t− u, s+ v)

−Kσ(t+ u, s− v) +Kσ(t− u, s− v),
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and

V1(t, s) =
1

4π2

π�

0

( π�

0

∆u,vKσ(t, s) cot
u

2
du

)
cot

v

2
dv

− 1
4π2

π�

0

(ϕ2,ε(s− t+ v)− ϕ2,ε(s− t− v)) cot
v

2
dv,

V2(t, s) =
1

4π2

π�

0

((ϕ2,ε(s− t+ v)− ϕ2,ε(s− t− v)))ϕ2,ε(v) dv,

V3(t, s) =
1

4π2

π�

0

((ϕ2,ε(s− t+ v)− ϕ2,ε(s− t− v)))ϕ1,ε(v) dv.

We need to estimate L̃σ(t) =
	
T |K̃σ(t, s)| ds. First, recall that (see the

estimate for |1/2π + I3| in the proof of Theorem 3 in [4])∣∣∣∣ 1
2π

+ V2(t, s)
∣∣∣∣ ≤ C min

(
1
ε
,

ε

(dist(t, s))2

)
,

where C does not depend on ε, which implies

(3.22)
�

T

∣∣∣∣ 1
2π

+ V2(t, s)
∣∣∣∣ ds ≤ C.

Next, we turn to the part corresponding to V3(t, s). The way of estimating
V3 depends on dist(t, s).

First, consider the case dist(t, s) > 2ε. In this case if |v| ≤ ε then
dist(s − t,±v) ≥ ε and 1

2 dist(t, s) ≤ dist(s − t,±v) ≤ 3
2 dist(t, s). There-

fore, by the mean value theorem,

|ϕ2,ε(s− t± v)− ϕ2,ε(s− t)|

=
∣∣∣∣cot

s− t± v
2

− cot
s− t

2

∣∣∣∣ ≤ C |v|
(dist(t, s))2

.

Consequently,

|V3(t, s)| = 1
4π2

∣∣∣∣ ε�
0

(ϕ2,ε(s− t+ v)− ϕ2,ε(s− t)) cot
v

2
dv

∣∣∣∣
+

1
4π2

∣∣∣∣ ε�
0

(ϕ2,ε(s− t− v)− ϕ2,ε(s− t)) cot
v

2
dv

∣∣∣∣
≤ C

ε�

0

|v|
(dist(t, s))2

1
|v|

dv ≤ C ε

(dist(t, s))2
.
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The last inequality implies that

(3.23)
�

{s∈T : dist(t,s)>2ε}

|V3(t, s)| ds ≤ C
∞�

2ε

ε

x2
dx ≤ C.

When ε < dist(t, s) ≤ 2ε, we write

V3(t, s) =
1

4π2

dist(t,s)−ε�

0

(ϕ2,ε(s− t+ v)− ϕ2,ε(s− t− v)) cot
v

2
dv

+
1

4π2

ε�

dist(t,s)−ε

(ϕ2,ε(s− t+ v)− ϕ2,ε(s− t− v)) cot
v

2
dv

= V3,1(t, s) + V3,2(t, s).

For 0 ≤ v ≤ dist(t, s)− ε we have ε ≤ dist(s− t,±v) ≤ 3ε, so (again by the
mean value theorem)

|ϕ2,ε(s− t+ v)− ϕ2,ε(s− t− v)| ≤ C v

ε2
.

This implies

(3.24) |V3,1(t, s)| ≤ C
dist(t,s)−ε�

0

v

ε2
1
v
dv ≤ C dist(t, s)− ε

ε2
.

For dist(t, s)− ε ≤ v ≤ ε, we note that |ϕ2,ε(·)| ≤ C/ε and so

|V3,2(t, s)| ≤ C
ε�

dist(t,s)−ε

1
ε

1
v
dv = C

1
ε

log
ε

dist(t, s)− ε
.

Using the last inequality and (3.24), and setting x = dist(t, s)− ε, we find�

{s∈T : ε<dist(t,s)≤2ε}

|V3(t, s)| ds ≤
�

{s∈T : ε<dist(t,s)≤2ε}

|V3,1(t, s)| ds

+
�

{s∈T : ε<dist(t,s)≤2ε}

|V3,2(t, s)| ds

≤ C
ε�

0

(
x

ε2
+

1
ε

log
ε

x

)
dx=C

1�

0

(
y+log

1
y

)
dy.

As
	1
0

(
y + log 1

y

)
dy <∞, we have obtained

(3.25)
�

{s∈T : ε<dist(t,s)≤2ε}

|V3(t, s)| ds ≤ C.

Finally, let dist(t, s) ≤ ε. Note that for |v| < ε − dist(t, s) we have
dist(s − t,±v) < ε, and consequently ϕ2,ε(s − t ± v) = 0. Combining this
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with |ϕ2,ε(·)| ≤ C/ε we get

|V3(t, s)| ≤
ε�

ε−dist(t,s)

|ϕ2,ε(s− t+ v)− ϕ2,ε(s− t− v)|
∣∣∣∣cot

v

2

∣∣∣∣ dv
≤ C

ε�

ε−dist(t,s)

1
ε

1
v
dv = C

1
ε

log
ε

ε− dist(t, s)
.

This implies (now setting x = dist(t, s))

(3.26)
�

{s∈T : dist(t,s)≤ε}

|V3(t, s)| ds ≤ C
ε�

0

1
ε

log
ε

ε−x
dx = C

1�

0

log
1
x
dx = C.

Putting together (3.23), (3.25) and (3.26) we get

(3.27)
�

T
|V3(t, s)| ds ≤ C.

Now, we turn to estimating
	
T |V1(t, s)| ds. Let m = m(t) be such that

t ∈ Im. Set

(3.28) εt =
|Im−1| ∧ |Im+1|

2
.

Observe that

{s ∈ T : dist(t, s) < εt} ⊂ Im−1 ∪ Im ∪ Im+1.

By strong regularity with parameter γ we have εt ∼γ |Im|. Define

(3.29) Φt(s) =
π�

0

(Kσ(t+ u, s)−Kσ(t− u, s)) cot
u

2
du− ϕ2,εt(s− t).

Observe that V1(t, s) = −1
2π Φ̃t(s), which implies

(3.30)
�

T
|V1(t, s)| ds=

1
2π

�

T
|Φ̃t(s)| ds≤

1
2π

(‖Φt‖1 + ‖Φ̃t‖1)≤C‖Φt‖ReH1 .

Therefore, the next step is to prove that Φt ∈ ReH1 and

(3.31) ‖Φt‖ReH1 ≤ CγJ (3)
σ (t).

Then by (3.31) and (3.30) we get

(3.32)
�

T
|V1(t, s)| ds ≤ CγJ (3)

σ (t).

To prove (3.31), we find a suitable atomic decomposition of Φt. More pre-
cisely, we show that

(3.33) Φt =
n∑
i=1

ΦtNi,

after a suitable normalization, yields such a decomposition.
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Define

Θt(s) =
π�

0

(Kσ(t+ u, s)−Kσ(t− u, s)) cot
u

2
du.

This is well defined, because Kσ(·, s) is a Lipschitz function. We show that

(3.34) |Θt(s)| ≤ Cγ/εt.
Indeed, Kσ(v, s) =

∑n
i,j=1 ai,jNi(v)Nj(s). If 0 ≤ u ≤ εt then t ± u ∈

Im−1 ∪ Im ∪ Im+1. Therefore, applying the estimates for |aij | from Theo-
rem 3.1 and strong regularity with parameter γ, we have, for s ∈ Ik,

|Kσ(t+u, s)−Kσ(t−u, s)| ≤
∑
|i−m|≤1

|Ni(t+u)−Ni(t−u)|
∣∣∣ n∑
j=1

ai,jNj(s)
∣∣∣

≤ Cγ
u

|Im|
∑
|i−m|≤1

∣∣∣ k+1∑
j=k

ai,jNj(s)
∣∣∣

≤ Cγ
u

|Im|
1

2|m−k|n
1

λm ∨ λk
.

Applying this estimate, we find, for s ∈ Ik,

(3.35)
εt�

0

|Kσ(t+ u, s)−Kσ(t− u, s)|
∣∣∣∣cot

u

2

∣∣∣∣ du ≤ Cγ 1
2|m−k|n

1
λm ∨ λk

.

