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Banach spaces of bounded Szlenk index
by

E. ODELL (Austin, TX), TH. SCHLUMPRECHT (College Station, TX)
and A. ZsAK (Nottingham)

Abstract. For a countable ordinal a we denote by C, the class of separable, reflexive
Banach spaces whose Szlenk index and the Szlenk index of their dual are bounded by «.
We show that each C, admits a separable, reflexive universal space. We also show that
spaces in the class C,«-« embed into spaces of the same class with a basis. As a consequence
we deduce that each C, is analytic in the Effros—Borel structure of subspaces of C[0,1].

1. Introduction. A well known result that dates back to the early days
of Banach space theory [4, Théoréme 9, p. 185] states that every separable
Banach space embeds into C[0, 1], i.e., that C[0, 1] is universal for the class
of all separable Banach spaces. Pelczynski 23] refined this result by showing
that there are Banach spaces X with a basis and X;, with an unconditional
basis such that every space with a basis or with an unconditional basis is
isomorphic to a complemented subspace of X or X, respectively.

By a famous result of Szlenk [26], there is no separable reflexive Banach
space X which contains isomorphically all separable reflexive Banach spaces.
Bourgain [7] sharpened this result by showing that a separable Banach space
which contains all separable reflexive Banach spaces must contain C10, 1]
and, thus, all separable Banach spaces. An isometric relative of Bourgain’s
result has recently been shown by Kalton and Godefroy [13]: if a separable
Banach space contains an isometric copy of every separable strictly convex
Banach space, then it is isometrically universal. Szlenk proved his result by
introducing for a Banach space X an ordinal index Sz(X) (see Section 5
below) which is countable if and only if X has a separable dual and is
hereditary (if Y embeds in X, then Sz(Y) < Sz(X)). Moreover he showed
that for any countable ordinal « there is a separable reflexive space X for
which Sz(X) > a. Bourgain achieved his result by introducing an index
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which measures how well finite sections of the Schauder basis of C[0, 1] embed
in X, and then he proved statements analogous to Szlenk’s approach.

Bourgain then raised the question whether there is a separable, reflexive
space that contains isomorphically all uniformly convex Banach spaces. This
problem was solved recently by the first two authors. It was proven in [20]
that if X is a separable, uniformly convex Banach space, then there exist
1 < g < p < oo and a reflexive space Z with an FDD (finite-dimensional de-
composition) (E,,) so that X embeds into Z and (E,,) satisfies block (¢, ¢,)-
estimates. This means that for some C' we have

C—l(ZHziny/p < ‘ Zzi < C(Z HZin)l/q

for any block sequence (z;) of (E,). In fact this holds (see |21, Theorems 3.4
and 4.1]) if we merely know that

X € C, ={Y :Y is separable, reflexive, Sz(Y) < w, Sz(Y™") < w}.

Using then a result of S. Prus [24], who solved Bourgain’s question within the
class of Banach spaces with FDDs, we deduce that there exists a universal
reflexive space Z for the class C,,, and in fact Z € C,_p2.

Inspired by the results of [20], A. Pelczyriski raised the question whether
a similar result could be proved for the classes C,, where o < w7 and where
Cq is defined analogously to the class C,. This would mean that, although
the class of separable, reflexive spaces has no universal element, it is the
(necessarily uncountable) increasing union of classes which are closed under
taking duals, and for which universal separable, reflexive spaces do exist. In
this paper we answer this in the affirmative.

As in the proof in [20], we will reduce the universality problem to an em-
bedding problem. We will show that any member of C,,, & < w1, embeds into
some element of Cg which has a basis, where o < 8 < w; depends on «. This
result can be seen as a quantitative version of Zippin’s seminal theorem [28]
that every separable reflexive space embeds into one with a basis. In light of
our embedding result we then only need to show that the class of elements
in C, with a basis admits a universal separable, reflexive space. Let us men-
tion here a different quantitative version of Zippin’s theorem by Bossard [5]:
for every a < wj there exists f < wj such that every separable space with
Szlenk index at most o« embeds into a Banach space with shrinking basis and
with Szlenk index at most 8. Our embedding result is very different, since
the Szlenk index of a separable space does not control the Szlenk index of
its dual.

Our approach depends on showing that if X is a space with separable dual
and if Sz(X) < w*¥ for some a < wy, then X satisfies “subsequential upper
T4, estimates”, where T, . is the Tsirelson space defined by the Schreier class
S, and a parameter ¢ € (0,1) (the definitions of S, and Ty, . will be recalled
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in Section 3). Subsequential upper Ty, . estimates can be expressed in terms
of a game played as follows. Player (I) starts by choosing X; € cof(X),
the set of all finite-codimensional subspaces of X, and an integer k; € N.
Player (II) then responds by selecting z1 € Sx,, the unit sphere of Xj.
Then (I) chooses X3 € cof(X) and kg € N, and (II) chooses z3 € Sx,, etc.
The space X satisfies subsequential upper T, . estimates if for some C' < oo
Player (I) has a winning strategy to force (II) to select (z;) satisfying

H Z a;T; Z aitki

for all (a;) C R, where (t;) is the unit vector basis of T, .. These games
are a variation of those introduced in [19] and were defined and analysed
in [22]. Using the results therein we ultimately prove the following structure
theorem.

<C
X

Ta,c

THEOREM A. Let o < wy. For a separable, reflexive space X the follow-
ing are equivalent:

(i) X € Cpaw.
(i1) X embeds into a separable, reflexive space Z with an FDD (E;) which
satisfies subsequential (T} ., To,c) estimates in Z for some c € (0,1).

In part (i) “subsequential (T}, ., T ) estimates” mean the following: there
exists C' < oo such that if (z;) is a block sequence of (E,,) with min supp(z;)

= k;, then
C—lHZsz-Ht; . < HZZZ SCHZ”%W’%

Of course the implication “(ii)=-(i)” shows that the space Z lies in the same
class Cyaw as X does.

Roughly speaking, the Tsirelson spaces T, . of order o form a sort of
upper envelope and their duals 7, . form a lower envelope for the entire
class Cya-w. Moreover, since the spaces T, . also belong to the class C,ow,
this result is best possible.

From Theorem A and the main result of [22] (see Theorem 1 below) we
will then deduce the following embedding and universality result.

Ta,c

THEOREM B. For each o < wy every Banach space in the class Cyow
embeds into a space Z with a basis that lies in the same class Cyaw as X
does.

THEOREM C. For each o < wy there is an element of Ciawt1 with a
basis which is universal for the class Cyo-w.

Our structural result, Theorem A, will be proved in Section 6 together
with some more general structural results (Theorem 21, Corollary 20). We
will then deduce FDD versions (see Theorem 23) of our embedding result,



66 E. Odell et al.

Theorem B, and our universality result, Theorem C. A result of W. B. John-
son [14] allows us to replace FDDs by bases in our conclusions (see Theo-
rem 24 and the proof of Theorems B and C thereafter). In Sections 2 to 5
we present the relevant notation and background material: the embedding
theorem from [22], Tsirelson spaces, general ordinal indices and the Szlenk
index. Each of these sections begins with a brief summary of its contents.
There is a completely different approach to universality problems that
uses tools of descriptive set theory. There have been some remarkable achie-
vements in Banach space theory using such techniques, including solutions of
universality problems [2, 11]. However, in order to tackle Pelczynski’s ques-
tion with this approach, one would need the classes C,, to be analytic and this
was not known. Note that if we knew the function max{Sz(X), Sz(X*)} to be
a co-analytic rank on the class of separable, reflexive spaces, then we could
deduce that the classes C, are in fact Borel. Whether max{Sz(X), Sz(X*)}
is a co-analytic rank is still an open problem: it is mentioned by Bossard
in [6], where he shows that this function is a co-analytic rank on the class of
bases of reflexive spaces. Our results, however, now do show the following.

THEOREM D. For each countable ordinal « the class C,, s analytic in
the Effros—Borel structure of closed subspaces of C[0,1].

If v is of the form w for some 1 < wy, then Theorem D follows from our
main results and from standard facts in descriptive set theory (as pointed out
to us by C. Rosendal). This, combined with a recent result of P. Dodos [10]
concerning analyticity of duals of analytic classes, then gives the general
case. We present this result in the final section of our paper. We are grateful
to P. Dodos, V. Ferenczi and C. Rosendal for showing us the descriptive-set-
theoretic implications of our results.

Let us now mention some open problems. The first one asks if Theorem C
can be sharpened.

PROBLEM. Is there a universal element of Cyaw for each a < wy?

We do know that there is no space Z in Cyo-w such that for some K > 0
every space in Cyaw K-embeds into Z (see the Remark following Theo-
rem 22). We also know that the answer to the above question is negative if
the Tsirelson spaces T, . are of bounded distortion with constant D indepen-
dent of ¢ € [1/2,1). Of course, it is a famous, long standing open problem
whether even the Tsirelson space T7 19 is of bounded distortion.

It is known that one only needs to consider classes C, where « is of the
form w" for some 7 < w; (Theorem 12 in Section 5). In Section 6 we obtain
embedding and universality results for these general classes (Theorem 22).
However, these are not quite as sharp as Theorems B and C above. This
leads to the following questions.
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PROBLEM. Is it true that, given o < w1, every space in C,e embeds into
a space with a basis of the same class?
Is there a universal element of Cua for each o < wq?

2. Embeddings into spaces with FDDs. In this section we state
an embedding theorem from [22] (Theorem 1 below). This requires a fair
amount of definitions. Much of this will be used throughout the paper.

