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Multivariate spectral multipliers for
systems of Ornstein–Uhlenbeck operators

by

Błażej Wróbel (Wrocław)

Abstract. Multivariate spectral multipliers for systems of Ornstein–Uhlenbeck op-
erators are studied. We prove that Lp-uniform, 1 < p < ∞, spectral multipliers extend to
holomorphic functions in some subset of a polysector, depending on p. We also character-
ize L1-uniform spectral multipliers and prove a Marcinkiewicz-type multiplier theorem. In
the appendix we obtain analogous results for systems of Laguerre operators.

1. Introduction. In this paper we study multivariate spectral mul-
tipliers mainly associated with the system of one-dimensional Ornstein–
Uhlenbeck operators

Ln = −1

2

∂2

∂x2n
+ xn

∂

∂xn
, n = 1, . . . , d.

More generally one could consider each of the operators Ln, n = 1, . . . , d, to
be kn-dimensional; however to avoid unnecessary notational complications,
at first we restrict to the one-dimensional situation. Nevertheless, the results
we prove later on actually admit arbitrary dimension of the operators Ln
(see Corollary 3.9).

We consider two problems. The first concerns the holomorphy of joint
spectral multipliers of the system L = (L1, . . . ,Ld). We start by proving a
fairly general theorem for a system L = (L1, . . . , Ld) of non-negative op-
erators with discrete spectra (Theorem 3.1). Namely, we show that, if, for
each Ln, n = 1, . . . , d, their Lp, p > 1, uniform spectral multipliers have the
holomorphic extension property, then the same is true for the Lp, p > 1, uni-
form joint spectral multipliers of the system L. Next we prove an extension
theorem for Lp-uniform, p ∈ [1,∞) \ {2}, joint spectral multipliers of the
system L (Theorem 3.8). Item (i) of Theorem 3.8 is a straightforward con-
sequence of Theorem 3.1 and [2, Theorem 3.5(i)]. Item (ii) of Theorem 3.8
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is proved by enhancing the techniques from [2]. Lemmata 3.14, 3.18 used
in that proof are stated in a slightly more general form. We use this later
to prove an extension theorem concerning the holomorphy of multipliers of
some systems built on L, for instance, (L1,L1 + L2) (Theorem 3.21). The
material of Section 3 is to some extent a multivariate generalization of the
results from [2]. It is worth mentioning that the methods presented here
are, to a high degree, also applicable to the more general class of elliptic
self-adjoint operators considered in [2, Section 4].

The second topic we study is a Marcinkiewicz-type multiplier theorem
for the system L (Theorem 4.2). The results we obtain are multivariate
analogues of [7] and also an application of the methods of [13] for a system
of operators having 0 in their spectra.

Additionally, in the appendix we show how the techniques developed in
the present paper can be utilized to obtain similar results for the system
Lα = (Lα1

1 , . . . ,Lαdd ) of Laguerre operators of orders αn, given by

Lαnn = −xn
∂2

∂x2n
+ (αn + 1− xn)

∂

∂xn
, n = 1, . . . , d.

Here we rely on the methods developed in [10].

2. Preliminaries. We say that self-adjoint operators L1, . . . , Ld on some
space L2(X, ν) commute strongly (or that L = (L1, . . . , Ld) is a system
of strongly commuting operators on L2(X, ν)) if their spectral projections
commute pairwise. This is the case if and only if their resolvents commute
pairwise. If L is a system of strongly commuting operators, and m is a
function defined on the joint spectrum of L, then we can consider joint
spectral multipliers m(L) of L, defined via spectral integration. For details
the reader is referred to [6, Appendix 4].

We use the following notation. The symbol ‖ · ‖Lp(X,ν) denotes either
the Lp norm of a function on X with respect to a measure ν on X or the
Lp(X, ν) → Lp(X, ν) norm of an operator. The meaning should be clear
from the context. If X = Rd, we write Lp(ν). In addition, while considering
the Lebesgue measure we write Lp for short. Throughout the paper by a
measure we mean a Borel measure and by a measurable function we mean a
Borel measurable function.

The main results of the paper are given in the context of Lp(Rd, γ), where
γ is a Gaussian measure (to be specified later on) on the fixed d-dimensional
Euclidean space. The symbol p always denotes the exponent of the Lebesgue
space Lp(X, ν); throughout the paper we assume p ≥ 1.

Given a complex measure µ on Rd we denote by ‖µ‖M(Rd) its total vari-
ation. The symbol Rd+ will denote the set (0,∞)d. We write Nd, Nd+ for the
sets Zd ∩ [0,∞)d, Zd ∩ Rd+, respectively.
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If U is an open subset of Cd, we write H∞(U) for the vector space
of bounded functions on U, which are holomorphic as functions of several
variables. We equip this space with the supremum norm. For an angle 0 <
α < π, we denote by (Sα)

d the polysector

(Sα)
d = {(z1, . . . , zd) ∈ Cd : |arg(zn)| < α, n = 1, . . . , d},

and for ψ > 0, we write (Σψ)
d for the polystrip

(Σψ)
d = {(z1, . . . , zd) ∈ Cd : |Im(zn)| < ψ, n = 1, . . . , d}.

If σ = (σ1, . . . , σd) and ρ = (ρ1, . . . , ρd) are multi-indices we will write
σ < ρ whenever σn < ρn, n = 1, . . . , d. The symbol 1 will denote the vector
(1, . . . , 1). Following [2] we set φ∗p = arcsin |2/p−1|. We say that a tempered
distribution k is an Lp convolutor if the convolution operator K(f) = k ∗ f
extends to a bounded operator on Lp.We denote by ‖k‖conv,p the Lp norm of
the extension ofK. If k is an Lp convolutor, we say that k̂ is an Lp multiplier ,
and write ‖k̂‖Mp for ‖K‖Lp . Throughout the paper the symbol C (possibly
with a subscript) denotes a constant independent of significant quantities,
whose precise value we do not need.

The operators Ln, n = 1, . . . , d, are known to be essentially self-adjoint on
L2(R, γn), where γn is the Gaussian measure γn(xn) = π−1/2e−x

2
n .Moreover,

their closures, which by a slight abuse of notation are denoted by the same
symbols, have the spectral resolution

Lnf(xn) =
∑
r∈N

r〈f, H̃r〉L2(R,γn)H̃r(xn), f ∈ L2(R, γn),

defined on the usual domain

Dom(Ln) =
{
f ∈ L2(R, γn) :

∑
r∈N

r2|〈f, H̃r〉L2(R,γn)|
2 <∞

}
.