If εt ≤ u ≤ π, then |cot(u/2)| ≤ C/εt, and consequently, using (3.2), we get
π�

εt

|Kσ(t+ u, s)−Kσ(t− u, s)|
∣∣∣∣cot

u

2

∣∣∣∣ du ≤ C

εt

�

T
|Kσ(v, s)| dv ≤ C

εt
.

Combining the last two inequalities we get (3.34). In fact, we have proved
that

(3.36)
π�

0

∣∣∣∣(Kσ(t+ u, s)−Kσ(t− u, s)) cot
u

2

∣∣∣∣ du ≤ C

εt
.

This allows us to use Fubini’s theorem, which implies
�

T
Θt(s) ds =

π�

0

�

T
(Kσ(t+ u, s)−Kσ(t− u, s)) cot

u

2
ds du = 0.

In particular, the last equality and the definition of ϕ2,ε (cf. (3.20)) imply

(3.37)
�

T
Φt(s) ds = 0.

The definition of εt guarantees that for i 6= m− 1,m,m+ 1,

(3.38) {s ∈ T : dist(s, suppNi) < εt} ∩ {s ∈ T : dist(t, s) < εt} = ∅.
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Let Ai = Ni ·Φt for i 6= m− 1,m,m+ 1, and A = Φt −
∑

i : |m−i|>1Ai. Note
that by strong regularity with parameter γ,

(3.39) |suppAi| ≤ Cγλi, |suppA| ≤ Cγλm.
Now, using again Fubini’s theorem (which is allowed because of (3.36)), the
fact that Pσ is the orthogonal projection onto Sσ, the definition of ϕ2,εt and
(3.38) we find
�

T
Ai(s) ds =

π�

0

�

T
(Kσ(t+ u, s)−Kσ(t− u, s))Ni(s) cot

u

2
ds du

−
�

T
ϕ2,εt(s− t)Ni(s) ds

=
π�

0

(Ni(t+ u)−Ni(t− u)) cot
u

2
du−

�

T
ϕ2,εt(s− t)Ni(s) ds = 0.

Clearly, from these equalities and (3.37) we also have
	
TA(s) ds = 0.

Put α = ‖A‖∞ · λm, B = (1/α)A, αi = ‖Ai‖∞ · λi, Bi = (1/αi)Ai. Now,
by (3.39), to complete the proof of (3.31), it is enough to show that

(3.40) α+
∑

i : |m−i|>1

αi ≤ CγJ (3)
σ (t).

First, (3.34) and the definition of ϕ2,ε yield |Φt| ≤ Cγ/εt. Since
εt ∼γ 1/λm, this implies that α ≤ Cγ .

Now, we turn to estimating αj . Let Λ be a piecewise linear function
interpolating ϕ2,εt(·− t) at the knots σ′ = σ \{sm, sm+1}. First, we estimate
|Λ(s) − ϕ2,εt(s − t)| for s ∈ Ij . For this, we use the simple and well-known
estimate

max
x∈[a,b]

|f(x)− l(x)| ≤ (b− a)2 max
x∈[a,b]

|f ′′(x)|,

where l(x) = x−a
b−a f(b) + b−x

b−af(a) and f ∈ C2[a, b]. Using this inequality,
strong regularity and the definition of εt we find, for j 6= m− 1,m,m+ 1,

(3.41) |Λ(s)− ϕ2,εt(s− t)| ≤ Cγ
λ2
j

(dist(t, Ij) + λj)3
for s ∈ Ij .

We need to estimate |Φt(s)| = |Θt(s) − ϕ2,εt(s − t)|. It follows from (3.35)
that for s ∈ Ij ,
|Θt(s)− ϕ2,εt(s− t)|

≤ Cγ
1

2|m−j|n
1

λm ∨ λj
+
∣∣∣∣ �

εt≤|u|≤π

Kσ(t+ u, s) cot
u

2
du− ϕ2,εt(s− t)

∣∣∣∣
= Cγ

1
2|m−j|n

1
λm ∨ λj

+ |Pσ(ϕ2,εt(· − t))(s)− ϕ2,εt(s− t)|.
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Λ interpolates ϕ2,εt(· − t) at the knots σ′ ⊂ σ, so Λ ∈ Sσ and PσΛ = Λ. As
Pσ(. . .) is linear on Ij , for s ∈ Ij we have

|Pσ(ϕ2,εt(· − t))(s)− ϕ2,εt(s− t)| ≤ |Pσ(ϕ2,εt(· − t)− Λ)(tj)|
tj+1 − s
tj+1 − tj

+ |Pσ(ϕ2,εt(· − t)− Λ)(tj+1)| s− tj+1

tj+1− tj
+ |Λ(s)− ϕ2,εt(s− t)|.

Moreover, the definition of Λ and the bound for ϕ2,εt imply |Λ−ϕ2,εt(·− t)|
≤ Cγ/λm. Together with strong regularity this shows that (3.41) holds also
for j = m− 1,m,m+ 1. Therefore, by (3.41), estimates for the kernel from
Theorem 3.1 and strong regularity we get

|Pσ(ϕ2,εt(· − t)− Λ)(tj)| ≤
�

T
|Kσ(u, tj)| |Λ(u)− ϕ2,εt(u− t)| du

=
n∑
l=1

�

Il

|Kσ(u, tj)| |Λ(u)− ϕ2,εt(u− t)| du

≤ Cγ
n∑
l=1

1
2|l−j|n

1
λl ∨ λj

(
λl

dist(t, Il) + λl

)3

.

|Pσ(ϕ2,ε(· − t) − Λ)(tj+1)| is estimated analogously. Summarizing, for s ∈
suppNj with j 6= m− 1,m,m+ 1 we have obtained

|Φt(s)| = |Θt(s)− ϕ2,εt(s− t)| ≤ Cγ
(

1
2|m−j|n

1
λm ∨ λj

+
λ2
j

(dist(t, Ij) + λj)3

+
n∑
l=1

1
2|l−j|n

1
λl ∨ λj

(
λl

dist(t, Il) + λl

)3)
.

Consequently,

αj ≤ Cγ
(

1
2|m−j|n

+
n∑
l=1

1
2|l−j|n

(
λl

dist(t, Il) + λl

)3)
,

and summing over |j − m| > 1, we get (3.40) (recall that α ≤ Cγ). This
completes the proof of (3.31).

We have already seen that (3.31) implies (3.32). Putting together (3.21),
(3.22), (3.27) and (3.32) we get the inequality stated in Theorem 3.4.

Comment. It is possible to show that ‖Φt‖1 ≥ CγJ (3)
σ (t). This implies

that ‖Φt‖ReH1 ∼γ J (3)
σ (t), but to get a lower bound for L̃σ(t) in terms

of J (3)
σ (t) we would need an estimate of the form ‖Φ̃t‖1 ≥ CγJ (3)

σ (t). We
do not know how to achieve this. However, we are able to get a weaker
estimate from below for L̃σ(t), in terms of J (4)

σ (t) instead of J (3)
σ (t). This

is the subject of Section 3.4.
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3.4. Necessity of J (4)
σ (t) <∞. Now, we consider necessary conditions

for {f̃n, n ≥ 1} to be a basis in C(T). Theorem 2.1 already shows that strong
regularity is such a condition. We strengthen this result and get a condition
similar to the sufficient condition from Theorem 3.4, but with J (4)

σ (t). As
previously, because of Theorem 2.1, we consider only the case when the
sequence of partitions involved satisfies the strong regularity condition.

Theorem 3.5. Let γ > 1. Let σ = {si, 1 ≤ i ≤ n} be a sequence of
simple knots in T such that

1/γ ≤ λi/λi+1 ≤ γ for all 1 ≤ i ≤ n.

Then there is a constant Cγ , depending only on γ such that for t ∈ T,

J (4)
σ (t) ≤ CγL̃σ(t).

For the proof, we need several technical lemmas. We start with

Lemma 3.6. Let σ be a sequence of simple knots in T containing at
least 10 points and satisfying the strong periodic regularity condition with
parameter γ. Let t ∈ T. Then there is kmax ∈ N and a subsequence
{jk, 1≤ k ≤ kmax} such that

(3.42) 2 ≤ λjk/λjk−1
,

(3.43) dist(t, Ijk) ≥ 2 dist(t, Ijk−1
),

(3.44)
kmax∑
k=1

(
λjk

dist(t, Ijk) + λjk

)3

≥ CγJ (4)
σ (t),

(3.45) dist(t, Ijk) + λjk ≤ γ dist(t, Ijk).

