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Geometric characterization for affine
mappings and Teichmüller mappings

by

Zhiguo Chen (Hangzhou)

Abstract. We characterize affine mappings on the unit disk and on rectangles by
module conditions. The main result generalizes the classic Schwarz lemma. As an applica-
tion, we give a sufficient condition for a K-quasiconformal mapping on a Riemann surface
to be a Teichmüller mapping.

1. Preliminaries. Let Γ be a family of curves in the plane. Each γ ∈ Γ
is a countable union of open arcs, closed arcs or closed curves, and every
closed subarc is rectifiable. We shall define the extremal length λ(Γ ) of Γ .

A function %, defined on the whole plane, is called admissible if the
following conditions are satisfied:

(i) % is a non-negative Borel function,
(ii) A(%) =

���
C %

2 dx dy 6= 0,∞.

If such a % is measurable as a function of arc length on γ, set

(1.1) Lγ(%) = �
γ

% |dz|.

Otherwise, set Lγ(%) =∞. Define

L(%) = inf
γ∈Γ

Lγ(%),(1.2)

λ(Γ ) = sup
%

L(%)2

A(%)
,(1.3)

where the supremum is taken over all admissible %. We write Γ1 < Γ2 if
for every γ2 ∈ Γ2 there is a γ1 ∈ Γ1 which is a subarc of Γ2. By the above
definitions, the extremal length is monotonic:
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Proposition 1.1. If Γ1 < Γ2, then λ(Γ1) ≤ λ(Γ2).

Let Γ1, Γ2 be two families of curves. Set

Γ1 + Γ2 = {γ1 + γ2 | γ1 ∈ Γ1, γ2 ∈ Γ2}.
The extremal length of curve families has the following subadditivity prop-
erty:

Proposition 1.2. If Γ1 and Γ2 lie in mutually disjoint sets, then

λ(Γ1 + Γ2) ≥ λ(Γ1) + λ(Γ2).

For details about the properties of extremal length we refer to [1].
A quadrilateral consists of a Jordan domainQ and a sequence z1, z2, z3, z4

of boundary points of Q. The points zi are called the vertices of the quadri-
lateral, and divide its boundary into four Jordan arcs, called the sides of the
quadrilateral. The arcs z1z2 and z3z4 are called the a-sides and the other
two the b-sides of Q. Let Γa be the family of curves that connect the a-sides
in Q, and Γb the family of curves that connect the b-sides in Q. Define the
module of the quadrilateral Q(z1, z2, z3, z4) to be λ(Γa), the extremal length
of Γa. That is,

modQ(z1, z2, z3, z4) = sup
%

(infγ∈Γa Lγ(%))2

A(%)
.

For example, for a rectangle with width a and height b, its module is a/b.
If % = 1 in (1.1), then Lγ(%) is the euclidean length of γ, simply denoted

by |γ|. We call
sa = sa(Q) = inf

γ∈Γb
|γ|

the distance between the a-sides of Q. The distance sb between the b-sides
is defined analogously. Let m(Q) be the euclidean area of Q. The following
Rengel inequality plays an important role in this paper.

Proposition 1.3 ([7]). The module of a quadrilateral Q satisfies the
double inequality

(1.4)
(sb(Q))2

m(Q)
≤ modQ ≤ m(Q)

(sa(Q))2 .

Remark 1.4. This inequality is usually called Rengel’s inequality in the
literature. However, it was first given by H. Grötzsch (see [6]).

The theory of quasiconformal mappings is closely related with the study
of extremal length. In fact, the geometric definition of a quasiconformal
mapping is based on moduli of quadrilaterals, which are represented by ex-
tremal length. Precisely, a function f(z), which is a sense-preserving homeo-
morphism of Ω onto Ω′, is K-quasiconformal if for every quadrilateral
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Q = Q(z1, z2, z3, z4) ⊂ Ω,

(1.5)
1
K

modQ ≤ mod f(Q) ≤ K modQ.

