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Thin and fat sets for doubling measures in metric spaces
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Abstract. We consider sets in uniformly perfect metric spaces which are null for
every doubling measure of the space or which have positive measure for all doubling
measures. These sets are called thin and fat, respectively. In our main results, we give
sufficient conditions for certain cut-out sets being thin or fat.

1. Introduction. In this paper, we study the size of subsets of a metric
space from the point of view of doubling measures. We say that a subset A
of a metric space X is fat if it has positive measure for all doubling measures
of X, and thin if it has zero measure with respect to all doubling measures.
Recall that a (Borel regular outer-) measure µ on a metric space (X, d) is
called doubling (with constant C) if there exists a constant C ≥ 1 depending
only on µ so that

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞
for all x ∈ X and r > 0. By B(x, r) we mean the closed ball centered
at x with radius r. The notation U(x, r) is used for the corresponding open
ball. We denote by D(X) the collection of all doubling measures on the
space X. We recall the following closely related concept: A metric space X
is a doubling metric space if there is N ∈ N such that any ball of radius r
may be covered by a collection of N balls of radius r/2. It is easy to see by
a simple volume argument that D(X) 6= ∅ implies that X is doubling. On
the other hand, if the space is complete and doubling, then it can be shown
that D(X) 6= ∅, and typically the collection D(X) is rather rich. See [14],
[10], [16], [7].

Our aim is to find geometric conditions for subsets of metric spaces
which guarantee that the set is fat or thin. In order to obtain such results,
we need to require mild regularity from the space: A metric space X is called
uniformly perfect (with constant D) if it is not a singleton and if there exists
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a constant D ≥ 1 such that

X \B(x, r) 6= ∅ ⇒ B(x, r) \B(x, r/D) 6= ∅
for all x ∈ X and r > 0.

The main result of this paper, Theorem 1.1, deals with so called cut-out
sets that are formed by removing a countable collection of closed balls from
a uniformly perfect metric space. The result states that if the diameter of
the removed balls decays sufficiently fast, then the remaining cut-out set is
always either fat or thin (or both if there are no doubling measures supported
by the metric space). In order to specify what we mean by fast enough, we
employ for all p > 0 the notation

`p :=
{

(αn)∞n=1 : 0 < αn < 1 and
∞∑
n=1

αpn <∞
}
.

For 0 < p1 ≤ p2 and 0 < α < 1, we have αp1 ≥ αp2 and therefore `p1 ⊂ `p2 .
With this in mind, we introduce the abbreviation

`0 :=
⋂
p>0

`p.

Theorem 1.1. Let (Bi)
∞
i=1 be a sequence of closed balls in a uniformly

perfect metric space (X, d) so that (diam(Bi))
∞
i=1 ∈ `0. Then the set

E := X \
∞⋃
i=1

Bi

is fat or thin.

We will prove Theorem 1.1 in Section 4. It is important that the removed
balls are closed. In fact, Theorem 1.1 fails for open balls. This will be seen in
Example 5.2. The result also fails if we remove the assumption on uniform
perfectness: see Example 5.6.

A slightly weaker version of Theorem 1.1 was proved by Staples and
Ward, [13, Theorem 1.2], in the case X = R. They proved that the cut-out
set E is fat if it has positive Lebesgue measure and if (diam(Bi)) ∈ `0.
Staples and Ward formulated their result using quasisymmetric functions.
Thin and fat sets on the real line were also discussed in [15] and [1], again
in terms of quasisymmetric functions.

Let us next review the connection between doubling measures and qua-
sisymmetric mappings. Recall first that a homeomorphism f between two
metric spaces (X, dX) and (Y, dY ) is quasisymmetric if there exists a homeo-
morphism η : [0,∞)→ [0,∞) so that for any three distinct points x, y, z ∈ X
we have

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
.
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If µ ∈ D(R), then a function f satisfying for all x ∈ R the identity

f(x)− f(0) =

x�

0

dµ

is quasisymmetric. Conversely, for a quasisymmetric function f : R → R,
the measure µ defined via µ([a, b]) = f(b) − f(a) (or f(a) − f(b) if f is
decreasing), for a < b, is doubling.

In the setting of uniformly perfect metric spaces, we follow the terminol-
ogy introduced by Heinonen in [5] and call a set E ⊂ X quasisymmetrically
thick if Hq(f(E)) > 0 whenever f : X → Y is a quasisymmetric homeomor-
phism from X onto an Ahlfors q-regular space Y . We can also define qua-
sisymmetrically null sets as those E ⊂ X for which Hq(f(E)) = 0 whenever
f : X → Y is a quasisymmetric homeomorphism from X onto an Ahlfors
q-regular space Y . In both of the previous definitions q is allowed to depend
on the space Y .

