
STUDIA MATHEMATICA 193 (3) (2009)

Integrability and continuity of functions represented by
trigonometric series: coefficients criteria

by

Mikhail Dyachenko (Moscow) and Sergey Tikhonov (Barcelona)

Abstract. We study weighted Lp-integrability (1 ≤ p < ∞) of trigonometric series.
It is shown how the integrability of a function with weight x−α depends on some regularity
conditions on Fourier coefficients. Criteria for the uniform convergence of trigonometric
series in terms of their coefficients are also studied.

1. Introduction. Throughout this paper we shall let f(x) and g(x)
denote the sums of the series

(1.1)
∞∑
n=1

an cosnx

and

(1.2)
∞∑
n=1

bn sinnx,

respectively, whenever they exist. The paper concerns two main questions.

Problem 1. If f, g ∈ L1, what hypotheses on {an}, {bn} are equivalent
to (imply, follow from)

|f(x)|px−α ∈ L or |g(x)|px−α ∈ L ?(1.3)

This question is very well studied (see [Bo], [St], [Zy]) and many classical
results on Fourier coefficients such as the Hardy–Littlewood–Paley theorem,
Pitt’s inequality, and the Young–Heywood–Boas results show that in many
cases the appropriate condition on the coefficients is

∞∑
n=1

nα+p−2|an|p <∞ or
∞∑
n=1

nα+p−2|bn|p <∞.(1.4)
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For the case p = 1 many authors used the following convenient fact on the
multipliers x−α and nα−1: when 0 < α < 1, the function x−α has a Fourier
series whose coefficients behave at infinity like nα−1, and conversely. Using
this, Heywood [He2] proved that (1.4) implies (1.3). It is known that the
converse holds under monotonicity of either {an}, {bn}, or f, g. In Section 2
we show that, generally, without the monotonicity condition, the converse
does not hold even in a much weaker form.

In Section 3 we consider the case of 1 < p < ∞ and study one of the
most important results in the theory of weighted Fourier inequalities, Pitt’s
theorem: (1.4) implies (1.3) for max(0, 2− p) ≤ α < 1. Because of the great
importance of this theorem, we reprove it using the multipliers x−α, nα−1.
In a very simple proof we apply only Hardy’s inequalities and do not invoke
the interpolation technique (see [St]).

In Section 4 we study trigonometric series with some regularity condi-
tions on the coefficients. Our idea is to consider quantitative characteristics
of the condition of bounded variation (

∑
|∆ak| <∞), i.e.,

(1.5)
∞∑
k=n

|∆ak| < Cβn

and

(1.6)
2n−1∑
k=n

|∆ak| < Cβn.

Here β = {βn} is a majorant, that is, a positive sequence; and C is a positive
number independent of n.

We denote by GM(β) and GM(β) the collections of all null-sequences
(generally speaking, complex) satisfying (1.5) and (1.6), respectively. Such
sequences are said to be generally monotone sequences with majorant β.
Note that a class similar to GM(β) was introduced by Leindler (see [Le2]
(βn = an) and [Le3]). The class GM(β) was introduced in [Ti1] (see also
[LZ], [Ti2] for certain βn, and the history of the topic in [Ti3]).

In Section 4 we prove that for a, b ∈ GM(β) with appropriate β, condi-
tions (1.3) and (1.4) are equivalent.

Problem 2. What hypotheses on {an}, {bn} are equivalent to (imply,
follow from) the uniform convergence of series (1.1) and (1.2)?

For the cosine series with non-negative coefficients, the answer is clearly∑
an < ∞. For the sine series, the classical result of Chaundy and Joliffe

(see [CJ], [Zy, Vol. 1, p. 183]) states that if {bn} is monotonic, then (1.2)
converges uniformly if and only if limn→∞ nbn = 0. In Section 5 we prove a
similar result for a fairly wider class of sequences {bn}, precisely for generally
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monotone sequences from the class{
bn :

2n−1∑
k=n

|∆bk| ≤
C

n
max
k≥[n/c]

2k∑
s=k

bs for some c > 1
}
.

This extends many known results (see, e.g., [DT2], [Ti3], [YZZ]). In Section 6,
we apply this criterion to the following approximation theory problem: find
interrelations between the moduli of smoothness ωk(ψ, 1/n) and the best
approximation En(ψ) in C. It will be shown that the Jackson inequality

En(ψ) ≤ Cωk(ψ, 1/n)

and the weak-type inequality

ωk(ψ, 1/n) ≤ C

nk

n−1∑
ν=0

(ν + 1)k−1Eν(ψ)

(see, e.g., [DL, Ch. 7]) can be sharpened as follows: for even/odd functions
represented by trigonometric series with generally monotone coefficients and
for even/odd k,

ωk(ψ, 1/n) � n−k max
ν∈[0,n]

(ν + 1)kEν(ψ)

and

ωk(ψ, 1/n) � n−k
n−1∑
ν=0

(ν + 1)k−1Eν(ψ).

We conclude with Section 6, where we provide a few remarks. In particular,
we prove that our findings concerning the general monotonicity concept (in
Sections 4 and 5) do indeed generalize all known results.

Throughout this paper, we denote by C,Ci, c positive constants that may
be different on different occasions. In addition, F � G means that F ≤ CG
and G ≤ CF .