Denote the unit disk by∆. It follows from the Riemann mapping theorem
that every quadrilateral Q(z1, z2, z3, z4) can be mapped onto a quadrilateral
∆(ζ1, ζ2, ζ3, ζ4) with domain ∆ and vertices ζ1, ζ2, ζ3, ζ4 on ∂∆. By Schwarz–
Christoffel,

Φ(ζ) =
ζ

� dζ

(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)(ζ − ζ4)

conformally maps ∆(ζ1, ζ2, ζ3, ζ4) onto a rectangle. By combining the above
mappings, we can map an arbitrary quadrilateral conformally onto a rect-
angle. Therefore, from conformal invariance of extremal length, the module
of any quadrilateral can always be represented by that of its conformally
equivalent rectangle.

Define the module of an annulus

(1.6) A(r1, r2) = {z | r1 ≤ |z| ≤ r2}
to be the extremal length of the family Γ of curves that connect {z | |z| = r1}
and {z | |z| = r2} in A(r1, r2). Since λ(Γ ) is conformally invariant and every
ring domain can be mapped conformally onto an annulus, the number

(1.7) modA(r1, r2) =
1

2π
log

r2

r1

represents the moduli of all ring domains which are conformally equivalent
to A.

Define the module of a sector

(1.8) A(r1, r2; θ1, θ2) = {z | r1 ≤ |z| ≤ r2, θ1 ≤ arg z ≤ θ2}
to be the extremal length of the family Γ of curves that connect {z | |z| = r1}
and {z | |z| = r2} in A(r1, r2; θ1, θ2). Then

(1.9) modA(r1, r2; θ1, θ2) =
1

θ2 − θ1
log

r2

r1
.

2. Affine mappings on the unit disk ∆. Quasiconformality of a
domain is characterized not only by the module of a quadrilateral Q as
in inequality (1.5), but also by that of horizontal rectangles. A horizontal
rectangle is a quadrilateral whose a-sides are parallel to the x-axis and b-sides
are parallel to the y-axis. For the relevant results, we refer to [3] and [4]. In
this section, we shall prove

Theorem 2.1. Let f(z) be a sense-preserving homeomorphism of the
unit disk ∆ onto itself , with normalization f(0) = 0. If
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(a)
1
K

modA ≤ mod f(A),

where A stands for all A(r1, r2) and A(r1, r2; θ1, θ2) as in (1.6) and (1.8),
and

(b) lim
z→0

|f(z)|
|z|1/K = 1,

then
f(z) = λz|z|1/K−1 (|λ| = 1).

In view of Theorem 2.1, we immediately generalize the Schwarz lemma
to sense-preserving homeomorphisms.

Corollary 2.2. Assume that f(z) is a sense-preserving homeomor-
phism of the unit disk ∆ onto itself , with normalization f(0) = 0. If f
satisfies conditions (a) and (b), where K = 1 in (a), then

f(z) = λz (|λ| = 1).

For the proof of the theorem, we need three lemmas.

Lemma 2.3. If f satisfies condition (a) of Theorem 2.1, then it is abso-
lutely continuous on {|z| = r}.

Proof. Let A = {z = reiθ | r1 < r < r2, 0 ≤ θ < 2π} be an annulus
in ∆. Set

q(t) = m(f(At)),

where At = {z = reiθ | r1 < r < t, 0 ≤ θ < 2π} and m(f(At)) is the
euclidean area of f(At). Obviously, q(t) is an increasing function of t and
thus has a finite derivative q′(t) for all t, r1 < t < r2, except for a set of
zero linear measure. Assume that q′(t0) exists and is finite. We shall prove
that f(t0eiθ) is absolutely continuous on [0, 2π].

We first choose a positive δ such that t0+δ < r2. Let (θk, θ∗k), k= 1, . . . , n,
be an arbitrary system of non-intersecting open subintervals of [0, 2π]. Define
a sector (a special quadrilateral) by

Gδk = {z = reiθ | t0 < r < t0 + δ, θk < θ < θ∗k}.
Then by (1.9),

(2.1) modGδk =
1

θ∗k − θk
log

t0 + δ

t0
.

