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Quasiaffine transforms of operators

by
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Abstract. We obtain a new sufficient condition (which may be useful elsewhere) that
a compact perturbation of a normal operator be the quasiaffine transform of some normal
operator. We also give some applications of this result.

Let H be a separable, infinite dimensional, complex Hilbert space, and
let L(H) denote the algebra of all bounded linear operators on H. As usual,
we will write K for the ideal of compact operators in L(H). Recall from [8]
that an X ∈ L(H) is called a quasiaffinity if kerX = kerX∗ = (0), and
that if S, T ∈ L(H) and there exists a quasiaffinity X ∈ L(H) such that
XS = TX, then we say that S is a quasiaffine transform of T and we write
S ≺ T. If both S ≺ T and T ≺ S then we say that S and T are quasisimilar,
and we write S ∼ T . It is well known that quasisimilarity is an equivalence
relation on L(H) that preserves the existence of nontrivial hyperinvariant
subspaces (cf. [5], [8]). One also knows that if S and T are normal and
S ≺ T, then S ∼ T and, in fact, S and T are unitarily equivalent. Below we
also write {T}′ for the commutant of an operator T in L(H) and σp(T ) for
the point spectrum of T .

The theory of quasiaffine transforms of operators is well developed and
plays an important role in the study of operators on Hilbert space (cf.,
e.g., [2] and [8]). In particular, the following little-known but somewhat
interesting result was obtained in [1].

Theorem 1 ([1, Th. 4.3]). Let T be an arbitrary operator in L(H) and
ε an arbitrary positive number. Then there exist a normal operator N and
a compact operator K in L(H) such that T ≺ N +K and ‖K‖ < ε.

Thus it is of interest to obtain sufficient conditions in order that an
operator N + K as in Theorem 1 be a quasiaffine transform of a normal
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operator M (thus giving T ≺ N+K ≺M), and we obtain one such condition
below (Theorem 5).

Our result depends on an old construction that has been used by many
authors (cf., e.g., [4], [6]). We first obtain a new Hilbert space KH from H
as follows.

Definition 2. Let K1 be the linear space of all (bounded) sequences
{xn}n∈N ⊂ H such that xn → 0 weakly, and let LIM be a fixed Banach
generalized limit on (the Banach space) l∞, with all of the properties of
such limits (cf., e.g., [3, Ex. 14E]), which we use below without further
explicit mention. Define a semi-inner product (and seminorm) on K1 by

〈{xn}, {yn}〉K1 = LIM〈xn, yn〉, ‖{xn}‖2 = 〈{xn}, {xn}〉K1 ,

let K0 be the linear manifold in K1 consisting of all {xn}n∈N in K1 such that

〈{xn}, {xn}〉K1 = 0,

and let K = KH be the (Hilbert space) completion of the quotient space
K1/K0. We will denote some elements of K by [{xn}], meaning the equiva-
lence class of K containing the sequence {xn}n∈N from K1. It is easy to see
that K is nonseparable. (Note that if {en}n∈N is an orthonormal sequence
in H, then [{en}] is a unit vector in K, and if π : N → N is any injec-
tive map with no fixed points (or only finitely many), then [{eπ(n)}] is a
unit vector in K orthogonal to [{en}].) Furthermore, we define a mapping
Φ : L(H)→ L(K) by setting, for every S ∈ L(H),

(1) Φ(S)[{xn}] = [{Sxn}], [{xn}] ∈ K.
A little cogitation, together with knowledge of the basic properties of

generalized Banach limits and compact operators (cf., e.g., [7, Ch. 4]), con-
vinces one of the truth of the following.

Lemma 3. The map Φ : L(H) → L(K) defined by (1) is a unital C∗-
algebra homomorphism with kerΦ ⊃ K.

Next, let us consider the collection C of all (bounded) sequences A =
{An}n∈N ⊂ L(H) such that An → 0 in the weak operator topology (WOT)
and A∗nAn → A2

0 6= 0 (WOT), where A0 ≥ 0 (which implies, in particular,
that for y ∈ H, ‖Any‖ → ‖A0y‖). We can now state the following easy
lemma, which follows, for instance, from [6, Lemma 1].

