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Radial derivative on bounded symmetric domains

by

Guangbin Ren (Hefei) and Uwe Kähler (Aveiro)

Abstract. We establish weighted Hardy–Littlewood inequalities for radial derivative
and fractional radial derivatives on bounded symmetric domains.

1. Introduction. Let Ω be a bounded symmetric domain in the com-
plex vector space Cn. We always assume 0 ∈ Ω. Let b be the Bergman–Shilov
boundary of Ω with Lebesgue measure σ such that σ(b) = 1.

Let k ∈ N ∪ {0} and define

mk =
(
n+ k − 1

k

)
.

In [4], Hua constructed a set {ϕkv : k ∈ N∪ {0}, ν = 1, . . . ,mk} of homoge-
neous polynomials, which is complete and orthogonal on Ω and orthonormal
on b. It is known that every holomorphic function f in Ω has a series ex-
pansion (see [3]):

f(z) =
∑

k,v

ak,vϕk,v(z),

where
∑
k,v =

∑∞
k=0

∑mk
ν=1, and the convergence is uniform on compact

subsets of Ω. The coefficients are given by the formula

(1.1) ak,v = lim
r→1

�
b

f(rζ)ϕk,v(ζ) dσ(ζ).

In [6], Shi introduced the following fractional derivative f [β] and frac-
tional integral f[β]:

f [β](z) =
∑

k,v

Γ (k + β + 1)
Γ (k + 1)

ak,νϕk,ν(z),
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f[β](z) =
∑

k,v

Γ (k + 1)
Γ (k + β + 1)

ak,νϕk,ν(z).

He studied the rate of growth of the integral means of holomorphic functions
in terms of these operators. To state his result, we need some notation.

By H(Ω) we denote the holomorphic functions on Ω. If f ∈ H(Ω), the
integral mean Mq(r, f), 0 < q ≤ ∞, is defined by

Mq(r, f) =
{ �
b

|f(rζ)|q dσ(ζ)
}1/q

, 0 < q <∞;

M∞(r, f) = sup{|f(rζ)| : ζ ∈ b}.
As usual, the symbol A ' B means C−1B ≤ A ≤ CB, where C always

denotes a positive constant, not necessarily the same at each occurrence and
independent of f .

Theorem A ([6]). Let f ∈ H(Ω), 0 < p < ∞, 0 < q ≤ ∞, α, β > 0.
Then

1�
0

(1− r)pα−1Mp
q (r, f) dr '

1�
0

(1− r)p(α+β)−1Mp
q (r, f [β]) dr.

Instead of fractional derivatives we shall consider the radial derivatives
and study the rate of growth of integral means in weighted cases.

For β > 0 and s ≥ 0 we define the fractional radial derivative Rβ,s and
the fractional radial integral Rβ,s:

(Rβ,sf)(z) =
∑

k,v

(k + s)βak,νϕk,ν(z),

(Rβ,sf)(z) =
∑

k,v
k+s>0

(k + s)−βak,νϕk,ν(z).

It is clear that for any f ∈ H(Ω), we have Rβ,sf,Rβ,sf ∈ H(Ω) and

Rβ,sRβ,sf = Rβ,sR
β,sf = f, s > 0;

RβRβf = RβR
βf = f − f(0), s = 0.

When β = 1 and s = 0 we denote by R = R1,0 the radial derivative. The
fractional radial derivative was considered by Burbea [2] in the unit ball.

To study the growth of integral means of a holomorphic function, we
shall consider the following type of functions as weight functions, which was
first introduced by Shields and Williams [7].

A positive continuous function ϕ on [0, 1) is normal if there exist 0 <
a < b, 0 ≤ r0 < 1 such that



Radial derivative 59

(i)
ϕ(r)

(1− r)a is nonincreasing in [r0, 1) and lim
r→1

ϕ(r)
(1− r)a = 0;

(ii)
ϕ(r)

(1− r)b is nondecreasing in [r0, 1) and lim
r→1

ϕ(r)
(1− r)b =∞.