For the module of the image of Gδk, from the right hand side of Rengel’s
inequality we have

(2.2) mod f(Gδk) ≤ m(f(Gδk))
(dδk)2

,
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where dδk denotes the euclidean distance between the a-sides of f(Gδk). These
sides converge to the points f(t0eiθk) and f(t0eiθ

∗
k) as δ → 0, and so

(2.3) lim
δ→0

dδk = |f(t0eiθ
∗
k)− f(t0eiθk)|.

According to condition (a), we have

(2.4)
1
K

modGδk ≤ mod f(Gδk).

From (2.2), (2.4) and (2.1), we get

(dδk)2

m(f(Gδk))
≤ K(θ∗k − θk)

log(1 + δ/t0)
, k = 1, . . . , n.

Noticing that log(1 + δ/t0) ≥ δ/(2t0) for δ < t0 and adding the above
inequalities over k we have

(2.5)
n∑

k=1

(dδk)2

m(f(Gδk))
≤ 2Kt0

n∑

k=1

θ∗k − θk
δ

,

By the Schwarz inequality,
( n∑

k=1

dδk

)2
≤

n∑

k=1

(dδk)2

m(f(Gδk))

n∑

k=1

m(f(Gδk)).

Observing that
n∑

k=1

m(f(Gδk)) ≤ q(t0 + δ)− q(t0),

we obtain

(2.6)
( n∑

k=1

dδk

)2
≤ 2Kt0

q(t0 + δ)− q(t0)
δ

n∑

k=1

|θ∗k − θk|.

Letting δ → 0, from (2.3) and (2.6) we obtain
( n∑

k=1

|f(t0eiθ
∗
k)− f(t0eiθk)|

)2
≤ 2Kt0q′(t0)

n∑

k=1

|θ∗k − θk|.

This completes the proof of the lemma.

Define
R(r) = {z | r ≤ |z| ≤ 1}.

There exists a conformal maping Φr such that

Φr ◦ f(R(r)) = {ζ | φ(r) ≤ |ζ| ≤ 1}.
Set gr = Φr ◦ f . We shall give the properties of φ(r), which was first consid-
ered by H. Grötzsch for f K-quasiconformal (see [5] and [2]). However, it is
not obvious from conditions (a) and (b) that the sense-preserving mapping
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f in Theorem 2.1 is K-quasiconformal. Following Grötzsch’s idea, we prove
Lemma 2.4 directly by extremal length methods.

Lemma 2.4. If f satisfies condition (a), then φ(r)/r1/K is an increasing
function on (0, 1], and φ(r)/r1/K ≤ 1.

Proof. Assume that 0< r1 < r2 ≤ 1. Then gr1(z) maps {z | r1 ≤ |z| ≤ 1}
onto {ζ | φ(r1) ≤ |ζ| ≤ 1}. The definition of moduli of ring domains together
with Proposition 1.2 yields

(2.7) mod gr1{z | r1 ≤ |z| ≤ r2}+ mod gr1{z | r2 ≤ |z| ≤ 1}

≤ mod gr1{z | r1 ≤ |z| ≤ 1} =
1

2π
log

1
φ(r1)

.

From conformal invariance of extremal length, it follows that

mod gr1{z | r2≤ |z| ≤ 1} = mod f{z | r2≤ |z| ≤ 1}(2.8)

= mod gr2{z | r2≤ |z| ≤ 1} =
1

2π
log

1
φ(r2)

.

Substituting (2.8) into (2.7), we have

(2.9) mod gr1{z | r1 ≤ |z| ≤ r2} ≤
1

2π
log

φ(r2)
φ(r1)

.

On the other hand, from condition (a) it follows that

(2.10) mod gr1{z | r1≤ |z| ≤ r2} = mod f{z | r1≤ |z| ≤ r2}≥
1

2πK
log

r2

r1
.

Combining (2.9) with (2.10), we obtain
(
r2

r1

)1/K

≤ φ(r2)
φ(r1)

, that is,
φ(r1)

r
1/K
1

≤ φ(r2)

r
1/K
2

.

So, the monotonicity of φ(r)/r1/K is proved. From the above inequality, by
letting r2 = 1, we get φ(r)/r1/K ≤ 1 for r ∈ (0, 1]. This completes the proof
of the lemma.

Lemma 2.5. If f satisfies condition (b), then

lim
r→0

φ(r)
r1/K

= 1.