Let Z be a Banach space with an FDD E = (E,,). For n € N we denote
by PnE the nth coordinate projection, i.e., PnE: Z — FE, is the map defined
by >, % v 2n, where z; € E; for all ¢ € N. For a finite set A C N we put
PY =% .4 PE. The projection constant K(E, Z) of (E,) (in Z) is defined
by

K =K(E,Z) = sup | P, 4,
m<n
where [m,n] denotes the interval {m,m + 1,...,n} in N. Recall that K is
always finite and, as in the case of bases, we say that (E,) is bimonotone
(in Z) if K = 1. By passing to the equivalent norm

I-1: Z =R,z sup |[PE ()],
m<n

we can always renorm Z so that K = 1.

A sequence (F),) of finite-dimensional spaces is called a blocking of (E,)
if for some sequence mj; < mo < ---in N we have F;, = @;n:”mnilﬂ E; for
all n € N (mo = 0). Note that if £ = (E),) is an FDD of a Banach space Z,
and if F' = (F},) is a blocking of (E),), then (F},) is also an FDD for Z with
K(F,7) < K(E, Z).

For a sequence (E;) of finite-dimensional spaces we define the vector space
[o.¢]
coo(@Ei) —{(2): 2z € B foralli €N, and {i € N: z; # 0} is finite},
i=1

which is dense in each Banach space for which (F;) is an FDD. For a set
A C N we denote by ;.4 E; the linear subspace of coo(€P E;) generated
by the elements of | J;c 4 £;. As usual we denote by coo the vector space
of sequences in R which are eventually zero. We will sometimes consider
for the same sequence (E;) of finite-dimensional spaces different norms on
coo(EP E;). In order to avoid confusion we will therefore often index the norm
by the Banach space whose norm we are using, i.e., || - ||z denotes the norm
of the Banach space Z.

If Z has an FDD (E;), then the vector space coo(@;o; E;), where Ef is
the dual space of E; for each ¢ € N, can be identified in a natural way with
a w*-dense subspace of Z*. Note however that the embedding E; — Z* is,
in general, not isometric unless K = 1. We will always consider £ with the
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norm it inherits from Z* instead of the norm it has as the dual space of E;.
We denote the norm closure of coo(D52, EF) in Z* by Z*). Note that Z(*)
is w*-dense in Z*, the unit ball B ) norms Z, and (E}) is an FDD of AS
having a projection constant not exceeding K(F,Z). If K(E,Z) = 1, then
B . is 1-norming for Z and ZME) = 7.

For z € coo(D Ei) we define the support suppp(z) of z with respect to
(Ei) by

suppg(z) = {i e N: PF(2) #0}.

A sequence (z;) (finite or infinite) of non-zero vectors in coo(€P E;) is
called a block sequence of (E;) if

max suppg(2zn) < minsuppg(zp+1) for n € N (or n < length(z;)).

A block sequence (z;) of (E;) is called normalized (in Z) if ||z,||z = 1 for
all n.

Let § = (6;) C (0,1) with 6; | 0. A (finite or infinite) sequence (2;) in Sz
is called a d-block sequence of (E;) if there exists a sequence 0 < kg < k; <
ko < ---in N such that

l|2n — P(%nil’kn](zn)ﬂ < 0p forall n € N (or n < length(z;)).

DEFINITION. Given two sequences (e;) and (f;) in some Banach spaces,
and given a constant C' > 0, we say that (f;) C-dominates (e;), or that (e;)

is C-dominated by (f;), if
< CH Z ai fi

[

We say that (e;) and (f;) are C-equivalent if there exist positive constants A
and B with A - B < C such that (f;) A-dominates (e;) and is B-dominated
by (el)

We say that (f;) dominates (e;), or that (e;) is dominated by (f;), if there
exists a constant C' > 0 such that (f;) C-dominates (e;). We say that (e;)
and (f;) are equivalent if they are C-equivalent for some C > 0.

for all (a;) € coo.

We shall now introduce certain lower and upper norm estimates for
FDDs.

DEFINITION. Let Z be a Banach space with an FDD (E,,), let V be a Ba-
nach space with a normalized, 1-unconditional basis (v;) and let 1 < C' < oo.

We say that (E,,) satisfies subsequential C-V -lower estimates (in Z) if
every normalized block sequence (z;) of (E,,) in Z C-dominates (vy,,), where
m; = minsuppg(z;) for all ¢ € N, and (E,) satisfies subsequential C-V -
upper estimates (in Z) if every normalized block sequence (z;) of (E,) in Z
is C-dominated by (vs,,), where m; = minsuppg(z;) for all i € N.
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If U is another space with a normalized and 1-unconditional basis (u;), we
say that (E,) satisfies subsequential C-(V,U) estimates (in Z) if it satisfies
subsequential C-V-lower and C-U-upper estimates in Z.

We say that (E,,) satisfies subsequential V-lower, U-upper or (V,U) es-
timates (in Z) if for some C' > 1 it satisfies subsequential C-V-lower, C-U-
upper or C-(V,U) estimates in Z, respectively.

We shall need a coordinate-free version of subsequential lower and upper
estimates. This can be done in terms of a game as described in the Introduc-
tion. Another way uses infinite, countably branching trees, and this is what
we shall follow here. For [ € N we define

Tl={(n1,...,nl):n1<---<nl areinN}

and
oo oo
To=Tn, 15 =J T
=1 =1

An even tree in a Banach space X is a family (24)aereven in X. Sequences
of the form (2 (4n))n>ny_,, where I € N and o = (n1,...,n9-1) € Tw, are
called nodes of the tree. For a sequence n; < ny < --- of positive integers
the sequence (7, . n,))i2; is called a branch of the tree.

An even tree (.’L‘a)aeToegen in a Banach space X is called normalized if
|zl = 1 for all @ € TSY", and weakly null if every node is a weakly null
sequence. If X has an FDD (E,,), then (24 )aeTsven is called a block even tree
of (E,) if every node is a block sequence of (E,,).

DEFINITION. Let V be a Banach space with a normalized and 1-uncon-
ditional basis (v;), and let C' € [1,00). Let X be an infinite-dimensional
Banach space. We say that X satisfies subsequential C-V -lower tree esti-
mates if every normalized, weakly null even tree (zo)acreven in X has a
branch (2(,, .. n,,)) which C-dominates (vn,,_, ).

We say that X satisfies subsequential C-V -upper tree estimates if every
normalized, weakly null even tree (z4)aersven in X has a branch (2, . n,,))
which is C-dominated by (vp,, ,)-

If U is a second space with a 1-unconditional and normalized basis (u;),
we say that X satisfies subsequential C-(V,U) tree estimates if it satisfies
subsequential C-V-lower and C-U-upper tree estimates.

We say that X satisfies subsequential V-lower, U-upper or (V,U) tree
estimates if, for some 1 < C < oo, X satisfies subsequential C-V-lower,
C-U-upper or C-(V,U) tree estimates, respectively.

We next define some properties of bases which appear in the statement
of Theorem 1.
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DEFINITION. Let V be a Banach space with a normalized, 1-unconditio-
nal basis (v;) and let 1 < C' < co. We say that (v;) is C-block-stable if any
two normalized block bases (z;) and (y;) with

max(supp(z;) Usupp(y;)) < min(supp(x;+1) Usupp(yiy1)) foralli e N

are C-equivalent. We say that (v;) is block-stable if it is C-block-stable for
some constant C'.

We say that (v;) is C-right-dominant (respectively, C-left-dominant) if
for all sequences m; < mg < --- and n; < ng < --- of positive integers with
m; < n; for all i € N, (vy,,;) is C-dominated by (respectively, C-dominates)
(vn,). We say that (v;) is right-dominant or left-dominant if for some C' > 1
it is C-right-dominant or C-left-dominant, respectively.

We are now ready to state the main embedding theorem from [22] which
we shall use in the proofs of the main results of this paper.

Let V and U be reflexive spaces with normalized, 1-unconditional, block-
stable bases (v;) and (u;), respectively, such that (v;) is left-dominant, (u;) is
right-dominant and (v;) is dominated by (u;). For each C' € [1,00) let
Ay (C) denote the class of all separable, infinite-dimensional, reflexive Ba-
nach spaces that satisfy subsequential C-(V, U)-tree estimates. We also let

Avo = |J Avul(0),
Ce[l,00)
which is the class of all separable, infinite-dimensional, reflexive Banach
spaces that satisfy subsequential (V,U)-tree estimates.

THEOREM 1 ([22]). The class Ay contains a universal element. More
precisely, for all B,D,L, R € [1,00) there exists a constant C = C(B, D) €
[1,00) and for all C € [1,00) there is a constant K(C) = Kpp rr(C) €
[1,00) such that if (v;) is B-block-stable and L-left-dominant, if (u;) is B-
block-stable and R-right-dominant, and if (v;) is D-dominated by (u;), then
there exists Z € Ay such that every X € Ayy(C) K(C)-embeds into Z,
and moreover Z has a bimonotone FDD satisfying subsequential C-(V,U)
estimates in Z.

At some point we shall also need the following duality result.

PROPOSITION 2 ([22]). Assume that U is a space with a normalized,
L-unconditional basis (u;) which is R-right-dominant for some R > 1, and
that X is a reflexive space which satisfies subsequential C-U-upper tree es-
timates for some C' > 1. Then, for any € > 0, X* satisfies subsequential
(2CR + ¢)-U™)-lower tree estimates.

3. Tsirelson spaces. When we apply Theorem 1 we shall take U = T,
the Tsirelson space of order o with parameter 1/2, and V' = T/, the dual
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of T,. In this section we recall the definition and some of the properties
of T,,. At the end we will state a combinatorial principle which will be used
later on.

We begin with some preliminary definitions. We shall write [N]<* for the
set of all finite subsets of N, and [N]* for the set of all infinite subsets of N.
These two families will be given the product topology as subsets of {0, 1}
A family F C [N]“ is called hereditary if A € F whenever A C B and
B € F, and F is called compact if it is compact in the product topology.
Note that a hereditary family is compact if and only if it contains no strictly
ascending chains. A family F C [N]=“ is called thin if, for all A,B € F,
from A C B it follows that A = B, i.e., F contains no two comparable (with
respect to inclusion) elements.