For example,

(1.2) ϕ(r) = (1− r)α logβ
2

1− r , α > 0, β ∈ R,

are normal functions. We point out that normal functions of the form (1.2)
appear naturally in the study of multipliers of Bloch space (see [9]). One
can verify that r0 is strictly positive for normal functions of the form (1.2)
by applying the derivative test for monotonicity functions around r = 0 and
r = 1.

Our main results are the following theorems.

Theorem 1.1. Let f ∈ H(Ω), ϕ be normal , 0 < p, q ≤ ∞, β > 0. Then

(1.3)
1�
0

(1− r)−1ϕp(r)Mp
q (r, f) dr

' |f(0)|p +
1�
0

r−p(1− r)pβ−1ϕp(r)Mp
q (r,Rβf) dr.

When p =∞, the inequality is understood to be its limit case:

Mq(r, f) = O(ϕ−1(r)) ⇔ Mq(r,Rβf) = O((1− r)−βϕ−1(r))

as r → 1−.

Notice that Rβf(0) = 0 for any f ∈ H(Ω) and β > 0. We shall show
that the function r−1Mq(r,Rβf) is a nondecreasing continuous function of
r ∈ (0, 1) (see Prop. 3.4). This implies that r = 0 is not a singular point of
the integral in (1.3).

Theorem 1.2. Let f ∈ H(Ω), ϕ be normal , 0 < p, q ≤ ∞, β > 0, s > 0.
Then

(1.4)
1�
0

(1− r)−1ϕp(r)Mp
q (r, f) dr '

1�
0

(1− r)pβ−1ϕp(r)Mp
q (r,Rβ,sf) dr.

When p =∞, the inequality is understood to be its limit case:

Mq(r, f) = O(ϕ−1(r)) ⇔ Mq(r,Rβ,sf) = O((1− r)−βϕ−1(r))

as r → 1−.

2. Normal functions. In this section, we give some basic properties of
normal functions.
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Lemma 2.1. Let 0 ≤ t ≤ r < 1, s > 0, ϕ be a normal function with
constants a, b, r0. Then ϕ(r) ' ϕ(rs) and

(2.1)
ϕ(r)

(1− r)a ≤ C
ϕ(t)

(1− t)a ,
ϕ(r)

(1− r)b ≥ C
ϕ(t)

(1− t)b .

Notice that Lemma 2.1 says we may always assume r0 = 0, since mono-
tonicity holds in the whole interval [0, 1) up to a constant.

Proof of Lemma 2.1. We first prove that

ϕ(r)
(1− r)a ≤ C

ϕ(t)
(1− t)a , 0 ≤ t ≤ r < 1.

Clearly, this is true when r0 ≤ t≤ r < 1 by the monotonicity of ϕ(r)/(1− r)a
in [r0, 1).

Let M,m be the maximum and minimum of ϕ(r)/(1− r)a in [0, r0],
respectively. Since ϕ is positive and continuous on [0, r0], we have M ≥ m
> 0. Again from the monotonicity of ϕ(r)/(1− r)a in [r0, 1),

ϕ(r)
(1− r)a ≤

ϕ(r0)
(1− r0)a

≤M, r0 ≤ r < 1.

Hence M is the maximum of ϕ(r)/(1− r)a in [0, 1). If t ≤ r0, then for any
0 < r < 1,

ϕ(r)
(1− r)a ≤M ≤

M

m

ϕ(t)
(1− t)a .

The other part in (2.1) can be proved in a similar way.
To prove ϕ(r) ' ϕ(rs), we can assume s ≥ 1 by symmetry. Then from

(2.1),

ϕ(rs) =
ϕ(rs)

(1− rs)a (1− rs)a ≥ C ϕ(r)
(1− r)a (1− r)a = Cϕ(r).

The reverse inequality is obtained if a is replaced by b. This finishes the
proof.

Lemma 2.2. Let δ > 0, h : [0, 1) → [0,∞) be measurable, and ϕ be a
normal function. If 1 ≤ λ <∞, then

(2.2)
1�
0

(1− r)−1ϕλ(r)
{ r�

0

(r − t)δ−1h(t) dt
}λ

dr

≤ C
1�
0

(1− r)λδ−1ϕλ(r)hλ(r) dr.

