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Bana
h spa
es of bounded Szlenk indexbyE. Odell (Austin, TX), Th. S
hlumpre
ht (College Station, TX)and A. Zsák (Nottingham)Abstra
t. For a 
ountable ordinal α we denote by Cα the 
lass of separable, re�exiveBana
h spa
es whose Szlenk index and the Szlenk index of their dual are bounded by α.We show that ea
h Cα admits a separable, re�exive universal spa
e. We also show thatspa
es in the 
lass Cωα·ω embed into spa
es of the same 
lass with a basis. As a 
onsequen
ewe dedu
e that ea
h Cα is analyti
 in the E�ros�Borel stru
ture of subspa
es of C[0, 1].1. Introdu
tion. A well known result that dates ba
k to the early daysof Bana
h spa
e theory [4, Théorème 9, p. 185℄ states that every separableBana
h spa
e embeds into C[0, 1], i.e., that C[0, 1] is universal for the 
lassof all separable Bana
h spa
es. Peª
zy«ski [23℄ re�ned this result by showingthat there are Bana
h spa
es X with a basis and Xu with an un
onditionalbasis su
h that every spa
e with a basis or with an un
onditional basis isisomorphi
 to a 
omplemented subspa
e of X or Xu, respe
tively.By a famous result of Szlenk [26℄, there is no separable re�exive Bana
hspa
e X whi
h 
ontains isomorphi
ally all separable re�exive Bana
h spa
es.Bourgain [7℄ sharpened this result by showing that a separable Bana
h spa
ewhi
h 
ontains all separable re�exive Bana
h spa
es must 
ontain C[0, 1]and, thus, all separable Bana
h spa
es. An isometri
 relative of Bourgain'sresult has re
ently been shown by Kalton and Godefroy [13℄: if a separableBana
h spa
e 
ontains an isometri
 
opy of every separable stri
tly 
onvexBana
h spa
e, then it is isometri
ally universal. Szlenk proved his result byintrodu
ing for a Bana
h spa
e X an ordinal index Sz(X) (see Se
tion 5below) whi
h is 
ountable if and only if X has a separable dual and ishereditary (if Y embeds in X, then Sz(Y ) ≤ Sz(X)). Moreover he showedthat for any 
ountable ordinal α there is a separable re�exive spa
e X forwhi
h Sz(X) > α. Bourgain a
hieved his result by introdu
ing an index2000 Mathemati
s Subje
t Classi�
ation: 46B20, 54H05.Key words and phrases: Szlenk index, universal spa
e, embedding into FDDs, E�ros�Borel stru
ture, analyti
 
lasses.Resear
h of the �rst two authors was supported by the National S
ien
e Foundation.[63℄ 
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64 E. Odell et al.whi
h measures how well �nite se
tions of the S
hauder basis of C[0, 1] embedin X, and then he proved statements analogous to Szlenk's approa
h.Bourgain then raised the question whether there is a separable, re�exivespa
e that 
ontains isomorphi
ally all uniformly 
onvex Bana
h spa
es. Thisproblem was solved re
ently by the �rst two authors. It was proven in [20℄that if X is a separable, uniformly 
onvex Bana
h spa
e, then there exist
1 < q ≤ p < ∞ and a re�exive spa
e Z with an FDD (�nite-dimensional de-
omposition) (En) so that X embeds into Z and (En) satis�es blo
k (ℓp, ℓq)-estimates. This means that for some C we have

C−1
( ∑

‖zi‖p
)1/p

≤
∥∥∥

∑
zi

∥∥∥ ≤ C
( ∑

‖zi‖q
)1/q

for any blo
k sequen
e (zi) of (En). In fa
t this holds (see [21, Theorems 3.4and 4.1℄) if we merely know that
X ∈ Cω = {Y : Y is separable, re�exive, Sz(Y ) ≤ ω, Sz(Y ∗) ≤ ω}.Using then a result of S. Prus [24℄, who solved Bourgain's question within the
lass of Bana
h spa
es with FDDs, we dedu
e that there exists a universalre�exive spa
e Z for the 
lass Cω, and in fa
t Z ∈ Cω2 .Inspired by the results of [20℄, A. Peª
zy«ski raised the question whethera similar result 
ould be proved for the 
lasses Cα, where α < ω1 and where

Cα is de�ned analogously to the 
lass Cω. This would mean that, althoughthe 
lass of separable, re�exive spa
es has no universal element, it is the(ne
essarily un
ountable) in
reasing union of 
lasses whi
h are 
losed undertaking duals, and for whi
h universal separable, re�exive spa
es do exist. Inthis paper we answer this in the a�rmative.As in the proof in [20℄, we will redu
e the universality problem to an em-bedding problem. We will show that any member of Cα, α < ω1, embeds intosome element of Cβ whi
h has a basis, where α ≤ β < ω1 depends on α. Thisresult 
an be seen as a quantitative version of Zippin's seminal theorem [28℄that every separable re�exive spa
e embeds into one with a basis. In light ofour embedding result we then only need to show that the 
lass of elementsin Cα with a basis admits a universal separable, re�exive spa
e. Let us men-tion here a di�erent quantitative version of Zippin's theorem by Bossard [5℄:for every α < ω1 there exists β < ω1 su
h that every separable spa
e withSzlenk index at most α embeds into a Bana
h spa
e with shrinking basis andwith Szlenk index at most β. Our embedding result is very di�erent, sin
ethe Szlenk index of a separable spa
e does not 
ontrol the Szlenk index ofits dual.Our approa
h depends on showing that if X is a spa
e with separable dualand if Sz(X) ≤ ωα·ω for some α < ω1, then X satis�es �subsequential upper
Tα,c estimates�, where Tα,c is the Tsirelson spa
e de�ned by the S
hreier 
lass
Sα and a parameter c ∈ (0, 1) (the de�nitions of Sα and Tα,c will be re
alled



Bana
h spa
es of bounded Szlenk index 65in Se
tion 3). Subsequential upper Tα,c estimates 
an be expressed in termsof a game played as follows. Player (I) starts by 
hoosing X1 ∈ cof(X),the set of all �nite-
odimensional subspa
es of X, and an integer k1 ∈ N.Player (II) then responds by sele
ting x1 ∈ SX1 , the unit sphere of X1.Then (I) 
hooses X2 ∈ cof(X) and k2 ∈ N, and (II) 
hooses x2 ∈ SX2 , et
.The spa
e X satis�es subsequential upper Tα,c estimates if for some C < ∞Player (I) has a winning strategy to for
e (II) to sele
t (xi) satisfying∥∥∥
∑

aixi

∥∥∥
X

≤ C
∥∥∥

∑
aitki

∥∥∥
Tα,cfor all (ai) ⊂ R, where (ti) is the unit ve
tor basis of Tα,c. These gamesare a variation of those introdu
ed in [19℄ and were de�ned and analysedin [22℄. Using the results therein we ultimately prove the following stru
turetheorem.Theorem A. Let α < ω1. For a separable, re�exive spa
e X the follow-ing are equivalent :(i) X ∈ Cωα·ω .(ii) X embeds into a separable, re�exive spa
e Z with an FDD (Ei) whi
hsatis�es subsequential (T ∗

α,c, Tα,c) estimates in Z for some c ∈ (0, 1).In part (ii) �subsequential (T ∗
α,c, Tα,c) estimates� mean the following: thereexists C < ∞ su
h that if (zi) is a blo
k sequen
e of (En) with min supp(zi)

= ki, then
C−1

∥∥∥
∑

‖zi‖t∗ki

∥∥∥
T ∗

α,c

≤
∥∥∥

∑
zi

∥∥∥ ≤ C
∥∥∥

∑
‖zi‖tki

∥∥∥
Tα,c

.Of 
ourse the impli
ation �(ii)⇒(i)� shows that the spa
e Z lies in the same
lass Cωα·ω as X does.Roughly speaking, the Tsirelson spa
es Tα,c of order α form a sort ofupper envelope and their duals T ∗
α,c form a lower envelope for the entire
lass Cωα·ω . Moreover, sin
e the spa
es Tα,c also belong to the 
lass Cωα·ω ,this result is best possible.From Theorem A and the main result of [22℄ (see Theorem 1 below) wewill then dedu
e the following embedding and universality result.Theorem B. For ea
h α < ω1 every Bana
h spa
e in the 
lass Cωα·ωembeds into a spa
e Z with a basis that lies in the same 
lass Cωα·ω as Xdoes.Theorem C. For ea
h α < ω1 there is an element of Cωα·ω+1 with abasis whi
h is universal for the 
lass Cωα·ω .Our stru
tural result, Theorem A, will be proved in Se
tion 6 togetherwith some more general stru
tural results (Theorem 21, Corollary 20). Wewill then dedu
e FDD versions (see Theorem 23) of our embedding result,



66 E. Odell et al.Theorem B, and our universality result, Theorem C. A result of W. B. John-son [14℄ allows us to repla
e FDDs by bases in our 
on
lusions (see Theo-rem 24 and the proof of Theorems B and C thereafter). In Se
tions 2 to 5we present the relevant notation and ba
kground material: the embeddingtheorem from [22℄, Tsirelson spa
es, general ordinal indi
es and the Szlenkindex. Ea
h of these se
tions begins with a brief summary of its 
ontents.There is a 
ompletely di�erent approa
h to universality problems thatuses tools of des
riptive set theory. There have been some remarkable a
hie-vements in Bana
h spa
e theory using su
h te
hniques, in
luding solutions ofuniversality problems [2, 11℄. However, in order to ta
kle Peª
zy«ski's ques-tion with this approa
h, one would need the 
lasses Cα to be analyti
 and thiswas not known. Note that if we knew the fun
tion max{Sz(X), Sz(X∗)} to bea 
o-analyti
 rank on the 
lass of separable, re�exive spa
es, then we 
oulddedu
e that the 
lasses Cα are in fa
t Borel. Whether max{Sz(X), Sz(X∗)}is a 
o-analyti
 rank is still an open problem: it is mentioned by Bossardin [6℄, where he shows that this fun
tion is a 
o-analyti
 rank on the 
lass ofbases of re�exive spa
es. Our results, however, now do show the following.Theorem D. For ea
h 
ountable ordinal α the 
lass Cα is analyti
 inthe E�ros�Borel stru
ture of 
losed subspa
es of C[0, 1].If α is of the form ωη·ω for some η < ω1, then Theorem D follows from ourmain results and from standard fa
ts in des
riptive set theory (as pointed outto us by C. Rosendal). This, 
ombined with a re
ent result of P. Dodos [10℄
on
erning analyti
ity of duals of analyti
 
lasses, then gives the general
ase. We present this result in the �nal se
tion of our paper. We are gratefulto P. Dodos, V. Feren
zi and C. Rosendal for showing us the des
riptive-set-theoreti
 impli
ations of our results.Let us now mention some open problems. The �rst one asks if Theorem C
an be sharpened.Problem. Is there a universal element of Cωα·ω for ea
h α < ω1?We do know that there is no spa
e Z in Cωα·ω su
h that for some K > 0every spa
e in Cωα·ω K-embeds into Z (see the Remark following Theo-rem 22). We also know that the answer to the above question is negative ifthe Tsirelson spa
es Tα,c are of bounded distortion with 
onstant D indepen-dent of c ∈ [1/2, 1). Of 
ourse, it is a famous, long standing open problemwhether even the Tsirelson spa
e T1,1/2 is of bounded distortion.It is known that one only needs to 
onsider 
lasses Cα where α is of theform ωη for some η < ω1 (Theorem 12 in Se
tion 5). In Se
tion 6 we obtainembedding and universality results for these general 
lasses (Theorem 22).However, these are not quite as sharp as Theorems B and C above. Thisleads to the following questions.