Given n, a1 < ++- < ap, by < -+ < by, in N we say that {b1,...,b,} is
a spread of {ai,...,a,} if a; < b; for i = 1,...,n. A family F C [N]= is
called spreading if every spread of every element of F is also in F. This is an
appropriate place to make the convention that the elements of a subset of N
will always be written in increasing order. So, for example, when we write
{m1,...,mg} € [N]=%, it is implicitly assumed that mj < --- < my.

For F C [N]* we write MAX(F) for the set of maximal (with respect
to inclusion) elements of F. Note that MAX(F) is always a thin family.

For subsets A and B of N we write A < B if a < b for all a € A and
be B.Forn e Nand A C Nwe writen < Aif {n} < A. A (finite or infinite)
sequence A, Ao, ... of subsets of N is called successive if A7 < Ay < ---.
Given a family F C [N]<“’, a sequence Aj, ..., Ag of non-empty, finite subsets
of N is called F-admissible if it is successive and {min Ay,...,min A;} € F.

We next recall the definitions of the Schreier families S, and the fine
Schreier families F,, where « is a countable ordinal. We first fix for every
limit ordinal A a sequence (ay,) of ordinals with 1 < ay, /' X\. We now define
the fine Schreier families (Fy )<y, by recursion:

Fo = {0},
For1 ={{ntUAd:neN, Aec F,, n< A} U{0},
Fr={Ac|N*¥:3In<minAd, Ac F,,},
where in the last line A is a limit ordinal and «, " X is the sequence of
ordinals fixed in advance. An easy induction shows that F, is a compact,

hereditary and spreading family for all & < wy. Moreover, (Fg)a<w, is an
“almost” increasing chain:

(1) Va<pB<wy IneNVFeF,, ifn<minF,then F € Fs.

This can be proved by an easy induction on . We also note that for A €
Fo \ MAX(F,) we have AU {n} € F, for all n > max A.
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The Schreier families can now be defined by setting S, = F,e for all
« < wy. This is not exactly how the Schreier families are usually defined,
but it gives the same families provided we are more careful when choosing
the sequences (ay,) with 1 < «,, " A for limit ordinals A (these choices
should depend on the choices made when defining the Schreier families in
the usual way). At any rate, what matters is that each S, be a compact,
hereditary and spreading family with Cantor-Bendixson index w®*+1 (see (2)
in Section 4). Note that S is the usual Schreier family S given by

S={A€[N**:|A| < min A}

(provided that for A = w we chose the sequence a, = n).

As usual we denote by (e;) the canonical (algebraic) basis of the vector
space cgp of all eventually zero scalar sequences. For x = ) x;e; € ¢gp and
for A C N we write Az for the obvious projection of x onto span{e; : i € A}:

Az = Z Tie;.
€A
We are now ready to recall the definitions of certain Tsirelson type spaces.
For a compact, hereditary family F C [N]=“ and for ¢ € (0,1) there is a
unique least norm on ¢, denoted by || - ||, such that

n
|zl £.e = [|2]loo V ¢ - sup { Sl Aiwllre:n €N, A, Ay is ]-'—admissible}
i=1
for all z € cgg. We shall write T’z .. for the completion of cgg in this norm. Note
that the (algebraic) basis (e;) of cgp becomes a 1-unconditional (Schauder)
basis of T'r ..

For a non-zero, countable ordinal a and for ¢ € (0,1) the space Ts, . is
the Tsirelson space of order o with parameter c; we shall denote it by T, ..
We further simplify notation in the case ¢ = 1/2 by letting T, = T, ;5.
When « = 1 this is just (the dual of) the original Tsirelson space [27, 12].

We gather some properties of Tsirelson spaces in the next proposition.
In particular, we note that the unit vector bases of T,, and T satisfy the
conditions required in Theorem 1.

PROPOSITION 3 ([8], [18]). Let « be a non-zero, countable ordinal. The
Tsirelson space Ty, is a reflexive Banach space and (e;) is a 1-unconditional,
1-right-dominant and B-block-stable basis for T,, where B is a constant in-
dependent of .

The biorthogonal functionals (e}) form a l-unconditional, 1-left domi-
nant and B-block-stable basis for T;. Moreover, (e}) is D-dominated by (e;),
where D is a universal constant.

It is shown in [8] that Tsirelson’s space T} is block-stable (see also [9,
Proposition I1.4]). The argument easily carries over to higher order Tsirelson



Banach spaces of bounded Szlenk index 73

spaces giving the same constant. A proof is given in [18] for an even larger
class of Tsirelson type spaces.

It is proved in [9, Proposition V.10] that the unit vector basis (e;) of
Tsirelson’s space 71 dominates the unit vector basis of ¢, for all ¢ > 1. The
last statement of Proposition 3 now follows immediately. (Note that S; C S,,
and hence the unit vector basis of 77 is 1-dominated by the unit vector basis
of T, for any 1 < a < wy.)

The rest of the properties claimed in Proposition 3 are immediate from
the definition of the higher order Tsirelson spaces.

We end this section by stating a combinatorial theorem of Pudlak and
R6dl which also follows from infinite Ramsey theory. This has nothing to do
with Tsirelson spaces, but as it concerns families of finite subsets of N, this
section is an appropriate place for it.

THEOREM 4. Let F C [N]= be a thin family. Whenever each element
of F 1s coloured red or blue, there is an infinite subset M of N such that
FN[M]=¥ is monochromatic, where [M]<* denotes the set of all finite subsets
of M.

4. Ordinal indices. The main aim of this section is to introduce two
ordinal indices in Banach spaces: the weak index and the block index. The
former will be related to the Szlenk index later on. In order to avoid tiresome
repetitions we begin by defining a class of ordinal indices of trees on arbitrary
sets. We then introduce the said indices as special cases and prove a number
of their properties to be used in what follows.

Let X be an arbitrary set. We define X<¥ = (J;2 ) X", the set of all
finite sequences in X, which includes the sequence of length zero, denoted
by (). For x € X we shall write x instead of (), i.e., we identify X with
sequences of length 1 in X. A tree on X is a non-empty subset F of X <%
closed under taking initial segments: if (z1,...,2,) € F and 0 < m < n,
then (z1,...,2,) € F. A tree F on X is hereditary if every subsequence of
every member of F is also in F.

Given x = (21,...,Zm) and y = (y1,...,yn) in X<, we write (x,y) for
the concatenation of x and y:

(X’y) = ($17"'7xmay17~'-ayn)-
Given F C X<% and x € X%, we let
Fx)={ye X*¥:(x,y) € F}.

Note that if F is a tree on X, then so is F(x) (unless it is empty). Moreover,
if F is hereditary, then so is F(x) and F(x) C F.

Let X“ denote the set of all (infinite) sequences in X. Fix § C X*.
For a tree F on X the S-derivative Fg of F consists of all finite sequences
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x € X< for which there is a sequence (y;)°, € S with (x,y;) € F for all
i € N. Note that 7§ C F and that Fg is also a tree (unless it is empty). We
(@)

then define higher order derivatives F¢ ™ for ordinals a < wy by recursion as
follows:

f(O) f’
féa—l-l) _ (fé e o forall a < wy,

M= F for alimit ordinal A < w;.
a<A

It is clear that féa) D]—"éﬁ) whenever a < # and that .7-"( ) is a tree (or
the empty set) for all a. An easy induction also shows that

(f(x))( @) = (]-'é ))(x) for all x € X<, a < wy.
We now define the S-index Is(F) of F by
Is(F) = min{a <wip: ]:éa) =0}
if there exists o < wq with .7-"5 = (), and Ig(F) = w; otherwise.

REMARK. If A is a limit ordinal and ]:S # () for all « < A, then in

particular () € .7:5 ) for all a < A, and hence fé) # (). This shows that
Is(F) is always a successor ordinal.

EXAMPLES. 1. A hereditary family F C [N]< can be thought of as a tree
on N: aset F' = {mq,...,my} € [N]** is identified with (mq,...,m;) € N<
(recall that m; < --- < my by our convention of always listing the elements
of a subset of N in increasing order).

Let S be the set of all strictly increasing sequences in N. In this case the
S-index of a compact, hereditary family F C [N]< is nothing else than the
Cantor—Bendixson index of F as a compact topological space, which we will
denote by Icp(F). We will also use the term “Cantor-Bendixson derivative”
instead of “S-derivative” and use the notation F(; and .’Féoé).

2. If X is an arbitrary set and S = X“, then the S-index of a tree F
on X is what is usually called the order (or height) of F, denoted by o(F).
Note that in this case the S-derivative of F consists of all finite sequences
x € X <% for which there exists y € X such that (x,y) € F.

The function o(-) is the largest index: for any S C X% we have
o(F) > 1Ig(F).

We say that S C X% contains diagonals if every subsequence of every
member of S also belongs to S and for every sequence (x,) in S with x,, =
(@n,i):2, there exist i1 < i < ---in N such that (z,;,)>; belongs to S.
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If S contains diagonals, then the S-index of a tree on X may be mea-
sured via the Cantor-Bendixson index of the fine Schreier families (Fo)a<w,
introduced earlier. An easy induction argument shows that

(2) Icp(Fa) =a+1 forall a <wi.

Given a tree F C [N]=* on N, a family (zp)per gy in X will always be
viewed as the tree

{(aj{ml}?x{ml,mg}) s 7x{m1,m2,...,mk}) 1k >0, {mlv s mk} € f}
on X.

PROPOSITION 5. Let X be an arbitrary set and let S C X¥. If S con-
tains diagonals, then for a tree F on X and for a countable ordinal o the
following are equivalent:

(i) a <Ig(F).
(ii) There is a family (zr)per,\foy C F such that for all F € Fy \
MAX(Fa) the sequence (Tpufn))n>max F 5 10 S.