The inequality remains true if 0 < λ < 1 and h is nondecreasing in [0, 1).
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Proof. When 1 ≤ p <∞ and ϕ(r) = (1− r)a with a > 0, the inequality
is due to Hardy; namely

(2.3)
1�
0

(1−r)λa−1
{ r�

0

(r−t)δ−1h(t) dt
}λ

dr ≤ C
1�
0

(1−r)λ(a+δ)−1hλ(r) dr.

Assume 1 ≤ p < ∞ and ϕ is a normal function with constants a, b, r0.
Choose ε > 0 so small that ε/λ < a. By Lemma 2.1, ϕ(r)/(1− r)a
and (1 − r)a−ε/λ are both nonincreasing in [0, 1) and so is their product
ϕ(r)/(1− r)ε/λ. More precisely,

ϕ(r)
(1− r)ε/λ ≤ C

ϕ(t)
(1− t)ε/λ , 0 ≤ t ≤ r < 1.

Therefore,

1�
0

(1− r)−1ϕλ(r)
{ r�

0

(r − t)δ−1h(t) dt
}λ

dr

≤ C
1�
0

(1− r)ε−1
{ r�

0

(r − t)δ−1 ϕ(t)
(1− t)ε/λ h(t) dt

}λ
dr.

If we set a = ε/λ and replace h(t) by (ϕ(t)/(1− t)ε/λ)h(t) in (2.3), then we
know that the right hand side of the above inequality is less than

C

1�
0

(1− r)λδ−1ϕλ(r)hλ(r) dr,

as desired. The inequality (2.2) can be written with t replaced by rt as
follows:

(2.4)
1�
0

rλδ(1− r)−1ϕλ(r)
{ 1�

0

(1− t)δ−1h(rt) dt
}λ
dr

≤ C
1�
0

(1− r)λδ−1ϕλ(r)hλ(r) dr.

Now let 0 < λ < 1 and h be nonincreasing in [0, 1). To prove that (2.2)
or, equivalently, (2.4) still holds in this case, it is sufficient to show that

{ 1�
0

(1− t)δ−1h(rt) dt
}λ
≤ C(λ, δ)

1�
0

(1− t)λδ−1hλ(rt) dt,

which can be proved by using the following partition of [0, 1):

0 = t0 < t1 < . . . < 1,
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where tj = 1− 1/2j . Indeed,

( 1�
0

(1− t)δ−1h(rt) dt
)λ

=
( ∞∑

j=1

tj�
tj−1

(1− t)δ−1h(rt) dt
)λ

≤
∞∑

j=1

( tj�
tj−1

(1− t)δ−1 dt
)λ

sup
t∈[tj−1,tj)

hλ(rt) ≤ C
∞∑

j=1

2−λδ sup
t∈[tj−1,tj)

hλ(rt)

≤ C
∞∑

j=1

tj+1�
tj

(1− t)λδ−1hλ(rt) dt ≤ C
1�
0

(1− t)λδ−1hλ(rt) dt.

Lemma 2.3. Let 0 < λ < ∞, δ > 0, µ > 0, h : [0, 1) → [0,∞) be
nondecreasing , and ϕ be a normal function. Then

1�
0

rλδ(1− r)−1ϕλ(r)
{ 1�

0

(
log

1
t

)δ−1

tµ−1h(rt) dt
}λ
dr

.
1�
0

(1− r)λδ−1ϕλ(r)hλ(r) dr.

Proof. Let s = 1 + 1/µ and set r = us, t = vs. We have
1�
0

rλδ(1− r)−1ϕλ(r)
{ 1�

0

(
log

1
t

)δ−1

tµ−1h(rt) dt
}λ
dr

≤ C
1�
0

usλδ+s−1(1− u)−1ϕλ(u)
{ 1�

0

(
log

1
v

)δ−1

vsµ−1h(usvs) dv
}λ
du

≤ C
1�
0

uλδ(1− u)−1ϕλ(u)
{ 1�

0

(1− v)δ−1h(usvs) dv
}λ
du.