2. Weighted L1-integrability. We start with well-known results on
interrelation between the L1-integrability of f(x)x−α and g(x)x−α and the
summability properties of the coefficients {an} and {bn}. The best reference
for Theorems 2.1–2.3 below is the monograph by Boas [Bo].

Theorem 2.1 ([He2]). Let α ∈ (0, 1]. Let also f(x)x−α ∈ L(0, π). Then
for an = an(f) the series

∑∞
n=1 ann

α−1 converges. If α ∈ (−1, 1], then a
similar result holds true for the sine series as well.

To prove the converse, we have to assume some conditions on the function
or on the sequence of the Fourier coefficients.

Theorem 2.2. Let α ∈ (0, 1). Assume that one of the following two
conditions holds true:
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(1) the function f ∈ L is non-negative on (0, δ) for some δ > 0;
(2) the sequence {an(f)} is non-increasing.

Then the convergence of the series
∑∞

n=1 an(f)nα−1 implies that f(x)x−α ∈
L(0, π). A similar result with α ∈ [0, 1) holds true for the sine series as well.

Analogous results can be given for absolute convergence, that is,

(2.1)
∞∑
n=1

|an(f)|nα−1 <∞.

Theorem 2.3. Let α ∈ (0, 1). Assume that the function f ∈ L is non-
increasing on (0, δ) and f(x) ≥ C on (δ, π). Then the condition f(x)x−α ∈
L(0, π) is equivalent to (2.1). A similar result with α ∈ [0, 1) holds true for
the sine series as well.

Below we give an example which shows that both statements in Theorems
2.2 and 2.3 can fail rather dramatically when we do not assume the given
conditions on f/g or {an}/{bn}. This answers some questions by Boas [Bo].

Theorem 2.4. There exists a function ψ(x) ∈ L(0, 2π) such that ψ(x)
is uniformly bounded on any interval [ε, 2π], ε > 0, and x−βψ(x) /∈ L(0, 2π)
for β > 0 but

∞∑
n=1

n−α(|an(ψ)|+ |bn(ψ)|) <∞ for any α > 0.

Proof. Let us consider the function sequence

ψk(x) =
k

ln2k
cos(2kx)χ(1/(k+1),1/k](x), k ≥ 3,

and define for x ∈ (0, 2π] a 2π-periodic function ψ(x) by

ψ(x) =
∞∑
k=3

ψk(x).

Then ψ(x) ∈ L(0, 2π) and ψ(x) is uniformly bounded on any interval [ε, 2π],
where ε > 0. Moreover, x−βψ(x) /∈ L(0, 2π) for any positive β.

Now we estimate the sum

J(α) ≡
∞∑
n=1

n−α|an(ψ)|,

where α is a positive number. Note that

J(α) ≤
∞∑
n=1

n−α
∞∑
k=3

|an(ψk)| =
∞∑
k=3

∞∑
n=1

n−α|an(ψk)| ≡
∞∑
k=3

Jk(α).
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Let us estimate |an(ψk)|. For k ≥ 3 and |n− 2k| ≥ k, we get

(2.2) |an(ψk)|

≤ Ck

ln2k

(∣∣∣ 1/k�

1/(k+1)

cos (2k − n)x dx
∣∣∣+
∣∣∣ 1/k�

1/(k+1)

cos (2k + n)x dx
∣∣∣)

≤ Ck

|2k − n|
.

In the case of k ≥ 3 and |n− 2k| < k, we obtain

|an(ψk)| ≤
Ck

ln2k

(
1
k
− 1
k + 1

)
≤ C

k
.(2.3)

Therefore, for any α > 0 and k ≥ 3, by (2.2) and (2.3), we estimate

Jk(α) ≤ C
(
k

2k−k∑
n=1

n−α

2k − n
+

2k+k−1∑
n=2k−k+1

n−α

k
+ k

∞∑
n=2k+k

n−α

n− 2k

)
(2.4)

≡ C(Jk,1 + Jk,2 + Jk,3).

First,

Jk,1 ≤ 2−k+1k
2k−1∑
n=1

n−α + 2−α(k−1)k
2k−k∑

n=2k−1+1

1
2k − n

≤ C(α)k22−αk.(2.5)

Second,

Jk,2 ≤ C(α)k2−α(k−1) 1
k

= C(α)2−αk.(2.6)

Finally,

Jk,3 ≤ 2−αkk
2k+1∑

n=2k+k

1
n− 2k

+ 2k
∞∑

n=2k+1+1

n−α−1 ≤ C(α)k22−αk.(2.7)

Then inequalities (2.4)–(2.7) imply

Jk(α) ≤ C(α)k22−αk,

and hence J(α) < ∞. Similarly we estimate the series with the sine coeffi-
cients

∑∞
n=1 n

−α|bn(ψ)|. The proof is now complete.

3. Weighted Lp-integrability: Pitt’s theorem. In this section we
give a simple proof of Pitt’s theorem [Pi]. Note that we make no use of
interpolation technique (see, e.g., [St]).
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Theorem 3.1. Let 1 < p < ∞ and max(0, 2 − p) ≤ α < 1. Suppose
ψ(x) ∈ L(0, π) and

∞∑
n=1

nα+p−2(|an(ψ)|p + |bn(ψ)|p) <∞.(3.1)

Then |ψ(x)|px−α ∈ L(0, 2π).