Here H̃r = ‖Hr‖−1L2(R,γn)Hr, with Hr being the one-dimensional Hermite
polynomial of degree r in the xn variable (see [12]). To define the operators
Ln on the space L2(γ) we use tensor products. Instead of Ln itself we con-
sider the tensor product of Ln with d − 1 identity operators on the spaces
L2(R, γn′), n′ 6= n, n′ = 1, . . . , d. To simplify notation we continue writing
Ln for these tensor product operators. Observe that Ln thus defined admits
the spectral resolution

(2.1) Lnf =
∑
k∈Nd

kn〈f, H̃k〉L2(γ)H̃k, f ∈ L2(γ).

where H̃k = H̃k1 ⊗ · · · ⊗ H̃kd , while γ is the Gaussian measure on Rd, i.e.
γ = γ1 ⊗ · · · ⊗ γd. The operator given by (2.1) is self-adjoint on the domain

Dom(Ln) =
{
f ∈ L2(γ) :

∑
k∈Nd

k2n|〈f, H̃k〉L2(γ)|2 <∞
}
.
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It is also easy to see that L = (L1, . . . ,Ld) is a system of strongly commuting
self-adjoint operators on L2(γ). For a bounded function m : [0,∞)d → C
define the joint spectral multiplier operator by
(2.2)
m(L)f = m(L1, . . . ,Ld)f =

∑
k∈Nd

m(k1, . . . , kd)〈f, H̃k〉L2(γ)H̃k, f ∈ L2(γ).

In Section 3 we also need to consider joint spectral multipliers of systems in
which some of the operators Ln are replaced by 0. These are defined similarly
as in (2.2) with 0’s in appropriate places as the arguments of m, for instance
m(L1, 0, . . . , 0)f =

∑
k∈Ndm(k1, 0, . . . , 0)〈f, H̃k〉L2(γ)H̃k, f ∈ L2(γ), etc.

The following is our analogue of the definition of an Lp uniform spectral
multiplier from [2, p. 104].

Definition 2.3. Let d′ ∈ N+ and φ = (φ1, . . . , φd′) : [0,∞)d → [0,∞)d
′
.

For t ∈ Rd′+ set δt(x) = (t1x1, . . . , td′xd′), x ∈ Rd′+ . Given p ∈ [1,∞) \ {2},
we say that m : [0,∞)d

′ → C is a p-uniform joint spectral multiplier of the
(strongly commuting) system φ(L) = (φ1(L), . . . , φd′(L)) if

(2.4) Aφ(L)p := sup
t1,...,td′>0

‖m ◦ δt ◦ φ(L)‖Lp(γ) <∞,

where the operator m ◦ δt ◦ φ(L) is defined via joint functional calculus as

m ◦ δt ◦ φ(L)f =
∑
k∈Nd

m(t1φ1(k), . . . , td′φd′(k))〈f, H̃k〉H̃k, f ∈ L2(γ).

In the case when d′ = d and φ is the identity function, condition (2.4)
becomes

sup
t1,...,td>0

‖m(t1L1, . . . , tdLd)‖Lp(γ) <∞.

In that case we say briefly that m is a p-uniform joint spectral multiplier and
write Ap instead of Aφ(L)p .

3. Holomorphic extension theorems. The main goal of this paper
can be stated as follows. We want to obtain some holomorphic extension
properties of multiplier functions resulting in p-uniform multipliers of sys-
tems of operators built on L. However, the first theorem we prove is more
general. We give a relation between separate uniform spectral multipliers
of some discrete, non-negative operators Ln, n = 1, . . . , d, and the uniform
spectral multipliers of the system L.

Let {ek}k∈Nd , ek = e1k1⊗· · ·⊗e
d
kd
, be an orthonormal basis of some space

L2(X, ν), which is linearly dense in all the Lp(X, ν), 1 < p < ∞, spaces.
Here X = X1 × · · · ×Xd, ν = ν1 ⊗ · · · ⊗ νd, while k = (k1, . . . , kd) is a mul-
tiindex. Assume that for each n = 1, . . . , d, {enr }r=0,1,... is an eigenfunction
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decomposition of some self-adjoint, non-negative, non-zero, operator Ln in
L2(Xn, νn) with eigenvalues 0 ≤ λn0 < λn1 < · · · , i.e.

Lnf =
∞∑
r=0

λnr 〈f, enr 〉L2(Xn,νn)e
n
r

on the domain

Dom(Ln) =
{
f ∈ L2(Xn, νn) :

∞∑
r=0

(λnr )
2|〈f, enr 〉L2(Xn,νn)|

2 <∞
}
.

For a function mn : [0,∞)→ C the spectral multipliers of the operators Ln
are

mn(Ln) =
∑
r∈Nd

mn(λ
n
r )〈f, enr 〉L2(Xn,νn)e

n
r , f ∈ L2(Xn, νn), n = 1, . . . , d.

For a function m : [0,∞)d → C define the joint spectral multipliers of the
system L by

m(L) = m(L1, . . . , Ld) =
∑
k∈Nd

m(λ1k1 , . . . , λ
d
kd
)〈f, ek〉L2(X,ν)ek, f ∈ L2.

Theorem 3.1. Fix p > 1. Assume that for each n = 1, . . . , d, there is an
open set Epn ⊂ C such that every function mn : [0,∞)→ C which is bounded
on [0,∞), continuous on R+, and satisfies suptn>0 ‖mn(tnLn)‖Lp(Xn,νn)
<∞, extends to a bounded holomorphic function in Epn, and

(3.2) ‖mn‖H∞(Epn)
≤ sup

tn>0
‖mn(tnLn)‖Lp(Xn,νn).

Then every function m : [0,∞)d → C which is bounded on [0,∞)d, continu-
ous on Rd+, and such that

(3.3) ALp := sup
t1,...,td>0

‖m(t1L1, . . . , tdLd)‖Lp(X,ν) <∞,

extends to a bounded holomorphic function of several variables in Ep :=
Ep1 × · · · × E

p
d ; moreover

(3.4) ‖m‖H∞(Ep) ≤ sup
t1,...,td>0

‖m(t1L1, . . . , tdLd)‖Lp(X,ν).

Proof. Recall, that by Hartogs’ theorem (see [4]) a function f : U → C,
where U is an open subset of Cd, is holomorphic as a function of several
variables if and only if it is holomorphic in each variable zn, n = 1, . . . , d,
while the other variables are held constant. The key ingredient of the proof
here is the bound (3.2). The reasoning we present has been indicated to us
by Prof. Fulvio Ricci. We use induction on d. When d = 1, there is nothing
to do. Assume that we have proved the theorem for some d − 1 and let
m : [0,∞)d → C be a bounded, continuous function on [0,∞)d such that
(3.3) holds.
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Fix t(1) = (t2, . . . , td) ∈ Rd−1+ and

f, g ∈ span{e2k2 ⊗ · · · ⊗ e
d
kd
: kn ∈ N, n = 2, . . . , d}.

Note that by our assumptions the latter set is dense in every Lq(X(1), ν(1)),
1 < q < ∞, where X(1) = X2 × · · · × Xd, ν

(1) = ν2 ⊗ · · · ⊗ νd. Indeed, it
can be easily verified that {e2k2 ⊗ · · · ⊗ e

d
kd
} satisfies the condition from [3,

Corollary 2.5]. Set

(3.5) m̃t(1),f,g(t1) = 〈m(t1, t2L2, . . . , tdLd)f, g〉L2(X(1),ν(1)), t1 ∈ [0,∞).