The last step came from the simple inequality

(2.5) vσ
(

log
1
v

)δ−1

≤ C(1− v)δ−1, v ∈ (0, 1),

for any σ > 0, since it holds as v → 0+ and v → 1−.
Combining the above result with (2.4) we obtain
1�
0

rλδ(1− r)−1ϕλ(r)
{ 1�

0

(
log

1
t

)δ−1

tµ−1h(rt) dt
}λ
dr

.
1�
0

(1− r)λδ−1ϕλ(r)hλ(r1+1/µ) dr.

The assertion now follows from the fact that h is nondecreasing.



Radial derivative 63

3. Radial derivative. Before the proof of the main results, we need
some preparations.

Proposition 3.1. Suppose f ∈ H(Ω), β > 0, 0 < q ≤ ∞, s ≥ 0,
0 < r < 1, and set u = min(1, q). Then there exists a constant C = C(q, β, n)
such that

(3.1) Mu
q (r,Rβ,sf) ≤ C

1�
0

(
log

1
%

)βu−1

%us−1Mu
q (r%, f)d%.

Proof. First we give an integral formula for the radial integral operator.
We always assume that s > 0 or s = 0 and f(0) = 0. Then for any f ∈ H(Ω)
we have

(3.2) Rβ,sf(z) =
1

Γ (β)

1�
0

(
log

1
%

)β−1

%s−1f(%z) d%.

To prove this, let f(z) =
∑
k,v ak,vϕk,v(z); then

1
Γ (β)

1�
0

(
log

1
%

)β−1

%s−1f(%z) d%

=
∑

k,v

ak,vϕk,v(z)
1

Γ (β)

1�
0

(
log

1
%

)β−1

%k+s−1 d%.

The formula (3.2) now follows from the identity

1
Γ (β)

1�
0

(
log

1
%

)β−1

%k+s−1d% =
1

Γ (β)

∞�
0

tβ−1e−(k+s)t dt = (k + s)−β

for any k + s > 0 with k ∈ N ∪ {0}.
If 1 ≤ q ≤ ∞, the inequality (3.1) is a direct corollary of (3.2) and

Minkowski’s inequality. Now assume 0 < q < 1. We introduce a new parti-
tion of (0, 1) by setting

0 < . . . < %−2 < %−1 < %0 < %1 < %2 < . . . < 1

with

%0 = 1
2 , %j = %

1/2
j−1 (j ∈ Z).

By a simple computation for any β > 0,
%j�
%j−1

(
log

1
%

)β−1

%−1 d% = − 1
β

(
log

1
%

)β∣∣∣∣
%j

%j−1

=
2β − 1
β

(
log

1
%j

)β
.
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Assume s ≥ 0. Then %s ≤ %sj for % ∈ [%j−1, %j ], and %qsj ≤ %qs for % ∈
[%j , %j+1]. Therefore,

( %j�
%j−1

(
log

1
%

)β−1

%s−1 d%

)q
≤ C%qsj

(
log

1
%j

)qβ

≤ C
%j+1�
%j

(
log

1
%

)qβ−1

%qs−1 d%.

Combining this with (3.2), we have

|Rβ,sf(rζ)|q ≤ C
{ 1�

0

(
log

1
%

)β−1

%s−1|f(r%ζ)| d%
}q

= C

{ ∞∑

j=−∞

%j�
%j−1

(
log

1
%

)β−1

%s−1|f(r%ζ)| d%
}q

≤ C
∞∑

j=−∞

( %j�
%j−1

(
log

1
%

)β−1

%s−1 d%

)q
sup

%∈(%j−1,%j)
|f(r%ζ)|q

≤ C
∞∑

j=−∞

%j+1�
%j

(
log

1
%

)qβ−1

%qs−1 d% sup
%∈(%j−1,%j)

|f(r%ζ)|q.

Since Theorem 3 of [1] shows
�
b

sup
%∈(%j−1,%j)

|f(rζ)|q dσ(ζ) ≤ C sup
%∈(%j−1,%j)

�
b

|f(rζ)|q dσ(ζ),

it follows that

Mq
q (r,Rβ,sf) ≤ C

∞∑

j=−∞

%j+1�
%j

(
log

1
%

)qβ−1

%qs−1 d% sup
%∈(%j−1,%j)

Mq
q (r%, f).