Proof. For simplicity let bn = 0 and ψ = f . We assume first that p ∈
[2,∞). Then α > 0 and we define ϕ(x) = x−α/p. By the classical Paley
theorem [Zy, Ch. XII, §3],∑

n

|an(f)|pnp−2 <∞ ⇒ f(x) ∈ Lp.

Noting that x−
α
p

p
p−1 ∈ L(0, π) for 0 < α < p−1, we get h(x) = f(x)x−α/p ∈

L(0, π). The cosine coefficients of h(x) are computed from

an(h) =
an(ϕ)a0(f)

2
+

n∑
r=1

an−r(ϕ) + an+r(ϕ)
2

ar(f)(3.2)

+
∞∑

r=n+1

ar−n(ϕ) + ar+n(ϕ)
2

ar(f).

It is known [Zy, Vol. 1, V, 2] that ar(ϕ) ∼ rα/p−1 as r → ∞. Hence (see
(3.2)),

|an(h)| ≤ C
( n∑
r=0

(n− r + 1)α/p−1|ar(f)|+
∞∑

r=n+1

(r − n)α/p−1|ar(f)|
)

(3.3)

≤ C1

(
nα/p−1

[n/2]∑
r=0

|ar(f)|+
n∑

r=[n/2]+1

(n− r + 1)α/p−1|ar(f)|

+
2n∑

r=n+1

(r − n)α/p−1|ar(f)|+
∞∑

r=2n+1

rα/p−1|ar(f)|
)
.

Further, we apply the following Hardy-type inequality (see e.g. [Le1], [Po]):
for {an ≥ 0} and {λn > 0},

(3.4)
∞∑
n=1

λn

( n∑
ν=1

aν

)p
≤ pp

∞∑
n=1

λ1−p
n apn

( ∞∑
ν=n

λν

)p
(p ≥ 1).

We obtain
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(3.5)
∞∑
n=1

np−2
(
n
α
p
−1

[n/2]∑
r=0

|ar(f)|
)p

=
∞∑
n=1

nα−2
( [n/2]∑
r=0

|ar(f)|
)p
≤ C(p)

∞∑
n=1

n(α−2)(1−p)|an(f)|p
( ∞∑
r=n

rα−2
)p

≤ C(p, α)
∞∑
n=1

nα+p−2|an(f)|p.

Let us now take any γ ∈ (1 − α, 1), for instance, γ = (2− α)/2. Then, by
Hölder’s inequality, we get

(3.6)
∞∑
n=1

np−2
( n∑
r=[n/2]+1

(n− r + 1)α/p−1|ar(f)|
)p

=
∞∑
n=1

np−2
( n∑
r=[n/2]+1

(n− r + 1)(α+γ−p)/p(n− r + 1)−γ/p|ar(f)|
)p

≤
∞∑
n=1

np−2
n∑

r=[n/2]+1

(n− r + 1)−γ |ar(f)|p
( n∑
r=[n/2]+1

(n− r + 1)
α+γ−p
p−1

)p−1

≤ C(p, α)
∞∑
n=1

np−3+α+γ
n∑

r=[n/2]+1

(n− r + 1)−γ |ar(f)|p

= C(p, α)
∞∑
r=1

|ar(f)|p
2r∑
n=r

(n− r + 1)−γnp−3+α+γ

≤ C(p, α)
∞∑
r=1

|ar(f)|prα+p−2.

Similarly,

(3.7)
∞∑
n=1

np−2
( 2n∑
r=n+1

(r − n)α/p−1|ar(f)|
)p

≤
∞∑
n=1

np−2
2n∑

r=n+1

(r − n)−γ |ar(f)|p
( 2n∑
r=n+1

(r − n)
α+γ−p
p−1

)p−1

≤ C(p, α)
∞∑
r=1

|ar(f)|prα+p−2.

To estimate the last term in (3.3), we apply Hardy’s inequality dual to (3.4):
for {an ≥ 0} and {λn > 0},
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(3.8)
∞∑
n=1

λn

( ∞∑
ν=n

aν

)p
≤ pp

∞∑
n=1

λ1−p
n apn

( n∑
ν=1

λν

)p
(p ≥ 1).

Then

(3.9)
∞∑
n=1

np−2
( ∞∑
r=2n+1

rα/p−1|ar(f)|
)p

≤ C(p)
∞∑
n=1

n(p−2)(1−p)nα−p|an(f)|p
( n∑
r=1

rp−2
)p

≤ C1(p)
∞∑
n=1

nα+p−2|an(f)|p.