Proof. “(ii)=-(i)” An easy induction on § < w; shows that for all F' =
{mq,...,my} € (fa)(cﬁg we have

(x{ml}v Li{my,ma}s -+ 7x{m1,m2,...,mk}) € j:é'ﬁ)
It follows that Ig(F) > Icp(Fa) > a.
“(i)=(ii)” We prove this by induction on o. When o = 0, statement (ii)
says that ) € F, which does follow from 0 < Ig(F).

Next assume that o + 1 < Ig(F). Then ngaﬂ) # (), so in particular we

have () € ]:éa+1). It follows that there is a sequence (x;)2; € S such that
x; € féa) for all i € N. Hence (féa))(xi) = (F(mi))ga) is non-empty, and
Is(F(z;)) > a. By the induction hypothesis, for each i € N there is a family
(Yi,r) reF.\f0y C F(xi) such that for all ' € F, \ MAX(F,) the sequence
(yi,FU{n})n>maxF is in S.
Now for each F' = {my,...,my} € Foy1 define

{xi if k=1 and m; =1,

Tp = . .

Yi {ma,ms,...,mp} if k> 1 and my; = .

It is routine to verify that statement (ii) holds with « + 1 replacing a.
Finally, let A be a limit ordinal, and assume that A < Ig(F). Let (o)
be the sequence of ordinals with 1 < «,, /' A chosen in the definition of the
fine Schreier family F). By the induction hypothesis, for each n € N there
is a family (Yn,r)rer, \{0y C F such that for all F' € F,, \ MAX(F,,, ) the
sequence (Y, pufi})i>max F is in S. In particular we have (y, 1;1)2; € S for
all n € N, Since S contains diagonals there exist i; < i3 < --- in N such
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that (yy fi,1)ne1 € S. We can also ensure that if m < n, F' € F,,, and
in <minF, then F € F,, (see (1)).
Now for each F' = {mq,...,my} € F) define

Yn,{in} if k=1and m; =n,
= if k> 1and m; =n.

ynv{in yin+M2,in+m3,...in +mk}

It is again routine to verify that statement (ii) with A in place of « follows. m

The set S = X“ for an arbitrary set X, and the set S used to define the
Cantor-Bendixson index for a compact, hereditary family in [N]<“, trivially
contain diagonals. This will also be (mostly) the case in the following two
examples of S-indices in Banach spaces.

ExAMPLES. 1. The weak index. Let X be a separable Banach space. Let
S be the set of all weakly null sequences in Sx, the unit sphere of X. We
call the S-index of a tree F on Sx the weak index of F and we denote it
by Iy (F). We shall use the term “weak derivative” instead of “S-derivative”

and use the notation F), and f&,a).

When the dual space X ™ is separable, the weak topology on the unit ball
Bx of X is metrizable. Hence in this case the set S contains diagonals and
Proposition 5 applies.

2. The block index. Let X be a Banach space with an FDD E = (E;).
A block tree of (E;) in Z is a tree F on Sx such that every element of F is
a (finite) block sequence of (E;). Let S be the set of all normalized, infinite
block sequences of (E;) in Z. We call the S-index of a block tree F of (E;)
the block index of F and we denote it by Iy (F). We shall use the term “block

derivative” instead of “S-derivative” and use the notation 7}, and ]-'é?). Note
that the set S contains diagonals, and hence Proposition 5 applies.

Note also that (F;) is a shrinking FDD of X if and only if every element
of S is weakly null. In this case we have

(3) Ii(F) < Lu(F)

for any block tree F of (E;) in Z. The converse is false in general, but it is
true up to perturbations and without the assumption that (F;) is shrinking
(see the Remark preceding Proposition 8 below).

REMARK. If (E;) and (F;) are two different FDDs of the Banach space X,
then the corresponding block indices they give rise to may well be different
in general. However, it is clear that if (F}) is a blocking of (E;), then they
do yield the same block index. Since this is exactly the kind of situation
in which we shall use the block index in this paper, we did not incorporate
the underlying FDD in the notation for block derivatives and for the block
index.
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In the next section we will relate the Szlenk index to the weak index of
certain trees. In the rest of the present section we prove two propositions.
The first one is a perturbation result: it concerns the weak index of the
“fattening” of a tree. The second result relates the block index of block trees
in Banach spaces to the Cantor—Bendixson index of compact, hereditary
families in [N]<“. It is a kind of discretization result.

Let X be a separable Banach space. For a tree F C S3* and for £ =
(g5) € (0,1) we write

.7:§X ={(x;)j=; € Sf(“’ :neN, y)in, € F, ||lxi—vyil]| <e fori=1,...,n}.

PROPOSITION 6. Let X C Y be Banach spaces with separable duals,
and let F C S5* be a tree on Sx. Then for all € = (g;) C (0,1) we have
Lo (FY) < Tu(F50).

Proof. By a theorem of Zippin [28], Y embeds into a Banach space with
a shrinking FDD. So without loss of generality we may assume that Y itself
has a shrinking FDD E = (E;). Let K = K(E,Y), the projection constant
of F'in Y, and set

Xm=XNB, 1 E (meN).
For ¢ € (0,1) and for A C Sy we define AY by
AY ={yeSy:Fxc A |z —y| <e}.
We shall need the following lemma.

LEMMA 7. Let € € (0,1) and let (y;) be a weakly null sequence in (Sx)Y .
Then there is a weakly null sequence (x;) in Sx and a subsequence (y;) of (yi)
such that ||z; — y}|| < 4e for all i € N.

Proof. Fix n > 0 such that
e=(0+n2n+e)<1 and 2¢+¢e<de.

Let m € N. Since (X/X,,)* = X;- is a finite-dimensional subspace of X*,
there is a finite subset A,, of Bx+ such that

dz, Xm) < (1+mn)- ;n%x () forall z € X.
€Am

Let B,, be a finite subset of By« containing a Hahn—Banach extension to Y
of each element of A,,. Then choose n(m,n) € N such that

Hg - P[i:z(m,n)} (g)H <n forall g € Bp,.
Now let (y}) be a subsequence of (y;) such that
1P (i) Il <m for all m € N.
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For each m € N choose z,, € Sx with ||z, — y,,|| < e. We have
d(zm, Xm) < (1+n) - max g(zm) < (1+n) - (max g(y,,) +e)

<(I+mn)- (Ig%x Py iy (@) W) + 1+ €)

< (L4 0) - (1P sy () | + 1+ ) < (L+m) - (2n+e) = €'

Choose T, € X, such that ||Z,, — 2| < €', and set z,, = Zp, /|| T |- An
easy computation shows that

| Zm — yh || < 26" + & <4e  for all m € N.
Since (Ej;) is shrinking, it follows that the sequence (x;) is weakly null. =

We now continue with the proof of Proposition 6. Let € = (&;) C (0,1). It
is enough to show that if o < Iy, (FY), then o < Ly (F25). Now if a < I, (FY),
then by Proposition 5 there is a family (yr)rer.\ (0} C FY such that for all
F € Fo \ MAX(F,) the sequence (ypu{n})n>max F is weakly null.

Given a spreading family F C [N]=* we will call a function F ~ F':
F — F a pruning function if for every F = {mq,...,m;} € F the set
F' ={mj},...,m}} is a spread of F' and {my,...,my} = {m),...,m}} for
each k = 1,...,[. Now by repeated applications of Lemma 7 we can find a
family (zr)per,\fgy C Sx and a pruning function F'+— F': F, — F, such
that

(TFufn})n>max F is weakly null for all F' € F, \ MAX(F,)

and
ler —yp|| <4e; forall i € N and for all F' € F, with |F| = 1.

The last line implies that (z7)per,\ gy C Fas, and hence by Proposition 5
we have a < L (F:%), as required. m

Let Z be a Banach space with an FDD E = (E;), and let F be a block
tree of (E;) in Z. Let us write XY (FE, Z) for the set of all finite, normalized
block sequences on (E;) in Z. For € = (g;) C (0,1) we let

FEZ = FZ 0 3(E, 2),
ie., ff’z is the restriction to block sequences of the -“fattening” of F in Z:
FO7 ={(z)fy € D(B, Z) :n €N, )iy € F, o —yill <&
fori=1,...,n}.
We also define the compression Fof F by
F={Fe[N<:3( )‘ leF F= {minsuppg(z):i=1,...,|F|}}.

REMARK. Having introduced the above notation, we can now write down
a sort of converse for (3). If Z is a Banach space with an FDD E = (E;) and
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F is a block tree of (E;) in Z, then
Lo(F) < In(FF%)

for all € = (¢;) C (0,1). Indeed, if o < I (F), then by Proposition 5 there is
a family (vr)per,\ gy C F such that for all F € F,\MAX(F,) the sequence
($Fu{n})n>maxF is weakly null. By standard perturbation arguments we get
a pruning function F — F’: F, — F, and a family (YyF)Frer.\{oy in Sz such
that for all F' € F, \ MAX(F,) the sequence (ypu{n})n>maxF is a block
sequence, and for all F' € F, we have |[zp — yr|| < €p). It follows from
Proposition 5 that a0 < Ibl(fg’z).

PROPOSITION 8. Let Z be a Banach space with an FDD E = (E;). Let
F be a hereditary block tree of (E;) in Z. Then for all € = (g;) C (0,1) and
for all limit ordinals o, if Ibl(]:f’z) < a, then Icp(F) < a.

The proof consists of two parts. We first replace block sequences of (F;)
with sequences of finite subsets of N (Lemma 9), and then prove a discrete
compression result (Lemma 10). Before we begin we need to extend the
notion of block index and related notions to a discrete setting. We write Y
for the set of all finite successive sequences in [N]<“\ {()} and S for the set
of all infinite successive sequences in [N]“\ {#}. A tree G C ¥ on [N]<“
will be called a block tree in [N]<“, and its S-index will be called the block
indez of G, denoted by Ip,(G). We shall also use the term “block derivative”

and the notation Gj |, g}(j‘) just as in the Banach space case.