Bana
h spa
es of bounded Szlenk index 67Problem. Is it true that , given α < ω1, every spa
e in Cωα embeds intoa spa
e with a basis of the same 
lass?Is there a universal element of Cωα for ea
h α < ω1?2. Embeddings into spa
es with FDDs. In this se
tion we statean embedding theorem from [22℄ (Theorem 1 below). This requires a fairamount of de�nitions. Mu
h of this will be used throughout the paper.Let Z be a Bana
h spa
e with an FDD E = (En). For n ∈ N we denoteby PE
n the nth 
oordinate proje
tion, i.e., PE

n : Z → En is the map de�nedby ∑
i zi 7→ zn, where zi ∈ Ei for all i ∈ N. For a �nite set A ⊂ N we put

PE
A =

∑
n∈A PE

n . The proje
tion 
onstant K(E, Z) of (En) (in Z) is de�nedby
K = K(E, Z) = sup

m≤n
‖PE

[m,n]‖,where [m, n] denotes the interval {m, m + 1, . . . , n} in N. Re
all that K isalways �nite and, as in the 
ase of bases, we say that (En) is bimonotone(in Z) if K = 1. By passing to the equivalent norm
||| · |||: Z → R, z 7→ sup

m≤n
‖PE

[m,n](z)‖,we 
an always renorm Z so that K = 1.A sequen
e (Fn) of �nite-dimensional spa
es is 
alled a blo
king of (En)if for some sequen
e m1 < m2 < · · · in N we have Fn =
⊕mn

j=mn−1+1 Ej forall n ∈ N (m0 = 0). Note that if E = (En) is an FDD of a Bana
h spa
e Z,and if F = (Fn) is a blo
king of (En), then (Fn) is also an FDD for Z with
K(F, Z) ≤ K(E, Z).For a sequen
e (Ei) of �nite-dimensional spa
es we de�ne the ve
tor spa
e
c00

( ∞⊕

i=1

Ei

)
= {(zi) : zi ∈ Ei for all i ∈ N, and {i ∈ N : zi 6= 0} is �nite},whi
h is dense in ea
h Bana
h spa
e for whi
h (Ei) is an FDD. For a set

A ⊂ N we denote by ⊕
i∈A Ei the linear subspa
e of c00(

⊕
Ei) generatedby the elements of ⋃

i∈A Ei. As usual we denote by c00 the ve
tor spa
eof sequen
es in R whi
h are eventually zero. We will sometimes 
onsiderfor the same sequen
e (Ei) of �nite-dimensional spa
es di�erent norms on
c00(

⊕
Ei). In order to avoid 
onfusion we will therefore often index the normby the Bana
h spa
e whose norm we are using, i.e., ‖ · ‖Z denotes the normof the Bana
h spa
e Z.If Z has an FDD (Ei), then the ve
tor spa
e c00(

⊕∞
i=1 E∗

i ), where E∗
i isthe dual spa
e of Ei for ea
h i ∈ N, 
an be identi�ed in a natural way witha w∗-dense subspa
e of Z∗. Note however that the embedding E∗

i →֒ Z∗ is,in general, not isometri
 unless K = 1. We will always 
onsider E∗
i with the



68 E. Odell et al.norm it inherits from Z∗ instead of the norm it has as the dual spa
e of Ei.We denote the norm 
losure of c00(
⊕∞

i=1 E∗
i ) in Z∗ by Z(∗). Note that Z(∗)is w∗-dense in Z∗, the unit ball BZ(∗) norms Z, and (E∗

i ) is an FDD of Z(∗)having a proje
tion 
onstant not ex
eeding K(E, Z). If K(E, Z) = 1, then
BZ(∗) is 1-norming for Z and Z(∗)(∗) = Z.For z ∈ c00(

⊕
Ei) we de�ne the support suppE(z) of z with respe
t to

(Ei) by
suppE(z) = {i ∈ N : PE

i (z) 6= 0}.A sequen
e (zi) (�nite or in�nite) of non-zero ve
tors in c00(
⊕

Ei) is
alled a blo
k sequen
e of (Ei) if
max suppE(zn) < min suppE(zn+1) for n ∈ N (or n < length(zi)).A blo
k sequen
e (zi) of (Ei) is 
alled normalized (in Z) if ‖zn‖Z = 1 forall n.Let δ = (δi) ⊂ (0, 1) with δi ↓ 0. A (�nite or in�nite) sequen
e (zi) in SZis 
alled a δ-blo
k sequen
e of (Ei) if there exists a sequen
e 0 ≤ k0 < k1 <

k2 < · · · in N su
h that
‖zn − PE

(kn−1,kn](zn)‖ < δn for all n ∈ N (or n ≤ length(zi)).Definition. Given two sequen
es (ei) and (fi) in some Bana
h spa
es,and given a 
onstant C > 0, we say that (fi) C-dominates (ei), or that (ei)is C-dominated by (fi), if
∥∥∥

∑
aiei

∥∥∥ ≤ C
∥∥∥

∑
aifi

∥∥∥ for all (ai) ∈ c00.We say that (ei) and (fi) are C-equivalent if there exist positive 
onstants Aand B with A · B ≤ C su
h that (fi) A-dominates (ei) and is B-dominatedby (ei).We say that (fi) dominates (ei), or that (ei) is dominated by (fi), if thereexists a 
onstant C > 0 su
h that (fi) C-dominates (ei). We say that (ei)and (fi) are equivalent if they are C-equivalent for some C > 0.We shall now introdu
e 
ertain lower and upper norm estimates forFDDs.Definition. Let Z be a Bana
h spa
e with an FDD (En), let V be a Ba-na
h spa
e with a normalized, 1-un
onditional basis (vi) and let 1≤C <∞.We say that (En) satis�es subsequential C-V -lower estimates (in Z) ifevery normalized blo
k sequen
e (zi) of (En) in Z C-dominates (vmi), where
mi = min suppE(zi) for all i ∈ N, and (En) satis�es subsequential C-V -upper estimates (in Z) if every normalized blo
k sequen
e (zi) of (En) in Zis C-dominated by (vmi), where mi = min suppE(zi) for all i ∈ N.



Bana
h spa
es of bounded Szlenk index 69If U is another spa
e with a normalized and 1-un
onditional basis (ui), wesay that (En) satis�es subsequential C-(V, U) estimates (in Z) if it satis�essubsequential C-V -lower and C-U -upper estimates in Z.We say that (En) satis�es subsequential V -lower , U -upper or (V, U) es-timates (in Z) if for some C ≥ 1 it satis�es subsequential C-V -lower, C-U -upper or C-(V, U) estimates in Z, respe
tively.We shall need a 
oordinate-free version of subsequential lower and upperestimates. This 
an be done in terms of a game as des
ribed in the Introdu
-tion. Another way uses in�nite, 
ountably bran
hing trees, and this is whatwe shall follow here. For l ∈ N we de�ne
Tl = {(n1, . . . , nl) : n1 < · · · < nl are in N}and

T∞ =
∞⋃

l=1

Tl, T even
∞ =

∞⋃

l=1

T2l.An even tree in a Bana
h spa
e X is a family (xα)α∈T even
∞

in X. Sequen
esof the form (x(α,n))n>n2l−1
, where l ∈ N and α = (n1, . . . , n2l−1) ∈ T∞, are
alled nodes of the tree. For a sequen
e n1 < n2 < · · · of positive integersthe sequen
e (x(n1,...,n2l))

∞
l=1 is 
alled a bran
h of the tree.An even tree (xα)α∈T even
∞

in a Bana
h spa
e X is 
alled normalized if
‖xα‖ = 1 for all α ∈ T even

∞ , and weakly null if every node is a weakly nullsequen
e. If X has an FDD (En), then (xα)α∈T even
∞

is 
alled a blo
k even treeof (En) if every node is a blo
k sequen
e of (En).Definition. Let V be a Bana
h spa
e with a normalized and 1-un
on-ditional basis (vi), and let C ∈ [1,∞). Let X be an in�nite-dimensionalBana
h spa
e. We say that X satis�es subsequential C-V -lower tree esti-mates if every normalized, weakly null even tree (xα)α∈T even
∞

in X has abran
h (x(n1,...,n2i)) whi
h C-dominates (vn2i−1).We say that X satis�es subsequential C-V -upper tree estimates if everynormalized, weakly null even tree (xα)α∈T even
∞

in X has a bran
h (x(n1,...,n2i))whi
h is C-dominated by (vn2i−1).If U is a se
ond spa
e with a 1-un
onditional and normalized basis (ui),we say that X satis�es subsequential C-(V, U) tree estimates if it satis�essubsequential C-V -lower and C-U -upper tree estimates.We say that X satis�es subsequential V -lower , U -upper or (V, U) treeestimates if, for some 1 ≤ C < ∞, X satis�es subsequential C-V -lower,
C-U -upper or C-(V, U) tree estimates, respe
tively.We next de�ne some properties of bases whi
h appear in the statementof Theorem 1.



70 E. Odell et al.Definition. Let V be a Bana
h spa
e with a normalized, 1-un
onditio-nal basis (vi) and let 1 ≤ C < ∞. We say that (vi) is C-blo
k-stable if anytwo normalized blo
k bases (xi) and (yi) with
max(supp(xi) ∪ supp(yi)) < min(supp(xi+1) ∪ supp(yi+1)) for all i ∈ Nare C-equivalent. We say that (vi) is blo
k-stable if it is C-blo
k-stable forsome 
onstant C.We say that (vi) is C-right-dominant (respe
tively, C-left-dominant) iffor all sequen
es m1 < m2 < · · · and n1 < n2 < · · · of positive integers with

mi ≤ ni for all i ∈ N, (vmi) is C-dominated by (respe
tively, C-dominates)
(vni). We say that (vi) is right-dominant or left-dominant if for some C ≥ 1it is C-right-dominant or C-left-dominant, respe
tively.We are now ready to state the main embedding theorem from [22℄ whi
hwe shall use in the proofs of the main results of this paper.Let V and U be re�exive spa
es with normalized, 1-un
onditional, blo
k-stable bases (vi) and (ui), respe
tively, su
h that (vi) is left-dominant, (ui) isright-dominant and (vi) is dominated by (ui). For ea
h C ∈ [1,∞) let
AV,U (C) denote the 
lass of all separable, in�nite-dimensional, re�exive Ba-na
h spa
es that satisfy subsequential C-(V, U)-tree estimates. We also let

AV,U =
⋃

C∈[1,∞)

AV,U (C),whi
h is the 
lass of all separable, in�nite-dimensional, re�exive Bana
hspa
es that satisfy subsequential (V, U)-tree estimates.Theorem 1 ([22℄). The 
lass AV,U 
ontains a universal element. Morepre
isely , for all B, D, L, R ∈ [1,∞) there exists a 
onstant C = C(B, D) ∈
[1,∞) and for all C ∈ [1,∞) there is a 
onstant K(C) = KB,D,L,R(C) ∈
[1,∞) su
h that if (vi) is B-blo
k-stable and L-left-dominant , if (ui) is B-blo
k-stable and R-right-dominant , and if (vi) is D-dominated by (ui), thenthere exists Z ∈ AV,U su
h that every X ∈ AV,U (C) K(C)-embeds into Z,and moreover Z has a bimonotone FDD satisfying subsequential C-(V, U)estimates in Z.At some point we shall also need the following duality result.Proposition 2 ([22℄). Assume that U is a spa
e with a normalized ,
1-un
onditional basis (ui) whi
h is R-right-dominant for some R ≥ 1, andthat X is a re�exive spa
e whi
h satis�es subsequential C-U -upper tree es-timates for some C ≥ 1. Then, for any ε > 0, X∗ satis�es subsequential
(2CR + ε)-U (∗)-lower tree estimates.3. Tsirelson spa
es. When we apply Theorem 1 we shall take U = Tα,the Tsirelson spa
e of order α with parameter 1/2, and V = T ∗