By examining the proof of [5, Proposition 14.41] we notice an equiva-
lence between the quasisymmetrically thick/null sets and fat/thin sets in
uniformly perfect spaces. We include the proof of this fact here. Notice that
we do not need to assume the space (X, d) to be complete.

Proposition 1.2. In a uniformly perfect metric space (X, d) a set E is
fat (resp. thin) if and only if it is quasisymmetrically thick (resp. null).

Proof. For any metric space Y and all µ ∈ D(Y ), it follows that if
f : X → Y is a quasisymmetric homeomorphism, then the pullback measure
ν(E) = µ(f(E)) is a doubling measure on X.

Indeed, if x ∈ X, 0 < r < diam(X) and z ∈ B(x, 2r) \ B(x, r), then it
follows from the definition of quasisymmetry that

BY (f(x), dY (f(x), f(z))/η(2)) ⊂ f(BX(x, r))

and

f(BX(x, 2r)) ⊂ BY (f(x), η(2)dY (f(x), f(z))).

Thus ν is doubling with doubling constant C2 log2(η(2))+1, where C is the
doubling constant of µ.

Applying this observation when Y is q-regular and µ = Hq we deduce
that Hq(f(E)) > 0 whenever E ⊂ X is fat, and Hq(f(E)) = 0 whenever
E is thin. Thus fat sets are quasisymmetrically thick and thin sets are qua-
sisymmetrically null.

Let µ be a doubling measure on X. Then it follows from [5, Proposition
14.14] that there is 0 < q < ∞, a metric space Y , and a quasisymmetric
homeomorphism f : X → Y such that ν(f(E)) = µ(E) is Ahlfors q-regular
(and thus comparable to Hq) on Y . Hence, if Hq(f(E)) > 0 then µ(E) > 0
and if Hq(f(E)) = 0 then µ(E) = 0. Applying this for all µ ∈ D(X) implies
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that quasisymmetrically thick sets are fat and that quasisymmetrically null
sets are thin.

In light of Proposition 1.2, our results can be viewed as a step towards
understanding the analogs of the one-dimensional results on quasisymmetri-
cally thick sets in metric spaces. The question as to what extent such analogs
can hold was raised by Heinonen in [5, 14.42] and [6, Open problem 1.18].
See also [3, Chapter 16].

The paper is organized as follows. Section 2 contains some basic facts
concerning doubling measures, uniform perfectness, and fat and thin sets.
In Section 3, we give a sufficient condition for a Cantor type set being fat.
Namely, we prove that an (αn)-thick set on a uniformly perfect metric space
is fat if (αn)∞n=1 ∈ `0. Theorem 1.1 is proved in Section 4. At the end, we
present a couple of examples and open questions related to our results.

2. Preliminaries. Let us begin with some notation. If there is no danger
of misunderstanding, we follow the notational convention that C denotes a
doubling constant of a measure and D is a uniform perfectness constant
of the metric space in question. Also, whenever we talk about a ball B, it
is understood that the center and radius have been fixed (in general these
might not be uniquely determined just by the set B). We also write cB =
B(x, cr) for c > 0. By a maximal packing of balls of radius r > 0 in a set A,
we mean a collection of disjoint balls

B = {B(x, r) : x ∈ A}
such that for any y ∈ A there exists B ∈ B for which B ∩ B(y, r) 6= ∅. For
any ζ > 0 and S ⊂ X, the open ζ-neighborhood of the set S is defined by

S(ζ) = {x ∈ X : d(x, S) < ζ}.
We recall a few easy facts about doubling measures and uniformly perfect

metric spaces. These can be found for example in [5, 4.16, 13.1]. The first
estimate is a direct consequence of the doubling condition: Let (X, d) be a
metric space and µ ∈ D(X). Then, for all bounded A ⊂ X with µ(A) > 0,
x ∈ A and 0 < r < diam(A), we have

(2.1)
µ(B(x, r))

µ(A)
≥ 2−s

(
r

diam(A)

)s
,

where s = log2C > 0. The second estimate is for µ ∈ D(X), when X is
uniformly perfect: There exist constants Λ ≥ 1 and t > 0 so that

(2.2)
µ(B(x, r))

µ(B(x,R))
≤ Λ

(
r

R

)t
for all x ∈ X and 0 < r ≤ R < diam(X).