LEMMA 9. Let Z be a Banach space with an FDD E = (E;). Let F be
a block tree of (E;) in Z. Let

suppF = {(Ai)ie, € ¥ :neN, I(z)i, € F,
suppg(z;) = A; fori=1,...,n}.
Then for all € = (g;) C (0,1) we have
T (supp(F)) < In(F2%).

Proof. To simplify notation we are going to write F: instead of fg Z
We show by induction that for all a < w; we have

() (supp(F)){) < supp((F2)))  WF, Ve,
Lemma 9 will then follow immediately. We begin with the case @ = 1.

Let (Ai,...,A,) € (supp(F));,. Then there is an infinite successive se-
quence (B;) in [N]=“\ {0} such that (Ai,...,A,, B;) € supp(F) for all
i € N. Now choose (z14,...,%n,,2i) € F such that suppg(zr;) = Ay for
kE = 1,...,n and suppg(z;) = B;. By compactness, for some ig € N we
have (21, .- 2n,iy, %) € Fz for infinitely many i € N. It follows that
(Z1igs - - - 2njio) € (F2)i,; and (A1, ..., Ay) € supp((Fz)y,), as required.
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In the inductive step we shall use the fact that (fk()?))g C (.’Fg)é?) for all
F, g, a, which can be verified by an easy induction. Assume now that (4)
holds. We then have

(supp(F)ii " = (supp ()i iy
C (supp((Fg)]g?))){)l (by the induction hypothesis)

C supp((He)y,y)  (by the case o = 1, where H = (fg)é?))

C supp((fgg)gﬂ)).

This proves (4) with « replaced by « + 1.
Finally, let A be a limit ordinal and assume that (4) holds for all v < A.
We have

A «a « A
(supp(F))y = ) (supp(F)ig” © () supp((Fo)yy) € supp((Fac)iy).
a<A a<
The first inclusion follows from the induction hypothesis. To see the second
inclusion fix a sequence () of ordinals with a; A and assume that
(A1,..., Ay) € supp((F2)\%)  for all i € N.

For each ¢ € N choose

(Zl,ia ceey Zn,i) € (.7:5)}(3?1)

such that suppg(zy;) = Ay for k = 1,...,n. By compactness, we find iy € N
such that for infinitely many 7 € N we have

|2ki — 2k,i0ll <er  fork=1,...,n.

It follows that (z1q,--.,2ni) € (.7:25)5)?") for infinitely many 7 € N, and
hence (z1,ig, - -, 2niy) € (]:25)1())1\). In turn this implies that (Aj,...,4,) €
supp((}—gg)é/l\)), as required. m

LEMMA 10. Let G C X be a hereditary block tree in [N]*, and let
minG = {F € [N]~:3(A1,...,Ap)) €G, F={minA; : i =1,...,|F|}}.
Then for any limit ordinal «, if I1(G) < a, then Icg(mingG) < a.

Proof. We are going to show the following three statements:

(i) For all n < w we have (min g)gg+2) C min(ggfﬂ)).

(ii) Let a be a limit ordinal. If
(ming)éog C ﬂ min(gélﬂ)),

B<a
then for all n < w we have
(min g)éaB+2n+1) c mln(gl(me))
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(iii) For every limit ordinal o < wy we have

(5) (mmg CB C ﬂ min( g(ﬁ)).
[B<a
Since the functions Icp(+) and Iy (+) only take successor ordinal values, state-
ment (iii) implies the lemma immediately. We start with a proof of (i) and (ii)
in the case n = 0. The general case in both parts follows by an easy induction.
Let (my,...,my) be an element of (minG)¢g. Then there exist m € N
and an infinite subset N of N with mj; < m < min N such that

(my,...,mg,m,n) €EminG for all n € N.
For each n € N choose (A1, ..., Akn, Bn,Cn) € G such that
(min Ay, ..., min Ay, min B,, min Cy,) = (m,...,mg, m,n).

After passing to a subsequence we can assume that A;, = Ajforj=1,... k
and for all n € N. Since G is hereditary, we have (Ay,..., A, Cy) € G for
all n € N, and hence (A1,...,A;) € Gi,. It follows that (mi,...,my) €
min(G;,), which completes the proof of (i), n = 0.

To show (ii) for n = 0, fix a sequence ((3;) of ordinals with 3; /" a.
Pick an element (mq,...,my) € (min g)(CaB“). Then there exist m € N with
my < m such that

(mi,...,mg,m) € (mlng)CB C mln(g}gli)) for all ¢ € N.

For each i € N choose (Ay,..., Ak, B;i) € g(ﬂl such that
(min Ay, ..., min Ay ;, min B;) = (m1, ..., mg, m).

After passing to a subsequence we can assume that A;; = A; for j =

.,k and for all i € N. Since (A4j,...,A;) € gﬁli) for all i € N, we
have (Ay,...,Ag) € gé‘f‘) and (mq,...,mg) € min(gl(f)), as required.

Finally, we are going to show (iii) by induction on «. It follows from (i)
that (5) holds for a = w. Moreover, if (5) holds for a limit ordinal «, then
it also holds for a + w by (ii). Now, assume that « is the limit of a strictly
increasing sequence (a,) of non-zero limit ordinals and that (iii) holds with
« replaced by ay, for all n € N. Then, in particular, we have

(minG)op (ant1) - min(gé?")) for all n € N,

from which (iii) follows immediately for o. =

5. The Szlenk index. Here we recall the definition and basic properties
of the Szlenk index. We then recall or prove further properties that are
relevant for our purposes. A fairly comprehensive survey on the Szlenk index
can be found in [17].
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Let X be a separable Banach space, and let K be a non-empty, w*-
compact subset of X*. For € > 0 set

K! = {z* € K : Vw*-neighbourhoods U of z*, diam(K NU) > ¢},
where diam(K N U) denotes the norm-diameter of K N U. We now define

Kg(a) for each countable ordinal a by recursion as follows:

KO =K,

€

K@D — (K. for all a < wy,

KW = ﬂ K for a limit ordinal A < w;.
a<
Next, we associate to K the following ordinal indices:
n(K,e) = supf{a <w : K% #£0} and n(K) =supn(K,e).
e>0

Finally, we define the Szlenk index Sz(X) of X to be n(Bx+), where By~ is
the unit ball of X*.

REMARK. The original definition in [26] is slightly different, but it gives
the same ordinal index.

Szlenk used his index to show that there is no separable, reflexive space
universal for the class of all separable, reflexive spaces. This result follows
immediately from the following properties of the function Sz(-).

THEOREM 11 ([26]). Let X and Y be separable Banach spaces.
(i) X* is separable if and only if Sz(X) < wy.
(i) If X isomorphically embeds into Y, then Sz(X) < Sz(Y).
(iii) For all o < wy there exists a separable, reflexive space with Szlenk
index at least «.

We next restate in one theorem a number of results from [1] in our ter-
minology. This includes an expression of the Szlenk index in terms of the
weak index of certain trees.

THEOREM 12 ([1]). Let X be a separable, infinite-dimensional Banach
space not containing ¢1. For o € (0,1) let

n
) E QAT
i=1

F,= {(xi);;l €S ineN,

>0 a; V(ai)p, C R+}.
i=1

Then
Sz(X) = sup Iy (Fy).
0>0

Moreover, if X* is separable, then for some o < wy, we have Sz(X) = w®

and the above supremum is not attained.
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We next consider the Szlenk index of sums of Banach spaces. For finite
sums (Proposition 14) this can be computed directly from the definition
using a kind of “Leibniz” rule for higher order derivatives of products of
w*-compact sets (Lemma 13(iii)). For infinite sums (Proposition 15) we use
the weak index as well as the result on finite sums to obtain an upper bound.
In what comes we will denote by o H 3 the “pointwise sum” of ordinals «
and (3, which is defined as follows. We first write o and § in Cantor Normal
Form as

a=w" m+w? -mo+-+w* my
and

ﬁ:w’yln1+wv2n2++w’7knk’

where k € N, 1 > -+ > 43 > 0 are ordinals, and m;, n; < w for all i. Then
we set

aBf=w"(m +n1)+w?- (ma+n2)+ -+ (Mg + ng).

LEMMA 13. Let X and Y be separable Banach spaces. Let m € N, let
K,Ky,..., K, be non-empty, w*-compact subsets of X*, and let L be a
non-empty, w*-compact subset of Y*. Let € > 0.

(i) (O KJ); C O(Kj)é/z-
j=1

j=1
(ii) For the subset K X L of X* ®oo Y* = (X ®1Y)* we have

(KxL).=K.xLUK x L.

(iii) For the subset K x L of X* @ Y™ and for any ordinal a < wy we
have

(K x D c | K x LG,
BHy=a

Proof. (i) Let z* € (UL, Kj)L. Since the w*-topology on a w*-compact
subset of X* is metrizable, it follows easily from the definition that there is a
sequence (z7,) in | JjL; K; such that x}, % ¥ asn — oo, and ||zf —z*|| > /2
for all n € N. After passing to a subsequence we may assume that for some
1 <j <m we have z}, € K;, and hence z* € (KJ)Ie/z'

(ii) This is immediate from the definition and from the fact that we are
working with the /y-sum of X* and Y*.