α, the dual



Bana
h spa
es of bounded Szlenk index 71of Tα. In this se
tion we re
all the de�nition and some of the propertiesof Tα. At the end we will state a 
ombinatorial prin
iple whi
h will be usedlater on.We begin with some preliminary de�nitions. We shall write [N]<ω for theset of all �nite subsets of N, and [N]ω for the set of all in�nite subsets of N.These two families will be given the produ
t topology as subsets of {0, 1}N.A family F ⊂ [N]<ω is 
alled hereditary if A ∈ F whenever A ⊂ B and
B ∈ F , and F is 
alled 
ompa
t if it is 
ompa
t in the produ
t topology.Note that a hereditary family is 
ompa
t if and only if it 
ontains no stri
tlyas
ending 
hains. A family F ⊂ [N]<ω is 
alled thin if, for all A, B ∈ F ,from A ⊂ B it follows that A = B, i.e., F 
ontains no two 
omparable (withrespe
t to in
lusion) elements.Given n, a1 < · · · < an, b1 < · · · < bn in N we say that {b1, . . . , bn} isa spread of {a1, . . . , an} if ai ≤ bi for i = 1, . . . , n. A family F ⊂ [N]<ω is
alled spreading if every spread of every element of F is also in F . This is anappropriate pla
e to make the 
onvention that the elements of a subset of Nwill always be written in in
reasing order. So, for example, when we write
{m1, . . . , mk} ∈ [N]<ω, it is impli
itly assumed that m1 < · · · < mk.For F ⊂ [N]<ω we write MAX(F) for the set of maximal (with respe
tto in
lusion) elements of F . Note that MAX(F) is always a thin family.For subsets A and B of N we write A < B if a < b for all a ∈ A and
b ∈ B. For n ∈ N and A ⊂ N we write n < A if {n} < A. A (�nite or in�nite)sequen
e A1, A2, . . . of subsets of N is 
alled su

essive if A1 < A2 < · · · .Given a family F ⊂ [N]<ω, a sequen
e A1, . . . , Ak of non-empty, �nite subsetsof N is 
alled F-admissible if it is su

essive and {minA1, . . . , minAk} ∈ F .We next re
all the de�nitions of the S
hreier families Sα and the �neS
hreier families Fα, where α is a 
ountable ordinal. We �rst �x for everylimit ordinal λ a sequen
e (αn) of ordinals with 1 ≤ αn ր λ. We now de�nethe �ne S
hreier families (Fα)α<ω1 by re
ursion:

F0 = {∅},
Fα+1 = {{n} ∪ A : n ∈ N, A ∈ Fα, n < A} ∪ {∅},

Fλ = {A ∈ [N]<ω : ∃n ≤ minA, A ∈ Fαn},where in the last line λ is a limit ordinal and αn ր λ is the sequen
e ofordinals �xed in advan
e. An easy indu
tion shows that Fα is a 
ompa
t,hereditary and spreading family for all α < ω1. Moreover, (Fα)α<ω1 is an�almost� in
reasing 
hain:
∀α ≤ β < ω1 ∃n ∈ N ∀F ∈ Fα, if n ≤ minF , then F ∈ Fβ.(1)This 
an be proved by an easy indu
tion on β. We also note that for A ∈

Fα \ MAX(Fα) we have A ∪ {n} ∈ Fα for all n > maxA.
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hreier families 
an now be de�ned by setting Sα = Fωα for all
α < ω1. This is not exa
tly how the S
hreier families are usually de�ned,but it gives the same families provided we are more 
areful when 
hoosingthe sequen
es (αn) with 1 ≤ αn ր λ for limit ordinals λ (these 
hoi
esshould depend on the 
hoi
es made when de�ning the S
hreier families inthe usual way). At any rate, what matters is that ea
h Sα be a 
ompa
t,hereditary and spreading family with Cantor�Bendixson index ωα+1 (see (2)in Se
tion 4). Note that S1 is the usual S
hreier family S given by

S = {A ∈ [N]<ω : |A| ≤ minA}(provided that for λ = ω we 
hose the sequen
e αn = n).As usual we denote by (ei) the 
anoni
al (algebrai
) basis of the ve
torspa
e c00 of all eventually zero s
alar sequen
es. For x =
∑

xiei ∈ c00 andfor A ⊂ N we write Ax for the obvious proje
tion of x onto span{ei : i ∈ A}:
Ax =

∑

i∈A

xiei.We are now ready to re
all the de�nitions of 
ertain Tsirelson type spa
es.For a 
ompa
t, hereditary family F ⊂ [N]<ω and for c ∈ (0, 1) there is aunique least norm on c00, denoted by ‖ · ‖F ,c, su
h that
‖x‖F ,c = ‖x‖∞ ∨ c · sup

{ n∑

i=1

‖Aix‖F ,c : n ∈ N, A1, . . . , An is F -admissible}for all x ∈ c00. We shall write TF ,c for the 
ompletion of c00 in this norm. Notethat the (algebrai
) basis (ei) of c00 be
omes a 1-un
onditional (S
hauder)basis of TF ,c.For a non-zero, 
ountable ordinal α and for c ∈ (0, 1) the spa
e TSα,c isthe Tsirelson spa
e of order α with parameter c; we shall denote it by Tα,c.We further simplify notation in the 
ase c = 1/2 by letting Tα = Tα,1/2.When α = 1 this is just (the dual of) the original Tsirelson spa
e [27, 12℄.We gather some properties of Tsirelson spa
es in the next proposition.In parti
ular, we note that the unit ve
tor bases of Tα and T ∗
α satisfy the
onditions required in Theorem 1.Proposition 3 ([8℄, [18℄). Let α be a non-zero, 
ountable ordinal. TheTsirelson spa
e Tα is a re�exive Bana
h spa
e and (ei) is a 1-un
onditional ,

1-right-dominant and B-blo
k-stable basis for Tα, where B is a 
onstant in-dependent of α.The biorthogonal fun
tionals (e∗i ) form a 1-un
onditional , 1-left domi-nant and B-blo
k-stable basis for T ∗
α. Moreover , (e∗i ) is D-dominated by (ei),where D is a universal 
onstant.It is shown in [8℄ that Tsirelson's spa
e T1 is blo
k-stable (see also [9,Proposition II.4℄). The argument easily 
arries over to higher order Tsirelson
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es giving the same 
onstant. A proof is given in [18℄ for an even larger
lass of Tsirelson type spa
es.It is proved in [9, Proposition V.10℄ that the unit ve
tor basis (ei) ofTsirelson's spa
e T1 dominates the unit ve
tor basis of ℓq for all q > 1. Thelast statement of Proposition 3 now follows immediately. (Note that S1 ⊂ Sα,and hen
e the unit ve
tor basis of T1 is 1-dominated by the unit ve
tor basisof Tα for any 1 ≤ α < ω1.)The rest of the properties 
laimed in Proposition 3 are immediate fromthe de�nition of the higher order Tsirelson spa
es.We end this se
tion by stating a 
ombinatorial theorem of Pudlák andRödl whi
h also follows from in�nite Ramsey theory. This has nothing to dowith Tsirelson spa
es, but as it 
on
erns families of �nite subsets of N, thisse
tion is an appropriate pla
e for it.Theorem 4. Let F ⊂ [N]<ω be a thin family. Whenever ea
h elementof F is 
oloured red or blue, there is an in�nite subset M of N su
h that
F∩[M ]<ω is mono
hromati
, where [M ]<ω denotes the set of all �nite subsetsof M .4. Ordinal indi
es. The main aim of this se
tion is to introdu
e twoordinal indi
es in Bana
h spa
es: the weak index and the blo
k index. Theformer will be related to the Szlenk index later on. In order to avoid tiresomerepetitions we begin by de�ning a 
lass of ordinal indi
es of trees on arbitrarysets. We then introdu
e the said indi
es as spe
ial 
ases and prove a numberof their properties to be used in what follows.Let X be an arbitrary set. We de�ne X<ω =

⋃∞
n=0 Xn, the set of all�nite sequen
es in X, whi
h in
ludes the sequen
e of length zero, denotedby ∅. For x ∈ X we shall write x instead of (x), i.e., we identify X withsequen
es of length 1 in X. A tree on X is a non-empty subset F of X<ω
losed under taking initial segments: if (x1, . . . , xn) ∈ F and 0 ≤ m ≤ n,then (x1, . . . , xm) ∈ F . A tree F on X is hereditary if every subsequen
e ofevery member of F is also in F .Given x = (x1, . . . , xm) and y = (y1, . . . , yn) in X<ω, we write (x,y) forthe 
on
atenation of x and y:

(x,y) = (x1, . . . , xm, y1, . . . , yn).Given F ⊂ X<ω and x ∈ X<ω, we let
F(x) = {y ∈ X<ω : (x,y) ∈ F}.Note that if F is a tree on X, then so is F(x) (unless it is empty). Moreover,if F is hereditary, then so is F(x) and F(x) ⊂ F .Let Xω denote the set of all (in�nite) sequen
es in X. Fix S ⊂ Xω.For a tree F on X the S-derivative F ′

S of F 
onsists of all �nite sequen
es
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x ∈ X<ω for whi
h there is a sequen
e (yi)

∞
i=1 ∈ S with (x, yi) ∈ F for all

i ∈ N. Note that F ′
S ⊂ F and that F ′

S is also a tree (unless it is empty). Wethen de�ne higher order derivatives F (α)
S for ordinals α < ω1 by re
ursion asfollows:

F (0)
S = F ,

F (α+1)
S = (F (α)

S )′S for all α < ω1,

F (λ)
S =

⋂

α<λ

F (α)
S for a limit ordinal λ < ω1.

It is 
lear that F (α)
S ⊃F (β)

S whenever α ≤ β and that F (α)
S is a tree (orthe empty set) for all α. An easy indu
tion also shows that

(F(x))
(α)
S = (F (α)

S )(x) for all x ∈ X<ω, α < ω1.We now de�ne the S-index IS(F) of F by
IS(F) = min{α < ω1 : F (α)

S = ∅}if there exists α < ω1 with F (α)
S = ∅, and IS(F) = ω1 otherwise.Remark. If λ is a limit ordinal and F (α)

S 6= ∅ for all α < λ, then inparti
ular ∅ ∈ F (α)
S for all α < λ, and hen
e F (λ)

S 6= ∅. This shows that
IS(F) is always a su

essor ordinal.Examples. 1. A hereditary family F ⊂ [N]<ω 
an be thought of as a treeon N: a set F = {m1, . . . , mk} ∈ [N]<ω is identi�ed with (m1, . . . , mk) ∈ N

<ω(re
all that m1 < · · · < mk by our 
onvention of always listing the elementsof a subset of N in in
reasing order).Let S be the set of all stri
tly in
reasing sequen
es in N. In this 
ase the
S-index of a 
ompa
t, hereditary family F ⊂ [N]<ω is nothing else than theCantor�Bendixson index of F as a 
ompa
t topologi
al spa
e, whi
h we willdenote by ICB(F). We will also use the term �Cantor�Bendixson derivative�instead of �S-derivative� and use the notation F ′

CB and F (α)
CB .2. If X is an arbitrary set and S = Xω, then the S-index of a tree Fon X is what is usually 
alled the order (or height) of F , denoted by o(F).Note that in this 
ase the S-derivative of F 
onsists of all �nite sequen
es

x ∈ X<ω for whi
h there exists y ∈ X su
h that (x, y) ∈ F .The fun
tion o(·) is the largest index: for any S ⊂ Xω we have
o(F) ≥ IS(F).We say that S ⊂ Xω 
ontains diagonals if every subsequen
e of everymember of S also belongs to S and for every sequen
e (xn) in S with xn =
(xn,i)

∞
i=1 there exist i1 < i2 < · · · in N su
h that (xn,in)∞n=1 belongs to S.
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ontains diagonals, then the S-index of a tree on X may be mea-sured via the Cantor�Bendixson index of the �ne S
hreier families (Fα)α<ω1introdu
ed earlier. An easy indu
tion argument shows that
ICB(Fα) = α + 1 for all α < ω1.(2)Given a tree F ⊂ [N]<ω on N, a family (xF )F∈F\{∅} in X will always beviewed as the tree

{(x{m1}, x{m1,m2}, . . . , x{m1,m2,...,mk}) : k ≥ 0, {m1, . . . , mk} ∈ F}on X.Proposition 5. Let X be an arbitrary set and let S ⊂ Xω. If S 
on-tains diagonals, then for a tree F on X and for a 
ountable ordinal α thefollowing are equivalent :(i) α < IS(F).(ii) There is a family (xF )F∈Fα\{∅} ⊂ F su
h that for all F ∈ Fα \
MAX(Fα) the sequen
e (xF∪{n})n>maxF is in S.Proof. �(ii)⇒(i)� An easy indu
tion on β < ω1 shows that for all F =

{m1, . . . , mk} ∈ (Fα)
(β)
CB we have

(x{m1}, x{m1,m2}, . . . , x{m1,m2,...,mk}) ∈ F (β)
S .It follows that IS(F) ≥ ICB(Fα) > α.�(i)⇒(ii)� We prove this by indu
tion on α. When α = 0, statement (ii)says that ∅ ∈ F , whi
h does follow from 0 < IS(F).Next assume that α + 1 < IS(F). Then F (α+1)

S 6= ∅, so in parti
ular wehave ∅ ∈ F (α+1)
S . It follows that there is a sequen
e (xi)

∞
i=1 ∈ S su
h that

xi ∈ F (α)
S for all i ∈ N. Hen
e (F (α)