Moreover , let Ω1 = [t, t + π], Ω2 = [t − π, t] be two periodic intervals on T
with endpoints t, t+π. The subsequence {jk, 1 ≤ k ≤ kmax} can be chosen to
be either increasing with Ijk ⊂ Ω1 for all 1 ≤ k ≤ kmax, or decreasing with
Ijk ⊂ Ω2 for all 1 ≤ k ≤ kmax.

Proof. Let m1, m2 be indices such that t ∈ Im1 and t+ π ∈ Im2 .
Consider the set T \ (Im1−1 ∪ Im1 ∪ Im1+1 ∪ Im2); it consists of at most

two periodic intervals Ω′1 ⊂ Ω1 and Ω′2 ⊂ Ω2. Let Ci = {j : Ij ⊂ Ω′i},
i = 1, 2. Clearly, all intervals with indices in Ci are included in Ωi. By strong
regularity, the intervals with indices in both collections Ci satisfy (3.45), and
moreover

J (4)
σ (t) ∼γ

∑
j∈C1∪C2

(
λj

dist(t, Ij) + λj

)4

.

Let C be the one of C1, C2 for which
∑

j∈Ci
( λj

dist(t,Ij)+λj

)4 is greater. Clearly,
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then

J (4)
σ (t) ∼γ

∑
j∈C

(
λj

dist(t, Ij) + λj

)4

.

To simplify notation further, assume that −π ≤ t < t+π < π and C = C1,
so C = {j : m1 + 2 ≤ j ≤ m2− 1}. First, we choose a subsequence satisfying
(3.42) and (3.44). Let j1 be the element of C with dist(t, Iji) minimal, i.e.
j1 = m1 + 2. Having chosen j1, . . . , jk−1, take jk to be the first element of
C such that jk > jk−1 and λjk ≥ 2λjk−1

. If this is not possible, stop the
procedure; the last jk chosen is jkmax . Thus, (3.42) is satisfied. Moreover,
the definition of jk implies that λjk−1 < 2λjk−1

, hence by strong regularity

(3.46) λjk ≤ γλjk−1 ≤ 2γλjk−1
.

Now, we check (3.44). If jk > jk−1 + 1, then the collection of indices jk−1 ≤
j ≤ jk−1 is split into intervals ζl ≤ j ≤ ζl+1−1 so that

∑ζl+1−1
j=ζl

λj ∼γ λjk−1
.

We start with ζ1 = jk−1. If
∑jk−1

j=jk−1
λj < 2λjk−1

, then it is enough to put
ζ2 = jk and to stop the procedure—the desired lower estimate follows by
strong regularity. If

∑jk−1
j=jk−1

λj ≥ 2λjk−1
and ζl, l ≥ 1, is already defined

with
∑jk−1

j=ζl
λj ≥ 2λjk−1

, then ζl+1 is chosen so that 2λjk−1
≤
∑ζl+1−1

j=ζl
λj

≤ 4λjk−1
; this is possible, since by the definition of jk, we have λj ≤ 2λjk−1

for jk−1 < j < jk. If
∑jk−1

j=ζl
λj < 2λjk−1

, then we change the definition of ζl
by putting ζl = jk and stop the procedure of choosing ζi’s. Note that in this
last case we have 2λjk−1

≤
∑ζl−1

j=ζl−1
λj ≤ 6λjk−1

.
For the sequence ζl so chosen, note that

dist(t, Iζl) ≥ dist(t, Ijk−1
) + Cγ(l − 1)λjk−1

.

Therefore
jk−1∑
j=jk−1

(
λj

dist(t, Ij) + λj

)4

=
lmax(k)∑
l=1

ζl+1−1∑
j=ζl

(
λj

dist(t, Ij) + λj

)4

≤
lmax(k)∑
l=1

(
∑ζl+1−1

j=ζl
λj)4

dist(t, Iζl)4

≤ Cγ
lmax(k)∑
l=1

λ4
jk−1

(dist(t, Ijk−1
) + Cγ(l − 1)λjk−1

)4

≤ Cγ
(

λjk−1

dist(t, Ijk−1
) + λjk−1

)3

.

By a similar argument we find that∑
j∈C, j≥jkmax

(
λj

dist(t, Ij) + λj

)4

≤ Cγ
(

λjkmax

dist(t, Ijkmax
) + λjkmax

)3

.
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Thus, we have obtained a subsequence jk satisfying (3.42) and (3.44).
Now, we choose a further subsequence so that (3.42) and (3.44) are still sat-
isfied and (3.43) holds as well. Again, this is done inductively. Take jk1 = j1.
Then, with jkl−1

already defined, let jkl be the last index from the subse-
quence jk such that dist(t, Ijkl ) ≤ 2 dist(t, Ijkl−1

); however, in case jkl = jkl−1

we put jkl = jkl−1+1 to guarantee jkl > jkl−1
. This choice of jkl guarantees

that

(3.47) dist(t, Ijk) ≥ 2 dist(t, Ijkl−1
) for k > kl.

This implies that both sequences {jk2l} and {jk2l−1
} satisfy (3.43); clearly,

they also satisfy (3.42). It remains to show that at least one of them also
satisfies (3.44). For this, we need to estimate

∑kl
k=kl−1+1

( λjk
dist(t,Ijk )+λjk

)3.
Assume first that kl > kl−1 + 1. Then dist(t, Ijkl ) ≤ 2 dist(t, Ijkl−1

), which
implies, for kl−1 + 1 ≤ k ≤ kl,

dist(t, Ijkl ) + λjkl ∼γ dist(t, Ijkl ) ≤ 2 dist(t, Ijkl−1
) ≤ 2(dist(t, Ijk) + λjk).

Moreover, by (3.42),
kl∑

k=kl−1+1

λ3
jk
≤ 8

7
λ3
jkl
.

Therefore,
kl∑

k=kl−1+1

(
λjk

dist(t, Ijk) + λjk

)3

≤ Cγ
(

λjkl
dist(t, Ijkl ) + λjkl

)3

.

Clearly, the same estimate holds when kl = kl−1 + 1. Altogether we get
lmax∑
l=1

(
λjkl

dist(t, Ijk) + λjkl

)3

≥ Cγ
kmax∑
k=1

(
λjk

dist(t, Ijk) + λjk

)3

≥ CγJ (4)
σ (t).

This implies that at least one of the sequences {j2l}, {j2l−1} satisfies (3.44)
in addition to (3.42), (3.43).

Lemma 3.7. Fix η > 1. Let 0 < a1 < a2 ≤ ηa1. Let ω(x) = 1/x. Then
there is a constant αη, depending only on η, such that the following holds:
Let l be a function linear on [a1, a2] and such that

(3.48) |{x ∈ [a1, a2] : l(x)− ω(x) > 0}| < αη(a2 − a1).

Then, for i = 1, 2, there is hi > 0 such that for

l1(x) = l(x) + ζ1(x− a1), l2(x) = l(x) + ζ2(a2 − x),

with 0 < ζi < hi, we have
a2�

a1

(ω(x)− l(x))2 dx >
a2�

a1

(ω(x)− li(x))2 dx.
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Remark. The constant αη in Lemma 3.7 depends only on η, but h1, h2

may depend on a1, a2 and l.

Proof. For l1, the statement is equivalent to

ζ1

a2�

a1

(x− a1)2 dx < 2
a2�

a1

(x− a1)(ω(x)− l(x)) dx for 0 < ζ1 < h1.

To prove the above inequality, it is enough to show that

(3.49)
a2�

a1

(x− a1)(ω(x)− l(x)) dx > 0,

and then take h1 = 2
	a2

a1
(x− a1)(ω(x)− l(x)) dx/

	a2

a1
(x− a1)2 dx.

Since x(ω(x) − l(x)) is a polynomial of degree 2, there are at most two
points in [a1, a2] for which x(l(x) − ω(x)) = 0. Now, consider the following
cases:

(i) x(ω(x)− l(x)) either has no zeros in (a1, a2), or has one double zero
in (a1, a2).