Collecting (3.3), (3.5)–(3.7), and (3.9), we get
∑∞

n=1 n
p−2|an(h)|p <∞, and

the statement of Theorem 4.1 follows from Paley’s theorem.
Let now p ∈ (1, 2). We are going to show that condition (3.1) implies�
|h(x)|pxp−2 dx <∞, h(x) = f(x)ϕ(x), ϕ(x) = x−β/p, β = α+ p− 2,

where 0 < β < p− 1.
Note that ϕ(x) ∈ Lp′ and∑

n

|an(f)|2 ≤
(∑

n

|an(f)|pnα+p−2
)2/p

,

i.e., f ∈ L2 and therefore f ∈ Lp. Then Hölder’s inequality gives h ∈ L1.
Therefore, by classical Paley’s theorem, it is enough to show that∑

n

|an(h)|p <∞.(3.10)

The rest of the proof is similar to the case p > 2. We use relations (3.2)–
(3.3) with β in place of α. To estimate the first and the last terms, we
apply Hardy’s inequalities (3.4) and (3.8). To estimate the middle terms, we
make use of Hölder’s inequality with parameter γ = (2 − β)/β (note that
0 < β < p− 1 < 1). Finally, we get∑

n

|an(h)|p ≤ C
∑
n

nβ|an(f)|p, 0 < β < p− 1,

as desired. The proof is now complete.

Remark 3.2. For α < max(0, 2− p) the statement of the previous the-
orem does not hold.

Indeed, for p ≥ 2, defining the series

f(x) =
∞∑
n=1

(−1)nn1/p−1 cosnx,
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we note that α < 0 and
∞∑
n=1

nα+p−2|an|p =
∞∑
n=1

n−|α|−1 <∞.

On the other hand, since f(x) ∼ (π − x)−1/p, we get |f(x)|px−α /∈ L(0, π).
Let now 1 < p < 2 and put β := α+ p− 2 < 0. In this case we consider

∞∑
k=2

1
ln2k

eikx.

It is known that this series converges in L(0, π) and diverges in Lp(0, 1) ([Zy,
Ch. V; Ch. XII]). Thus for any integer l one can find integers Nl < Ml such
that

Sl(x) =
Ml∑
k=Nl

1
ln2k

eikx

and ‖Sl‖1 < 1/l2 and ‖Sl‖p > l2. Let us define

cl :=
Ml∑
k=Nl

1
ln2pk

.

Now we choose integers Rl such that

Rl +Nl > Rl−1 +Ml−1 and Rβl cl <
1
l2

for l = 2, 3, . . . .

Then the series
∞∑
l=1

eiRlxSl(π − x) ≡
∞∑
l=1

eiRlx
Ml∑
k=Nl

eik(π−x)

ln2k
(3.11)

converges to a function f(x) in L(0, π) and
∞∑
n=1

nβ|an(f)|p ≤ C
∞∑
l=1

Rβl cl <∞.

On the other hand, f(x) /∈ Lp(π − 1, π) (since the sequence of partial sums
of (3.11) diverges in Lp(π − 1, π)), and thus |f(x)|px−α /∈ L(0, π).

4. Weighted Lp-integrability (1 ≤ p < ∞) for the series with
monotone type coefficients. In this section we are going to study the
Lp-integrability problems with power weights x−α for trigonometric series
(1.1) and (1.2) with regularity conditions on the coefficients. Theorem 2.4
and Remark 3.2 show that in order to obtain any positive result of the type

∞∑
n=1

nα+p−2|an(f)|p <∞ ⇒ |f(x)|px−α ∈ L(0, π)
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for p = 1 or to extend the range max(0, 2 − p) ≤ α < 1 for 1 < p < ∞,
one has to impose some additional conditions on {an}. Note here that since
we want to consider a constant function as an example of f(x), we have
to assume α < 1. For odd functions, generally, it is possible to consider
α < max(0, 2− p) as well as α ≥ 1.

Typically many authors considered series with monotone (or quasi-mono-
tone) decreasing coefficients. We would like to extend the following result.

Theorem 4.1. Let {an, bn ≥ 0} ∈ M, 1 < p < ∞ and 1 − p < α < 1.
Then

|ψ(x)|p

xα
∈ L (0, π) ⇔

∞∑
n=1

nα+p−2λpn <∞,

where ψ(x) is either f(x) or g(x) and λn is either an or bn, respectively.

In the case when M denotes the class M of all decreasing sequences, this
theorem was proved in [Bo], [He1]; for M = QM , the class of quasi-monotone
sequences, in [AW]; for M = GM(β) in [Ti1]; and for M = GM(β∗) in [YZZ],
where

GM(β) :=
{
{ak} :

2n∑
k=n

|∆ak| ≤ Cβn
}

and

βn = |an|, β∗n =
[nc]∑

k=[n/c]

|ak|
k

for some c > 1.

Note that ([Ti1], [Ti3])

(4.1) M ( QM ( GM(β) ( GM(β∗).

We would like to consider β-generally monotone coefficients. Let θ ∈
(0, 1]. By definition, GMθ is the class GM(β) with

βn = nθ−1
∞∑

k=[n/c]

|ak|
kθ

for some c > 1.

In other words, GMθ is the collection of all sequences such that

(4.2)
∞∑
k=n

|∆ak| < Cnθ−1
∞∑

k=[n/c]

|ak|
kθ

<∞ for some c > 1.

For θ = 1 we define GM ≡ GM1.
We have (cf. (4.1))

GM(β∗) ( GM ≡ GM1 ⊆ GMθ2 ⊆ GMθ1 , 0 < θ1 ≤ θ2 ≤ 1.