Then it is not hard to see that for f1, g1 ∈ Lp(ν1) ∩ Lp
′
(ν1) we have

〈m̃t(1),f,g(t1L1)f1, g1〉L2(X1,ν1) = 〈m(t1L1, . . . , tdLd)(f1 ⊗ f), g1 ⊗ g〉L2(X,ν).

Consequently, from the assumption that m satisfies (3.3), we obtain

‖m̃t(1),f,g(t1L1)‖Lp(X1,ν1) ≤ A
L
p ‖f‖Lp(X(1),ν(1))‖g‖Lp′ (X(1),ν(1)).

Clearly, m̃t(1),f,g(·) is a bounded continuous function on [0,∞), hence from
(3.2) it follows that m̃t(1),f,g(t1) extends to H

∞(Ep1) and (denoting this ex-
tension by the same symbol)

(3.6) ‖m̃t(1),f,g(·)‖H∞(Ep1 )
≤ ALp ‖f‖Lp(X(1),ν(1)))‖g‖Lp′ (X(1),ν(1)).

Since in particular m̃
(t2λ2(λ21)

−1,...,tdλd(λ
d
1)
−1),e

(1)
1 ,e

(1)
1

(t1)=m(t1, t2λ2, . . . , tdλd),

where e(1)1 = e21 ⊗ · · · ⊗ ed1, we have the bounded holomorphic extension
m(z1, t2λ2, . . . , tdλd). Moreover, for f, g ∈ span{e2k2 ⊗ · · · ⊗ edkd : kn ∈ N,
n = 2, . . . , d} we see that

z1 7→ m̃t(1),f,g(z1) and z1 7→ 〈m(z1, t2L2, . . . , tdLd)f, g〉L2(X(1),ν(1))

are two holomorphic functions which agree on the positive real half-line. By
uniqueness of analytic continuation,

m̃t(1),f,g(z1) = 〈m(z1, t2L2, . . . , tdLd)f, g〉L2(X(1),ν(1)),

i.e. (3.5) still holds for the extension of m̃t(1),f,g. Hence, from (3.6) we infer
that

(3.7) sup
t2,...,td>0

‖m(z1, t2L2, . . . , tdLd)‖Lp(X(1),ν(1)) ≤ A
L
p ,

uniformly in z1 ∈ Ep1 .
Now, from the inductive hypothesis applied separately for each z1 ∈

Ep1 , we obtain the holomorphic function Ep2 × · · · × Epd 3 (z2, . . . , zd) 7→
m(z1, z2, . . . , zd), which satisfies ‖m(z1, ·)‖H∞(Ep2×···×E

p
d)
≤ ALp , uniformly in

z1 ∈ Ep1 . In summary, for each z1 ∈ Ep1 , m(z1, z2, . . . , zd) is a holomorphic
function in Ep2 × · · · ×E

p
d , satisfying the desired bound (3.4). We also know

that for each t(1) = (t2, . . . , td) ∈ Rd−1+ , m(z1, t
(1)) is holomorphic. We shall
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now verify that for each z(1) = (z2, . . . , zd) ∈ Ep2 × · · · × E
p
d , m(z1, z

(1)) is a
holomorphic function in Ep1 . For an arc Γ in Ep1 define

h(z2, . . . , zd) =
�

Γ

m(z1, z2, . . . , zd) dz1.

Then it is not hard to check that h is holomorphic in Ep2×· · ·×E
p
d .Moreover,

h(t) = 0 for t(1) ∈ Rd−1+ . Hence, by analytic continuation, h = 0. By Morera’s
theorem (see e.g. [4]), for each z(1) ∈ Ep2×· · ·×E

p
d , m(·, z(1)) is a holomorphic

function in Ep1 . Thus, by Hartogs’ theorem, we are done.

Our next theorem is a holomorphic extension theorem for joint spectral
multipliers of the system L, which is a multi-dimensional generalization of
[2, Theorem 3.5].

Theorem 3.8. Assume that m : [0,∞)d → C is bounded on [0,∞)d and
continuous on Rd+. The following statements hold:

(i) if p ∈ (1,∞)\{2} and m is a p-uniform joint spectral multiplier, then
m extends to a bounded holomorphic function in the polysector (Sφ∗p)

d

and
‖m‖H∞((Sφ∗p )

d) ≤ Ap;

(ii) m is a 1-uniform joint spectral multiplier if and only if m extends to
a bounded holomorphic function in (Sπ/2)

d and m(−2i · , . . . ,−2i · )
is the Fourier transform of a finite measure µ on Rd supported in
[0,∞)d; moreover, ‖µ‖M(Rd) = A1.

We postpone for a moment the proof of Theorem 3.8 in order to state
and prove some corollaries.

Corollary 3.9. Assume d′ ∈ N, p ∈ [1,∞)\{2}, and m : [0,∞)d
′ → C

is bounded on [0,∞)d
′ and continuous on Rd′+ . The following statements hold:

(i) if 1 ≤ n1 < · · · < nd′ , d =
∑d′

r=1 nr, and m is a p-uniform joint
spectral multiplier of the system

Ln1,...,nd′ = (L1 + · · ·+ Ln1 , . . . ,Ln1+···+nd′−1+1 + · · ·+ Ld),

then m extends to a bounded holomorphic function on (Sφ∗p)
d′ ; more-

over,
‖m‖H∞((Sφ∗p )

d′ ) ≤ A
Ln1,...,nd
p ;

(ii) if d′ = 2, d = 3, and m is a p-uniform joint spectral multiplier of the
system (L1+L2,L2+L3), then m extends to a bounded holomorphic
function in the 2-sector (Sφ∗p)

2; moreover,

‖m‖H∞((Sφ∗p )
2) ≤ A(L1+L2,L2+L3)

p .
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Proof. First we show (ii). Let f(x1, x2, x3) = h(x1, x3)H̃0(x2) = h⊗ H̃0,

where H̃0 = 1 is the Hermite polynomial of degree 0 in x2, while h is some
function from a dense set in Lp(γ1 ⊗ γ3), for instance, a linear combination
of tensor products of Hermite polynomials in x1, x3. Then a short reasoning
shows that

m(t1(L1 + L2), t2(L2 + L3))(f)(x1, x2, x3)
= m(t1L1, t2L3)(h)(x1, x3)H̃0(x2) = [m(t1L1, t2L3)(h)⊗ H̃0](x1, x2, x3).

Hence,

‖m(t1L1, t2L3)(h)‖Lp(γ1⊗γ3)‖H̃0‖Lp(γ2)
= ‖m(t1(L1 +L2), t2(L2 +L3))(h⊗ H̃0)‖Lp(γ) ≤ Ap‖h‖Lp(γ1⊗γ3)‖H̃0‖Lp(γ2).
Consequently, m is a p-uniform joint spectral multiplier of the operators
L1,L3, with constantAp.The desired conclusion follows fromTheorem 3.8(i).