(ii) x(ω(x)− l(x)) has one zero in (a1, a2), and l(a1) < ω(a1).
(iii) x(ω(x)− l(x)) has one zero in (a1, a2), and l(a1) > ω(a1).
(iv) x(ω(x)− l(x)) has two distinct zeros in (a1, a2).

Case (i). Assumption (3.48) implies that in this case ω(x)− l(x) > 0 on
(a1, a2) (except of the possible double zero of x(ω(x)− l(x))). Consequently,
(3.49) holds.

Case (ii). We show that there is α′η > 0 such that if l satisfies (ii) and
(3.48) with α′η, then (3.49) holds.

Let u ∈ (a1, a2) be such that l(u) = ω(u). Note that in this case l(a2) >
ω(a2). Moreover, l(x) > ω(x) for x ∈ (u, a2) and l(x) < ω(x) for x ∈ (a1, u).
Thus, we can write u = a2 − α(a2 − a1), and 0 ≤ α ≤ α′η, because of (3.48).
Further, for fixed u, we calculate the integral in (3.49) as a function of l(a2),
and we find that the term depending on l(a2) is

l(a2)(a2 − a1)2
(

1
6
a2 − a1

a2 − u
− 1

2

)
= l(a2)(a2 − a1)2

(
1

6α
− 1

2

)
.

Assume α′η < 1/3. Then for α ≤ α′η the integral in question is an increasing
function of l(a2). Therefore, it is enough to consider l(a2) = ω(a2). Then
l(x) = a2−x

a2u
+ 1

a2
, and

a2�

a1

(x− a1)(ω(x)− l(x)) dx = (a2− a1)− a1 log
a2

a1
− (a2 − a1)3

6a2u
− (a2 − a1)2

2a2
.

Write a2 − a1 = εa1. In this notation, a2 = (1 + ε)a1, u = (1 + ε − εα)a1.
The assumption a1 < a2 ≤ ηa1 means that 0 < ε ≤ η − 1. The integral in
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question is equal to a1U(α, ε), where

U(α, ε) = ε− log(1 + ε)− ε3

6(1 + ε)(1 + ε− αε)
− ε2

2(1 + ε)
.

Hence
∂U

∂ε
(α, ε) =

ε3(2− 4α+ 2ε− 5αε+ 3α2ε)
6(1 + ε)2(1 + ε− αε)2

.

It follows that there is α′η > 0 such that ∂U
∂ε (α, ε) > 0 for all 0 < ε ≤ η − 1

and 0 ≤ α ≤ α′η. Since U(α, 0) = 0, this implies that U(α, ε) > 0 for the
same range of parameters. Consequently, for l as in (ii) and satisfying (3.48)
with α′η we have

	a2

a1
(x− a1)(ω(x)− l(x)) dx > 0.

Case (iii). We show that there is α′′η > 0 such that if l satisfies (iii) and
(3.48) then both

	a2

a1
(x−a1)(ω(x)− l(x)) dx > 0 and

	a2

a1
(ω(x)− l(x)) dx > 0.

Let v ∈ [a1, a2] be such that ω(v) = l(v). Then we can write v = a1 +
α(a2 − a1). Since ω(x)− l(x) < 0 on (a1, v) and ω(x)− l(x) > 0 on (v, a2),
it follows from (3.48) that α ≤ α′′η.

First, for fixed v, we calculate the integral
	a2

a1
(x− a1)(ω(x)− l(x)) dx as

a function of l(a1), and we find that the part depending on l(a1) is

l(a1)(a2 − a1)2
(

1
3
a2 − a1

v − a1
− 1

2

)
= l(a1)(a2 − a1)2

(
1

3α
− 1

2

)
.

Without loss of generality we can assume α′′η < 2/3. Then for α ≤ α′′η the
integral is an increasing function of l(a1), and it is enough to consider the
case when l(a1) = ω(a1). Then l(x) = a1−x

a1v
+ 1

a1
, and

a2�

a1

(x− a1)(ω(x)− l(x)) dx = (a2− a1)− a1 log
a2

a1
+

(a2 − a1)3

3a1v
− (a2 − a1)2

2a1
.

Write a2 − a1 = εa1; note again that 0 < ε ≤ η − 1, a2 = (1 + ε)a1,
v = (1 + αε)a1, and the integral in question equals a1V (α, ε), where

V (α, ε) = ε− log(1 + ε) +
ε3

3(1 + εα)
− ε2

2
.

Then
∂V

∂ε
(α, ε) =

ε3(3− 4α+ 2αε− 3α2ε)
3(1 + ε)(1 + αε)2

.

This shows that there is α′′η > 0 such that ∂V
∂ε (α, ε) > 0 for all 0 ≤ α ≤ α′′η

and 0 < ε ≤ η − 1. Since V (α, 0) = 0, this implies that V (α, ε) > 0 for
the same range of parameters. Consequently, for l as in (iii) and satisfying
(3.48) with α′′η we have

	a2

a1
(x− a1)(ω(x)− l(x)) dx > 0.

It remains to treat
	a2

a1
(ω(x) − l(x)) dx. We proceed analogously. First,

for fixed v we consider the integral as a function of l(a1), and find that
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if α′′η < 1/2 then the integral is an increasing function of l(a1) for each
0 ≤ α ≤ α′′η. So again it is enough to consider the case l(a1) = ω(a1) and
l(x) = a1−x

a1v
+ 1

a1
. In this case

a2�

a1

(ω(x)− l(x)) dx = log
a2

a1
− a2 − a1

a1
+

(a2 − a1)2

2a1v
.

Put a2 − a1 = εa1; again 0 < ε ≤ η − 1, and the integral equals V1(α, ε) =
log(1 + ε)− ε+ ε2

2(1+αε) . Then

∂V1

∂ε
(α, ε) =

ε2(2− 3α+ αε− 2α2ε)
2(1 + ε)(1 + αε)2

.

Again, there is α′′η > 0 such that ∂V1
∂ε (α, ε) > 0 for all 0 ≤ α ≤ α′′η and

0 < ε ≤ η−1. Since V1(α, 0) = 0, this implies that V1(α, ε) > 0 for the same
range of parameters, and so

	a2

a1
(x − a1)(ω(x) − l(x)) dx > 0 for l as in (iii)

and satisfying (3.48) with α′′η.

Case (iv). Let b1, b2 ∈ [a1, a2], b1 < b2, be zeros of ω(x)− l(x). Clearly,
ω(x)− l(x) > 0 on [a1, b1) and (b2, a2], and ω(x)− l(x) < 0 on (b1, b2). Con-
sequently,

	b1
a1

(x−a1)(ω(x)−l(x)) dx > 0 and
	a2

b2
(x−a1)(ω(x)−l(x)) dx > 0.

Moreover, max(b2 − a1, a2 − b1) ≥ (a2 − a1)/2. It should be clear that
a1 < b1 ≤ ηa1 and b2 < a2 ≤ ηb2. Now, fix αη = min(α′η/2, α

′′
η/2),

where α′η, α
′′
η are taken from (ii), (iii), respectively. It follows that either

l satisfies condition (ii) on [a1, b2] and (3.48) with α′η, or it satisfies
condition (iii) on [b1, a2] and (3.48) with α′′η. In the first case, condition
(ii) yields

	b2
a1

(x − a1)(ω(x) − l(x)) dx > 0. In the second case, (iii) gives	a2

b1
(x− b1)(ω(x)− l(x)) dx > 0 and

	a2

b1
(ω(x)− l(x)) dx > 0, which implies

a2�

b1

(x− a1)(ω(x)− l(x)) dx =
a2�

b1

(x− b1)(ω(x)− l(x)) dx

+ (b1 − a1)
a2�

b1

(ω(x)− l(x)) dx > 0.

This completes the proof of
	a2

a1
(x− a1)(ω(x)− l(x)) dx > 0 in case (iv).

The case of l2 is treated analogously.

Lemma 3.8. Fix η > 1. Let 0 < a1 < a2 ≤ ηa1. Let ω(x) = 1/x. Then
there is a constant αη, depending only on η, such that the following holds:
Let l be a function linear on [a1, a2] and such that

(3.50) |{x ∈ [a1, a2] : l(x)− ω(x) < 0}| < αη(a2 − a1).