S )(xi) = (F(xi))
(α)
S is non-empty, and

IS(F(xi)) > α. By the indu
tion hypothesis, for ea
h i ∈ N there is a family
(yi,F )F∈Fα\{∅} ⊂ F(xi) su
h that for all F ∈ Fα \ MAX(Fα) the sequen
e
(yi,F∪{n})n>maxF is in S.Now for ea
h F = {m1, . . . , mk} ∈ Fα+1 de�ne

xF =

{
xi if k = 1 and m1 = i,
yi,{m2,m3,...,mk} if k > 1 and m1 = i.It is routine to verify that statement (ii) holds with α + 1 repla
ing α.Finally, let λ be a limit ordinal, and assume that λ < IS(F). Let (αn)be the sequen
e of ordinals with 1 ≤ αn ր λ 
hosen in the de�nition of the�ne S
hreier family Fλ. By the indu
tion hypothesis, for ea
h n ∈ N thereis a family (yn,F )F∈Fαn\{∅} ⊂ F su
h that for all F ∈ Fαn \ MAX(Fαn) thesequen
e (yn,F∪{i})i>maxF is in S. In parti
ular we have (yn,{i})

∞
i=1 ∈ S forall n ∈ N. Sin
e S 
ontains diagonals there exist i1 < i2 < · · · in N su
h
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∞
n=1 ∈ S. We 
an also ensure that if m ≤ n, F ∈ Fαm and

in ≤ minF , then F ∈ Fαn (see (1)).Now for ea
h F = {m1, . . . , mk} ∈ Fλ de�ne
xF =

{
yn,{in} if k = 1 and m1 = n,
yn,{in,in+m2,in+m3,...,in+mk} if k > 1 and m1 = n.It is again routine to verify that statement (ii) with λ in pla
e of α follows.The set S = Xω for an arbitrary set X, and the set S used to de�ne theCantor�Bendixson index for a 
ompa
t, hereditary family in [N]<ω, trivially
ontain diagonals. This will also be (mostly) the 
ase in the following twoexamples of S-indi
es in Bana
h spa
es.Examples. 1. The weak index. Let X be a separable Bana
h spa
e. Let

S be the set of all weakly null sequen
es in SX , the unit sphere of X. We
all the S-index of a tree F on SX the weak index of F and we denote itby Iw(F). We shall use the term �weak derivative� instead of �S-derivative�and use the notation F ′
w and F (α)

w .When the dual spa
e X∗ is separable, the weak topology on the unit ball
BX of X is metrizable. Hen
e in this 
ase the set S 
ontains diagonals andProposition 5 applies.2. The blo
k index. Let X be a Bana
h spa
e with an FDD E = (Ei).A blo
k tree of (Ei) in Z is a tree F on SX su
h that every element of F isa (�nite) blo
k sequen
e of (Ei). Let S be the set of all normalized, in�niteblo
k sequen
es of (Ei) in Z. We 
all the S-index of a blo
k tree F of (Ei)the blo
k index of F and we denote it by Ibl(F). We shall use the term �blo
kderivative� instead of �S-derivative� and use the notation F ′

bl and F (α)
bl . Notethat the set S 
ontains diagonals, and hen
e Proposition 5 applies.Note also that (Ei) is a shrinking FDD of X if and only if every elementof S is weakly null. In this 
ase we have

Ibl(F) ≤ Iw(F)(3)for any blo
k tree F of (Ei) in Z. The 
onverse is false in general, but it istrue up to perturbations and without the assumption that (Ei) is shrinking(see the Remark pre
eding Proposition 8 below).Remark. If (Ei) and (Fi) are two di�erent FDDs of the Bana
h spa
e X,then the 
orresponding blo
k indi
es they give rise to may well be di�erentin general. However, it is 
lear that if (Fi) is a blo
king of (Ei), then theydo yield the same blo
k index. Sin
e this is exa
tly the kind of situationin whi
h we shall use the blo
k index in this paper, we did not in
orporatethe underlying FDD in the notation for blo
k derivatives and for the blo
kindex.
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tion we will relate the Szlenk index to the weak index of
ertain trees. In the rest of the present se
tion we prove two propositions.The �rst one is a perturbation result: it 
on
erns the weak index of the�fattening� of a tree. The se
ond result relates the blo
k index of blo
k treesin Bana
h spa
es to the Cantor�Bendixson index of 
ompa
t, hereditaryfamilies in [N]<ω. It is a kind of dis
retization result.Let X be a separable Bana
h spa
e. For a tree F ⊂ S<ω
X and for ε =

(εi) ⊂ (0, 1) we write
FX

ε = {(xi)
n
i=1 ∈ S<ω

X : n ∈ N, ∃(yi)
n
i=1 ∈ F , ‖xi−yi‖ ≤ εi for i = 1, . . . , n}.Proposition 6. Let X ⊂ Y be Bana
h spa
es with separable duals ,and let F ⊂ S<ω

X be a tree on SX . Then for all ε = (εi) ⊂ (0, 1) we have
Iw(FY

ε ) ≤ Iw(FX
5ε).Proof. By a theorem of Zippin [28℄, Y embeds into a Bana
h spa
e witha shrinking FDD. So without loss of generality we may assume that Y itselfhas a shrinking FDD E = (Ei). Let K = K(E, Y ), the proje
tion 
onstantof E in Y , and set

Xm = X ∩ ⊕∞
j=m+1 Ej (m ∈ N).For ε ∈ (0, 1) and for A ⊂ SY we de�ne AY

ε by
AY

ε = {y ∈ SY : ∃x ∈ A, ‖x − y‖ ≤ ε}.We shall need the following lemma.Lemma 7. Let ε ∈ (0, 1) and let (yi) be a weakly null sequen
e in (SX)Y
ε .Then there is a weakly null sequen
e (xi) in SX and a subsequen
e (y′i) of (yi)su
h that ‖xi − y′i‖ ≤ 4ε for all i ∈ N.Proof. Fix η > 0 su
h that

ε′ = (1 + η)(2η + ε) < 1 and 2ε′ + ε < 4ε.Let m ∈ N. Sin
e (X/Xm)∗ ∼= X⊥
m is a �nite-dimensional subspa
e of X∗,there is a �nite subset Am of BX∗ su
h that

d(x, Xm) ≤ (1 + η) · max
f∈Am

f(x) for all x ∈ X.Let Bm be a �nite subset of BY ∗ 
ontaining a Hahn�Bana
h extension to Yof ea
h element of Am. Then 
hoose n(m, η) ∈ N su
h that
‖g − PE∗

[1,n(m,η)](g)‖ < η for all g ∈ Bm.Now let (y′i) be a subsequen
e of (yi) su
h that
‖PE

[1,n(m,η)](y
′
m)‖ < η for all m ∈ N.
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h m ∈ N 
hoose zm ∈ SX with ‖zm − y′m‖ ≤ ε. We have
d(zm, Xm) ≤ (1 + η) · max

g∈Bm

g(zm) ≤ (1 + η) · (max
g∈Bm

g(y′m) + ε)

< (1 + η) · (max
g∈Bm

PE∗

[1,n(m,η)](g)(y′m) + η + ε)

≤ (1 + η) · (‖PE
[1,n(m,η)](y

′
m)‖ + η + ε) ≤ (1 + η) · (2η + ε) = ε′.Choose x̃m ∈ Xm su
h that ‖x̃m − zm‖ < ε′, and set xm = x̃m/‖x̃m‖. Aneasy 
omputation shows that

‖xm − y′m‖ < 2ε′ + ε < 4ε for all m ∈ N.Sin
e (Ei) is shrinking, it follows that the sequen
e (xi) is weakly null.We now 
ontinue with the proof of Proposition 6. Let ε = (εi) ⊂ (0, 1). Itis enough to show that if α < Iw(FY
ε ), then α < Iw(FX

5ε). Now if α < Iw(FY
ε ),then by Proposition 5 there is a family (yF )F∈Fα\{∅} ⊂ FY

ε su
h that for all
F ∈ Fα \ MAX(Fα) the sequen
e (yF∪{n})n>maxF is weakly null.Given a spreading family F ⊂ [N]<ω we will 
all a fun
tion F 7→ F ′:
F → F a pruning fun
tion if for every F = {m1, . . . , ml} ∈ F the set
F ′ = {m′

1, . . . , m
′
l} is a spread of F and {m1, . . . , mk}′ = {m′

1, . . . , m
′
k} forea
h k = 1, . . . , l. Now by repeated appli
ations of Lemma 7 we 
an �nd afamily (xF )F∈Fα\{∅} ⊂ SX and a pruning fun
tion F 7→ F ′: Fα → Fα su
hthat

(xF∪{n})n>maxF is weakly null for all F ∈ Fα \ MAX(Fα)and
‖xF − yF ′‖ ≤ 4εi for all i ∈ N and for all F ∈ Fα with |F | = i.The last line implies that (xF )F∈Fα\{∅} ⊂ FX

5ε , and hen
e by Proposition 5we have α < Iw(FX
5ε), as required.Let Z be a Bana
h spa
e with an FDD E = (Ei), and let F be a blo
ktree of (Ei) in Z. Let us write Σ(E, Z) for the set of all �nite, normalizedblo
k sequen
es on (Ei) in Z. For ε = (εi) ⊂ (0, 1) we let

FE,Z
ε = FZ

ε ∩ Σ(E, Z),i.e., FE,Z
ε is the restri
tion to blo
k sequen
es of the ε-�fattening� of F in Z:

FE,Z
ε = {(xi)

n
i=1 ∈ Σ(E, Z) : n ∈ N, ∃(yi)

n
i=1 ∈ F , ‖xi − yi‖ ≤ εifor i = 1, . . . , n}.We also de�ne the 
ompression F̃ of F by

F̃ = {F ∈ [N]<ω : ∃(zi)
|F |
i=1 ∈ F , F = {min suppE(zi) : i = 1, . . . , |F |}}.Remark. Having introdu
ed the above notation, we 
an now write downa sort of 
onverse for (3). If Z is a Bana
h spa
e with an FDD E = (Ei) and
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F is a blo
k tree of (Ei) in Z, then

Iw(F) ≤ Ibl(FE,Z
ε )for all ε = (εi) ⊂ (0, 1). Indeed, if α < Iw(F), then by Proposition 5 there isa family (xF )F∈Fα\{∅} ⊂ F su
h that for all F ∈ Fα\MAX(Fα) the sequen
e

(xF∪{n})n>maxF is weakly null. By standard perturbation arguments we geta pruning fun
tion F 7→ F ′: Fα → Fα and a family (yF )F∈Fα\{∅} in SZ su
hthat for all F ∈ Fα \ MAX(Fα) the sequen
e (yF∪{n})n>maxF is a blo
ksequen
e, and for all F ∈ Fα we have ‖xF ′ − yF ‖ < ε|F |. It follows fromProposition 5 that α < Ibl(FE,Z
ε ).Proposition 8. Let Z be a Bana
h spa
e with an FDD E = (Ei). Let

F be a hereditary blo
k tree of (Ei) in Z. Then for all ε = (εi) ⊂ (0, 1) andfor all limit ordinals α, if Ibl(FE,Z
ε ) < α, then ICB(F̃) < α.The proof 
onsists of two parts. We �rst repla
e blo
k sequen
es of (Ei)with sequen
es of �nite subsets of N (Lemma 9), and then prove a dis
rete
ompression result (Lemma 10). Before we begin we need to extend thenotion of blo
k index and related notions to a dis
rete setting. We write Σfor the set of all �nite su

essive sequen
es in [N]<ω \ {∅} and S for the setof all in�nite su

essive sequen
es in [N]<ω \ {∅}. A tree G ⊂ Σ on [N]<ωwill be 
alled a blo
k tree in [N]<ω, and its S-index will be 
alled the blo
kindex of G, denoted by Ibl(G). We shall also use the term �blo
k derivative�and the notation G′

bl, G(α)
bl just as in the Bana
h spa
e 
ase.Lemma 9. Let Z be a Bana
h spa
e with an FDD E = (Ei). Let F bea blo
k tree of (Ei) in Z. Let

suppF = {(Ai)
n
i=1 ∈ Σ : n ∈ N, ∃(zi)

n
i=1 ∈ F ,

suppE(zi) = Ai for i = 1, . . . , n}.Then for all ε = (εi) ⊂ (0, 1) we have
Ibl(supp(F)) ≤ Ibl(FE,Z