Now, from the monotonicity of integral means, we have

sup
%∈(%j−1,%j)

Mq
q (r%, f) ≤ inf

%∈(%j ,%j+1)
Mq
q (r%, f),

so that

Mq
q (r,Rβ,sf) ≤ C

∞∑

j=−∞

%j+1�
%j

(
log

1
%

)qβ−1

%qs−1Mq
q (r%, f) d%

≤ C
1�
0

(
log

1
%

)qβ−1

%qs−1Mq
q (r%, f) d%.

This completes the proof of Proposition 3.1.
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Proposition 3.2. If f ∈ H(Ω), β > 0, s ≥ 0, and 0 < q ≤ ∞, then for
any 0 ≤ r < 1,

Mq(r,Rβ,sf) ≤ C(1− r)−βMq(r, f).

Proof. We first treat the special case Ω = U , the unit disc in C.
For 0 < η < 1, let Sη(θ) be the Stoltz approximation domain. More

precisely, it is an open subset of U bounded by the two tangents from the
point eiθ to the circle with center 0 and radius η, together with the longer arc
of this circle between the points of contact. Let β > 0, s ≥ 0, and 0 ≤ % < 1.
We claim that

|Rβ,sf(%eiθ)| ≤ C(1− %)−β sup
z∈Sη(θ)

|f(z)|, ∀f ∈ H(U).

Assume β = m is a positive integer and let f ∈ H(U). It follows from

Rm,sf(z) =
(
z
d

dz
+ s

)m
f(z)

and the Cauchy integral formula that

(3.3) Rm,sf(z) =
1

2πi

�
Γ

P (ζ, z)f(ζ)
(ζ − z)m+1 dζ,

where P (ζ, z) is a polynomial of ζ and z, and

Γ = Γ (z) := {ζ ∈ C : |ζ − z| = η(1− |z|)/2}.
Let z = %eiθ. Since Γ ⊂ Sη(θ), we have

(3.4) |Rm,sf(%eiθ)| ≤ C(1− %)−m sup
z∈Sη(θ)

|f(z)|.

Now suppose β is a noninteger and s > 0. Pick the positive integer m
such that β < m < β + 1. Since

Rβ,sf = Rm−β,sR
m,sf

and log(1/x) ≥ 1− x for x > 0, it can be deduced from (3.2) and (3.4) that

|Rβ,sf(%eiθ)| ≤ C
1�
0

(
log

1
r

)m−β−1

rs−1|Rm,sf(r%eiθ)| dr

≤ C
1�
0

(1− r)m−β−1rs−1

(1− r%)m
dr sup

z∈Sη(θ)
|f(z)|

≤ C(1− %)β sup
z∈Sη(θ)

|f(z)|.

This proves the claim.
Fix 0 < r < 1, let g = fr = f(rx) and gζ(λ) = g(λζ) for λ ∈ C and

ζ ∈ b, the Bergman–Shilov boundary. Then gζ ∈ H(U). By the claim and
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Hardy–Littlewood maximum theorem, we have

Mq
q (r,Rβ,sgζ) ≤ C(1− r)−βq‖gζ‖qq.

Integrating both sides over b, from the formulas (Rβ,sgζ)(λ) = (Rβ,s)g(λζ)
and

(3.5)
1

2π

�
b

dσ(ζ)
2π�
0

h(eiθζ) dθ =
�
b

h(ζ) dσ(ζ), h ∈ L1(σ),

we get the desired inequalities.

Remark 3.3. Note that if s = 0, the polynomial P (ζ, z) in (3.4) has a
factor z, so that the result can be strengthened for s = 0:

Mq(r,Rβ,0f) ≤ Cr(1− r)−βMq(r, f).

Proposition 3.4. Let Ω be a bounded symmetric domain and 0 < q
≤ ∞. If f ∈ H(Ω) with f(0) = 0, then r−1Mq(r, f) is a nondecreasing
continuous function of r ∈ (0, 1).

Proof. There are two cases to consider.