Then, for i = 1, 2, there is hi > 0 such that for

l1(x) = l(x)− ζ1(x− a1), l2(x) = l(x)− ζ2(a2 − x),
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with 0 < ζi < hi, we have
a2�

a1

(ω(x)− l(x))2 dx >
a2�

a1

(ω(x)− li(x))2 dx.

Remark. The constant αη in Lemma 3.8 depends only on η, but h1, h2

may depend on a1, a2 and l.

Proof. The statement for l2 is equivalent to

ζ2

a2�

a1

(a2 − x)2 dx < 2
a2�

a1

(a2 − x)(l(x)− ω(x)) dx for 0 < ζ2 < h2.

To prove the above inequality, it is enough to show that

(3.51)
a2�

a1

(a2 − x)(l(x)− ω(x)) dx > 0,

and then take h2 = 2
	a2

a1
(a2 − x)(l(x)− ω(x)) dx/

	a2

a1
(a2 − x)2 dx.

As x(l(x) − ω(x)) is a polynomial of degree 2, there are at most two
points in [a1, a2] for which x(l(x) − ω(x)) = 0. Note that (3.50) implies
that x(l(x)−ω(x)) cannot have a double zero in (a1, a2). Now, consider the
following cases:

(i) x(l(x)− ω(x)) has no zeros in (a1, a2).
(ii) x(l(x)− ω(x)) has one zero in (a1, a2), and l(a1) < ω(a1).
(iii) x(l(x)− ω(x)) has one zero in (a1, a2), and l(a1) > ω(a1).
(iv) x(l(x)− ω(x)) has two distinct zeros in (a1, a2).

Case (i). Assumption (3.50) implies that in this case l(x) − ω(x) > 0
on (a1, a2). Consequently, (3.51) holds.

Case (ii). We show that in this case there is α′η > 0 such that if l
satisfies (3.50) with α′η, then both

	a2

a1
(a2 − x)(l(x) − ω(x)) dx > 0 and	a2

a1
(l(x)− ω(x)) dx > 0.
Let u ∈ (a1, a2) be such that l(u) = ω(u). Note that in this case l(a2) >

ω(a2). Moreover, l(x) > ω(x) for x ∈ (u, a2) and l(x) < ω(x) for x ∈ (a1, u).
Thus, we can write u = a1 + α(a2 − a1), and 0 ≤ α ≤ α′η, because of (3.50).

For fixed u, we first calculate the integral
	a2

a1
(a2 − x)(l(x)− ω(x)) dx as

a function of l(a2), and we find that the term depending on l(a2) is equal to

l(a2)(a2 − a1)2
(

1
2
− a2 − a1

3(a2 − u)

)
= l(a2)(a2 − a1)2

(
1
2
− 1

3(1− α)

)
.

Assume α′η < 1/3. Then for α ≤ α′η the integral is an increasing function
of l(a2). Therefore, it is enough to consider l(a2) = ω(a2). Then l(x) =
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a2−x
a2u

+ 1
a2

, and so

a2�

a1

(a2− x)(l(x)−ω(x)) dx =
(a2 − a1)3

3a2u
+

(a2 − a1)2

2a2
+ (a2− a1)− a2 log

a2

a1
.

Put a2 − a1 = εa2. In this notation, a1 = (1− ε)a2 and u = (1− ε+ αε)a2.
The condition a1 < a2 ≤ ηa1 is equivalent to 0 < ε ≤ 1− 1/η. The integral
in question equals a2U(α, ε), where

U(α, ε) =
ε3

3(1− ε+ αε)
+
ε2

2
+ ε− log

1
1− ε

.

Hence
∂U

∂ε
(α, ε) =

ε3(1− ε− 4α+ 4εα− 3α2ε)
3(1− ε)(1− ε+ αε)2

.

By this formula there is α′η > 0 such that ∂U
∂ε (α, ε) > 0 for all 0 < ε ≤ 1−1/η

and 0 ≤ α ≤ α′η. Since U(α, 0) = 0, this implies that U(α, ε) > 0 for the
same range of parameters. Consequently, for l as in (ii) and satisfying (3.50)
with α′η we have

	a2

a1
(a2 − x)(l(x)− ω(x)) dx > 0.

For
	a2

a1
(l(x) − ω(x)) dx, the argument is similar. First, for fixed u we

consider the integral as a function of l(a2), and find that if α′η < 1/2 then
the integral is an increasing function of l(a2) for each 0 ≤ α ≤ α′η. So again
it is enough to consider the case l(a2) = ω(a2) and l(x) = a2−x

a2u
+ 1

a2
, and

then
a2�

a1

(l(x)− ω(x)) dx =
(a2 − a1)2

2a2u
+
a2 − a1

a2
− log

a2

a1
.

Put a2−a1 = εa2; again 0 < ε ≤ 1−1/η, and the integral equals U1(α, ε) =
ε2

2(1−ε+αε) + ε− log 1
1−ε . Hence

∂U1

∂ε
(α, ε) =

ε2(1− ε− 3α+ 3αε− 2α2ε)
2(1− ε)(1− ε+ αε)2

.

Again, there is α′η > 0 such that ∂U1
∂ε (α, ε) > 0 for all 0 ≤ α ≤ α′η and

0 < ε ≤ 1 − 1/η. Since U1(α, 0) = 0, this implies that U1(α, ε) > 0 for the
same range of parameters, and so

	a2

a1
(l(x)−ω(x)) dx > 0 for l as in (ii) and

satisfying (3.50) with α′η.

Case (iii). We show that there is α′′η > 0 such that if l satisfies (iii) and
(3.50) then

	a2

a1
(a2 − x)(l(x)− ω(x)) dx > 0.

Let v ∈ [a1, a2] be such that ω(v) = l(v). Write v = a2 − α(a2 − a1).
Since l(x)−ω(x) > 0 on (a1, v) and l(x)−ω(x) < 0 on (v, a2), it follows by
(3.50) that α ≤ α′′η. Now, for fixed v, the part of

	a2

a1
(a2 − x)(l(x)− ω(x)) dx
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depending on l(a1) is

l(a1)(a2 − a1)2
(

1
2
− 1

6
a2 − a1

v − a1

)
= l(a1)(a2 − a1)2

(
1
2
− 1

6(1− α)

)
.

We can assume α′′η < 2/3. Then for α ≤ α′′η the integral in question is
an increasing function of l(a1), and it is enough to consider the case when
l(a1) = ω(a1). Then l(x) = a1−x

a1v
+ 1

a1
, and so

a2�

a1

(a2−x)(l(x)−ω(x)) dx =
−(a2 − a1)3

6a1v
+

(a2 − a1)2

2a1
+(a2−a1)−a2 log

a2

a1
.

Set a2− a1 = εa2; then 0 < ε ≤ 1− 1/η, a1 = (1− ε)a2, v = (1−αε)a2, and
the integral equals a2V (α, ε), where

V (α, ε) =
−ε3

6(1− ε)(1− αε)
+

ε2

2(1− ε)
+ ε− log

1
1− ε

.

Then
∂V

∂ε
(α, ε) =

ε3(2− 4α− αε+ 3α2ε)
6(1− ε)2(1− αε)2

.

Again there is α′′η > 0 such that ∂V
∂ε (α, ε) > 0 for all 0 ≤ α ≤ α′′η and

0 < ε ≤ 1 − 1/η. Since V (α, 0) = 0, this implies that V (α, ε) > 0 for the
same range of parameters. Consequently, for l as in (iii) and satisfying (3.50)
with α′′η we have

	a2

a1
(a2 − x)(ω(x)− l(x)) dx > 0.

Case (iv). Let b1, b2 ∈ [a1, a2], b1 < b2, be zeros of ω(x)− l(x). Set b =
(a1+a2)/2. Clearly, l(x)−ω(x)< 0 on [a1, b1) and (b2, a2], and l(x)−ω(x)> 0
on (b1, b2). Note that b1 < b < b2: if b ≤ b1, then l(x)− ω(x) < 0 on [a1, b);
as αη < 1/2, this contradicts (3.50). By an analogous argument we exclude
the possibility of b2 ≤ b. Note that a1 < b ≤ ηa1 and b < a2 ≤ ηb. Take
αη = min(α′η/2, α

′′
η/2), where α′η, α

′′
η are taken from (ii), (iii), respectively.