ε ).Proof. To simplify notation we are going to write Fε instead of FE,Z
ε .We show by indu
tion that for all α < ω1 we have

(supp(F))
(α)
bl ⊂ supp((Fε)

(α)
bl ) ∀F , ∀ε.(4)Lemma 9 will then follow immediately. We begin with the 
ase α = 1.Let (A1, . . . , An) ∈ (supp(F))′bl. Then there is an in�nite su

essive se-quen
e (Bi) in [N]<ω \ {∅} su
h that (A1, . . . , An, Bi) ∈ supp(F) for all

i ∈ N. Now 
hoose (z1,i, . . . , zn,i, zi) ∈ F su
h that suppE(zk,i) = Ak for
k = 1, . . . , n and suppE(zi) = Bi. By 
ompa
tness, for some i0 ∈ N wehave (z1,i0, . . . , zn,i0, zi) ∈ Fε for in�nitely many i ∈ N. It follows that
(z1,i0 , . . . , zn,i0) ∈ (Fε)

′
bl and (A1, . . . , An) ∈ supp((Fε)

′
bl), as required.
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tive step we shall use the fa
t that (F (α)
bl )ε ⊂ (Fε)

(α)
bl for all

F , ε, α, whi
h 
an be veri�ed by an easy indu
tion. Assume now that (4)holds. We then have
(supp(F))

(α+1)
bl = ((supp(F))

(α)
bl )′bl

⊂ (supp((Fε)
(α)
bl ))′bl (by the indu
tion hypothesis)

⊂ supp((Hε)
′
bl) (by the 
ase α = 1, where H = (Fε)

(α)
bl )

⊂ supp((F2ε)
(α+1)
bl ).This proves (4) with α repla
ed by α + 1.Finally, let λ be a limit ordinal and assume that (4) holds for all α < λ.We have

(supp(F))
(λ)
bl =

⋂

α<λ

(supp(F))
(α)
bl ⊂

⋂

α<λ

supp((Fε)
(α)
bl ) ⊂ supp((F2ε)

(λ)
bl ).The �rst in
lusion follows from the indu
tion hypothesis. To see the se
ondin
lusion �x a sequen
e (αi) of ordinals with αi ր λ and assume that

(A1, . . . , An) ∈ supp((Fε)
(αi)
bl ) for all i ∈ N.For ea
h i ∈ N 
hoose

(z1,i, . . . , zn,i) ∈ (Fε)
(αi)
blsu
h that suppE(zk,i) = Ak for k = 1, . . . , n. By 
ompa
tness, we �nd i0 ∈ Nsu
h that for in�nitely many i ∈ N we have

‖zk,i − zk,i0‖ < εk for k = 1, . . . , n.It follows that (z1,i0 , . . . , zn,i0) ∈ (F2ε)
(αi)
bl for in�nitely many i ∈ N, andhen
e (z1,i0 , . . . , zn,i0) ∈ (F2ε)

(λ)
bl . In turn this implies that (A1, . . . , An) ∈

supp((F2ε)
(λ)
bl ), as required.Lemma 10. Let G ⊂ Σ be a hereditary blo
k tree in [N]<ω, and let

minG = {F ∈ [N]<ω : ∃(A1, . . . , A|F |) ∈ G, F = {minAi : i = 1, . . . , |F |}}.Then for any limit ordinal α, if Ibl(G) < α, then ICB(minG) < α.Proof. We are going to show the following three statements:(i) For all n < ω we have (minG)
(2n+2)
CB ⊂ min(G(n+1)

bl ).(ii) Let α be a limit ordinal. If
(minG)

(α)
CB ⊂

⋂

β<α

min(G(β)
bl ),then for all n < ω we have

(minG)
(α+2n+1)
CB ⊂ min(G(α+n)

bl ).
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es of bounded Szlenk index 81(iii) For every limit ordinal α < ω1 we have
(minG)

(α)
CB ⊂

⋂

β<α

min(G(β)
bl ).(5)

Sin
e the fun
tions ICB(·) and Ibl(·) only take su

essor ordinal values, state-ment (iii) implies the lemma immediately. We start with a proof of (i) and (ii)in the 
ase n = 0. The general 
ase in both parts follows by an easy indu
tion.Let (m1, . . . , mk) be an element of (minG)′′CB. Then there exist m ∈ Nand an in�nite subset N of N with mk < m < minN su
h that
(m1, . . . , mk, m, n) ∈ minG for all n ∈ N.For ea
h n ∈ N 
hoose (A1,n, . . . , Ak,n, Bn, Cn) ∈ G su
h that

(minA1,n, . . . , minAk,n, minBn, minCn) = (m1, . . . , mk, m, n).After passing to a subsequen
e we 
an assume that Aj,n = Aj for j = 1, . . . , kand for all n ∈ N . Sin
e G is hereditary, we have (A1, . . . , Ak, Cn) ∈ G forall n ∈ N , and hen
e (A1, . . . , Ak) ∈ G′
bl. It follows that (m1, . . . , mk) ∈

min(G′
bl), whi
h 
ompletes the proof of (i), n = 0.To show (ii) for n = 0, �x a sequen
e (βi) of ordinals with βi ր α.Pi
k an element (m1, . . . , mk) ∈ (minG)

(α+1)
CB . Then there exist m ∈ N with

mk < m su
h that
(m1, . . . , mk, m) ∈ (minG)

(α)
CB ⊂ min(G(βi)

bl ) for all i ∈ N.For ea
h i ∈ N 
hoose (A1,i, . . . , Ak,i, Bi) ∈ G(βi)
bl su
h that

(minA1,i, . . . , minAk,i, minBi) = (m1, . . . , mk, m).After passing to a subsequen
e we 
an assume that Aj,i = Aj for j =

1, . . . , k and for all i ∈ N. Sin
e (A1, . . . , Ak) ∈ G(βi)
bl for all i ∈ N, wehave (A1, . . . , Ak) ∈ G(α)

bl and (m1, . . . , mk) ∈ min(G(α)
bl ), as required.Finally, we are going to show (iii) by indu
tion on α. It follows from (i)that (5) holds for α = ω. Moreover, if (5) holds for a limit ordinal α, thenit also holds for α + ω by (ii). Now, assume that α is the limit of a stri
tlyin
reasing sequen
e (αn) of non-zero limit ordinals and that (iii) holds with

α repla
ed by αn for all n ∈ N. Then, in parti
ular, we have
(minG)

(αn+1)
CB ⊂ min(G(αn)

bl ) for all n ∈ N,from whi
h (iii) follows immediately for α.5. The Szlenk index. Here we re
all the de�nition and basi
 propertiesof the Szlenk index. We then re
all or prove further properties that arerelevant for our purposes. A fairly 
omprehensive survey on the Szlenk index
an be found in [17℄.



82 E. Odell et al.Let X be a separable Bana
h spa
e, and let K be a non-empty, w∗-
ompa
t subset of X∗. For ε > 0 set
K ′

ε = {x∗ ∈ K : ∀w∗-neighbourhoods U of x∗, diam(K ∩ U) > ε},where diam(K ∩ U) denotes the norm-diameter of K ∩ U . We now de�ne
K

(α)
ε for ea
h 
ountable ordinal α by re
ursion as follows:

K(0)
ε = K,

K(α+1)
ε = (K(α)

ε )′ε for all α < ω1,

K(λ)
ε =

⋂

α<λ

K(α)
ε for a limit ordinal λ < ω1.Next, we asso
iate to K the following ordinal indi
es:

η(K, ε) = sup{α < ω1 : K(α)
ε 6= ∅} and η(K) = sup

ε>0
η(K, ε).Finally, we de�ne the Szlenk index Sz(X) of X to be η(BX∗), where BX∗ isthe unit ball of X∗.Remark. The original de�nition in [26℄ is slightly di�erent, but it givesthe same ordinal index.Szlenk used his index to show that there is no separable, re�exive spa
euniversal for the 
lass of all separable, re�exive spa
es. This result followsimmediately from the following properties of the fun
tion Sz(·).Theorem 11 ([26℄). Let X and Y be separable Bana
h spa
es.(i) X∗ is separable if and only if Sz(X) < ω1.(ii) If X isomorphi
ally embeds into Y , then Sz(X) ≤ Sz(Y ).(iii) For all α < ω1 there exists a separable, re�exive spa
e with Szlenkindex at least α.We next restate in one theorem a number of results from [1℄ in our ter-minology. This in
ludes an expression of the Szlenk index in terms of theweak index of 
ertain trees.Theorem 12 ([1℄). Let X be a separable, in�nite-dimensional Bana
hspa
e not 
ontaining ℓ1. For ̺ ∈ (0, 1) let

F̺ =
{
(xi)

n
i=1 ∈ S<ω

X : n ∈ N,
∥∥∥

n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.Then

Sz(X) = sup
̺>0

Iw(F̺).Moreover , if X∗ is separable, then for some α < ω1, we have Sz(X) = ωαand the above supremum is not attained.
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es of bounded Szlenk index 83We next 
onsider the Szlenk index of sums of Bana
h spa
es. For �nitesums (Proposition 14) this 
an be 
omputed dire
tly from the de�nitionusing a kind of �Leibniz� rule for higher order derivatives of produ
ts of
w∗-
ompa
t sets (Lemma 13(iii)). For in�nite sums (Proposition 15) we usethe weak index as well as the result on �nite sums to obtain an upper bound.In what 
omes we will denote by α ⊞ β the �pointwise sum� of ordinals αand β, whi
h is de�ned as follows. We �rst write α and β in Cantor NormalForm as

α = ωγ1 · m1 + ωγ2 · m2 + · · · + ωγk · mkand
β = ωγ1 · n1 + ωγ2 · n2 + · · · + ωγk · nk,where k ∈ N, γ1 > · · · > γk ≥ 0 are ordinals, and mi, ni < ω for all i. Thenwe set

α ⊞ β = ωγ1 · (m1 + n1) + ωγ2 · (m2 + n2) + · · · + ωγk · (mk + nk).Lemma 13. Let X and Y be separable Bana
h spa
es. Let m ∈ N, let
K, K1, . . . , Km be non-empty , w∗-
ompa
t subsets of X∗, and let L be anon-empty , w∗-
ompa
t subset of Y ∗. Let ε > 0.

(i) ( m⋃

j=1

Kj

)′

ε
⊂

m⋃

j=1

(Kj)
′
ε/2.(ii) For the subset K × L of X∗ ⊕∞ Y ∗ = (X ⊕1 Y )∗ we have

(K × L)′ε = K ′
ε × L ∪ K × L′

ε.(iii) For the subset K × L of X∗ ⊕∞ Y ∗ and for any ordinal α < ω1 wehave
(K × L)(α)

ε ⊂
⋃

β⊞γ=α

K
(β)
ε/2

× L
(γ)
ε/2

.