The proof of (i) is almost the same. More precisely, we apply the preceding
reasoning to functions of the form f = h ⊗H, where h is a function of the
variables (xn1 , xn2 , xnd′ ), while H is a tensor product of Hermite polynomials
of degree zero in the other variables (i.e. H is a tensor product of constant
functions 1). Actually the proof of (ii) also shows that as far as Lp, p ∈
(1,∞) \ {2}, multipliers are concerned, even in [2, Theorem 3.5] without
loss of generality it is enough to consider a single one-dimensional Ornstein–
Uhlenbeck operator.

Proof of Theorem 3.8(i). This part of the theorem is an immediate con-
sequence of [2, Theorem 3.5(i)] (in the case d = 1) and Theorem 3.1 (with
Xn = R, νn = γn, Ln = Ln, Epn = Sφ∗p).

To prove Theorem 3.8(ii) we need several d-dimensional analogues of
lemmata from [2]. Since most of their proofs are not hard to carry over
to our setting, we omit them. Strictly speaking, to prove (ii) it is enough
to take p = 1 in the auxiliary lemmata below. However, since we also use
these lemmata to prove Theorem 3.21, we allow general p ∈ [1,∞) \ {2}
and (if necessary) write down some slightly more general properties. For
a = (a1, . . . , ad) ∈ Rd let

ea(x) = ea1x1+···+a2x2

and let γ∞ be the Borel measure given by dγ∞ = e−2,...,−2(x) dx. Then we
consider the Dirichlet forms

Q∞n (f) =
�

Rd

∣∣∣∣ ∂f∂xn
∣∣∣∣2 dγ∞, n = 1, . . . , d.

Similarly to [2, p. 106], from general theory (see for instance [1, Theorem
1.2.5]) it follows that Q∞n are forms of self-adjoint operators L∞n , on L2(γ∞),
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which on C∞c (Rd) are given by

L∞n f = −∂
2f

∂x2n
+ 2

∂f

∂xn
, n = 1, . . . , d.

The operators L∞n , n = 1, . . . , d, commute on C∞c (Rd) which is their common
core. As a matter of fact, they commute strongly (see Lemma 3.11 for the
proof), hence we can consider joint spectral multipliers of the system L∞ =
(L∞1 , . . . ,L∞d ). Let Φ(z1, . . . , zd) = (z21 + 1, . . . , z2d + 1) and for ψ > 0 let
(Pψ)

d = Pψ × · · · × Pψ, with

(3.10) Pψ =
{
z = x+ iy : x >

y2

4ψ2
+ 1− ψ2

}
(i.e., for fixed ψ > 0, (Pψ)

d is the image of (Σψ)d under Φ). First we prove
the following key lemma, which is an analogue of [2, Theorem 2.1].

Lemma 3.11. Let L∞ = (L∞1 , . . . ,L∞d ) and m : Rd+ → C be a bounded
measurable function. Then, for p ∈ [1,∞)\{2}, the following are equivalent:

(i) m is an Lp(γ∞) joint spectral multiplier of L∞;
(ii) m extends to a bounded holomorphic function on the polyparabolic

region (P|2/p−1|)
d and the functions

m ◦ Φ(·+ ε1|2/p− 1|i, . . . , ·+ εd|2/p− 1|i)
for ε = (ε1, . . . , εd) ∈ { − 1, 1}d are Lp multipliers of the d-dimen-
sional Euclidean Fourier transform on Rd. Moreover

Bp := ‖m(L∞)‖Lp(γ∞) = ‖m◦Φ(·+i|2/p−1|, . . . , ·+i|2/p−1|)‖Mp(Rd).

Proof. The reasoning is based on that of [2, Theorem 2.1], so we only
point out the differences. The isometry Up : Lp → Lp(γ∞) is defined by
Upf = e2/p,...,2/pf. Easy calculations show that

U−12 L
∞
n U2 = −∆n + 1, ∆n =

∂2

∂x2n
.

Consequently, by the spectral theorem,

U−12 (λn − L∞n )−1U2 = (λn − (−∆n + 1))−1, λn ∈ C \ R, n = 1, . . . , d.

Since −∆n + 1, n = 1, . . . , d, commute strongly, it follows that the same is
true for L∞n , n = 1, . . . , d. Hence, the expression m(L∞) makes sense and by
the (multivariate) spectral theorem we have

U−12 m(L∞)U2 = m(−∆1 + 1, . . . ,∆d + 1).

Clearly, the operators −∆n + 1 commute with one-dimensional translations
(and among themselves), so that m(−∆1 + 1, . . . ,−∆d + 1) commutes with
d-dimensional translations. Consequently, there is a tempered distribution k
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such that

m(−∆1 + 1, . . . ,−∆d + 1)f = k ∗ f, f ∈ S(Rd).
The proof that m(L∞) is Lp(γ∞) bounded if and only if e1−2/p,...,1−2/pk
convolves Lp into itself and that

(3.12) ‖e1−2/p,...,1−2/pk‖conv,p = ‖m(L∞)‖Lp(γ∞)

easily carries over from [2, p. 108] to our situation. Since k̂(ξ) = m(ξ21 + 1,
. . . , ξ2d + 1), arguing as in [2, p. 108] we also show that e1−2/p′,...,1−1/p′k
convolves Lp into itself and

(3.13) ‖e1−2/p′,...,1−2/p′k‖conv,p = ‖e1−2/p,...,1−2/pk‖conv,p.
Now we iteratively apply Stein’s complex interpolation theorem to the holo-
morphic family of operators

Tzf = ezk ∗ f, |Re(zn)| ≤ |2/p− 1|, n = 1, . . . , d.

From (3.12), (3.13) and the fact that 1 − 2/p′ = 2/p − 1, we see that for
each t(1) = (t2, . . . , td) ∈ Rd−1 and ε(1) = (ε2, . . . , εd) ∈ {−1, 1}d−1 the
holomorphic family of operators {R1

ε(1),t(1)
}z1 given by

R1
ε(1),t(1)

(z1) = Tz1,ε2|2/p−1|+it2,...,εd|2/p−1|+itd

satisfies

‖R1
ε(1),t(1)

(ε1|2/p− 1|+ it1)‖Lp ≤ Bp, ε1 = ±1, t1 ∈ R.

Hence, from the first application of Stein’s complex interpolation theorem,
we get

‖R1
ε(1),t(1)

(a1)‖Lp ≤ Bp

for a1 ∈ [−|2/p−1|, |2/p−1|], uniformly in ε(1) and t(1). The second applica-
tion, separately to each of the operatorsR2

a1,ε(2),t(2)
(z2) = bTa1,z2,ε3+it3,...,εd+itd ,

a1 ∈ [−|2/p− 1|, |2/p− 1|], ε(2) = (ε3, . . . , εd) ∈ {−1, 1}d−2,
t(2) = (t3, . . . , td) ∈ Rd−2,

gives the bound
‖R2

a1,ε(2),t(2)
(a2)‖Lp ≤ Bp,

valid for a2 ∈ [−|2/p − 1|, |2/p − 1|] and uniform in a1, ε
(2) and t(2). Pro-

ceeding as indicated, in the last dth step we apply Stein’s complex inter-
polation theorem to the holomorphic family of operators Rda1,...,ad−1

(zd) =

Ta1,...,ad−1,zd . Thus, we deduce that Ta is an Lp, hence also L2-multiplier for
a ∈ [−|2/p− 1|, |2/p− 1|]d. Consequently, k̂ = m ◦ Φ extends to a holomor-
phic function of d variables in (Σ|2/p−1|)

d satisfying the bound |k̂(z)| ≤ Bp,
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z ∈ (Σ|2/p−1|)
d, and it is not hard to conclude that m itself is continuous on

[1,∞)d. Since k̂ = m◦Φ, we see that k̂(·+ ia1, . . . , ·+ iad) is an Lp multiplier
for all a ∈ [−|2/p− 1|, |2/p− 1|]d, and, restating (3.12), (3.13),

‖m(L∞)‖Lp(γ∞) = ‖m ◦ Φ(·+ i|2/p− 1|, . . . , ·+ i|2/p− 1|)‖Mp .