It follows that l satisfies condition (ii) on [a1, b] and (3.50) with α′η, and also
satisfies condition (iii) on [b, a2] and (3.50) with α′′η.

Applying (ii) to l on [a1, b] we get
	b
a1

(b − x)(l(x) − ω(x)) dx > 0 and	b
a1

(l(x)− ω(x)) dx > 0. It follows that

b�

a1

(a2 − x)(l(x)− ω(x)) dx =
b�

a1

(b− x)(l(x)− ω(x)) dx

+ (a2 − b)
b�

a1

(l(x)− ω(x)) dx > 0.

Moreover, applying (iii) to l on [b, a2] we find
	a2

b (a2−x)(l(x)−ω(x)) dx > 0.
This completes the proof of

	a2

a1
(a2 − x)(l(x)− ω(x)) dx > 0 in case (iv).

The case of l1 is treated analogously.
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To formulate Proposition 3.9 we need to introduce some notation. Let
ψ(u) = 2/u for |u| ≤ π. For ε > 0, let ψ1,ε = ψ(u) for 0 ≤ |u| ≤ ε and
ψ1,ε = 0 for ε < |u| ≤ π, ψ2,ε = 0 for 0 ≤ |u| ≤ ε and ψ2,ε = ψ(u) for
ε < |u| ≤ π, i.e. ψ = ψ1,ε + ψ2,ε. The functions ψ,ψ1,ε, ψ2,ε are regarded as
defined on R and 2π-periodic. Next, for a given sequence of points σ and
t ∈ T, let εt be given by formula (3.28) and gt = ψ2,εt(· − t).

Proposition 3.9. Let σ be a sequence of simple knots in T containing
at least 10 points and satisfying the strong regularity condition with parame-
ter γ. For t ∈ T, let gt be as defined above. Then there are constants Bγ , Dγ ,
depending only on γ, such that for each t ∈ T there is Ft ∈ C(T) such that

‖Ft‖∞ = 1, ‖F̃t‖∞ ≤ Bγ ,
∣∣∣ �

T
(Pσgt(u)− gt(u))Ft(u) du

∣∣∣ ≥ DγJ (4)
σ (t).

Proof. We keep the notation from Lemma 3.6. Let {jk, 1 ≤ k ≤ kmax} be
the subsequence obtained in Lemma 3.6. To fix ideas, assume that Ijk ⊂ Ω1.
In this case, {jk} is increasing, and we can assume that jk + 1 < jk+1. For
fixed jk, consider ∆jk = Ijk ∪ Ijk+1. Note that the intervals ∆jk are parwise
disjoint. We show that there are intervals ∆−jk , ∆

+
jk
⊂ ∆jk such that

Pσgt(u)− gt(u) ≥ Cγ
λ2
jk

(dist(t, Ijk)+λjk)3
on ∆+

jk
, |∆+

jk
| ∼γ λjk ,(3.52)

Pσgt(u)− gt(u) ≤ −Cγ
λ2
jk

(dist(t, Ijk)+λjk)3
on ∆−jk , |∆

−
jk
| ∼γ λjk .(3.53)

Let us show (3.52). Condition (3.45) and strong regularity imply

dist(t, Ijk+1) + λjk+1 = dist(t, Ijk) + λjk + λjk+1

≤ (γ + 1)(dist(t, Ijk) + λjk)
≤ γ(γ + 1) dist(t, Ijk) ≤ γ(γ + 1) dist(t, Ijk+1).

Hence both intervals Ijk − t, Ijk+1− t satisfy the assumptions of Lemma 3.7
with common parameter ηγ = γ(γ+ 1). Pσgt(s− t) is linear on both Ijk − t,
Ijk+1 − t. If we had both

|{s ∈ Ijk : Pσgt(s)− gt(s) > 0}| ≤ αηγλjk ,(3.54)
|{s ∈ Ijk+1 : Pσgt(s)− gt(s) > 0}| ≤ αηγλjk+1,(3.55)

then by Lemma 3.7 there would be ζ > 0 such that
�

Ijk

(Pσgt(s)− gt(s))2 ds >
�

Ijk

(
Pσgt(s) + ζ

s− tjk
λjk

− gt(s)
)2

ds,

�

Ijk+1

(Pσgt(s)− gt(s))2 ds >
�

Ijk+1

(
Pσgt(s) + ζ

tjk+2 − s
λjk+1

− gt(s)
)2

ds.
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But this implies that
�

T
(Pσgt(s)− gt(s))2 ds >

�

T
(Pσgt(s) + ζNjk+1(s)− gt(s))2 ds.

Since gt ∈ L2(T), this contradicts the definition of Pσgt(s). So at least one
of (3.54), (3.55) does not hold. Assume that (3.54) does not hold; the other
case is analogous. As (s− t)(Pσgt(s)−gt(s)) is a polynomial in s of degree 2
on Ijk , it follows that there is an interval I ′jk ⊂ Ijk such that |I ′jk | ∼γ λjk
and

Pσgt(s)− gt(s) > 0 for s ∈ I ′jk .

Further, we have

dist(t, I ′jk) + |I ′jk | ≤ dist(t, Ijk) + |Ijk | ≤ ηγ dist(t, Ijk) ≤ ηγ dist(t, I ′jk).

Let lt be a linear function interpolating gt at the endpoints of I ′jk . Since
‖lt − gt‖L∞(I′jk

) ≤ 2 inf l ‖l − gt‖L∞(I′jk
), where the infimum is taken over all

functions l linear on I ′jk , we obtain

max
u∈I′jk

|Pσgt(u)− gt(u)| ≥ 1
2

max
u∈I′jk

|lt(u)− gt(u)| ≥ Cγ
λ2
jk

(dist(t, Ijk) + λjk)3
.

Using again the argument with a quadratic polynomial, we find an interval
∆+
jk
⊂ I ′jk with |∆+

jk
| ∼γ |I ′jk | such that

Pσgt(s)− gt(s) ≥
1
2

max
u∈I′jk

|Pσgt(u)− gt(u)| for s ∈ ∆+
jk
.

Summarizing, we get (3.52).
Inequality (3.53) is proved analogously, with the use of Lemma 3.8.
Let ∆+

jk
, ∆−jk satisfy (3.52), (3.53), respectively. Let h−jk , h

+
jk

be piecewise
linear functions with supports ∆−jk , ∆

+
jk

, respectively, with values 0 at the
endpoints of the supports and −1, 1, respectively, at their midpoints. Ob-
serve that

(3.56)
�

∆±jk

|gt(u)h±jk(u)| du ≤ Cγ
|∆±jk |

dist(t,∆±jk)
≤ Cγ .

Since supph+
jk

= ∆+
jk

, we have
�

T
(Pσgt(u)− gt(u))h+

jk
(u) du =

�

∆+
jk

(Pσgt(u)− gt(u))h+
jk

(u) du.

As h+
jk
≥ 0, it follows by (3.52) that (Pσgt(u)−gt(u))h+

jk
(u) ≥ 0. Combining
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the above with the estimates (3.52) we find that

(3.57)
�

T
(Pσgt(u)− gt(u))h+

jk
(u) du ≥ Cγ

λ3
jk

(dist(t, Ijk) + λjk)3
.

Since supph−jk = ∆−jk and h−jk ≤ 0, an analogous argument combined with
(3.53) gives (Pσgt(u)− gt(u))h−jk(u) ≥ 0 and

(3.58)
�

T
(Pσgt(u)− gt(u))h−jk(u) du ≥ Cγ

λ3
jk

(dist(t, Ijk) + λjk)3
.

Let hjk be one of h−jk , h
+
jk

, where the choice of signs ± is done so that

(3.59)
∣∣∣ m∑
k=1

�

∆jk

gt(u)hjk(u) du
∣∣∣ ≤ 2Cγ for each m ≥ 1,

where ∆jk = supphjk . This choice is possible because of (3.56). Inequality
(3.59) implies in particular

(3.60)
∣∣∣ m2∑
k=m1

�

∆jk

gt(u)hjk(u) du
∣∣∣ ≤ 4Cγ for each m2 ≥ m1 ≥ 1.

Now, put

(3.61) Ft =
kmax∑
k=1

hjk .