Lemma 4. For every A = {An}n∈N ∈ C, there exists a nonzero bounded
operator X = XA : H → K defined by

(2) Xy = [{Any}], y ∈ H,
and kerX ⊃ {y ∈ H : ‖Any‖ → 0}. Moreover , if T ∈ L(H) and {An}n∈N ∈
C ∩ {T}′, then

(3) XT = Φ(T )X.
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Our first theorem, which uses J. Thomson’s deep result [9] on the ex-
istence of analytic bounded point evaluations, and which we believe to be
new, is the following.

Theorem 5. Suppose that T = N + K ∈ L(H) with N normal and
K ∈ K, and that the WOT on the unit ball of {T}′ is strictly weaker than
the SOT there (equivalently , there exists a sequence {An} ⊂ {T}′ such that
An → 0 (WOT) but An 9 0 (SOT)). Then either T has a nontrivial in-
variant subspace or there exists a normal operator M ∈ L(H) such that
T ≺M .

Proof. By dropping down to a subsequence (without changing the no-
tation) we may suppose that A∗nAn → A2

0 6= 0 (WOT) where A0 ≥ 0. Thus
{An} ∈ C, and by Lemma 4 this sequence generates a bounded nonzero
operator X : H → K satisfying

Xy = [{Any}], ‖Xy‖2 = ‖A0y‖2, y ∈ H,

and also

(4) XT = Φ(T )X = Φ(N)X.

It now follows immediately from (4) that if kerX 6= (0) (i.e., A0 is not a
quasiaffinity), then kerX is a nontrivial invariant subspace for T , so, re-
garding X as a linear transformation from H to R = (ranX)−, we may
suppose that X is a quasiaffinity and that R is an invariant subspace for
the normal operator Φ(N). Thus (4) readily implies that T ≺ Φ(N)|R, and
it now suffices to show that Φ(N)|R is normal. Suppose, to the contrary, that
Φ(N)|R is a nonnormal, subnormal operator. We may also suppose that ev-
ery y 6= 0 in H is cyclic for T , and consequently Φ(N)|R has a cyclic vector
too. But then the pure subnormal part S of Φ(N)|R has a cyclic vector,
and by the deep theorem of J. Thomson [9], σp(S∗) is nonvoid. Thus also
σp((Φ(N)|R)∗) 6= ∅, and taking adjoints in (4), we get σp(T ∗) 6= ∅, which
leads immediately to the existence of a nontrivial invariant subspace for T.

This allows us to recover the following theorem, which, of course, dates
from 1980 and thus was originally proved independently of Theorem 5.

Theorem 6 ([6]). Let T = N +K ∈ L(H) with N normal and K ∈ K,
and suppose that on the unit balls of {T}′ and {T ∗}′ the WOT is strictly
weaker than the SOT. Then T has a nontrivial invariant subspace.

Proof. According to Theorem 5, either T has a nontrivial invariant sub-
space or there exist normal operators M1 and M2 such that T ≺ M1 and
T ∗ ≺M2. But then, as was noted above,M1 andM∗2 are unitarily equivalent,
and consequently T is quasisimilar to M1, from which the result follows.



266 I. B. Jung et al.

Remark 7. To our knowledge, Lomonosov [6] was the first to realize
the utility of the hypothesis that on the unit balls of {T}′ and {T ∗}′ the
WOT and SOT differ.

The following result, a special case of which is known (cf. [8, Chapter II,
Prop. 5.3]), is an application of Theorem 5.

Theorem 8. Suppose T = N +K ∈ L(H) with N normal and K ∈ K,
and ‖T‖ = r(T ) = 1, where r(T ) is the spectral radius of T . If T does
not belong to the class C00 (defined in [8]), then either T has a nontrivial
invariant subspace or there exists a normal operator M satisfying T ≺ M
or M ≺ T .

Proof. As is well-known, if T has a unitary part, then T has a nontrivial
hyperinvariant subspace ([8]). Thus we may suppose that T is completely
nonunitary. Furthermore, since T 6∈ C00, if neither T nor T ∗ belongs to
the class C10 (defined in [8]) then again T has a nontrivial hyperinvariant
subspace. Thus, by taking adjoints if necessary, we may suppose that T ∈
C10. Since Tn → 0 (WOT) via the H∞-functional calculus for completely
nonunitary contractions, and Tn 9 0 (SOT) by definition of the class C10,
Theorem 5 is applicable.
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