Proof. For any ε > 0, there exists δ > 0 such that whenever r < δ,

1− ε < |f(reiθ)|
r1/K

< 1 + ε.

Therefore,

{w | (1 + ε)r1/K < |w| ≤ 1} ⊂ f(R(r)) ⊂ {w | (1− ε)r1/K < |w| ≤ 1}.
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By Proposition 1.1,

1
2π

log
1

(1 + ε)r1/K
≤ mod f(R(r)) ≤ 1

2π
log

1
(1− ε)r1/K

.

Therefore,

1
2π

log
1

(1 + ε)r1/K
≤ 1

2π
log

1
φ(r)

≤ 1
2π

log
1

(1− ε)r1/K
.

That is,

1− ε ≤ φ(r)
r1/K

≤ 1 + ε.

This shows limr→0 φ(r)/r1/K = 1.

Proof of Theorem 2.1. From Lemmas 2.4 and 2.5, we obtain

φ(r) = r1/K , 0 ≤ r ≤ 1.

This means
|gr(z)| = |z|1/K (r ≤ |z| ≤ 1).

Taking r = 1/n, we write

(2.11) gn(z) = |z|1/Keihn(θ) (1/n ≤ |z| ≤ 1),

where θ = arg z and hn is a homeomorphism from [0, 2π] onto [θn, θn + 2π]
(0 ≤ θn < 2π). According to Lemma 2.3, f is absolutely continuous on
{|z| = r}, and so is gn. Therefore, h′n(θ) exists almost everywhere and is
integrable on [0, 2π], and

(2.12)
2π

�
0

h′n(θ) dθ = 2π.

Direct computation on generalized derivatives of gn(z) in (2.11) shows

(2.13)
∂zgn(z) =

z

2|z|2+1/K
e−ihn(θ)

(
1
K

+ h′n(θ)
)
,

∂zgn(z) =
z

2|z|2+1/K
e−ihn(θ)

(
1
K
− h′n(θ)

)
.

Since gn is sense-preserving,

(2.14) |∂zgn(z)| > |∂zgn(z)|.
Therefore, from (2.13) and (2.14) we infer that h′n(θ) > 0. Set

P = {z | r ≤ |z| ≤ r + dr, θ ≤ arg z ≤ θ + dθ}.
Then

gn(P ) = {ζ | r1/K ≤ |ζ| ≤ (r + dr)1/K , hn(θ) ≤ arg ζ ≤ hn(θ) + h′n(θ)dθ}.
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By conformal invariance of extremal length and condition (a), we have

mod gn(P ) ≥ 1
K

modP.

From the above inequality, it follows that h′n(θ) ≤ 1. Thus,

(2.15) 0 < h′n(θ) ≤ 1.

From (2.12) and (2.15), we obtain h′n(θ) = 1 a.e. on [0, 2π). Therefore,
hn(θ) = θn + θ, and we can rewrite (2.11) as follows:

(2.16) gn(z) = z|z|1/K−1eiθn (1/n ≤ |z| ≤ 1).

Since θn ∈ [0, 2π), there exists a subsequence {θnk} such that limk→∞ θnk
= θ0. Therefore,

lim
k→∞

gnk(z) = g(z) = z|z|1/K−1eiθ0 (locally uniformly in ∆− {0}).

So,

lim
k→∞

Φnk(w) = lim
k→∞

gnk ◦ f−1(w)

= g ◦ f−1(w) := Φ(w) (locally uniformly in ∆− {0}).
From compactness of the family of analytic functions, Φ is analytic in

∆− {0}. Observing that limw→0 Φ(w) = 0, we conclude that the origin is a
removable singular point and hence Φ is analytic in the unit disk. Since

lim
w→0

|Φ(w)|
|w| = lim

z→0

Φ ◦ f(z)
f(z)

= lim
z→0

|z|1/K
|f(z)| = 1,

by the Schwarz lemma we have Φ(w) = λw. Thus, f(z) = λz|z|1/K−1 where
|λ| = 1.

Corollary 2.6. If f is K-quasiconformal mapping of ∆ onto itself
which satisfies f(0) = 0 and

lim
z→0

|f(z)|
|z|K = 1,

then f(z) = λz|z|K−1.