(iii) We prove this statement by induction. The case @ = 0 is clear.
Using parts (i) and (ii) and assuming the statement for some «, we
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have ) "
(K x D) e | (KD x L))
BHy=«
_ B+1) o () B (v+1)
= U & x L UKy x Ly )
BHy=a
_ ) ™)
- K€/2 X L€’>2
BHy=a+1
Finally, if X is a limit ordinal, then by the induction hypothesis we have
A (8) ™)
(K x L)Y c N ( K1) L€}2)

a<A  PHy=«a
Write A in Cantor Normal Form:
)\:wAl .m1+...+w/\k o

with my > 0, and for all n € N set

an:w)‘l-m1+-"+w>‘k'(mk—1)+w‘§"

where A\ = d,, + 1 for all n € N if )\ is a successor ordinal, and §,, " A if
Ak is a limit ordinal.

Now let z* = (y*,2%) € (KXL)() For each n € N we have oy, < A, so
there exist ordinals (3, and ~, with 8, H~y, = a, and z* € K(/’Bn) X Li/Q).
Now there exist n1,...,ng, p1,.--,Pr < w and an infinite subset N of N such
that

ﬁn:wh ng 4 WM g 4 WO - uy,

Yo =M pr WMy wn
where u, + v, = n for all n € N. Assume sup,, u, = w (the case sup,, v, = w
being similar). Set
B=uwM g+ WM (g +1), y=wMprt+wopy.

Then 8 = sup,, B, whereas v < v, for all n € N. It follows that y* € K ( /;

N, KE/2 ,and z* € L(?; Since S B~y = ), statement (iii) with A replacing

a follows. m
PROPOSITION 14. Let X and Y be separable Banach spaces. Then
Sz(X 1Y) = max{Sz(X), Sz(Y)}.

Proof. The inequality Sz(X @1 Y) > max{Sz(X),Sz(Y")} follows imme-
diately from Theorem 11(ii). The reverse inequality is trivial if either both X
and Y are finite-dimensional, or one of X and Y has non-separable dual. So
we can assume by the last part of Theorem 12 that max{Sz(X),Sz(Y)} = w"
for some 0 < 7 < wy.
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Now let K = Bx+, L = By~ and set a = w" - 2 + 1. Applying part (iii)
of Lemma 13 we obtain
(Bxa,v)-)") = (Bx- x By+)®) = 0.
It follows that Sz(X 1Y) < «, and hence Sz(X &1 Y) < w", as required. m
PROPOSITION 15. Let (X,,) be a sequence of separable Banach spaces.

Let X = (,, Xn)e, be the la-sum of (X,), and let « be a countable ordinal.
If Sz(X,,) < w® for all n € N, then Sz(X) < w**t.

In the proof we shall use the following notation. For n € N we denote
by P, the canonical projection of X onto X, i.e., for x = (z;) € X with
x; € X; for all i € N we have P,(z) = x,. For a finite subset A of N we let

PA:ETLEAPn'

Proof. Assume for a contradiction that Sz(X) > w®*!. By Theorem 12
there exists ¢ € (0, 1) such that setting

F={@) e85 e || Y > 03 a Wa, <R}
we have I, (F) > w*™!. Note that by the geometric form of the Hahn-Banach

theorem, (z1,...,x,) € S5 belongs to F if and only if there exists z* € Sx~
such that x*(z;) > o for each i =1,...,n.
We are going to show the following claim. Let x = (z1,...,2m,) € S5,

and let £ > 1, M > 0 be integers. Assume that I,(F(x)) > w® - k. Then
there exists y = (y1,...,yn) € S¥* such that

() Lu(F(x,y)) >w®- (k= 1),
(ii) forall z* € Sy« there exists i € {1,...,n}, with 2*(Py ar(vi)) < o/4

Let us first see how this claim completes the proof. Fix K € N with K > 4/0%.
We obtain sequences X1, ...,Xx in Sf(“’ and Nj < --- < Nk in N recursively
as follows: at the jth step we apply the claim with x = (x1,...,x;-1),
k=K-—j+1and M = N;_; to obtain y as above (for j = 1 we begin with
x =0, k=K and M = Ny = 0). Then we set x; = y and choose N; > N;_;
such that writing x; = (y;1,.-.,¥j,L,) we have

i — Pany(yill <eo/4 forl=1,....Lj.

From property (i) we deduce in particular that (x1,...,xx) € F. Thus there
exists z* € Sx= such that

x*(y;p) >0 forallj=1,...,K,1=1,...,L;.
It follows that for each j =1,..., K we can find 1 <[; < L; such that
(P, 1,8, (Y50,)) > 0/2,
and hence we get ||z*| > v/ Kp/2 > 1, which is a contradiction.
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We now turn to the proof of the claim. Define
G={(y1,-.-,yn) € F(x) :n €N, Jz* € Sx«,
«*(Puan(yi)) =2 o/4 fori=1,... n}.

Note that G is a tree on S3“. If I,(G) > w®, then by Theorem 12 we have
Sz(X1 @9 -+ @2 Xpy) > w?, contradicting Proposition 14. So we must have

I (G) < w®. On the other hand,
Lo ((F(x)) @™ ®=D)) > e,

Thus we can find
y € (F))EING.
Properties (i) and (ii) are now easily checked. =

PROPOSITION 16. Let « be an ordinal with 1 < o < wi. The Szlenk
index of the Tsirelson space of order o is given by

Sz(Te) = w™¥.
Proof. For each o € (0,1) let

F, = {(%)Ll € S;:’ :neN,

n
E QT
=1

We first show that Sz(T,,) > w®*. Let (e;) be the unit vector basis of Ty,. It
follows from the definition of Ty, that for each n € N, if F' € S,.,,, then (€;);cp
is 2"-equivalent to the unit vector basis of €|1F|7 so in particular (e;)icr €

Fs-n. Hence by Proposition 5 and Theorem 12 we have

WO < Ty (Fyn) < S2(T).

> QZai V(ai)ieq C R+}.
i=1

Since n € N was arbitrary, the inequality Sz(T,) > w®“ follows at once.

For the reverse inequality assume that w7 < Sz(T,), where v = « - w.
Then by Theorem 12 there exists ¢ € (0,1) with w? < Iy(F,), and by
Proposition 5 there is a family G = (zr)pes,\(9y C Fo such that for all
F € 8, \ MAX(S,) the sequence (% py(n})n>max F is weakly null.

By standard perturbation arguments we may, after making o smaller and
replacing (zr)pes,\(oy by (¥F')res,\ (o} for an appropriate pruning function
F— F': S, — S, if necessary, assume that G is a block tree of (e;) in Tj.

We now apply a result of R. Judd and the first named author |16]. In their
terminology G is an ¢1-K-block basis tree of (e;) in T, with K = o' (we
are using the 1-unconditionality of (e;)), and hence its order o(G) is at most
the Bourgain ¢;-index of Ty, which is shown in [16] to be w?. On the other
hand, by Proposition 5 we have o(G) > w?. This contradiction completes the
proof. =
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PROPOSITION 17. Let o be a countable ordinal and let Z be a Banach

space with an FDD E = (E;) that satisfies subsequential T, -upper estimates.
Then Sz(Z) < w™¥.

Proof. For each g € (0,1) let

Fo={@)ie 55 nen,

n
E QAT
i=1

n n
Z a;zi|| > QZ a; Y(a;)i—, C R+}.
i=1 i=1

Fix v < Sz(Z). By Theorem 12 there exists o € (0,1) such that I (F,) > 7,
and by Proposition 5 there is a family (2r)rer {9y C F, such that for all
F e F, \ MAX(F,) the sequence (¥ py{n})n>max F is weakly null.

By standard perturbation arguments we may, after making ¢ smaller and

appropriately pruning (zr)per,\ (g} if necessary, assume that (zr)rcr,\ (g}
is a block tree of (E;) in Z, and that for all F' € F,\ MAX(F,) the sequence

(xpu{n})n>maxp is a block basis of (E;). Let (e;) be the unit vector basis
of T,, and define

tp = €min supp g (zF) for all F' € f’Y \ {(D}

Note that (tr)per.\ (0} is a block tree of (e;) in T;, and that it is contained in
Gy for some ¢’ € (0,1) since (E;) satisfies subsequential T,-upper estimates.
Since (e;) is shrinking, it follows by Proposition 5 that v < I (G,). Using
Theorem 12 and Proposition 16 we deduce that Sz(Z) < w®¥, as required. m

> QZai V(ai)i, C R+}.
i=1

G, = {(:1:1-)?:1 €57 :neN,

REMARK. It follows from properties of higher order Tsirelson spaces
(Proposition 3) that the unit vector basis of T satisfies subsequential T,-
upper estimates. Hence the above result shows that

Ty € Cpow = {X : X is separable, reflexive, max{Sz(X), Sz(X™)} < w*“}.

6. The main theorem and its consequences

THEOREM 18. Let Z be a Banach space with a shrinking, bimonotone
FDD (E;) and let X be an infinite-dimensional closed subspace of Z. Then
for any C > 4 there exist an ordinal o < Sz(X), a sequence § = (5;) C (0,1)
with & | 0, and a blocking (Gi) of (E;) with G; = @71 Ej, i € N,

J=mi—1
1=mg<mi <mg<---, such that if (z;) C Sx is a 6-block sequence of
(Gp) with ||z; — P(gifhsi}miu <O foralli e NJ1 <59 <51 <892 <+,
then (z;) is C-dominated by (em,, ), where (e;) is the unit vector basis
of T]—'a,l/Q-

We first prove some consequences of Theorem 18. In Corollary 20 below
we recast the property of being in the class C,, in terms of certain lower and
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upper Tsirelson-norm estimates. In Theorem 21 we show that for certain
values of a these estimates are best possible, which proves Theorem A from
the Introduction. These norm estimates and Theorem 1 are the two main
ingredients in answering Pelczynski’s question, which we do in Theorem 22
followed by a refinement in Theorem 23. We then state a result of Johnson
which we use to deduce basis versions (Theorems B and C) of Theorem 23.
The rest of the section is taken up by the proof of Theorem 18.