Observe that Ft ∈ C(T) and ‖Ft‖∞ = 1. Moreover, by (3.57), (3.58) (note
the positive signs)

�

T
(Pσgt(u)− gt(u))Ft(u) du =

kmax∑
k=1

�

T
(Pσgt(u)− gt(u))hjk(u) du

≥ Cγ
kmax∑
k=1

λ3
jk

(dist(t, Ijk) + λjk)3
.

This inequality and (3.44) give∣∣∣ �
T

(Pσgt(u)− gt(u))Ft(u) du
∣∣∣ ≥ DγJ (4)

σ (t).

It remains to show ‖F̃t‖∞ ≤ Bγ . To simplify the calculations, let

f∗(x) =
−1
2π

lim
ε→0

�

ε≤|u|≤π

f(x+ u)ψ(u) du.

Note that for ϕ(u) = cot(u/2) we have |ϕ(u) − ψ(u)| ≤ C|u| for |u| ≤ π,
and so ‖f̃ − f∗‖∞ ≤ C‖f‖∞. Therefore, it is enough to show ‖F ∗‖∞ ≤ Bγ .



Conjugate Franklin system 233

Fix x ∈ T, and consider Γ1 = [x, x+ π] and Γ2 = [x− π, x], two periodic
intervals with endpoints x, x+ π. We have F ∗t (x) =

∑kmax
k=1 h

∗
jk

.
There are two simple estimates for h∗jk(x). Each hjk is a Lipschitz func-

tion with Lipschitz constant ∼γ λ−1
jk

. Define

Ajk(x) = {u : |u| ≤ π, hjk(x± u) 6= 0},

and observe that |Ajk(x)| ≤ 2|∆jk | ≤ Cγλjk . Therefore

|h∗jk(x)| =
∣∣∣∣ 1
2π

π�

0

(hjk(x− u)− hjk(x+ u))ψ(u) du
∣∣∣∣(3.62)

≤ Cγ
�

Ajk (x)

∣∣∣∣ uλjk · 1
u

∣∣∣∣ du ≤ Cγ .
If x 6∈ ∆jk and u ∈ Ajk(x) then |u| ≥ dist(x, Ijk). Therefore for x 6∈ ∆jk ,

|h∗jk(x)| =
∣∣∣∣ 1
2π

�

T
ψ(u)hjk(x− u) du

∣∣∣∣(3.63)

≤ 1
2π

�

Ajk (x)

2
|u|

du ≤ Cγ
λjk

dist(x, Ijk)
.

Take ξ such that x ∈ Iξ. Now, the sequence of indices {jk, 1 ≤ k ≤ kmax}
is split as follows:

M0 = {k : |jk − ξ| ≤ 2 or x+ π ∈ Ijk},
M1 = {k : Ijk ⊂ Γ1},
M2 = {k : Ijk ⊂ Γ2}.

Note that if k 6∈ M0 then Ijk ⊂ Γ1 or Ijk ⊂ Γ2, so {jk, 1 ≤ k ≤ kmax} =
M0 ∪M1 ∪M2. Let

Ui(x) =
∑
k∈Mi

h∗jk(x), i = 0, 1, 2.

Since #M0 ≤ 8, it follows by (3.62) that

(3.64) |U0(x)| ≤ Cγ .

To estimate U1(x) and U2(x), consider first the case when x ∈ Ω1. Let us
begin with U2(x). Let

p = max{k : k ∈M2}.

Then, by the definition of M0, Ijp+1 ⊂ Ω1∩Γ2. Therefore, because of strong
regularity we have, for k ∈M2 = {1, . . . , p},

dist(x, Ijk) ≥ dist(x, Ijp) ≥ λjp+1 ≥ λjp/γ.
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Moreover, it follows from (3.42) that
∑p

k=1 λjk ≤ 2λjp . Using these two facts
and (3.63) we obtain

(3.65) |U2(x)| ≤ Cγ
p∑

k=1

λjk
dist(x, Ijk)

≤ Cγ
∑p

k=1 λjk
λjp

≤ Cγ .

It remains to estimate U1(x). Let r = min{k : k ∈ M1}; note that M1 =
{r, r + 1, . . . , kmax}. It follows from (3.43) that for k > r,

dist(t, Ijk) ≥ 2 dist(t, Ijk−1
) ≥ 2 dist(t, Ijr),

which implies

(3.66) dist(t, Ijk)− dist(t, Ijr) ≥ dist(t, Ijk)/2 for k > r.

For k > r we write

h∗jk(x) =
�

T
ψ(u− x)hjk(u) du =

�

∆jk

ψ(u− x)
gt(u)

gt(u)hjk(u) du.

On ∆jk both ψ(u− x)/gt(u) and gt(u)hjk(u) are of constant sign, hence by
the mean value theorem there is uk ∈ ∆jk such that

h∗jk(x) =
ψ(uk − x)
gt(uk)

�

T
gt(u)hjk(u) du.

Because uk ∈ ∆jk ⊂ Ω1 ∩ Γ1 for k ∈ M1, we have ψ(uk − x) > 0 and
gt(uk) > 0, and moreover uk+1 > uk. Therefore, zk = ψ(uk − x)/gt(uk) =
(uk − t)/(uk − x) for k ∈ M1 is a decreasing sequence of positive numbers.
Moreover, using (3.45) and (3.66) we obtain, for k > r,

|zk| =
dist(t, uk)
dist(x, uk)

≤ dist(t, Ijk) + λjk
dist(t, Ijk)− dist(t, Ijr)

≤ γ dist(t, Ijk)
1
2 dist(t, Ijk)

= 2γ.

Combining boundedness and monotonicity of {zk} with (3.60) we find∣∣∣ kmax∑
k=r+1

zk
�

T
gt(u)hjk(u) du

∣∣∣ ≤ Cγ .
This inequality and (3.62) imply

|U1(x)| ≤ |h∗jr(x)|+
∣∣∣ kmax∑
k=r+1

zk
�

T
gt(u)hjk(u) du

∣∣∣ ≤ Cγ .
Since F ∗t (x) = U0(x) + U1(x) + U2(x), we obtain |F ∗t (x)| ≤ Bγ for x ∈ Ω1.

When x ∈ Ω2, estimating U1(x) is analogous to the argument for U2(x)
in case x ∈ Ω1, and estimating U2(x) is analogous to the argument for
U1(x) in case x ∈ Ω1 (but the signs and type of monotonicity of zk’s may
be different).

This completes the proof of Proposition 3.9.
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Proof of Theorem 3.5. First, suppose that σ contains at least 10 points.
Let t ∈ T. We keep the notation from the proof of Theorem 3.4 and intro-
duced before Proposition 3.9. In particular, m is such that t ∈ Im and εt is
defined by (3.28), and n is the number of points in σ.

By (3.22) and (3.27) we have

(3.67)
�

T

∣∣∣∣ 1
2π

+ V2(t, s) + V3(t, s)
∣∣∣∣ ds ≤ C.

Now, we estimate ‖V1(t, ·)‖1 from below. Recall that V1(t, ·) = −1
2π Φ̃t, where

Φt is given by (3.29). Let Ψt be defined by a formula analogous to (3.29),
but with ψ(u) = 2/u replacing ϕ(u) = cot(u/2), and let Ft be as in Propo-
sition 3.9. Then

‖Ψ̃t‖1 = sup
‖F‖∞≤1

∣∣∣ �
T
Ψ̃t(s)F (s) ds

∣∣∣ = sup
‖F‖∞≤1

∣∣∣ �
T
Ψt(s)F̃ (s) ds

∣∣∣
≥ 1
Bγ

∣∣∣ �
T
Ψt(s)Ft(s) ds

∣∣∣.
Observe that Ψt(s) = qt(s) + Pσgt(s)− gt(s), where

qt(s) =
π�

0

(Kσ(t+ u, s)−Kσ(t− u, s))ψ1,εt(u) du

=
εt�

0

(Kσ(t+ u, s)−Kσ(t− u, s)) 2
u
du.

Calculations analogous to those leading to (3.35) give

|qt(s)| ≤ Cγ
1

2|m−k|n
1

λm ∨ λk
for s ∈ Ik.

Since ‖Ft‖∞ = 1, we find∣∣∣ �
T
qt(s)Ft(s) ds

∣∣∣ ≤ n∑
k=1

�

Ik

|qt(s)| ds ≤ Cγ
n∑
k=1

1
2|m−k|n

≤ Cγ .