The fact that GM(β∗) ⊆ GM is clear and an example of a sequence such
that GM \GM(β∗) 6= ∅ will be constructed in the last section.
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Our main results in this section are the following:

Theorem 4.2. (Sine) Let {bn ≥ 0} ∈ GMθ, θ ∈ (0, 1], 1 ≤ p <∞. If

1− θp < α < 1 + p,

then
|g(x)|p

xα
∈ L (0, π) ⇔

∞∑
n=1

nα+p−2bpn <∞.

Theorem 4.3. (Cosine) Let {an ≥ 0} ∈ GMθ, θ ∈ (0, 1], 1 ≤ p <∞. If

1− θp < α < 1,

then
|f(x)|p

xα
∈ L(0, π) ⇔

∞∑
n=1

nα+p−2apn <∞.

Remark 4.4. We note that the condition
∞∑
n=1

nα+p−2λpn <∞, 1 ≤ p <∞, λk ≥ 0,

always implies (by Hölder’s inequality) the condition
∞∑
k=1

λk
kθ

<∞ for θ ∈ (0, 1], α > 1− θp.

Proof of Theorem 4.2. Let x ∈ (π/(n+ 1), π/n]. Then, by Abel’s trans-
form,

|g(x)| ≤ x
n∑
k=1

kbk +
∣∣∣ ∞∑
k=n+1

bk sin kx
∣∣∣

≤ x
n∑
k=1

kbk +
∞∑
k=n

|(bk − bk+1)(D̃k(x)− D̃n(x))|,

where D̃k(x) :=
∑k

n=1 sinnx for k ∈ N. Since |D̃k(x)| = O(1/x) and {an} ∈
GMθ, we get

|g(x)| ≤ C
(
x

n∑
k=1

kbk + n

∞∑
k=n

|bk − bk+1|
)
≤ C

(
x

n∑
k=1

kbk + nθ
∞∑

k=[n/c]

|bk|
kθ

)
.

Hence,

|g(x)| ≤ C
(
x

n∑
k=1

k|bk|+ nθ
∞∑
k=n

|bk|
kθ

)
.
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Further (define γ(x) = x−α and γn = nα), we have

π�

0

γ(x)|g(x)|p dx =
∞∑
n=1

π/n�

π/(n+1)

γ(x)|g(x)|p dx

≤ C(p, α)
∞∑
n=1

γn
n2+p

( n∑
k=1

k|bk|
)p

+ C(p, α)
∞∑
n=1

nθpγn
n2

( ∞∑
k=n

|bk|
kθ

)p
.

By Hardy’s inequalities (3.4) and (3.8), we obtain
π�

0

γ(x)|g(x)|p dx ≤ C(p, α)
∞∑
n=1

γnn
p−2|bn|p

for 1− θp < α < 1 + p.
Let us now prove the “⇒” part. Note that if 1 − p < α, then g(x) ∈

L(0, π). Integrating g(x), we have

F (x) :=
x�

0

g(t) dt =
∞∑
n=1

bn
n

(1− cosnx) = 2
∞∑
n=1

bn
n

sin2 nx

2
.

Since {bn ≥ 0}, this gives

F

(
π

k

)
≥ C

k∑
n=[k/2]

bn
n
.

As the sequence {bs} is generally monotone, we estimate

bs ≤
∞∑
l=s

|∆bl| ≤ Csθ−1
∞∑

l=[s/c]

bl
lθ
≤ Csθ−1

∞∑
l=[s/c]

1
lθ

l∑
n=[l/2]

bn
n

≤ Csθ−1
∞∑

l=[s/c]

1
lθ
F

(
π

l

)
.

Applying this, we get

J :=
∞∑
k=1

γkk
p−2bpk ≤ C(p)

∞∑
k=1

γkk
p−2k(θ−1)p

( ∞∑
ν=[k/c]

1
νθ
F

(
π

ν

))p
.

Further, because γ[cn] � γn for c > 0, we use inequality (3.8):

J ≤ C(p)
∞∑
k=1

γkk
p−2k(θ−1)p

( ∞∑
ν=k

1
νθ
F

(
π

ν

))p
≤ C(p)

∞∑
ν=1

F p(π/ν)
νθp

(γννθp−2)1−p
{ ν∑
k=1

γkk
θp−2

}p
.
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Since α > 1− θp, we obtain

J ≤ C(p)
∞∑
ν=1

F p(π/ν)
νθp

(γννθp−2)1−p
{ ν∑
k=1

γkk
θp−2

}p
≤ C(p)

∞∑
ν=1

F p
(
π

ν

)
(γννp−2).

Defining dν :=
	π/ν
π/(ν+1) |g(x)| dx (ν ∈ N), we immediately get

F

(
π

k

)
≤
∞∑
ν=k

dν .

Hence

J ≤ C(p)
∞∑
ν=1

F p
(
π

ν

)
(γννp−2) ≤ C(p)

∞∑
ν=1

(γννp−2)
( ∞∑
s=ν

ds

)p
.

Using (3.8) for α > 1− θp ≥ 1− p, we obtain

J ≤ C(p)
∞∑
ν=1

γνν
2p−2dpν .

By Hölder’s inequality (p ∈ (1,∞), p′ = p/(p− 1)),

dpν =
( π/ν�

π/(ν+1)

|g(x)| dx
)p
≤ C(p)

π/ν�

π/(ν+1)

|g(x)|p dx
(

1
ν2

)p/p′
(4.3)

= C(p)ν2(1−p)
π/ν�

π/(ν+1)

|g(x)|p dx.