COROLLARY 19. Let X be an infinite-dimensional Banach space with
separable dual. There exists an ordinal o < Sz(X) such that X satisfies
subsequential C-Tx 1 /o-upper tree estimates for any ordinal v > «, where
C' is a universal constant.

Proof. By Zippin’s theorem [28|, X K-embeds into a Banach space Z
with a shrinking, bimonotone FDD (E;), where K is a universal constant.
Renorming X with a K-equivalent norm we may assume without loss of
generality that X is a subspace of Z. We now apply Theorem 18 to obtain
a < Sz(X), a sequence § = (§;) C (0,1), &; | 0, and a blocking (G;) of (Ej)
with G; = 69?2;11_1 E;,i e N, 1=mg<my <---,such that if (z;) C Sx
is a d-block sequence of (G) with ||z; — Pgi_hsi}cviH < ¢; for all i € N,
1 <59 < sy <, then (z;) is 5-dominated by (ea,m,, ,), where (eq,) is
the unit vector basis of Tx, i /2.

Fix an ordinal v > « and an integer [ such that (eq,;);>; is 1-dominated by
(€,4)i>1 (such an integer exists by property (1) of the fine Schreier families).
We now show that X satisfies subsequential C—T]:MI J2-upper tree estimates
with C' = 5. Let (2¢)tereven be a normalized, weakly null even tree in X. We
will inductively choose sequences sp < s1 < ---and n; < ng < ---in N as
follows. Set sp = 1 and n; = max(l,m;). Assume that for some i € N we
have already chosen sg < s1 < -+ < s;_1 and ny < ng < -++ < ng;_1. Since
nodes are weakly null, there exists ng; > no;—1 such that

G
||P[1:5i71]x(n1a~--7n2i)” < d;.
Then choose s; > s;_1 such that

”x(m,.--,mi) - Pgi,l,si]x(m,...,ngi)n < 0;.

Finally, choose ng;y1 > no; with ng;i11 > ms,. This complgtes the recursive
construction. It follows immediately from the choice of «, 4, (G;) and [, and
from the 1-right-dominant property of (eq,i), that (2, ... n,,)) is 5-dominated
by (677'”22'71)‘ .

COROLLARY 20. Let X be an infinite-dimensional, separable, reflex-
we Banach space. Then there exists an ordinal v < max{Sz(X),Sz(X™*)}
such that X satisfies subsequential O'(T;-‘g,l/Q’ Tz, 1/2) tree estimates for any

0 >, where C is a universal constant.
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Proof. By Corollary 19 there is a universal constant C', and there exist
ordinals o < Sz(X) and f < Sz(X™), such that X satisfies subsequential
C-Tx 1/o-upper tree estimates for any v > «, and X™ satisfies subsequential
C-Tx; 1/2-upper tree estimates for any 6 > 3. It follows from Proposition 2
that X satisfies subsequential (2C + 6)-(T}671/2,Tf6’1/2) tree estimates for

any € > 0 and for any 6 > max{a, 3}. =

The above results show that higher order Tsirelson spaces are more than
just mere examples in the hierarchy (Cu)a<w,. Indeed they are intimately
related to the Szlenk index of an arbitrary separable, reflexive space and its
dual. The next theorem shows that this relationship is tight in the classes
Cpo-w: Tsirelson spaces of order o and their duals are maximal and, respec-
tively, minimal in these classes. In particular, this proves Theorem A stated
in the Introduction. The proof uses some further results from [22] which
we shall not state here as Theorem 21 will not be used in the proof of our
universality results.

THEOREM 21. Let o« < wy. For a separable, reflexive space X the fol-
lowing are equivalent.

(i) X € Cpaw.
(ii) X satisfies subsequential (T} .,Tu,c) tree estimates for some c €
(0,1).

(iii) X embeds into a separable, reflexive space Z with an FDD (E;) which
satisfies subsequential (T} ., Ty ) estimates in Z for some c € (0,1).

a,c)

Proof. “(i)=(ii)” By Corollary 20 there exists n < w such that X satisfies
subsequential (7%, , T,.n) tree estimates. It is not hard to show directly from
the definition that the norms || - [|1,., and || - ||z, . on coo, where ¢ = 1/247,
are equivalent. Hence (ii) follows.

“(ii)=-(ii1)” This is immediate from [22, Theorem 15|. We note that the
implication “(iii)=-(ii)” is straightforward from the definition.

“(iii)=(i)” Let Z be the space given by (iii), and choose n € N such that
" < 1/2. Tt follows directly from the definition that the unit vector basis
of T, is dominated by the unit vector basis of Tf., », which in turn is
dominated by the unit vector basis of Ty.,. Hence by Theorem 11(ii), and
by Propositions 17 and 16, we have

Sz(X) < Sz(Z) < Sz(Thp) = ™Y = w*¥
(Alternatively, one can just observe that the proof of Proposition 16 works
for Tt ., i.e., we have Sz(Ty, ) = w**.) Now since X satisfies (ii), it follows

from duality (Proposition 2 and |22, Corollary 14|) that (ii), and hence (iii),
also hold with X replaced by X*. This gives Sz(X*) < w*“. Thus X € Cyo-w,

as required. m
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REMARK. Using the proof of Proposition 16 one can show that Sz(T'r, )
= a* whenever 1 < o < wy and ¢ € (0,1). Considering the Cantor Normal
Form of a, it is possible to write o = w?* for some 3 < «. Thus, it is not
possible to obtain a finer gradation of the hierarchy (Cy)a<w, by using fine
Schreier families.

We are now in a position to answer Pelczyriski’s question. We shall use
the notation

Aa(C) = Az 1, (C) and Ay = | ] Aa(0),

C<oo

where 0 < @ < w; and C € [1,00) (see also the notation preceding Theo-
rem 1). Recall that

Co = {X : X is separable, reflexive, max{Sz(X),Sz(X")} < a},

and that the Szlenk index of an infinite-dimensional Banach space with sep-
arable dual is of the form w" for some 0 < 1 < w; (Theorem 12), so we need
only consider the classes C,, when « is of this form. We should also comment
on finite-dimensional spaces before proceeding.

For a < w we have C, = Cy is the class of all finite-dimensional spaces.
Let Z be the f3-sum of a countable, dense (with respect to the Banach—-Mazur
distance) subset of Cy. Then by Proposition 15 we have Z € C,,. Moreover, Z
is universal for Cp: for all X € Cy and for all ¢ > 0, X (1+¢)-embeds into Z.

For w < a < wy we have #5 € C,, and hence ¢» & X € C, for any finite-
dimensional space X. Thus we can restrict attention to infinite-dimensional
spaces for the purpose of finding a universal space for the class C,.

THEOREM 22. For every ordinal o with 0 < o < wy there is a separ-
able, reflexive space with an FDD which is universal for the class C,e. More
precisely, there is a universal constant K such that for all 0 < a < w;
there exists a space Z € Cyaw with an FDD such that every space X € Cyo
K-embeds into Z.

Proof. Let C' € [1,00) be the universal constant of Corollary 20, and
let B,D € [1,00) be the universal constants of Proposition 3. Let K =
KB p.1,1(C) be the constant from Theorem 1. Given 0 < a < wy, let Z € A,
be the universal space given by Theorem 1 with U = T, and V = U*.
In particular Z has an FDD (E;) that satisfies subsequential (7%, T,) es-
timates in Z. By an easy duality argument the FDD (E}) of Z* satisfies
subsequential (77, T,) estimates in Z*. Hence by Proposition 17 we have
max{Sz(Z),8z(Z*)} < w*¥, ie., Z € Cpaw.

Now let X € Cya be an infinite-dimensional space. By Corollary 20 we
have X € A,(C), and hence X K-embeds into Z. =
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REMARK. By a result of Johnson and Odell [15], the space Z constructed
in the proof of Theorem 22 cannot be in the class C, . Indeed, if that was the
case, then every space that embeds into Z would in fact K-embed into Z.
Such a space is called elastic in [15], where it is proved that a separable,
elastic space contains cg. Obviously, Z cannot contain cg, giving the required
contradiction.

Note that the above theorem yields a universal space for the class Cyow
that lives in the class C ,..2. A small modification of the proof gives the
slightly better result mentioned in the Introduction:

THEOREM 23. For every a < wi there is a space Zy € Cpawt1 with
an FDD which is universal for the class Cyow. More precisely, there is a
universal constant K, and for each o < wy there is a sequence (Zopn)o>, of
spaces with FDDs in Cya-w such that for all X € Cye-w there exists n € N
such that X K-embeds into Z . The space Z, can then be taken to be the

ly-direct sum of the sequence (Zgpn)o2 .

Proof. For a = 0 we have already done this just before stating Theo-
rem 22. Now assume that 0 < a < w1, and let C, K be the constants defined
in the proof of Theorem 22. Let Z,, € Aq., be the universal space given
by Theorem 1 with U = T,., and V = U*. As in the proof of Theorem 22
we deduce that max{Sz(Za,n),S2(Z; )} < W™ = w* ie., Zoy € Cpaw.
Now let Zy = (D,2; Za,n)e, be the fo-direct sum of the sequence (Zn,,)02 ;.
By Proposition 15 we have Z, € C_a-w+1.

Finally, let X € Cyaw be an infinite-dimensional space. By Corollary 20
there exists n € N such that X € A,.,(C), and hence X K-embeds into
Zaon and into Z,. w

As indicated in the Introduction, Theorems B and C now follow from
Theorem 23 by applying the following result of Johnson [14].

THEOREM 24 (|14, Theorem Al). Let (G;) be a sequence of finite-dimen-
stonal Banach spaces so that

(i) if E is a finite-dimensional Banach space and ¢ > 0, then there is
an i € N so that d(E,G;) = inf{|T|| - [T~ : T: E — G; is an
isomorphism} < 1+ ¢,

(i) for each i € N there is an infinite J C N so that G; and G; are
1sometric for all j € J.