Problem 2.7. If we replace conditions (a) and (b) by

(a∗) mod f(A) ≤ K modA for all A ⊂ ∆,

(b∗) lim
z→0

|f(z)|
|z|K = 1,

is it true that f(z) = λz|z|K−1?
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3. Affine mappings on rectangles

Lemma 3.1 ([1]). Let R = {z | 0 ≤ x ≤ a, 0 ≤ y ≤ 1}. Let C be a curve
in R that connects the a-sides of R and hence divides R into two parts R1

and R2. Then R1 and R2 are rectangles if and only if

modR1 + modR2 = modR = a.

Lemma 3.2. Let f be a sense-preserving homeomorphism which maps
{z | r0 ≤ |z| ≤ 1} onto {w | r1/K

0 ≤ |w| ≤ 1}. If

(3.0)
1
K

modA ≤ mod f(A)

for all A ⊂ {z | r0 ≤ |z| ≤ 1} appearing in (1.6) and (1.8), then

f(z) = λz|z|1/K−1 (|λ| = 1).

Proof. Extend f by setting

f(z) = r
2n/K
0 /f(r2n

0 /z), rn+1
0 ≤ |z| ≤ rn0 , n = 1, 2, . . .

Then the extended f is a sense-preserving homeomorphism of ∆ onto itself
with f(0) = 0. Furthermore, it is not difficult to prove that the extended f
satisfies (a) and (b). Hence, by Theorem 2.1,

f(z) = λz|z|1/K−1.

Theorem 3.3. Assume that f is a sense-preserving homeomorphism
which maps the rectangle R = {z | 0 ≤ x ≤ a, 0 ≤ y ≤ 1} onto f(R) =
{w | 0 ≤ u ≤ a′, 0 ≤ v ≤ 1}. If for every horizontal subrectangle Rh (⊂ R),

(3.1)
1
K

modRh ≤ mod f(Rh),

then

(3.2) f(z) =
1
K
x+ iy,

where K = modR/mod f(R) = a/a′.

Proof. Set R1 = {z | 0 ≤ x ≤ a1, 0 ≤ y ≤ 1}, R2 = {z | a1 ≤ x ≤ a,
0 ≤ y ≤ 1}. By (3.1), we have

1
K

modR1 ≤ mod f(R1),
1
K

modR2 ≤ mod f(R2).

Therefore,

(3.3)
1
K

modR =
1
K

(modR1 + modR2) ≤ mod f(R1) + mod f(R2).

On the other hand, by Proposition 1.2,

(3.4) mod f(R1) + mod f(R2) ≤ mod f(R) =
1
K

modR.
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Combining (3.3) with (3.4), we have

mod f(R1) + mod f(R2) = mod f(R).

By Lemma 3.1, f(R1) and f(R2) are rectangles. That is,

(3.5) f(x) = f(x+ i), 0 ≤ x ≤ a.
It follows from (3.5) that f can be extended to the strip

S = {z | 0 ≤ x ≤ a}.
By the extremal length method, it is not difficult to prove that for the
extended function f , which maps S onto another strip

S′ = {w | 0 ≤ u ≤ a′},
inequality (3.1) still holds for any Rh ⊂ S. Set

G = {ζ | e−a ≤ |ζ| ≤ 1}, G′ = {η | e−a′ ≤ |η| ≤ 1}.
Then {S, e−a+z}, {S′, e−a′+w} are universal covering surfaces of G and G′

respectively.
The projective mapping of the function f ,

(3.6) g(ζ) = e−a
′+f(a+log ζ),

is a sense-preserving homeomorphism and satisfies inequality (3.0). In view
of Lemma 3.2, we have

(3.7) g(ζ) = λζ|ζ|1/K−1 (|λ| = 1).

Combining (3.6) with (3.7) and observing that f(0) = 0, we obtain

f(z) =
1
K
x+ iy.

This ends the proof of the theorem.

The above theorem yields immediately

Corollary 3.4. Let f be a sense-preserving homeomorphism which
maps a rectangle R onto a quadrilateral Q and satisfies the following two
conditions:

(c) K−1 modRh ≤ mod f(Rh) for every horizontal subrectangle Rh ⊂ R,

(d) K−1 modR = modQ.