Finally,
∞∑
k=1

γkk
p−2bpk ≤ C(p, α)

π�

0

|g(x)|pγ(x) dx,

which completes the proof.

Proof of Theorem 4.3. First we remark
|g(x)|p

xα
∈ L (0, π) ⇔

�

[−π,π]

|g(x)|p|x|−α dx <∞.

It was shown in [Bab] that�

[−π,π]

|g̃(x)|p|x|−α dx ≤ C(p, α)
�

[−π,π]

|g(x)|p|x|−α dx

for −1 < −α < p − 1. A more general result was obtained in [HMW] for
the Ap-Muckenhoupt weights (note that |x|−α is an Ap-weight if and only if



298 M. Dyachenko and S. Tikhonov

−1 < −α < p− 1): for ω ∈ Ap we have
�

[−π,π]

|g̃(x)|pω(x) dx ≤ C(p, ω)
�

[−π,π]

|g(x)|pω(x) dx.

Using these inequalities twice with −1 < −α < θp − 1 (note that θp − 1 <
p− 1), we get

�

[−π,π]

|g(x)|p|x|−αdx ≤ C(p, α)
�

[−π,π]

|f(x)|p|x|−α dx

≤ C(p, α)
�

[−π,π]

|g(x)|p|x|−α dx.

Since
−1 < −α < θp− 1 ⇔ 1− θp < α < 1,

the proof of the theorem is finished.

5. Uniform convergence. First, let us consider the case of the cosine
series. One has the following results. If either

(1) an ≥ 0, or
(2) {an} ∈ GM(β) and nβn = o(1) as n→∞,

then

series (1.1) converges uniformly on [0, 2π] ⇔
∑
n

an converges.

In the case when an ≥ 0 this criterion is clear; for the series with β-generally
monotone coefficients it was proved in [DT1].

For the sine series, Chaundy and Joliffe ([CJ], [Zy, Vol. 1, p. 183]) proved
the following: a necessary and sufficient condition for series (1.2), where
bn ≥ bn+1 ≥ · · · , to be uniformly convergent on [0, 2π] is nbn → 0 as
n→∞.

We remark that this problem has been extensively studied recently. For
instance, series with β-generally monotone coefficients were considered for
βn = |an|, β̃n = |an|+ · · ·+ |an+N |, β∗n =

∑[cn]
k=[n/c] |ak|/k (see the history of

the question in [Ti3]). We note that GM(β∗) is the largest known class for
which Chaundy–Joliffe’s criterion holds true.

Theorem 5.1. Let b ∈ GM(β).

(A) If

(5.1)
∞∑
k=n

|∆bk| = o(1/n)
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as n→∞, then series (1.2) converges uniformly on [0, 2π] and

‖g(x)− Sn(g, x)‖∞ ≤ C max
ν≥n

ν

∞∑
k=ν

|∆bk|.

(B) Let a non-negative sequence b = {bn} satisfy

(5.2) bn ≤
C

n
max
k≥[n/c]

2k∑
s=k

bs for some c > 1.

Then the uniform convergence of series (1.2) implies

(5.3) nbn = o(1) as n→∞.

Even though the proof of this theorem is relatively straightforward, both
statements are sharp.

Remark 5.2. First, in (5.1) we cannot substitute O(1/n) for o(1/n).
According to (B), we have the following result. For any non-decreasing pos-
itive sequence {ϕ(n)}n∈N satisfying ϕ(n) → ∞ as n → ∞, there exists an
odd function g(x) ∈ C([0, π]) with uniformly convergent Fourier series such
that its sine coefficients are non-negative and satisfy

bn ≤ C
ϕ(n)
n

max
k≥[n/c]

2k∑
s=k

bs for some c > 1

for all n, but nbn 9 0 as n→∞.

Let us now present a generalization of Chaundy–Joliffe’s criterion as well
as its extensions.

Corollary 5.3. Let {bn ≥ 0} ∈ GM(β), where

βn =
1
n

max
k≥[n/c]

2k∑
s=k

bk for some c > 1.

Then series (1.2) converges uniformly on [0, 2π] if and only if condition (5.3)
holds.

Remark 5.4. We have GM(β∗) ( GM(β), where

β∗n =
[cn]∑

k=[n/c]

|bk|
k

and βn =
1
n

max
k≥[n/c]

2k∑
s=k

bk for some c > 1.

This remark will be proved in the last section.

Proof of Theorem 5.1. Item (A) was actually proved in [DT1, Th. 2.1]. To
prove the second part, if series (1.2) with non-negative coefficients converges
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uniformly, then
1
n

n∑
k=1

kbk = o(1).

This gives
2n∑
k=n

bk = o(1).

Further, by (5.2), we get

nbn ≤ C max
k≥[n/c]

2k∑
s=k

bk = o(1) as n→∞,

that is, condition (5.3) is satisfied.

Proof of Remark 5.2. First, we consider the sine series∑
n

sinnx
n

.

Here the condition
∑∞

k=n |∆bk| = O(1/n) holds but the series does not
converge uniformly on [0, 2π].