Let Cy = (B;2, Gi)e, and let X be any separable space which has the \-
metric approximation property for some X > 1. Then X & Cy has a basis.

Note that the A-metric approximation property is also known as the
A-bounded approximation property.
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Proof of Theorems B and C. Clearly, spaces X with an FDD have the
A-metric approximation property for some A > 1, meaning that for any
compact set K C X and € > 0 there is a finite rank operator T with
IT(x) — x| < € for all € K. Let Cy be the space defined in Theorem 24,
and let Z, and Z, ,,, n € N, be the spaces from Theorem 23. Then Z, © C»
and Z, , ®C5 have Schauder bases and it follows from Propositions 14 and 15
that Sz(Z, © C2) = S2(Z,) = w*“ ! and Sz(Zapn © C2) = w*%. u

In the remainder of this section we give a proof of our main result, The-
orem 18, which is at the heart of our embedding and universality results.

Proof of Theorem 18. Fix a constant D with 4 < D < C, and choose
0 € (0,1) such that 4 + 129D < D. Set

F= {(a:z) € ST H Zaixi > 2,_02(1@' for all (a;) C [0, oo)}

Note that F is a hereditary tree on S5“. Next fix a sequence £ = (g;) C
(0,1/2) such that

Fh-c {(zz) € S5 H Zaizi > QZai for all (a;) C R+}.

Now consider the hereditary block tree G = X(E, Z)ﬂ]:Z of (E;) in Z and its

compression G. Let a be the Cantor-Bendixson index of G. By Proposition 6
and by Theorem 12 we have

Lo (FL) < T (Fidz) < Sz(X).

Since QF:E’ C FZ, we have Ibl(gE 7y < L (FZ). Since Sz(X) is a limit
ordinal, it follows by Proposition 8 that

a =Iep(G) < Su(X).
We now apply Theorem 4 to obtain an infinite subset M = {mq,ma,...}

of N such that
(6) MAX(F,) N [M]< NG = 0.

To see this, give each element A of the thin family MAX(F,) colour red if
A € G, and colour blue otherwise, and obtain M = {my,ms,...} € [N]* such
that MAX(F,) N [M]=¥ is monochromatic. Now the map i — m;: N — M
induces a homeomorphism [N]~* — [M]<“ that maps F, onto F, N [M]<*
(as F, is a spreading). Since the Cantor-Bendixson index is a topological
invariant, it follows that Iop(FaN[M]<¥) = a+ 1. Hence MAX(F,)N[M]<*
cannot be monochromatic red, and thus (6) follows. Observe that if F' €
GN[M]<“, then F € F,.

Without loss of generality we may assume that m; > 1. We set mg = 1
and G; = @71 E; for all i € N. Finally, we choose § = (;) C (0,1), &; | 0,

J=mi—1
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such that

[e.e]
42(2 < min(p,C — D) and 425]- <e¢g; forallieN.
i=1 §>i
We will now show that for these choices of a,§ and (G;) the conclusion
of the theorem holds.
Let (z;) C Sy be a é-block sequence of (G,,) with |z; — P(G s ]le < 0
forallieNand 1 < s <81 <89<---.Set
Pg 1,8 }IEZ )
zi:# for all 7 € N.
IPG. ., il
Note that ||z; — z;|| < 20; for all i € N. Replacing each z; by a small pertur-
bation of itself, if necessary, we can assume that minsuppg(z;) = si—1 + 1
and minsuppg(z;) = ms, , for all i € N. We are going to show that for any

(a;) € cop we have
S DH Z @i€ms;_y ||+

(7) H Zaizi

It then follows easily from the choice of § that (x;) is C-dominated by
(éms,_,)- The proof of (7) proceeds by induction on the size of the sup-

port of (a;). If this is 1, then the statement is clear. In general, we begin by
choosing z* € Bz~ such that
=2 @iz (=)

| > @i
We then consider the set
I={ieN:|z"(z)| > 30},
which splits into I™ = {i € N : 2%(2;) > 3p} and I~ = I\ I'". For a finite
set F' C N we shall write ms(F') for the set {ms, , : i € F}. We claim
that ms(I™) and ms(I~) belong to F,. Indeed, by the choice of §, for any

(bi)ier+ C RT we have
H S b = 3 bizt(z) - Z bi-20; 2203 b
ielt ielt ielt
This shows that (x;);c;+ belongs to f. It follows that (z;);c;+ € G, and
ms(I1) € G N [M]<¥ C Fg, as required. A similar argument, using —z*
instead of z*, shows that ms(I~) € F,.
We next partition supp(a;) \ I into sets J; < --- < Jj, where [ € N and

30 < HZ*’span{zi:ieJk}H <6 forl<k<l

(8) ;

||Z |span{zizi€Jl}|| < Go.
This is clearly possible by the definition of I and by the bimonotonicity
of (E;). Set F = {minJ : k =1,...,1 —1}. We claim that ms(F) € Fq \
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MAX(F,), from which it follows that ms(F) € Fo, where F' = F'U{min J;}.
To prove the claim first choose for each k = 1,...,1 — 1 a vector up =
ZieJk cizi € Sz such that » ¢;z*(z;) > 3p. We can assume without loss
of generality that cpming, # 0, i.e., that minsuppg(ur) = M i gy 1 Set

Uk = ) ey, Ci®i and v = U /[|vg[| for each k =1,...,1 — 1, and note that
log — gl < 20Tk —wgl| <2 el 20, <4 6.
1€y i>k

It follows that for any (by),_}, € RT we have

-1 -1 -1 -1
H Zbkka > Zbkz*(uk) — Zbk Nok — ugl] > 2g2bk.
k=1 k=1 k=1 k=1
We deduce that (v,) € F, (u) € G and ms(F) € GN[M]<* C F,\MAX(F,),

as claimed.
The following sequence of inequalities now completes the proof of (7):

H Zaizi Zal (z) Z lai| + Z |a;] +Z6g H Z a;z;i

iel— i€k
< 2H Z Ailmg, | +2 ‘ Z @i€ms,
iel+ Tranyz iel- Tra2
!
60 DY | S e,
k=1 icJ, Fool/2

< (4 + 12QD) : H Zaiem51_1 < DH Zaiemsi—l ’
T]:a,l/Q T‘]:Oul/2

It is the third line where we apply the induction hypothesis. Note that by (8)
(and since 12p < 1), each Jj, has size strictly smaller than that of the support
of (a;). m

7. Further remarks. In [11] the following universality result is proved.

THEOREM 25 ([11]). For every countable ordinal & there is a space Y¢
with separable dual such that every Banach space X with Sz(X) < & embeds
into Ye.

This result of P. Dodos and V. Ferenczi is similar to our universality
results, but the methods used are completely different. Note that unlike
Theorems 22 and 23, the above result does not give information on the
Szlenk index of the universal space Y¢. The reason for this is that the use
of descriptive set theory in proving results like Theorem 25 yields existence
proofs, whereas our approach is more constructive.
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In this final section we describe the setting in which descriptive set theory
can be used to study universality problems for certain classes of separable
Banach spaces. We shall also explain what is missing if one tries to use this
approach to prove the main results of our paper. For an extensive survey on
the interplay between descriptive set theory and Banach spaces the reader
is referred to the Handbook article by Argyros, Godefroy and Rosenthal [3].

Recall that every separable Banach space is a subspace of C[0,1], the
space of continuous functions on the Cantor set. The set SB of all closed
subspaces of C10, 1] is given the Effros—Borel structure, which is the o-algebra
generated by the sets {F € SB : FNU # (0}, where U ranges over all
open subsets of C[0,1]. This allows one to study classes of Banach spaces
according to their descriptive complexity and apply results of descriptive set
theory. This has been first formalized by B. Bossard [6], and then taken up
by S. Argyros and P. Dodos [2] to study universality problems. One of the
central notions introduced in [2] is the following.

DEFINITION. A class C of separable Banach space in SB is said to be
strongly bounded if for every analytic subset A of C there exists Y € C that
contains isomorphic copies of every X € A.

The main result of [11] is that the classes SR of separable, reflexive
spaces and 8D of spaces with separable dual are strongly bounded. Since
{X € 8D : Sz(X) < &} is analytic (even Borel, which was proved in [6]),
Theorem 25 follows. However, it was not known whether the classes C, from
Petczynski’s question were analytic or not, and so the main theorem from [11]
could not be applied. From our results we can now prove the following.

THEOREM 26. For every countable ordinal o the class C,, is analytic in
the Effros—Borel structure of SB.

Proof. Fix a countable ordinal . We begin by showing that the class
Cpow is analytic. By Theorem 23, if X € C,a«, then there exists n € N such
that X isomorphically embeds into Z,,, which we denote by X — Z,,,.
Conversely, assume that X < Z, . Since Z, , has an FDD satisfying subse-
quential (T, T,.n) estimates, it follows easily that X satisfies subsequential
(T, Toon)-tree estimates. By duality the same holds for X*, and hence X*
also embeds into Z, ;. From Proposition 17 we now obtain

max{Sz(X),Sz(X")} < Sz(Zypn) < w",
and so X € Caw.

It is well known and easy to show that for any Y € SB the set {X € SB :
X <Y} is analytic. It follows that

Cwoé'w = U {X €SB : X‘—>Za7n}
neN
is analytic, as claimed.
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To prove the general case, we use a recent result of P. Dodos [10] which

states that

So = {X € SB: max{Sz(X),Sz(X™")} < a}

is analytic. Since C, = So N Cpaw, it follows immediately that C, is also
analytic. m

REMARK. As mentioned in the Introduction, it was C. Rosendal who

pointed out to us that the analyticity of C,a« follows from our results. Later
P. Dodos informed us that this fact together with his result implies the
general case.
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