Proof. (i) Let x∗ ∈ (
⋃m

j=1 Kj)
′
ε. Sin
e the w∗-topology on a w∗-
ompa
tsubset of X∗ is metrizable, it follows easily from the de�nition that there is asequen
e (x∗

n) in ⋃m
j=1 Kj su
h that x∗

n
w∗

→ x∗ as n → ∞, and ‖x∗
n−x∗‖ > ε/2for all n ∈ N. After passing to a subsequen
e we may assume that for some

1 ≤ j ≤ m we have x∗
n ∈ Kj , and hen
e x∗ ∈ (Kj)

′
ε/2.(ii) This is immediate from the de�nition and from the fa
t that we areworking with the ℓ∞-sum of X∗ and Y ∗.(iii) We prove this statement by indu
tion. The 
ase α = 0 is 
lear.Using parts (i) and (ii) and assuming the statement for some α, we
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(K × L)(α+1)

ε ⊂
⋃

β⊞γ=α

(K
(β)
ε/2 × L

(γ)
ε/2)

′
ε/2

=
⋃

β⊞γ=α

(K
(β+1)
ε/2 × L

(γ)
ε/2 ∪ K

(β)
ε/2 × L

(γ+1)
ε/2 )

=
⋃

β⊞γ=α+1

K
(β)
ε/2 × L

(γ)
ε/2.Finally, if λ is a limit ordinal, then by the indu
tion hypothesis we have

(K × L)(λ)
ε ⊂

⋂

α<λ

( ⋃

β⊞γ=α

K
(β)
ε/2 × L

(γ)
ε/2

)
.Write λ in Cantor Normal Form:

λ = ωλ1 · m1 + · · · + ωλk · mkwith mk > 0, and for all n ∈ N set
αn = ωλ1 · m1 + · · · + ωλk · (mk − 1) + ωδn · n,where λk = δn + 1 for all n ∈ N if λk is a su

essor ordinal, and δn ր λk if

λk is a limit ordinal.Now let x∗ = (y∗, z∗) ∈ (K × L)
(λ)
ε . For ea
h n ∈ N we have αn < λ, sothere exist ordinals βn and γn with βn ⊞ γn = αn and x∗ ∈ K

(βn)
ε/2 × L

(γn)
ε/2 .Now there exist n1, . . . , nk, p1, . . . , pk < ω and an in�nite subset N of N su
hthat

βn = ωλ1 · n1 + · · · + ωλk · nk + ωδn · un,

γn = ωλ1 · p1 + · · · + ωλk · pk + ωδn · vn,where un +vn = n for all n ∈ N . Assume supn un = ω (the 
ase supn vn = ωbeing similar). Set
β = ωλ1 · n1 + · · · + ωλk · (nk + 1), γ = ωλ1 · p1 + · · · + ωλk · pk.Then β = supn βn, whereas γ ≤ γn for all n ∈ N . It follows that y∗ ∈ K

(β)
ε/2 =

⋂
n K

(βn)
ε/2 , and z∗ ∈ L

(γ)
ε/2. Sin
e β ⊞ γ = λ, statement (iii) with λ repla
ing

α follows.Proposition 14. Let X and Y be separable Bana
h spa
es. Then
Sz(X ⊕1 Y ) = max{Sz(X), Sz(Y )}.Proof. The inequality Sz(X ⊕1 Y ) ≥ max{Sz(X), Sz(Y )} follows imme-diately from Theorem 11(ii). The reverse inequality is trivial if either both Xand Y are �nite-dimensional, or one of X and Y has non-separable dual. Sowe 
an assume by the last part of Theorem 12 that max{Sz(X), Sz(Y )} = ωηfor some 0 < η < ω1.



Bana
h spa
es of bounded Szlenk index 85Now let K = BX∗ , L = BY ∗ and set α = ωη · 2 + 1. Applying part (iii)of Lemma 13 we obtain
(B(X⊕1Y )∗)

(α)
ε = (BX∗ × BY ∗)(α)

ε = ∅.It follows that Sz(X ⊕1 Y ) < α, and hen
e Sz(X ⊕1 Y ) ≤ ωη, as required.Proposition 15. Let (Xn) be a sequen
e of separable Bana
h spa
es.Let X = (
⊕

n Xn)ℓ2 be the ℓ2-sum of (Xn), and let α be a 
ountable ordinal.If Sz(Xn) ≤ ωα for all n ∈ N, then Sz(X) ≤ ωα+1.In the proof we shall use the following notation. For n ∈ N we denoteby Pn the 
anoni
al proje
tion of X onto Xn, i.e., for x = (xi) ∈ X with
xi ∈ Xi for all i ∈ N we have Pn(x) = xn. For a �nite subset A of N we let
PA =

∑
n∈A Pn.Proof. Assume for a 
ontradi
tion that Sz(X) > ωα+1. By Theorem 12there exists ̺ ∈ (0, 1) su
h that setting

F =
{
(xi)

n
i=1 ∈ S<ω

X : n ∈ N,
∥∥∥

∑
aixi

∥∥∥ ≥ ̺
∑

ai ∀(ai)
n
i=1 ⊂ R

+
}

we have Iw(F) > ωα+1. Note that by the geometri
 form of the Hahn�Bana
htheorem, (x1, . . . , xn) ∈ S<ω
X belongs to F if and only if there exists x∗ ∈ SX∗su
h that x∗(xi) ≥ ̺ for ea
h i = 1, . . . , n.We are going to show the following 
laim. Let x = (x1, . . . , xm) ∈ S<ω

X ,and let k ≥ 1, M ≥ 0 be integers. Assume that Iw(F(x)) > ωα · k. Thenthere exists y = (y1, . . . , yn) ∈ S<ω
X su
h that(i) Iw(F(x,y)) > ωα · (k − 1),(ii) for all x∗ ∈ SX∗ there exists i ∈ {1, . . . , n}, with x∗(P[1,M ](yi)) < ̺/4.Let us �rst see how this 
laim 
ompletes the proof. Fix K ∈N with K > 4/̺2.We obtain sequen
es x1, . . . ,xK in S<ω

X and N1 < · · · < NK in N re
ursivelyas follows: at the jth step we apply the 
laim with x = (x1, . . . ,xj−1),
k = K − j + 1 and M = Nj−1 to obtain y as above (for j = 1 we begin with
x = ∅, k = K and M = N0 = 0). Then we set xj = y and 
hoose Nj > Nj−1su
h that writing xj = (yj,1, . . . , yj,Lj ) we have

‖yj,l − P[1,Nj ](yj,l)‖ < ̺/4 for l = 1, . . . , Lj .From property (i) we dedu
e in parti
ular that (x1, . . . ,xK) ∈ F . Thus thereexists x∗ ∈ SX∗ su
h that
x∗(yj,l) ≥ ̺ for all j = 1, . . . , K, l = 1, . . . , Lj.It follows that for ea
h j = 1, . . . , K we 
an �nd 1 ≤ lj ≤ Lj su
h that

x∗(P[Nj−1+1,Nj ](yj,lj )) > ̺/2,and hen
e we get ‖x∗‖ ≥
√

K̺/ 2 > 1, whi
h is a 
ontradi
tion.



86 E. Odell et al.We now turn to the proof of the 
laim. De�ne
G = {(y1, . . . , yn) ∈ F(x) : n ∈ N, ∃x∗ ∈ SX∗ ,

x∗(P[1,M ](yi)) ≥ ̺/4 for i = 1, . . . , n}.Note that G is a tree on S<ω
X . If Iw(G) > ωα, then by Theorem 12 we have

Sz(X1 ⊕2 · · · ⊕2 XM ) > ωα, 
ontradi
ting Proposition 14. So we must have
Iw(G) ≤ ωα. On the other hand,

Iw((F(x))(ω
α·(k−1))

w ) > ωα.Thus we 
an �nd
y ∈ (F(x))(ω

α·(k−1))
w \ G.Properties (i) and (ii) are now easily 
he
ked.Proposition 16. Let α be an ordinal with 1 ≤ α < ω1. The Szlenkindex of the Tsirelson spa
e of order α is given by

Sz(Tα) = ωα·ω.Proof. For ea
h ̺ ∈ (0, 1) let
F̺ =

{
(xi)

n
i=1 ∈ S<ω

Tα
: n ∈ N,

∥∥∥
n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.We �rst show that Sz(Tα) ≥ ωα·ω. Let (ei) be the unit ve
tor basis of Tα. Itfollows from the de�nition of Tα that for ea
h n ∈ N, if F ∈ Sα·n, then (ei)i∈Fis 2n-equivalent to the unit ve
tor basis of ℓ

|F |
1 , so in parti
ular (ei)i∈F ∈

F2−n . Hen
e by Proposition 5 and Theorem 12 we have
ωα·n < Iw(F2−n) < Sz(Tα).Sin
e n ∈ N was arbitrary, the inequality Sz(Tα) ≥ ωα·ω follows at on
e.For the reverse inequality assume that ωγ < Sz(Tα), where γ = α · ω.Then by Theorem 12 there exists ̺ ∈ (0, 1) with ωγ < Iw(F̺), and byProposition 5 there is a family G = (xF )F∈Sγ\{∅} ⊂ F̺ su
h that for all

F ∈ Sγ \ MAX(Sγ) the sequen
e (xF∪{n})n>maxF is weakly null.By standard perturbation arguments we may, after making ̺ smaller andrepla
ing (xF )F∈Sγ\{∅} by (xF ′)F∈Sγ\{∅} for an appropriate pruning fun
tion
F 7→ F ′: Sγ → Sγ if ne
essary, assume that G is a blo
k tree of (ei) in Tα.We now apply a result of R. Judd and the �rst named author [16℄. In theirterminology G is an ℓ1-K-blo
k basis tree of (ei) in Tα with K = ̺−1 (weare using the 1-un
onditionality of (ei)), and hen
e its order o(G) is at mostthe Bourgain ℓ1-index of Tα, whi
h is shown in [16℄ to be ωγ . On the otherhand, by Proposition 5 we have o(G) > ωγ . This 
ontradi
tion 
ompletes theproof.



Bana
h spa
es of bounded Szlenk index 87Proposition 17. Let α be a 
ountable ordinal and let Z be a Bana
hspa
e with an FDD E = (Ei) that satis�es subsequential Tα-upper estimates.Then Sz(Z) ≤ ωα·ω.Proof. For ea
h ̺ ∈ (0, 1) let
F̺ =

{
(xi)

n
i=1 ∈ S<ω

Z : n ∈ N,
∥∥∥

n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.

G̺ =
{
(xi)

n
i=1 ∈ S<ω

Tα
: n ∈ N,

∥∥∥
n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.Fix γ < Sz(Z). By Theorem 12 there exists ̺ ∈ (0, 1) su
h that Iw(F̺) > γ,and by Proposition 5 there is a family (xF )F∈Fγ\{∅} ⊂ F̺ su
h that for all

F ∈ Fγ \ MAX(Fγ) the sequen
e (xF∪{n})n>maxF is weakly null.By standard perturbation arguments we may, after making ̺ smaller andappropriately pruning (xF )F∈Fγ\{∅} if ne
essary, assume that (xF )F∈Fγ\{∅}is a blo
k tree of (Ei) in Z, and that for all F ∈ Fγ \MAX(Fγ) the sequen
e
(xF∪{n})n>maxF is a blo
k basis of (Ei). Let (ei) be the unit ve
tor basisof Tα and de�ne

tF = emin suppE(xF ) for all F ∈ Fγ \ {∅}.Note that (tF )F∈Fγ\{∅} is a blo
k tree of (ei) in Tα and that it is 
ontained in
G̺′ for some ̺′ ∈ (0, 1) sin
e (Ei) satis�es subsequential Tα-upper estimates.Sin
e (ei) is shrinking, it follows by Proposition 5 that γ < Iw(G̺′). UsingTheorem 12 and Proposition 16 we dedu
e that Sz(Z) ≤ ωα·ω, as required.Remark. It follows from properties of higher order Tsirelson spa
es(Proposition 3) that the unit ve
tor basis of T ∗

α satis�es subsequential Tα-upper estimates. Hen
e the above result shows that
Tα ∈ Cωα·ω = {X : X is separable, re�exive, max{Sz(X), Sz(X∗)} ≤ ωα·ω}.6. The main theorem and its 
onsequen
esTheorem 18. Let Z be a Bana
h spa
e with a shrinking , bimonotoneFDD (Ei) and let X be an in�nite-dimensional 
losed subspa
e of Z. Thenfor any C > 4 there exist an ordinal α < Sz(X), a sequen
e δ = (δi) ⊂ (0, 1)with δi ↓ 0, and a blo
king (Gi) of (Ei) with Gi =

⊕mi−1
j=mi−1

Ej , i ∈ N,
1 = m0 < m1 < m2 < · · · , su
h that if (xi) ⊂ SX is a δ-blo
k sequen
e of
(Gn) with ‖xi − PG

(si−1,si]
xi‖ < δi for all i ∈ N, 1 ≤ s0 < s1 < s2 < · · · ,then (xi) is C-dominated by (emsi−1

), where (ei) is the unit ve
tor basisof TFα,1/2.We �rst prove some 
onsequen
es of Theorem 18. In Corollary 20 belowwe re
ast the property of being in the 
lass Cα in terms of 
ertain lower and



88 E. Odell et al.upper Tsirelson-norm estimates. In Theorem 21 we show that for 
ertainvalues of α these estimates are best possible, whi
h proves Theorem A fromthe Introdu
tion. These norm estimates and Theorem 1 are the two mainingredients in answering Peª
zy«ski's question, whi
h we do in Theorem 22followed by a re�nement in Theorem 23. We then state a result of Johnsonwhi
h we use to dedu
e basis versions (Theorems B and C) of Theorem 23.The rest of the se
tion is taken up by the proof of Theorem 18.Corollary 19. Let X be an in�nite-dimensional Bana
h spa
e withseparable dual. There exists an ordinal α < Sz(X) su
h that X satis�essubsequential C-TFγ ,1/2-upper tree estimates for any ordinal γ ≥ α, where
C is a universal 
onstant.Proof. By Zippin's theorem [28℄, X K-embeds into a Bana
h spa
e Zwith a shrinking, bimonotone FDD (Ei), where K is a universal 
onstant.Renorming X with a K-equivalent norm we may assume without loss ofgenerality that X is a subspa
e of Z. We now apply Theorem 18 to obtain
α < Sz(X), a sequen
e δ = (δi) ⊂ (0, 1), δi ↓ 0, and a blo
king (Gi) of (Ei)with Gi =