Let us now prove the second part. Without loss of generality, we assume
that ϕ(n) ≤ ln(n + 1), ϕ(2n) ≤ 2ϕ(n) as n ≥ 1 and ϕ(1) ≥ 1. Define
ψ(n) :=

√
ϕ([n/2]) for n ≥ 2 and ψ(1) := 1

2

√
ϕ(1).

Let bn,1 := 1/nψ(n) for n ≥ 1. Then for any n we have

(5.4)
4
n

2n∑
k=n+1

bk,1 ≥
2

nψ(2n)
≥ bn,1.

We next define the sequence

bn,2 :=
{

2−kψ(2k) for n = 2k, k = 1, 2, . . . ,
0 otherwise.

For any k, according to (5.4) we have

(5.5)
4ϕ(2k)

2k

2k+1∑
k=2k+1

bk,1 ≥
ϕ(2k)

2kψ(2k)
≥ b2k,2.

Inequalities (5.4) and (5.5) imply that the sequence bn = bn,1 + bn,2 satisfies

bn ≤ 8
ϕ(n)
n

2n∑
k=n+1

bk ≤ 8
ϕ(n)
n

max
k≥[n/c]

2k∑
s=k

bk.

This is the sequence of Fourier coefficients of the function g(x) = g1(x) +
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g2(x), where

(5.6) gi(x) =
∞∑
n=1

bn,i sinnx for i = 1, 2.

The function g1(x) is the sum of a sine series with monotone coefficients
{bn,1} such that nbn,1 → 0 as n → ∞. By the Chaundy–Joliffe theorem,
g1(x) ∈ C([0, π]) and series (5.6) converges uniformly. As regards g2(x), it
is the sum of an absolutely convergent series and therefore it is continuous.
Then the series

∑∞
n=1 bn sinnx converges uniformly. Finally, we remark that

nbn,2 9 0 as n→∞.

Proof of Corollary 5.3. First, condition (5.3) implies
∑2n

k=n bk = o(1).
Since {bn} ∈ GM(β), we have

∞∑
k=n

|∆bk| ≤ 2
∞∑

k=[n/2]

1
k

2k−1∑
s=k

|∆bs|

≤ C
(

max
k≥[n/c]

2k∑
s=k

bk

) ∞∑
k=[n/2]

1
k2
≤ C

n
max
k≥[n/c]

2k∑
s=k

bk.

Combining this with
∑2n

k=n bk = o(1), we arrive at (5.2). Then from Theorem
5.1(A) series (1.2) converges uniformly on [0, 2π].

Conversely, using

(5.7) bn ≤
∞∑
k=n

|∆bk| ≤
C

n
max
k≥[n/c]

2k∑
s=k

bk,

we apply Theorem 5.1(B). Thus (5.3) follows.

6. Applications to approximation theory. Let f ∈ C([0, 2π]) and
let En(f) be the best approximation of f by trigonometric polynomials of
order n. Let also ωk(f, t) be the modulus of smoothness of f of order k > 0,
i.e.,

ωk(f, t) = sup
|h|≤t

∥∥∥∥ ∞∑
ν=0

(−1)ν
(
k

ν

)
f(x+ (k − ν)h)

∥∥∥∥,
where

(
k
ν

)
= k(k − 1) · · · (k − ν + 1)/ν! for ν ≥ 1,

(
k
ν

)
= 1 for ν = 0, and

‖f(·)‖ = maxx∈[0,2π] |f(x)|.
It is well known (see, e.g., [DL, pp. 205, 208]) that the best approximation

and the modulus of smoothness are related as follows:

(6.1) C(k)En(f) ≤ ωk
(
f,

1
n

)
≤ C(k)

1
nk

n−1∑
ν=0

(ν + 1)k−1Eν(f).
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Our main goal in this section is to study classes of trigonometric series for
which one can check the sharpness of the left-hand side inequality (Jackson-
type estimate) and the right-hand side inequality (Bernstein–Stechkin type
estimate). For the history of this question we recommend [Ti3].

As in Section 5, we will deal with a sequence {dn} ∈ GM(β), i.e.,

2n−1∑
k=n

|∆dk| ≤
C

n
max
k≥[n/c]

2k∑
s=k

|ds| for some c > 1.

Theorem 6.1. (Cosine, sine) Let a = {an}∞n=1, b = {bn}∞n=1 ∈ GM(β)
be non-negative sequences. Then

ωk

(
f,

1
n

)
� n−k

n−1∑
ν=0

(ν + 1)k−1Eν(f) for k 6= 2l − 1 (l ∈ N),(6.2)

ωk

(
f,

1
n

)
� n−k max

ν∈[0,n]
(ν + 1)kEν(f) for k = 2l − 1 (l ∈ N),(6.3)

ωk

(
g,

1
n

)
� n−k

n−1∑
ν=0

(ν + 1)k−1Eν(g) for k 6= 2l (l ∈ N),(6.4)

ωk

(
g,

1
n

)
� n−k max

ν∈[0,n]
(ν + 1)kEν(g) for k = 2l (l ∈ N).(6.5)

Theorem 6.2. (Cosine, sine) Let a = {an}∞n=1, b = {bn}∞n=1 ∈ GM(β)
be non-negative sequences. Then for any ε > 0 we have

ωk

(
f,

1
n

)
� n−k

n∑
ν=1

νk−1ωk+ε

(
f,

1
ν

)
for k 6= 2l − 1 (l ∈ N),

ωk

(
f,

1
n

)
� n−k max

ν∈[1,n]
νkωk+ε

(
f,

1
ν

)
for k = 2l − 1 (l ∈ N),

ωk

(
g,

1
n

)
� n−k

n∑
ν=1

νk−1ωk+ε

(
g,

1
ν

)
for k 6= 2l (l ∈ N),

ωk

(
g,

1
n

)
� n−k max

ν∈[1,n]
νkωk+ε

(
g,

1
ν

)
for k = 2l (l ∈ N).