Case (i): Ω = U . Since f is holomorphic in U and f(0) = 0, we can
take h ∈ H(U) such that

f(z) = zh(z), z ∈ U.
Thus r−1Mq(r, f) = Mq(r, h), which is a nondecreasing continuous function
of r ∈ (0, 1).

Case (ii): general case. Fix 0 < r < 1, and let fζ(λ) = f(λζ) for λ ∈ C
and ζ ∈ b. Then fζ ∈ H(U). From case (i), we know that r−1Mq(r, fζ) is a
nondecreasing continuous function of r ∈ (0, 1). Namely, for 0 < r < %,

r−1
{

1
2π

2π�
0

|f(reiθζ)|q dθ
}1/q

≤ %−1
{

1
2π

2π�
0

|f(%eiθζ)|q dθ
}1/q

.

On taking qth powers and applying �
Ω
·dσ(ζ) to both sides, from (3.5) we

deduce that r−qMq
q (r, f) ≤ %−qMq

q (%, f), so that

r−1Mq(r, f) ≤ %−1Mq(%, f)

for any 0 < r < % and 0 < q < ∞. By the limit process, this also holds for
q =∞.

Now, we come to the proof of the main results.

Proof of Theorem 1.1. The inequality “&” in Theorem 1.1 is a direct
corollary of Remark 3.3, the fact that f(0) = Mq(0, f), and the monotonicity
of Mq(r, f).
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To prove the converse, we first consider the case of 0 < p < ∞. Define
u = min{q, 1}. Let r = spβ+1. Then for any f ∈ H(Ω) we have

1�
0

(1− r)−1ϕp(r)Mp
q (r,Rβf) dr ≤ C

1�
0

spβ(1− s)−1ϕp(s)Mp
q (s,Rβf) ds.

Set h(r) = r−1Mq(r, f). Since Rβ = Rβ,0 and 1 ≤ r−u for any r ∈ (0, 1) and
u > 0, Proposition 3.1 implies

1�
0

(1− r)−1ϕp(r)Mp
q (r,Rβf) dr

≤ C
1�
0

rpβ(1− r)−1ϕp(r)
{ 1�

0

(
log

1
%

)βu−1

%u−1h(r%)u d%
}p/u

dr.

By Lemma 2.3 and Proposition 3.4, this can be controlled by

C

1�
0

r−p(1− r)pβ−1ϕp(r)Mp
q (r, f) dr.

That is,

1�
0

(1− r)−1ϕp(r)Mp
q (r,Rβf) dr ≤ C

1�
0

r−p(1− r)pβ−1ϕp(r)Mp
q (r, f) dr.

Assume that f(0) = 0; then f = Rβ(Rβf). By replacing f with Rβf in
the above inequality, we get

1�
0

(1− r)−1ϕp(r)Mp
q (r, f) dr .

1�
0

(1− r)−1ϕp(r)Mp
q (r,Rβ(Rβf)) dr

.
1�
0

(1− r)pβ−1ϕp(r)Mp
q (r,Rβf) dr.

Now, replacing f by f − f(0), since Rβ(f − f(0)) = Rβf , we get

1�
0

(1− r)−1ϕp(r)Mp
q (r, f) dr . |f(0)|+

1�
0

(1− r)pβ−1ϕp(r)Mp
q (r,Rβf) dr.

When p =∞, we claim that for any s, u > 0,

(3.6)
1�
0

(log (1/%))βu−1%su−1

(1− r%)βuϕu(r%)
d% ≤ C 1

ϕu(r)
.
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In fact, by (2.5) and the inequality in [4, p. 625],
1�
0

(log (1/%))βu−1%su−1

(1− r%)βuϕu(r%)
d%

≤ C (1− r)au
ϕu(r)

1�
0

(log (1/%))βu−1%su−1

(1− r%)βu+au d% ≤ C 1
ϕu(r)

.

If Mq(r,Rβf) = O(1/((1− r)βϕ(r))) as r → 1−, then from (3.1) and
(3.4),

Mq(r, f − f(0)) ≤ C
{ 1�

0

(
log

1
%

)βu−1

%−1Mu
q (r%,Rβf) d%

}1/u

≤ C 1
ϕ(r)

.

The “only if” part follows from Proposition 3.2.