⊕mi−1
j=mi−1

Ej , i ∈ N, 1 = m0 < m1 < · · · , su
h that if (xi) ⊂ SXis a δ-blo
k sequen
e of (Gn) with ‖xi − PG
(si−1,si]

xi‖ < δi for all i ∈ N,
1 ≤ s0 < s1 < · · · , then (xi) is 5-dominated by (eα,msi−1

), where (eα,i) isthe unit ve
tor basis of TFα,1/2.Fix an ordinal γ ≥ α and an integer l su
h that (eα,i)i≥l is 1-dominated by
(eγ,i)i≥l (su
h an integer exists by property (1) of the �ne S
hreier families).We now show that X satis�es subsequential C-TFγ ,1/2-upper tree estimateswith C = 5. Let (xt)t∈T even

∞
be a normalized, weakly null even tree in X. Wewill indu
tively 
hoose sequen
es s0 < s1 < · · · and n1 < n2 < · · · in N asfollows. Set s0 = 1 and n1 = max(l, m1). Assume that for some i ∈ N wehave already 
hosen s0 < s1 < · · · < si−1 and n1 < n2 < · · · < n2i−1. Sin
enodes are weakly null, there exists n2i > n2i−1 su
h that

‖PG
[1,si−1]

x(n1,...,n2i)‖ < δi.Then 
hoose si > si−1 su
h that
‖x(n1,...,n2i) − PG

(si−1,si]
x(n1,...,n2i)‖ < δi.Finally, 
hoose n2i+1 > n2i with n2i+1 ≥ msi . This 
ompletes the re
ursive
onstru
tion. It follows immediately from the 
hoi
e of α, δ, (Gi) and l, andfrom the 1-right-dominant property of (eα,i), that (x(n1,...,n2i)) is 5-dominatedby (eγ,n2i−1).Corollary 20. Let X be an in�nite-dimensional , separable, re�ex-ive Bana
h spa
e. Then there exists an ordinal γ < max{Sz(X), Sz(X∗)}su
h that X satis�es subsequential C-(T ∗

Fδ,1/2, TFδ,1/2) tree estimates for any
δ ≥ γ, where C is a universal 
onstant.
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onstant C, and there existordinals α < Sz(X) and β < Sz(X∗), su
h that X satis�es subsequential
C-TFγ ,1/2-upper tree estimates for any γ ≥ α, and X∗ satis�es subsequential
C-TFδ,1/2-upper tree estimates for any δ ≥ β. It follows from Proposition 2that X satis�es subsequential (2C + ε)-(T ∗

Fδ,1/2, TFδ,1/2) tree estimates forany ε > 0 and for any δ ≥ max{α, β}.The above results show that higher order Tsirelson spa
es are more thanjust mere examples in the hierar
hy (Cα)α<ω1 . Indeed they are intimatelyrelated to the Szlenk index of an arbitrary separable, re�exive spa
e and itsdual. The next theorem shows that this relationship is tight in the 
lasses
Cωα·ω : Tsirelson spa
es of order α and their duals are maximal and, respe
-tively, minimal in these 
lasses. In parti
ular, this proves Theorem A statedin the Introdu
tion. The proof uses some further results from [22℄ whi
hwe shall not state here as Theorem 21 will not be used in the proof of ouruniversality results.Theorem 21. Let α < ω1. For a separable, re�exive spa
e X the fol-lowing are equivalent.(i) X ∈ Cωα·ω .(ii) X satis�es subsequential (T ∗

α,c, Tα,c) tree estimates for some c ∈
(0, 1).(iii) X embeds into a separable, re�exive spa
e Z with an FDD (Ei) whi
hsatis�es subsequential (T ∗

α,c, Tα,c) estimates in Z for some c ∈ (0, 1).Proof. �(i)⇒(ii)� By Corollary 20 there exists n < ω su
h that X satis�essubsequential (T ∗
α·n, Tα·n) tree estimates. It is not hard to show dire
tly fromthe de�nition that the norms ‖ · ‖Tα·n and ‖ · ‖Tα,c on c00, where c = 1/21/n,are equivalent. Hen
e (ii) follows.�(ii)⇒(iii)� This is immediate from [22, Theorem 15℄. We note that theimpli
ation �(iii)⇒(ii)� is straightforward from the de�nition.�(iii)⇒(i)� Let Z be the spa
e given by (iii), and 
hoose n ∈ N su
h that

cn ≤ 1/2. It follows dire
tly from the de�nition that the unit ve
tor basisof Tα,c is dominated by the unit ve
tor basis of Tα·n,cn , whi
h in turn isdominated by the unit ve
tor basis of Tα·n. Hen
e by Theorem 11(ii), andby Propositions 17 and 16, we have
Sz(X) ≤ Sz(Z) ≤ Sz(Tα·n) = ωα·n·ω = ωα·ω.(Alternatively, one 
an just observe that the proof of Proposition 16 worksfor Tα,c, i.e., we have Sz(Tα,c) = ωα·ω.) Now sin
e X satis�es (ii), it followsfrom duality (Proposition 2 and [22, Corollary 14℄) that (ii), and hen
e (iii),also hold with X repla
ed by X∗. This gives Sz(X∗) ≤ ωα·ω. Thus X ∈ Cωα·ω ,as required.



90 E. Odell et al.Remark. Using the proof of Proposition 16 one 
an show that Sz(TFα,c)
= αω whenever 1 ≤ α < ω1 and c ∈ (0, 1). Considering the Cantor NormalForm of α, it is possible to write αω = ωβ·ω for some β ≤ α. Thus, it is notpossible to obtain a �ner gradation of the hierar
hy (Cα)α<ω1 by using �neS
hreier families.We are now in a position to answer Peª
zy«ski's question. We shall usethe notation

Aα(C) = AT ∗
α ,Tα(C) and Aα =

⋃

C<∞

Aα(C),

where 0 < α < ω1 and C ∈ [1,∞) (see also the notation pre
eding Theo-rem 1). Re
all that
Cα = {X : X is separable, re�exive, max{Sz(X), Sz(X∗)} ≤ α},and that the Szlenk index of an in�nite-dimensional Bana
h spa
e with sep-arable dual is of the form ωη for some 0 < η < ω1 (Theorem 12), so we needonly 
onsider the 
lasses Cα when α is of this form. We should also 
ommenton �nite-dimensional spa
es before pro
eeding.For α < ω we have Cα = C0 is the 
lass of all �nite-dimensional spa
es.Let Z be the ℓ2-sum of a 
ountable, dense (with respe
t to the Bana
h�Mazurdistan
e) subset of C0. Then by Proposition 15 we have Z ∈ Cω. Moreover, Zis universal for C0: for all X ∈ C0 and for all ε > 0, X (1+ ε)-embeds into Z.For ω ≤ α < ω1 we have ℓ2 ∈ Cα, and hen
e ℓ2 ⊕ X ∈ Cα for any �nite-dimensional spa
e X. Thus we 
an restri
t attention to in�nite-dimensionalspa
es for the purpose of �nding a universal spa
e for the 
lass Cα.Theorem 22. For every ordinal α with 0 < α < ω1 there is a separ-able, re�exive spa
e with an FDD whi
h is universal for the 
lass Cωα. Morepre
isely , there is a universal 
onstant K su
h that for all 0 < α < ω1there exists a spa
e Z ∈ Cωα·ω with an FDD su
h that every spa
e X ∈ Cωα

K-embeds into Z.Proof. Let C ∈ [1,∞) be the universal 
onstant of Corollary 20, andlet B, D ∈ [1,∞) be the universal 
onstants of Proposition 3. Let K =
KB,D,1,1(C) be the 
onstant from Theorem 1. Given 0 < α < ω1, let Z ∈ Aαbe the universal spa
e given by Theorem 1 with U = Tα and V = U∗.In parti
ular Z has an FDD (Ei) that satis�es subsequential (T ∗

α, Tα) es-timates in Z. By an easy duality argument the FDD (E∗
i ) of Z∗ satis�essubsequential (T ∗

α, Tα) estimates in Z∗. Hen
e by Proposition 17 we have
max{Sz(Z), Sz(Z∗)} ≤ ωα·ω, i.e., Z ∈ Cωα·ω .Now let X ∈ Cωα be an in�nite-dimensional spa
e. By Corollary 20 wehave X ∈ Aα(C), and hen
e X K-embeds into Z.
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es of bounded Szlenk index 91Remark. By a result of Johnson and Odell [15℄, the spa
e Z 
onstru
tedin the proof of Theorem 22 
annot be in the 
lass Cωα . Indeed, if that was the
ase, then every spa
e that embeds into Z would in fa
t K-embed into Z.Su
h a spa
e is 
alled elasti
 in [15℄, where it is proved that a separable,elasti
 spa
e 
ontains c0. Obviously, Z 
annot 
ontain c0, giving the required
ontradi
tion.Note that the above theorem yields a universal spa
e for the 
lass Cωα·ωthat lives in the 
lass C
ωα·ω2 . A small modi�
ation of the proof gives theslightly better result mentioned in the Introdu
tion:Theorem 23. For every α < ω1 there is a spa
e Zα ∈ Cωα·ω+1 withan FDD whi
h is universal for the 
lass Cωα·ω . More pre
isely , there is auniversal 
onstant K, and for ea
h α < ω1 there is a sequen
e (Zα,n)∞n=1 ofspa
es with FDDs in Cωα·ω su
h that for all X ∈ Cωα·ω there exists n ∈ Nsu
h that X K-embeds into Zα,n. The spa
e Zα 
an then be taken to be the

ℓ2-dire
t sum of the sequen
e (Zα,n)∞n=1.Proof. For α = 0 we have already done this just before stating Theo-rem 22. Now assume that 0 < α < ω1, and let C, K be the 
onstants de�nedin the proof of Theorem 22. Let Zα,n ∈ Aα·n be the universal spa
e givenby Theorem 1 with U = Tα·n and V = U∗. As in the proof of Theorem 22we dedu
e that max{Sz(Zα,n), Sz(Z∗
α,n)} ≤ ωα·n·ω = ωα·ω, i.e., Zα,n ∈ Cωα·ω .Now let Zα = (

⊕∞
n=1 Zα,n)ℓ2 be the ℓ2-dire
t sum of the sequen
e (Zα,n)∞n=1.By Proposition 15 we have Zα ∈ Cωα·ω+1 .Finally, let X ∈ Cωα·ω be an in�nite-dimensional spa
e. By Corollary 20there exists n ∈ N su
h that X ∈ Aα·n(C), and hen
e X K-embeds into

Zα,n and into Zα.As indi
ated in the Introdu
tion, Theorems B and C now follow fromTheorem 23 by applying the following result of Johnson [14℄.Theorem 24 ([14, Theorem A℄). Let (Gi) be a sequen
e of �nite-dimen-sional Bana
h spa
es so that(i) if E is a �nite-dimensional Bana
h spa
e and ε > 0, then there isan i ∈ N so that d(E, Gi) = inf{‖T‖ · ‖T−1‖ : T : E → Gi is anisomorphism} < 1 + ε,(ii) for ea
h i ∈ N there is an in�nite J ⊂ N so that Gi and Gj areisometri
 for all j ∈ J .Let C2 = (
⊕∞

i=1 Gi)ℓ2 and let X be any separable spa
e whi
h has the λ-metri
 approximation property for some λ ≥ 1. Then X ⊕ C2 has a basis.Note that the λ-metri
 approximation property is also known as the
λ-bounded approximation property.