These results were first presented in [Be] for series with quasi-monotone
coefficients (without proof). A generalization was given in [Ti3]. The proofs
of Theorems 6.1 and 6.2 can be obtained as in [Ti3] and are based on the
following theorem.
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Theorem 6.3. (Cosine, sine) Let a = {an}∞n=1, b = {bn}∞n=1 ∈ GM(β)
be non-negative sequences with

∑
n an <∞ and nbn = o(1). Then

ωk

(
f,

1
n

)
� n−k

n∑
m=1

mkam +
∞∑
m=n

am for k 6= 2l − 1 (l ∈ N),(6.6)

ωk

(
f,

1
n

)
� n−k max

m∈[1,n]
mk+1am +

∞∑
m=n

am for k = 2l − 1 (l ∈ N),(6.7)

ωk

(
g,

1
n

)
� n−k

n∑
m=1

mkbm + max
m≥n

mbm for k 6= 2l (l ∈ N),(6.8)

ωk

(
g,

1
n

)
� n−k max

m∈[1,n]
mk+1bm + max

m≥n
mbm for k = 2l (l ∈ N).(6.9)

Since this theorem actually follows from the results of [Ti3] and [Ti2], we
will only give the proof of (6.8), say.

“≤”. This follows from

ωk

(
g,

1
n

)
≤ C

(
n−k

n∑
m=1

mk|bm|+ max
m≥n

m(|bm|+ βm)
)

(see [Ti3, Th. 4.2(A)]) and the definition of βm.
“≥”. In [Ti3, Th. 4.4(A)] we proved

Cωk

(
g,

1
n

)
≥ n−k

n∑
m=1

mkbm + max
m≥n

[cm]∑
ν=[m/c]

bν , c > 1.

Therefore, since

n|bn| ≤ C max
k≥[n/c]

2k∑
s=k

|bk|

(see (5.7)), we get

ωk

(
g,

1
n

)
≥ C

(
n−k

n∑
m=1

mkbm + max
m≥n

max
s≥[m/c]

2s−1∑
ν=s

bν

)
≥ C

(
n−k

n∑
m=1

mkbm + max
m≥n

mbm

)
, c > 1,

and (6.8) follows.

7. Concluding remarks

1. The condition GMθ for 0 < θ < 1 is equivalent to the condition
GM(β), where
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(7.1) βn ≡ nθ−1
∞∑

k=[n/c]

|ak|
kθ

for some c > 1;

i.e.,
2n−1∑
k=n

|∆ak| ≤ Cnθ−1
∞∑

k=[n/c]

|ak|
kθ

for some c > 1.

2. Let us construct {an} ∈ GM ≡ GM1 such that {an} /∈ GM(β∗). Since
one clearly has GM ⊆ GM(β), we immediately prove Remark 5.4 as well.

Set
N1 = 1, Nξ+1 = Nξ + 2[Nξ exp(Nξ)].

Then we define a = {ak} as follows:

ak =


10−4, 1 ≤ k < N4,
(−1)k10−ξ, Nξ ≤ k < 2Nξ, ξ ≥ 4,
10−ξ, 2Nξ ≤ k < 2Nξ + [Nξ exp(Nξ)], ξ ≥ 4,
0, Nξ + [Nξ exp(Nξ)] ≤ k < Nξ+1, ξ ≥ 4.

Let us verify that {an} /∈ GM(β∗). For any k we take s ∈ N such that
Ns ≤ k < Ns+1. Then for k = Ns we have

2k−1∑
l=k

|∆al| ≥ C
k

10s
� Ns

10s
.

But
[ck]∑

l=[k/c]

|al|
l
≤ C

10s

[ck]∑
l=[k/c]

1
l
� 1

10s
,

which contradicts
2k−1∑
l=k

|∆al| ≤ C
[ck]∑

l=[k/c]

|al|
l
.

Now we show that {an} ∈ GM. Considering k ∈ (Nξ + 1, Nξ+1), we get

∞∑
l=k

|∆al| ≤
∞∑
j=ξ

Nj+1∑
l=Nj+1

|∆al| ≤ C
∞∑
j=ξ

Nj

10j
≤ C

∞∑
j=ξ+1

Nj

10j

≤ C
∞∑

j=ξ+1

1
10j

Nj+[Nj exp(Nj)]∑
l=Nj+1

1
l
≤ C

∞∑
j=ξ+1

Nj+1∑
l=Nj+1

|al|
l
≤ C

∞∑
l=k

|al|
l
.
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