It remains to verify that m itself has a holomorphic extension to (P|2/p−1|)
d.

From the local invertibility of the mapping (z1, . . . , zd) 7→ (z21+1, . . . , z2d+1)
away from the (complex) coordinate axes we conclude that m has a bounded
holomorphic extension to (P|2/p−1| \ {1})d. Now take z0 = (z01 , . . . , z

0
d) ∈

(P|2/p−1|)
d such that for some n = 1, . . . , d, z0n = 1, and let γn be a con-

tour in P|2/p−1|\{1} enclosing the point z0n, n = 1, . . . , d. Then, because
m is bounded on (P|2/p−1| \ {1})d and continuous on [1,∞)d, the func-
tion

(z1, . . . , zd) 7→
1

(2πi)d

�

γ1

· · ·
�

γd

m(w1, . . . , wd)

(z1 − w1) · · · (zd − wd)
dw1 . . . dwd

is holomorphic at z0 and extends m.

The next step is to develop an analogue of [2, Theorem 2.2]. For m :
[0,∞)d

′ → C, denote
Aφ,∞p = sup

t1,...,td′>0
‖m ◦ δt ◦ φ(L∞)‖Lp(γ∞).

If d′ = d and φ is the identity, we write A∞p for short. Using Lemma 3.11 we
obtain the following.

Lemma 3.14. Let m : [0,∞)d → C be a bounded measurable function.
The following statements hold:

(i) if p ∈ (1,∞)\{2} and A∞p <∞, then m extends to a bounded holo-
morphic function in the polysector (Sφ∗p)

d, and ‖m‖H∞((Sφ∗p )
d)≤ A∞p ;

(ii) A∞1 <∞ if and only if m extends to a bounded holomorphic function
in (Sπ/2)

d and m(−2i·, . . . ,−2i·) is the Fourier transform of a finite
measure µ on Rd supported in [0,∞)d; furthermore, ‖µ‖M(Rd) = A∞1 ;

(iii) if p ∈ [1,∞) \ {2}, φ is the function from Definition 2.2, and
Aφ,∞p <∞, then for each t ∈ Rd′+ , m ◦ δt ◦ φ extends to a bounded
holomorphic function in the polyparabolic region (P|2/p−1|)

d, and

‖m ◦ δt ◦ φ‖H∞((P|2/p−1|)d)
≤ Aφ,∞p .

Proof (sketch). The proof is similar to the proof of [2, Theorem 2.2].
However, (iii) will be utilized in the proof of Theorem 3.21, hence we give
some details. First, we establish the inequality

‖m(L∞)‖Lp(γ∞) ≥ ‖m‖H∞((P|2/p−1|)d)
.(3.15)
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Arguing as in [2, p. 109], we recall that an Lp multiplier of the Euclidean
Fourier transform is also an L2 multiplier and that the injection from the
Banach space of Lp multipliers to the Banach space of L2 multipliers is a
non-expansive map. Therefore, from Lemma 3.11 it follows that

‖m(L∞)‖Lp(γ∞) = ‖m ◦ Φ(·+ i|2/p− 1|, . . . , ·+ i|2/p− 1|)‖Mp(Rd)

≥ ‖m ◦ Φ(·+ i|2/p− 1|, . . . , ·+ i|2/p− 1|)‖M2(Rd)

= ‖m ◦ Φ(·+ i|2/p− 1|, . . . , ·+ i|2/p− 1|)‖∞ = ‖m‖H∞((P|2/p−1|)d)
.

On the one hand, taking in (3.15) m(t1 · , . . . , td · ) in place of m, we arrive
at

(3.16) ‖m(t1L∞1 , . . . , tdL∞d )‖Lp(γ∞) ≥ ‖m‖H∞((t−1
1 P|2/p−1|)×···×(t−1

d P|2/p−1|))
.

Under the assumption A∞p < ∞, the conclusion of (i) follows as in [2]. On
the other hand, taking in (3.15) m ◦ δt ◦ φ in place of m we also obtain

(3.17) ‖m(t1φ1(L∞), . . . , td′φd′(L∞))‖Lp(γ∞) ≥ ‖m◦δt◦φ‖H∞((P|2/p−1|)d)
,

thus proving (iii).
The proof of (ii) is analogous to that of [2, Theorem 2.2(ii)]. In order to

see that µ is supported in [0,∞)d, we use a multi-dimensional extension of an
appropriate Paley–Wiener theorem for the distributional Fourier transform
(see for instance [5, Section 3]).

For b ∈ R+ define the measures

dγb(x) = exp

(
−|x|

2

b2
− 2

d∑
n=1

xn

)
dx.

Let Qbn be the Dirichlet form

Qbn(f) =
�

Rd

∣∣∣∣ ∂f∂xn
∣∣∣∣2 dγb, n = 1, . . . , d.

From general theory (see [1, Theorem 1.2.5]), it follows that Qbn are forms of
self-adjoint operators Lbn, on L2(γb), which on C∞c (Rd) are given by

Lbnf = −∂
2f

∂x2n
+ 2

∂f

∂xn
+ 2

xn
b2

∂f

∂xn
, n = 1, . . . , d.

As in the case of L∞n , the operators Lbn, n = 1, . . . , d, commute strongly
(see Lemma 3.18 for the proof), hence we can consider their joint spectral
multipliers. In order to pass to systems L and φ(L) we need the following
analogue of [2, Lemma 3.3].
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Lemma 3.18. Assume p ∈ [1,∞) \ {2}. The following statements hold:
(i) if m : [0,∞)d → C is bounded and measurable, then for every

b ∈ R+ and (t1, . . . , td) ∈ Rd+,

‖m(t1Lb1, . . . , tdLbd)‖Lp(γb) = ‖m((t1/2b
2)L1, . . . , (td/2b2)Ld)‖Lp(γ);

(ii) if m : [0,∞)d → C is bounded on [0,∞)d and continuous on Rd+,
then A∞p ≤ Ap;

(iii) if m : [0,∞)d
′ → C is continuous on φ(Rd+), where φ is the function

from Definition 2.2 and such that each φn is continuous on Rd+ and
homogeneous of some degree ln, n = 1, . . . , d′, then Aφ,∞p ≤ Aφ(L)p .