Proof of Theorem 1.2. This follows from the obvious modification of the
proof of Theorem 1.1. The details are omitted.

4. The extension of Theorem A. With the same approach as in the
last section, we now extend Theorem A to the weighted case and to more
general fractional derivative operators.

We define

Jβ,tf(z) =
∑

k,v

Γ (k + β + t)
Γ (k + t)

ak,νϕk,ν(z),

Jβ,tf(z) =
∑

k,v

Γ (k + t)
Γ (k + β + t)

ak,νϕk,ν(z).

In particular f [β] = Jβ,1f , f[β] = Jβ,1f . Clearly

(4.1) Jβ,tf(z) = (f [β+t−1])[t−1], Jβ,tf(z) = (f[β+t−1])
[t].

It is known [5] that f [β] and f[β] are holomorphic on Ω, hence so are Jβ,tf(z),
Jβ,tf(z).

Theorem 4.1. Assume f ∈ H(Ω), ϕ is normal , 0 < p, q ≤ ∞, β > 0,
t > 0. Then

1�
0

(1− r)−1ϕp(r)Mp
q (r, f) dr '

1�
0

(1− r)pβ−1ϕp(r)Mp
q (r, Jβ,tf) dr.

When p =∞, the inequality is understood to be its limit case:

Mq(r, f) = O(ϕ−1(r)) ⇔ Mq(r, Jβ,sf) = O((1− r)−βϕ−1(r))

as r → 1−.
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In the special case ϕ(r) = (1− r)k (k > 0) and Jβ,t = J [β], Theorem 4.1
belongs to Stoll [8] and Shi [6].

Proof of Theorem 4.1. We first prove the special case Jβ,tf = f [β]. The
estimate “&” is trivial from the inequalityMq(r2, f [β]) ≤ C(1−r)−βMq(r, f)
(see [6]).

To prove the converse, we apply Theorem 1 of [6], which can be written
as

(4.2) rβMq(r, f[β]) ≤ C
{ r�

0

(r − %)uβ−1Mu
q (r%, f) d%

}1/u
,

where u = min{q, 1}. It is evident that

1�
0

(1− r)−1ϕp(r)Mp
q (r, f[β]) dr ≤ C

1�
0

rβ(1− r)−1ϕp(r)Mp
q (r, f[β]) dr.

If 0 < p <∞, then by (4.2) and Lemma 2.2 we have

1�
0

(1− r)−1ϕp(r)Mp
q (r, f[β]) dr

≤ C
1�
0

(1− r)−1ϕp(r)
{ r�

0

(r − %)uβ−1Mu
q (r%, f) d%

}p/u
dr

≤ C
1�
0

(1− r)pβ−1ϕp(r)Mp
q (r, f) dr.

Replacing f by f [β] we get

1�
0

(1− r)−1ϕp(r)Mp
q (r, f) dr ≤ C

1�
0

(1− r)pβ−1ϕp(r)Mp
q (r, f [β]) dr.

If p =∞, we claim that for any u > 0,

r−β
{ r�

0

(r − %)βu−1

(1− %)βuϕu(%)
d%

}1/u

≤ C 1
ϕ(r)

.

Indeed,

r−uβ
r�
0

(r − %)βu−1

(1− %)βuϕu(%)
dr =

1�
0

(1− s)βu−1

(1− rs)βuϕu(rs)
ds

≤ C (1− r)au
ϕu(r)

1�
0

(1− s)βu−1

(1− rs)βu+au ds ≤ C
1

ϕu(r)
.
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It follows from the claim and (4.2) that Mq(r, f [β]) = O(1/((1− r)βϕ(r)))
implies Mq(r, f) = O(1/ϕ(r)).

Now we consider the general case. Notice that Jα,tf = (f [α+t−1])[t−1];
applying the just proved results twice we have
1�
0

(1− r)−1ϕp(r)Mp
q (r, Jα,tf) dr '

1�
0

(1− r)p(s−1)−1ϕp(r)Mp
q (r, f [α+t−1]) dr

'
1�
0

(1− r)−1ϕp(r)Mp
q (r, f) dr.

This completes the proof.
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