92 E. Odell et al.Proof of Theorems B and C. Clearly, spa
es X with an FDD have the
λ-metri
 approximation property for some λ ≥ 1, meaning that for any
ompa
t set K ⊂ X and ε > 0 there is a �nite rank operator T with
‖T (x) − x‖ < ε for all x ∈ K. Let C2 be the spa
e de�ned in Theorem 24,and let Zα and Zα,n, n ∈ N, be the spa
es from Theorem 23. Then Zα ⊕C2and Zα,n⊕C2 have S
hauder bases and it follows from Propositions 14 and 15that Sz(Zα ⊕ C2) = Sz(Zα) = ωα·ω+1 and Sz(Zα,n ⊕ C2) = ωα·ω.In the remainder of this se
tion we give a proof of our main result, The-orem 18, whi
h is at the heart of our embedding and universality results.Proof of Theorem 18. Fix a 
onstant D with 4 < D < C, and 
hoose
̺ ∈ (0, 1) su
h that 4 + 12̺D < D. Set

F =
{
(xi) ∈ S<ω

X :
∥∥∥

∑
aixi

∥∥∥ ≥ 2̺
∑

ai for all (ai) ⊂ [0,∞)
}
.Note that F is a hereditary tree on S<ω

X . Next �x a sequen
e ε = (εi) ⊂
(0, 1/2) su
h that

FZ
10ε ⊂

{
(zi) ∈ S<ω

Z :
∥∥∥

∑
aizi

∥∥∥ ≥ ̺
∑

ai for all (ai) ⊂ R
+
}
.Now 
onsider the hereditary blo
k tree G = Σ(E, Z)∩FZ

ε of (Ei) in Z and its
ompression G̃. Let α be the Cantor�Bendixson index of G̃. By Proposition 6and by Theorem 12 we have
Iw(FZ

2ε) ≤ Iw(FX
10ε) < Sz(X).Sin
e GE,Z

ε ⊂ FZ
2ε, we have Ibl(GE,Z

ε ) ≤ Iw(FZ
2ε). Sin
e Sz(X) is a limitordinal, it follows by Proposition 8 that

α = ICB(G̃) < Sz(X).We now apply Theorem 4 to obtain an in�nite subset M = {m1, m2, . . .}of N su
h that
MAX(Fα) ∩ [M ]<ω ∩ G̃ = ∅.(6)To see this, give ea
h element A of the thin family MAX(Fα) 
olour red if

A ∈ G̃, and 
olour blue otherwise, and obtain M = {m1, m2, . . .} ∈ [N]ω su
hthat MAX(Fα) ∩ [M ]<ω is mono
hromati
. Now the map i 7→ mi: N → Mindu
es a homeomorphism [N]<ω → [M ]<ω that maps Fα onto Fα ∩ [M ]<ω(as Fα is a spreading). Sin
e the Cantor�Bendixson index is a topologi
alinvariant, it follows that ICB(Fα∩ [M ]<ω) = α+1. Hen
e MAX(Fα)∩ [M ]<ω
annot be mono
hromati
 red , and thus (6) follows. Observe that if F ∈
G̃ ∩ [M ]<ω, then F ∈ Fα.Without loss of generality we may assume that m1 > 1. We set m0 = 1and Gi =

⊕mi−1
j=mi−1

Ej for all i∈N. Finally, we 
hoose δ = (δi)⊂ (0, 1), δi ↓ 0,
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h that
4

∞∑

i=1

δi < min(̺, C − D) and 4
∑

j≥i

δj < εi for all i ∈ N.

We will now show that for these 
hoi
es of α, δ and (Gi) the 
on
lusionof the theorem holds.Let (xi) ⊂ SX be a δ-blo
k sequen
e of (Gn) with ‖xi −PG
(si−1,si]

xi‖ < δifor all i ∈ N and 1 ≤ s0 < s1 < s2 < · · · . Set
zi =

PG
(si−1,si]

xi

‖PG
(si−1,si]

xi‖
for all i ∈ N.Note that ‖xi − zi‖ < 2δi for all i ∈ N. Repla
ing ea
h zi by a small pertur-bation of itself, if ne
essary, we 
an assume that min suppG(zi) = si−1 + 1and min suppE(zi) = msi−1 for all i ∈ N. We are going to show that for any

(ai) ∈ c00 we have ∥∥∥
∑

aizi

∥∥∥ ≤ D
∥∥∥

∑
aiemsi−1

∥∥∥.(7)It then follows easily from the 
hoi
e of δ that (xi) is C-dominated by
(emsi−1

). The proof of (7) pro
eeds by indu
tion on the size of the sup-port of (ai). If this is 1, then the statement is 
lear. In general, we begin by
hoosing z∗ ∈ BZ∗ su
h that∥∥∥
∑

aizi

∥∥∥ =
∑

aiz
∗(zi).We then 
onsider the set

I = {i ∈ N : |z∗(zi)| ≥ 3̺},whi
h splits into I+ = {i ∈ N : z∗(zi) ≥ 3̺} and I− = I \ I+. For a �niteset F ⊂ N we shall write ms(F ) for the set {msi−1 : i ∈ F}. We 
laimthat ms(I+) and ms(I−) belong to Fα. Indeed, by the 
hoi
e of δ, for any
(bi)i∈I+ ⊂ R

+ we have∥∥∥
∑

i∈I+

bixi

∥∥∥ ≥
∑

i∈I+

biz
∗(zi) −

∑

i∈I+

bi · 2δi ≥ 2̺
∑

i∈I+

bi.This shows that (xi)i∈I+ belongs to F . It follows that (zi)i∈I+ ∈ G, andms(I+) ∈ G̃ ∩ [M ]<ω ⊂ Fα, as required. A similar argument, using −z∗instead of z∗, shows that ms(I−) ∈ Fα.We next partition supp(ai) \ I into sets J1 < · · · < Jl, where l ∈ N and
3̺ < ‖z∗|span{zi : i∈Jk}‖ ≤ 6̺ for 1 ≤ k < l,

‖z∗|span{zi : i∈Jl}‖ ≤ 6̺.
(8)This is 
learly possible by the de�nition of I and by the bimonotoni
ityof (Ei). Set F = {minJk : k = 1, . . . , l − 1}. We 
laim that ms(F ) ∈ Fα \



94 E. Odell et al.
MAX(Fα), from whi
h it follows that ms(F̃ ) ∈ Fα, where F̃ = F ∪{minJl}.To prove the 
laim �rst 
hoose for ea
h k = 1, . . . , l − 1 a ve
tor uk =∑

i∈Jk
cizi ∈ SZ su
h that ∑

ciz
∗(zi) > 3̺. We 
an assume without lossof generality that cminJk

6= 0, i.e., that min suppE(uk) = msmin Jk−1 . Set
ṽk =

∑
i∈Jk

cixi and vk = ṽk/‖ṽk‖ for ea
h k = 1, . . . , l − 1, and note that
‖vk − uk‖ ≤ 2‖ṽk − uk‖ ≤ 2

∑

i∈Jk

|ci| · 2δi ≤ 4
∑

i≥k

δi.

It follows that for any (bk)
l−1
k=1 ⊂ R

+ we have
∥∥∥

l−1∑

k=1

bkvk

∥∥∥ ≥
l−1∑

k=1

bkz
∗(uk) −

l−1∑

k=1

bk · ‖vk − uk‖ ≥ 2̺
l−1∑

k=1

bk.We dedu
e that (vk) ∈ F , (uk) ∈ G and ms(F ) ∈ G̃∩[M ]<ω ⊂ Fα\MAX(Fα),as 
laimed.The following sequen
e of inequalities now 
ompletes the proof of (7):
∥∥∥

∑
aizi

∥∥∥ =
∑

aiz
∗(zi) ≤

∑

i∈I+

|ai| +
∑

i∈I−

|ai| +
l∑

k=1

6̺ ·
∥∥∥

∑

i∈Jk

aizi

∥∥∥

≤ 2
∥∥∥

∑

i∈I+

aiemsi−1

∥∥∥
TFα,1/2

+ 2
∥∥∥

∑

i∈I−

aiemsi−1

∥∥∥
TFα,1/2

+ 6̺ · D
l∑

k=1

∥∥∥
∑

i∈Jk

aiemsi−1

∥∥∥
TFα,1/2

≤ (4 + 12̺D) ·
∥∥∥

∑
aiemsi−1

∥∥∥
TFα,1/2

≤ D
∥∥∥

∑
aiemsi−1

∥∥∥
TFα,1/2

.It is the third line where we apply the indu
tion hypothesis. Note that by (8)(and sin
e 12̺ < 1), ea
h Jk has size stri
tly smaller than that of the supportof (ai).7. Further remarks. In [11℄ the following universality result is proved.Theorem 25 ([11℄). For every 
ountable ordinal ξ there is a spa
e Yξwith separable dual su
h that every Bana
h spa
e X with Sz(X) ≤ ξ embedsinto Yξ.This result of P. Dodos and V. Feren
zi is similar to our universalityresults, but the methods used are 
ompletely di�erent. Note that unlikeTheorems 22 and 23, the above result does not give information on theSzlenk index of the universal spa
e Yξ. The reason for this is that the useof des
riptive set theory in proving results like Theorem 25 yields existen
eproofs, whereas our approa
h is more 
onstru
tive.
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es of bounded Szlenk index 95In this �nal se
tion we des
ribe the setting in whi
h des
riptive set theory
an be used to study universality problems for 
ertain 
lasses of separableBana
h spa
es. We shall also explain what is missing if one tries to use thisapproa
h to prove the main results of our paper. For an extensive survey onthe interplay between des
riptive set theory and Bana
h spa
es the readeris referred to the Handbook arti
le by Argyros, Godefroy and Rosenthal [3℄.Re
all that every separable Bana
h spa
e is a subspa
e of C[0, 1], thespa
e of 
ontinuous fun
tions on the Cantor set. The set SB of all 
losedsubspa
es of C[0, 1] is given the E�ros�Borel stru
ture, whi
h is the σ-algebragenerated by the sets {F ∈ SB : F ∩ U 6= ∅}, where U ranges over allopen subsets of C[0, 1]. This allows one to study 
lasses of Bana
h spa
esa

ording to their des
riptive 
omplexity and apply results of des
riptive settheory. This has been �rst formalized by B. Bossard [6℄, and then taken upby S. Argyros and P. Dodos [2℄ to study universality problems. One of the
entral notions introdu
ed in [2℄ is the following.Definition. A 
lass C of separable Bana
h spa
e in SB is said to bestrongly bounded if for every analyti
 subset A of C there exists Y ∈ C that
ontains isomorphi
 
opies of every X ∈ A.The main result of [11℄ is that the 
lasses SR of separable, re�exivespa
es and SD of spa
es with separable dual are strongly bounded. Sin
e
{X ∈ SD : Sz(X) ≤ ξ} is analyti
 (even Borel, whi
h was proved in [6℄),Theorem 25 follows. However, it was not known whether the 
lasses Cα fromPeª
zy«ski's question were analyti
 or not, and so the main theorem from [11℄
ould not be applied. From our results we 
an now prove the following.Theorem 26. For every 
ountable ordinal α the 
lass Cα is analyti
 inthe E�ros�Borel stru
ture of SB.Proof. Fix a 
ountable ordinal α. We begin by showing that the 
lass
Cωα·ω is analyti
. By Theorem 23, if X ∈ Cωα·ω , then there exists n ∈ N su
hthat X isomorphi
ally embeds into Zα,n, whi
h we denote by X →֒ Zα,n.Conversely, assume that X →֒Zα,n. Sin
e Zα,n has an FDD satisfying subse-quential (T ∗

α·n, Tα·n) estimates, it follows easily that X satis�es subsequential
(T ∗

α·n, Tα·n)-tree estimates. By duality the same holds for X∗, and hen
e X∗also embeds into Zα,n. From Proposition 17 we now obtain
max{Sz(X), Sz(X∗)} ≤ Sz(Zα,n) ≤ ωα·n,and so X ∈ Cωα·ω .It is well known and easy to show that for any Y ∈ SB the set {X ∈ SB :

X →֒Y } is analyti
. It follows that
Cωα·ω =

⋃

n∈N

{X ∈ SB : X →֒Zα,n}is analyti
, as 
laimed.
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ase, we use a re
ent result of P. Dodos [10℄ whi
hstates that
Sα = {X ∈ SB : max{Sz(X), Sz(X∗)} ≤ α}is analyti
. Sin
e Cα = Sα ∩ Cωα·ω , it follows immediately that Cα is alsoanalyti
.Remark. As mentioned in the Introdu
tion, it was C. Rosendal whopointed out to us that the analyti
ity of Cωα·ω follows from our results. LaterP. Dodos informed us that this fa
t together with his result implies thegeneral 
ase.
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