Proof (sketch). First observe that the operators Lbn, n = 1, . . . , d, com-
mute strongly. The proof is similar to the proof of strong commutativity
of L∞n . We use the multi-dimensional version of the isometry Vb,p from
[2, p. 113] and the fact that the operators Ln, n=1, . . . , d, commute strongly.
Then the proof of Lemma 3.18 proceeds as the proof of [2, Lemma 3.3]. We
need to generalize [9, Theorems VIII.20(b), VIII.25(a)] to the d-dimensional
setting. It is here that we need the continuity of m and φ (see [2, p. 117]).
As a matter of fact these assumptions can be weakened slightly. Namely, it
is enough to take φ continuous only on the joint spectrum of L∞ (which is
contained in [1,∞)d). While proving items (ii) and (iii), we arrive at (cf. [2,
p. 115])

|〈m(L∞1 , . . . ,L∞d )f, g〉L2(γ∞)| ≤ lim inf
b→∞

‖m((1/2b2)L1, . . . , (1/2b2)Ld)‖Lp(γ)
(3.19)

for f, g ∈ C∞c (Rd). Replacing in (3.19) m(·) by m(t1·, . . . , td·), taking the
supremum over t ∈ Rd+ and b > 0 of the right hand side and using a density
argument we obtain (ii). Moreover, replacing in (3.19) m by m ◦ δt ◦ φ (see
the proof of Lemma 3.14), we also have
|〈(m ◦ δt ◦ φ)(L∞)f, g〉L2(γ∞)|

≤ lim inf
b→∞

‖m(t1φ1(1/2b
2L), . . . , tdφd′(1/2b2L))‖Lp(γ).

Now, if each of the functions φn, n = 1, . . . , d′, is homogeneous of some
degree ln, then a density argument gives

(3.20) ‖(m ◦ δt ◦ φ)(L∞)‖Lp(γ∞)

≤ lim inf
b→∞

‖m(t1(2b
2)−l1φ1(L), . . . , td′(2b2)−ld′φd′(L))‖Lp(γ) ≤ Aφ(L)p ,

which implies (iii).
Proof of Theorem 3.8(ii). We use the techniques from [2]. The proof is

much more laborious than that of (i). Below we only collect the fruits of
Lemmata 3.18 and 3.14.
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Note that we can now also give an alternative proof of Theorem 3.8(i),
following the just developed analogues of the techniques from [2]. Briefly, it
is not hard to see that from Lemmata 3.18 and 3.14, for p ∈ [1,∞) \ {2}, we
have

‖m‖H∞((Sφ∗p )
d) ≤ A∞p ≤ Ap,

yielding (i) of Theorem 3.8.
To prove Theorem 3.8(ii) assume first that A1 < ∞. Then, by Lem-

ma 3.18(ii),A∞1 <∞. Consequently, Lemma 3.14(ii) shows thatm extends to
a holomorphic function in (Sπ/2)

d, m(−2i·, . . . ,−2i·) is the Fourier transform
of a finite measure µ on Rd, supported in [0,∞)d, and ‖µ‖M(Rd) = A∞1 ≤ A1.
Thus one implication of Theorem 3.8(ii) is proved.

To prove the converse, assume that m extends to a holomorphic function
in (Sπ/2)

d, andm(−2i·, . . . ,−2i·) is the Fourier transform of a finite measure
µ on Rd, supported in [0,∞)d. Then by spectral theory,

m(t1L1, . . . , tdLd) =
�

[0,∞]d

e−(s1t1L1+···+sdtdLd) dµ(s),

where the integral is a convergent Bochner integral in L1(γ) (cf. [2, p. 110]).
Now, using the fact that e−(t1L1+···+tdLd) is a contraction on L1(γ), and
Minkowski’s integral inequality, we finish the proof.

It seems reasonable to ask about the extension properties of the multi-
plier function if we build the multiplier operators on some functions of the
system L, instead of building on L itself. The next theorem answers this
question to some extent and also includes Theorem 3.8(i) as a special case.

Theorem 3.21. Assume that m : [0,∞)d
′ → C is bounded on [0,∞)d

′

and continuous on Rd′+ . Assume p ∈ [1,∞) \ {2}. Let φ = (φ1, . . . , φd′) :

[0,∞)d → [0,∞)d
′ be a vector valued function such that each φn is continuous

on Rd+ and homogeneous of some degree ln, n = 1, . . . , d′. If m is a p-uniform
joint spectral multiplier of the system φ(L) = (φ1(L), . . . , φd′(L)), then each
of the functions m ◦ δt ◦ φ extends to a bounded holomorphic function in
(P|2/p−1|)

d. Moreover,

‖m ◦ δt ◦ φ‖H∞((P|2/p−1|)d)
≤ Aφ(L)p .

Remark 3.22. The assumption that φ takes values in [0,∞)d
′ is only

added for the sake of clarity of exposition. It is possible to allow more general
φ, taking values in some other subset of Cd′ . Then Theorem 3.21 is still true
if m is a continuous function defined on

⋃
t∈Rd′+

δt(φ([0,∞)d), and is a p-
uniform joint spectral multiplier of the system φ(L). A simple example with
d = d′ = 2 is to take φ(x1, x2) = (x1 − x2, x2) (which corresponds to joint
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spectral multipliers of the system (L1−L2,L2)). Then m needs to be defined
on R× [0,∞).

Remark 3.23. Observe that if δt ◦ φ can be ‘holomorphically inverted’
in Cd, then Theorem 3.21 does say something about the holomorphic exten-
sion of the function m itself. That is indeed the case if d′ = d and φ is the
identity, allowing us to give a different proof of Theorem 3.8(i). We postpone
for a moment the proof of Theorem 3.21 to see two different examples of such
a situation.

Define U =
⋃
t∈R2

+
Ut with

Ut = {(z1, z2) ∈ C : z1 = t1w1, z2 = t2(w1 + w2), wn ∈ P|2p−1|, n = 1, 2},
where P|2p−1| is the parabolic region defined by (3.10). Observe that
U ( (Sφ∗p)

2. As an almost immediate corollary of Theorem 3.21 we obtain
for instance the following.

Corollary 3.24. Assume p ∈ [1,∞) \ {2} and m : [0,∞)d
′ → C is

bounded on [0,∞)d
′ and continuous on Rd′+ . The following statements hold:

(i) if d′ = d = 2, and m is a p-uniform joint spectral multiplier of
the system (L1,L1 + L2), then m extends to a bounded holomorphic
function in U ; moreover,

‖m‖H∞(U) ≤ A(L1,L1+L2)
p ;

(ii) if d′ = 2, d = 1, and m is a p-uniform joint spectral multiplier of the
system (L1,L1), then each of the functions mt1(λ1) = m(λ1, t1λ1),
λ1 ∈ [0,∞), t1 > 0, extends to a bounded holomorphic function
on Sφ∗p ; moreover,

‖mt1‖H∞(Sφ∗p )
≤ A(L1,L1)

p .