By Proposition 3.9,∣∣∣ �
T

(Pσgt(s)− gt(s))Ft(s) ds
∣∣∣ ≥ DγJ (4)

σ (t).

Combining these estimates we find

‖Ψ̃t‖1 ≥
DγJ (4)

σ (t)− Cγ
Bγ

.

Note that |ϕ(u) − ψ(u)| ≤ C|u| for |u| ≤ π. This observation and estimate
(3.2) imply that ‖Φt − Ψt‖∞ ≤ C. Now the boundedness of the conjugate
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operator on L2(T) yields

‖Φ̃t − Ψ̃t‖1 ≤ (2π)1/2‖Φ̃t − Ψ̃t‖2 ≤ (2π)1/2‖Φt − Ψt‖2 ≤ 2π‖Φt − Ψt‖∞ ≤ C.
Thus we get

‖Φ̃t‖1 ≥
Dγ

Bγ
J (4)
σ (t)− Cγ .

Combining the above inequality with (3.21) and (3.67) we find

L̃σ(t) ≥ CγJ (4)
σ (t)− C ′γ .

On the other hand,
	
T K̃σ(t, s) ds = 1, which implies that

L̃σ(t) ≥ 1.

Combination of the last two inequalities completes the proof of Theorem 3.5
in the case when σ contains at least 10 points.

Finally, if σ contains fewer than 10 points, then J (4)
σ (t) ∼γ 1. Also in

this case we have L̃σ(t) ≥ 1, which gives the desired estimate.

4. EXAMPLES AND FINAL REMARKS

For completeness, let us discuss some examples of sequences T with
supn,t J

(3)
n (t) <∞ or supn,t J

(4)
n (t) =∞.

Example 1 (Sequences with given bounds for the mesh ratio). Let
{γk, k ≥ 1} be a sequence of positive numbers. Define %k = 1 +

∑k−1
j=1 1/γj .

Let T be a sequence of points such that the partitions Tn, n ≥ 2, satisfy

(4.1)
1

γ|k1−k2|n
λn,k1 ≤ λn,k2 ≤ γ|k1−k2|nλn,k1 for all n ≥ 2, 1 ≤ k1, k2 ≤ n.

Recall that |k1 − k2|n = min(|k1 − k2|, n − |k1 − k2|). Then T satisfies the
strong periodic regularity condition with parameter γ1. Observe that

dist(In,k1 , In,k2) + λn,k1 ≥ λn,k1
(

1 +
|k1−k2|n−1∑

j=1

1
γj

)
= λn,k1%|k1−k2|n−1.

If
∑∞

k=1 1/%3
k < ∞, then the last inequality implies supn,t J

(3)
n (t) < ∞.

Therefore, by Theorem 2.2, the conjugate to the corresponding general pe-
riodic Franklin system is a basis in C(T).

The condition
∑∞

k=1 1/%3
k < ∞ is satisfied e.g. when γk = M , where M

is a fixed constant. Condition (4.1) then means that the partitions Tn, n ≥ 1,
generated by T have uniformly bounded global mesh ratio. Another example
is γk = kε with 0 < ε < 2/3.

4.1. More on the strong regularity condition. Theorem 2.1 states
that the strong regularity condition is necessary for the conjugate Franklin
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system to be a basis in C(T). The following example shows that it is not
sufficient. However, in the class of quasi-dyadic partitions it is a sufficient
condition.

Example 2 (Sequence satisfying the strong periodic regularity condition
with supn,t J

(4)
n (t) = ∞). Set τ0 = 0, τ1 = 1, τ2 = 1/2, and τ2s−1 =

1/2 − 1/2s, τ2s = 1/2 + 1/2s for s ≥ 2. This sequence satisfies the strong
periodic regularity condition with parameter γ = 2. For µ ≥ 2, let Gµ =
{τs, 0 ≤ s ≤ 2µ}. Then

J (k)
Gµ

(
1
2

)
= 2 +

2(µ− 2)
2k

.

Further, we can pass from Gµ to a uniform partition with step 1/2µ by
dividing each time one of the longest intervals in half.

A dense sequence satisfying the strong regularity condition with γ = 2
and supn,t J

(4)
n (t) =∞ can be constructed as follows:

(i) Fix a sequence µi ∈ N with lim supi→∞ µi =∞.
(ii) Take Gµ1 and rescale it to [−π, π], and then pass to a uniform par-

tition with step 2π/2µ1 by halving longest intervals.
(iii) Fix one of the intervals in the uniform partition of [−π, π]; call it ∆1.

Take a partition Gµ2,∆1 of ∆1 obtained by rescaling Gµ2 from [0, 1]
to ∆1. Then pass to a uniform partition of [−π, π] with step 2π/2ν2 ,
ν2 = µ1 + µ2, by halving each time one of the longest intervals.

(iv) For i ≥ 2, repeat step (iii): choose ∆i, rescale Gµi+1 to ∆i, and then
pass to a uniform partition of [−π, π] with step 2π/2νi+1 , νi+1 =
νi + µi+1.

Quasi-dyadic partitions. By a quasi-dyadic sequence we mean a sequence
of points T = {tj , j ≥ 1} with the following structure: T0 = {t1, t2} ⊂ T;
these two points define two arcs in T; call them I0,1, I0,2. Then take
T1 = {t3, t4} ⊂ T so that t3 ∈ I0,1 and t4 ∈ I0,2. Assume T0 and Ts =
{tl, 2s + 1 ≤ l ≤ 2s+1}, 1 ≤ s ≤ µ, have been defined. The collection
of points {tl, 1 ≤ l ≤ 2µ+1} defines 2µ+1 disjoint arcs in T; call them Iµ,l,
1 ≤ l ≤ 2µ+1. Now, take Tµ+1 = {tl, 2µ+1 + 1 ≤ l ≤ 2µ+2} such that tl ∈ Iµ,l.
Finally, set T =

⋃
j≥0 Tj .

Proposition 4.1. Let T be a quasi-dyadic sequence satisfying the strong
periodic regularity condition. Then

sup
n,t
J (3)
n (t) <∞.

Proof. To simplify notation, consider n = 2µ+1, i.e. the case when all
dyadic levels T0, . . . , Tµ are present. For given t ∈ T, let ∆s be the unique
interval from Is,1, . . . , Is,2s+1 such that t ∈ ∆s. Let ∆−s , ∆

+
s be the left
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and right neighbours of ∆s, and ∆̃s = ∆−s ∪ ∆s ∪ ∆+
s . By strong regu-

larity,
|∆−s | ∼γ |∆s| ∼γ |∆+

s | ∼γ |∆̃s|.

Observe that ∆̃s ⊂ ∆̃s−1, and each ∆̃s is a union of some arcs Iµ,l.
Let

As = {l : Iµ,l ⊂ ∆̃s and Iµ,l 6⊂ ∆̃s+1}.
Note that for l ∈ As, s ≥ µ − 1 we have dist(t, Iµ,l) ∼γ |∆s|. Moreover,
strong regularity implies that |Iµ,l| ≤ (γ/(γ + 1))µ−s|∆s| when l ∈ As. Now,∑

l∈As

(
|Iµ,l|

|Iµ,l|+ dist(t, Iµ,l)

)3

≤ Cγ
maxl∈As |Iµ,l|
|∆s|3

∑
l∈As

|Iµ,l|2

≤ Cγ
(

γ

γ + 1

)µ−s
|∆s|−2

(∑
l∈As

|Iµ,l|
)2

≤ Cγ
(

γ

γ + 1

)µ−s
.

This implies

J (3)
n (t) =

∑
s≤µ

∑
l∈As

(
|Iµ,l|

|Iµ,l|+ dist(t, Iµ,l)

)3

≤ Cγ
∑
s≤µ

(
γ

γ + 1

)µ−s
≤ Cγ .

Combining Theorems 2.1 and 2.2 with Proposition 4.1 we get

Corollary 4.2. Let T be a quasi-dyadic sequence of points with the
corresponding general periodic Franklin system {fn, n ≥ 1}. Then the con-
jugate system {f̃n, n ≥ 1} is a basis in C(T) if and only if T satisfies the
strong periodic regularity condition.
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