Then f is K-quasiconformal and is a Teichmüller mapping.

Remark 3.5. It might seem that Corollary 3.4 should have a symmetric
form, with (c) and (d) replaced respectively by

modRh ≤ K mod f(Rh),(c∗)

modR = K mod f(Rh).(d∗)
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But unfortunately, this is not the case. In fact, we can find a counterexample
in [3], where f is (K +

√
K2 − 1)-quasiconformal.

4. Geometric characterization for Teichmüller mappings. Let
S1 and S2 be two Riemann surfaces. Let ω be a holomorphic quadratic
differential on S1. A quasiconformal mapping f from S1 onto S2 is called
a Teichmüller mapping if its Beltrami differential µfdz/dz equals kω/ω.
In this section, we want to characterize Teichmüller mappings by a local
property.

Let D1 and D2 be simply connected domains of hyperbolic type. From
the Riemann mapping theorem, there exist conformal mappings Φ1 and Φ2

which map D1 and D2 respectively onto ∆.

Theorem 4.1. Suppose that f is a K-quasiconformal mapping from D1

onto D2. To z0 ∈ D1, there correspond conformal mappings Φ1 and Φ2 as
above with Φ1(z0) = 0 and Φ2(f(z0)) = 0. If either

(4.1) lim
z→z0

|f(z)− f(z0)|
|z − z0|1/K

=
|Φ′1(z0)|1/K
|Φ′2(f(z0))| ,

or

(4.2) lim
z→z0

|f(z)− f(z0)|
|z − z0|K

=
|Φ′1(z0)|K
|Φ′2(f(z0))| ,

then f is a Teichmüller mapping.

Proof. Let w = f(z), ζ = Φ1(z), η = Φ2(w). Set g(ζ) = Φ2 ◦ f ◦ Φ−1
1 (ζ).

From (4.1) and (4.2), it is not difficult to prove that

either lim
ζ→0

|g(ζ)|
|ζ|1/K = 1 or lim

ζ→0

|g(ζ)|
|ζ|K = 1.

Therefore, by Theorem 2.1 and Corollary 2.6, g(ζ) is an affine mapping.
Thus, f is a Teichmüller mapping.

The above theorem yields immediately

Corollary 4.2. Suppose that f is a K-quasiconformal mapping of ∆
onto itself. If either

(4.3) lim
z→z0

|f(z)− f(z0)|
|z − z0|1/K

=
1− |f(z0)|2

(1− |z0|2)1/K

or

(4.4) lim
z→z0

|f(z)− f(z0)|
|z − z0|K

=
1− |f(z0)|2
(1− |z0|2)K

,

then f is a Teichmüller mapping.

Theorem 4.3. Let (∆,π1) and (∆,π2) be universal covering surfaces
of S1 and S2 respectively. Let f̃ : ∆ → ∆ be a lift of a K-quasiconformal



82 Z. G. Chen

mapping f of S1 onto S2. If for a neighbourhood V of a lift of f(p0), either

lim
p→p0

|(π2|V )−1 ◦ f(p)− (π2|V )−1 ◦ f(p0)|
|(π1|f̃−1(V ))

−1(p)− (π1|f̃−1(V ))
−1(p0)|1/K

=
1− |(π2|V )−1 ◦ f(p0)|2

(1− |(π1|f̃−1(V ))
−1(p0)|2)1/K

or

lim
p→p0

|(π2|V )−1 ◦ f(p)− (π2|V )−1 ◦ f(p0)|
|(π1|f̃−1(V ))

−1(p)− (π1|f̃−1(V ))
−1(p0)|K =

1− |(π2|V )−1 ◦ f(p0)|2
(1−|(π1|f̃−1(V ))

−1(p0)|2)K

then f is a Teichmüller mapping.

Proof. By hypothesis, f̃ is a K-quasiconformal mapping of ∆ onto itself
and satisfies (4.3) or (4.4). In view of Corollary 4.2, f̃ is a Teichmüller
mapping. Hence so is f .
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