Proof. Both items (i) and (ii) are easily derived from Theorem 3.21. In
the case of (i) we take φ(z1, z2) = (z1, z1 + z2), and in the case of (ii),
φ(z1) = (z1, z1).

Proof of Theorem 3.21. All the hard work has already been done in Lem-
mata 3.18(iii) and 3.14(iii), hence we can be very brief here. The proof
shares many ingredients with the just presented proof of Theorem 3.8(ii).
From Lemma 3.18(iii) we know that ‖m◦ δt ◦φ(L∞)‖Lp(γ∞) ≤ A

φ(L)
p . Hence,

Lemma 3.14(iii) shows that m ◦ δt ◦ φ extends to a bounded holomorphic
function in (P|2/p−1|)

d with the desired bound.

4. A Marcinkiewicz type multiplier theorem. A question that
naturally arises is: how can we find p-uniform joint spectral multipliers
(in the sense of Definition 2.3) of the system L? Fortunately, we have a
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Marcinkiewicz type multiplier theorem at our disposal. We say that a func-
tionm : Rd+ → C satisfies the d-dimensional Marcinkiewicz condition of order
ρ = (ρ1, . . . , ρd) ifm is bounded and for all multi-indices σ= (σ1, . . . , σd)≤ ρ,

(4.1) sup
R1,...,Rd>0

�

R1<λ1<2R1

. . .
�

Rd<λd<2Rd

|λσDσm(λ)|2 dλ
λ
<∞,

where λσ = λσ11 · · ·λ
σd
d and dλ

λ = dλ1
λ1
· · · dλdλd . For a function m : (Sφ∗p)

d → C
and a vector θ = (θ1, . . . , θd) ∈ [−φ∗p, φ∗p]d set mθ(λ) = m(eiθ1λ1, . . . , e

iθdλd),

λ ∈ Rd+. We have the following.

Theorem 4.2. Assume that m : (Sφ∗p)
d → C and m ∈ H∞((Sφ∗p)

d)
for some p ∈ (1,∞) \ {2}. Assume also that the boundary value functions
mε1φ∗p,...,εdφ

∗
p
, ε = (ε1, . . . , εd) ∈ {−1, 1}d, satisfy the d-dimensional Marcin-

kiewicz conditions (4.1) of some orders ρε > 1, and that all the lower di-
mensional operators m(ε1L1, . . . ,εdLd) with 0Ln = 0, 1Ln = Ln, n = 1, . . . , d,
ε = (ε1, . . . , εd) ∈ {0, 1}d, ε1 + · · · + εd < d, are bounded on Lp(γ). Then
m(L) extends to a bounded operator on Lp(γ).

Remark 4.3. There are several ways to ensure the Lp boundedness of
the lower dimensional operators. One is to assume that m is continuous on
[0,∞)d. Another is to assume that it satisfies appropriate lower dimensional
Marcinkiewicz conditions of some orders greater than 1. In both cases, since
the Marcinkiewicz condition is dilation invariant, the resulting multiplier
operators are p-uniform.

Remark 4.4. The proof presented here also works, with the same assum-
ptions, for multiplier operators built on sums of one-dimensional Ornstein–
Uhlenbeck operators.

Proof of Theorem 4.2. For the sake of clarity of presentation we prove
the theorem for d = 2. The proof of the general case is completely analogous.
For the meaning of the symbols appearing in the present proof the reader
is referred to [13]. First we apply [13, Theorem 2.2] to the operators Ln,ε =
Ln + εI, n = 1, 2, ε > 0. From the bound

(4.5) ‖(Ln,ε)iv‖Lp(γ(xn)) ≤ Cpe
φ∗p|v|, v ∈ R

(see [7]) and the fact that arcsinx ≤ πx/2, 0 < x < 1, we see that the
assumption (ii) of [13, Theorem 2.2] is satisfied. It remains to verify the
assumption (i) of that theorem. In view of (4.5) it is enough to establish the
bound

(4.6) sup
T∈(0,∞)2

|M(mN,T )(u)| ≤ CNe−φ
∗
p(|u1|+|u2|)(1 + |u1|)−ρ1(1 + |u2|)−ρ2 .

We show this only for u1, u2 < 0, since the reasoning for other values of u
is analogous. Changing the path of integration twice in the integral defining
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M(mN,T ) we see that

M(mN,T )(u) = e(iN+u1)φ∗pe(iN+u2)φ∗p

×
∞�

0

∞�

0

(t1λ1)
N (t2λ2)

N exp(−eiφ∗p(t1λ1 + t2λ2))mφ∗p,φ
∗
p
(λ)λiu11 λiu22

dλ

λ
.

Let ψ be a non-negative C∞ function supported in [1/2, 2] such that
∞∑

j=−∞
ψj(ξ) = 1, ξ > 0,

where ψj(ξ) = ψ(2jξ). Then, obviously,∑
j,l

ψj,l(ξ, η) = 1, (λ, η) ∈ R2
+,

where ψj,l(ξ, η) = ψj(λ)ψl(η). After the change of variable t1λ1 = η1,
t2λ2 = η2 we get

e−2iNφ
∗
ptiu11 tiu22 e−φ

∗
p(u1+u2)M(mN,T )(u) =

∑
j,l

∞�

0

∞�

0

ηN−iu11 ηN−iu22

× exp(−eiφ∗p(η1 + η2))mφ∗p,φ
∗
p
(η1/t1, η2/t2)ψj,l(η1, η2)

dη

η
.

The rest of the proof of (4.6) is an easy modification of the proof of [8,
Theorem 4] in the spirit of the proof of [13, Theorem 4.1]. From [13, The-
orem 2.2] it now follows that m(L1,ε,L2,ε) extends to a bounded operator
on Lp(γ) with the bound ‖m(L1,ε,L2,ε)‖Lp(γ) ≤ Cp,m, independent of ε > 0.

Let Pn0 f(x) = 〈f, H̃0〉L2(R,γ(xn))H̃0(xn) (that is, Pn0 is the projection onto the
subspace spanned by H̃0 applied to f as a function of xn). Let Pn = I −Pn0
(that is, Pn is the projection onto the subspace spanned by {H̃kn}kn>0). Since
Pn0 are bounded on Lp(γ), P1P2 is also bounded on Lp(γ). Consequently,
(4.7) ‖m(L1,ε,L2,ε)P1P2‖Lp(γ) ≤ Cp.
Observe now that

m(L1,ε,L2,ε)P1P2f =
∑
k∈N2

+

m(k1 + ε, k2 + ε)〈f, H̃k〉L2(γ)H̃k,

m(L1,L2,)P1P2f =
∑
k∈N2

+

m(k1, k2)〈f, H̃k〉L2(γ)H̃k.

Since m is continuous and bounded on (0,∞)2, the spectral theorem implies
that

lim
ε→0+

m(L1,ε,L2,ε)P1P2f = m(L1,L2)P1P2f, f ∈ L2(γ).

From (4.7) we conclude that
‖m(L1,L2)P1P2f‖Lp(γ) ≤ Cp.
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From the decomposition I = P1P2 + P1
0 + P2

0 − P1
0P2

0 , we see that

m(L1,L2)f
= m(L1,L2)P1P2f +m(0,L2)P1

0f +m(L1, 0)P2
0f −m(0, 0)P1

0P2
0 .

It follows that m(L1,L2) is indeed bounded under the assumptions of the
theorem.

5. Appendix: the system of Laguerre operators. Here we provide
a multivariate counterpart of [10], by sketching the proofs of results analo-
gous to those presented in our paper, this time for the system of Laguerre
operators

Lαnn = −xn
∂2

∂x2n
+ (αn + 1− xn)

∂

∂xn
, n = 1, . . . , d.

These operators are essentially self-adjoint on L2(R+, µ
αn
n ), where, for

αn > −1,

dµαnn (xn) =
xαnn e−xn

Γ (αn + 1)
dxn, xn > 0, n = 1, . . . , d.

Moreover, their closures are given by an orthogonal expansion in terms of
Laguerre polynomials of type αn, explicitly,

Lαnn f(xn) =
∑
r∈N

r〈f, L̃r〉L2(R+, µ
αn
n )L̃r(xn), f ∈ L2(R+, µ

αn
n ),

defined on the domain

Dom(Lαnn ) =
{
f ∈ L2(R+, µ

αn
n ) :

∑
r∈N

r2|〈f, L̃r〉L2(R+, µ
αn
n )|2 <∞

}
.

Here L̃αnkn = ‖Lαnkn ‖
−1
L2(R+,µ

αn
n )
Lαnkn denotes the L2(R+, µ

αn
n ) normalized one-

dimensional Laguerre polynomial Lαnkn of degree kn and order αn in the xn
variable (see [12]). A tensor product reasoning, similar to the one presented
for the system of Ornstein–Uhlenbeck operators Ln on p. 48, suggests defin-
ing the joint spectral multipliers m(Lα) of the system Lα = (Lα1

1 , . . . ,Lαdd )
as

m(Lα1
1 , . . . ,Lαdd )f =

∑
k∈Nd

m(k1, . . . , kd)〈f, L̃k〉L2(Rd+,µα)
L̃k, f ∈L2(Rd+, µα),

(5.1)

wherem : Nd → C is bounded and µα = µα1
1 ⊗· · ·⊗µ

αd
d , L̃k = L̃α1

k1
⊗· · ·⊗L̃αdkd .

Concerning the holomorphy of uniform joint spectral multipliers of the
form (5.1) we have the following analogue of Theorem 3.8. Theorem 5.2 is
also a multivariate extension of [10, Theorem 2].



Spectral multipliers for Ornstein–Uhlenbeck operators 65

Theorem 5.2. Let α = (α1, . . . , αd) ∈ (−1,∞)d and assume that m :
[0,∞)d → C is bounded on [0,∞)d and continuous on Rd+. The following
statements hold:

(i) if p ∈ (1,∞) \ {2} and supt1,...,td>0 ‖m(t1Lα1
1 , . . . , tdLαdd )‖Lp(Rd+, µα)

<∞, then m extends to a bounded holomorphic function in the pol-
ysector (Sφ∗p)

d and

‖m‖H∞((Sφ∗p )
d) ≤ sup

t1,...,td>0
‖m(t1Lα1

1 , . . . , tdLαdd )‖Lp(Rd+, µα);

(ii) supt1,...,td>0 ‖m(t1Lα1
1 , . . . , tdLαdd )‖L1(Rd+, µα)

< ∞ if and only if m
extends to a bounded holomorphic function in the polysector (Sπ/2)

d

and m(−2i · , . . . ,−2i · ) is the Fourier transform of a finite measure
µ on Rd supported in [0,∞)d; moreover,

‖µ‖M(Rd) = sup
t1,...,td>0

‖m(t1Lα1
1 , . . . , tdLαdd )‖L1(Rd+, µα)

.

Proof (outline). Item (i) is a straightforward consequence of [10, The-
orem 2(i)] (in the case d = 1) and Theorem 3.1 (with Xn = R+, νn = µαnn ,
Ln = Lαnn , Epn = Sφ∗p).

To prove (ii) we proceed as in the proof of [10, Theorem 2] (with p = 1).
First, observe that by following the arguments used to prove Theorem 3.8
with minor modifications cf. [2, Lemmata 4.1 and 4.2], we obtain a multivari-
ate analogue of [2, Theorem 4.3], which deals with joint spectral multipliers
of self-adjoint extensions of the operators

(5.3) Ln,ϕn = − ∂2

∂x2n
+ ϕn

∂

∂xn
, f ∈ C∞c (Rd).

Here, ϕn is an admissible weight in the sense of [2, (4.1), p. 118], depending
only on xn. The Laguerre operators Lαnn are not of the form (5.3). However,
by using an argument analogous to the one in [10, Section 7] we can finish
the proof. The key trick is to conjugate the Laguerre operators Lαnn with the
isometry

Lp(Rd+, µα) 3 f(x) 7→ Ψ∗f(x) = f(x21, . . . , x
2
d) ∈ Lpeven((R \ {0})d, µϕα),

where µϕα is the push-forward measure Ψ−1∗ µα, while L
p
even((R \ {0})d, µϕα)

denotes the set of Zd2 symmetric functions from Lp((R \ {0})d, µϕα). This
operation allows the passage to operators of the form (5.3), with ϕn = ϕαnn ,
n = 1, . . . , d, being admissible weights. We also need to have in mind that
every function f : Rd → C may be written as the sum of 2d functions fε,
ε ∈ {−1, 1}d, which are even in some of their variables and odd in others.
We omit the details.

We also have a Marcinkiewicz type multiplier theorem in this setting,
which is to some extent a multivariate analogue of [10, Theorem 1].
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Theorem 5.4. Fix a parameter α∈ [0,∞)d. Assume thatm : (Sφ∗p)
d→C,

m ∈ H∞((Sφ∗p)
d), for some p ∈ (1,∞) \ {2}. Assume also that the bound-

ary value functions mε1φ∗p,...,εdφ
∗
p
, ε = (ε1, . . . , εd) ∈ {−1, 1}d, satisfy the

d-dimensional Marcinkiewicz conditions (4.1) of some orders ρε > 3, and
that all the lower dimensional operators m(ε1Lα1

1 , . . . ,εdLαdd ) with 0Lαnn =0,
1Lαnn = Lαnn , n = 1, . . . , d, ε = (ε1, . . . , εd) ∈ {0, 1}d, ε1 + · · ·+ εd < d, are
bounded on Lp(Rd+, µα). Then m(Lα) extends to a bounded operator on
Lp(Rd+, µα).

Proof. The proof is almost identical to the proof of Theorem 4.2. The
only difference is that instead of (4.5) we use the bound (see [10, Proposi-
tion 2])

‖(Lαnn + εI)iv‖Lp(R+, µ
αn
n (xn)) ≤ Cp(1 + |v|)

5/2eφ
∗
p|v|, v ∈ R.
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