Combining the previous two estimates we have the following.
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Lemma 2.1. If X is a bounded uniformly perfect metric space and µ ∈
D(X), then there exist constants 0 < λ, t, Λ, s <∞, depending on µ, so that

(2.3) λrs ≤ µ(B(x, r)) ≤ Λrt

for all x ∈ X and 0 < r < diam(X).

Our next proposition allows us to restrict our considerations to the case
when the space is bounded. We denote by µ|A the restriction of a measure
µ onto a measurable set A and by A the closure of a set A.

Proposition 2.2. Let (X, d) be a metric space and let K ⊂ X be
bounded. Then there exists a bounded closed set A ⊂ X so that K ⊂ A
and µ|A ∈ D(A) for every µ ∈ D(X). Moreover, if the space (X, d) is uni-
formly perfect, so is the space (A, d|A×A).

Proof. Choose k0 ∈ Z such that 2−k0−1 ≤ diam(K) < 2−k0 . Define
Ak0 = K and by recursion

Ak =
⋃

x∈Ak−1

B(x, 2−k)

for all integers k > k0. With these sets, we define

A =

∞⋃
i=k0

Ai.

Let µ ∈ D(X), x ∈ A and r > 0. Because diam(A) < 2−k0+2, we may
assume that r < 2−k0+2. Let k ∈ Z be such that 2−k ≤ r < 2−k+1. Now
d(x,Ak+2) ≤ 2−k−2 so there exists some y ∈ Ak+2 ∩B(x, 2−k−1). Using the
fact that

B(y, 2−k−3) ⊂ A ∩B(x, 2−k),

we can estimate

µ|A(U(x, 2r)) ≤ µ(U(x, 2−k+2)) ≤ µ(U(y, 2−k+3)) ≤ C6µ(U(y, 2−k−3))

≤ C6µ|A(U(x, 2−k)) ≤ C6µ|A(U(x, r)),

where C is the doubling constant of µ. This estimate shows that u|A ∈ D(A)
since it does not matter in the definition of doubling measures whether we
use open or closed balls.

Let us then assume that (X, d) is uniformly perfect with a constant D.
We need to show that the set A as a metric space equipped with the original
metric is also uniformly perfect with some constant. Take x ∈ X and r > 0.
Let k and y be chosen as above. If d(x,Ak+2) > 2−k−3 it follows that

y ∈ Ak+2 ∩B(x, r) \B(x, 2−k−3) ⊂ A ∩B(x, r) \B(x, r/16).

On the other hand, if d(x,Ak+2) ≤ 2−k−3 it follows that x ∈ Ak+3, which im-
plies that B(x, 2−k−4) ⊂ Ak+4 and so B(x, r/32) ⊂ A. Thus A is uniformly
perfect with constant 32D.
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One may wonder how rich are the families of fat and thin sets in general.
It is clear that sets with nonempty interior are always fat and that countable
sets not including isolated points of the space are thin. A priori it is not clear
whether these could be the only fat (resp. thin) sets of the metric space. Also,
from the point of view of Theorem 1.1 it is reasonable to ask whether there
are sets that are neither fat nor thin.

Proposition 2.3. Let X be a complete and doubling metric space such
that the set of isolated points of X is not dense in X. Then there is a fat
set E ⊂ X which is nowhere dense and a Cantor set (i.e. an uncountable
perfect set without isolated points) F ⊂ X which is thin. Also, there is a
compact G ⊂ X which is neither fat nor thin.

Proof. To prove the existence of E, we apply a theorem by Saksman from
[12] that provides a link between nowhere dense fat sets and the existence
of doubling measures (see also Remark 3.3).

By our assumption on the space there exists a point x0 ∈ X and a radius
r > 0 so that the open ball U(x0, r) does not contain any isolated points.
Consider K = U(x, r/6) and let A be the set constructed in (the proof
of) Proposition 2.2. It is easy to check that A ⊂ U(x0, r). It now follows
from [12, Theorem 5] that being a nonempty metric space without isolated
points, A contains a dense open subset G for which D(G) = ∅. Now the
set E = A \ G is clearly nowhere dense in X. If µ ∈ D(X), it follows by
Proposition 2.2 that also µ|A ∈ D(A). If it happened that µ(E) = 0, this
would also imply that µ|G is a doubling measure on G. Since D(G) = ∅, this
is impossible. Therefore E has to be fat.

To construct F , we may assume that diam(X) ≤ 1/4 and that X has no
isolated points. We consider the following nested structure on X (see e.g.
[7] for how this can be constructed). We let {Qk,i : k ∈ N, i ∈ {1, . . . , nk}}
be Borel sets such that:

(i) X =
⋃nk
i=1Qk,i for every k ∈ N.

(ii) Qk,i ∩ Qm,j = ∅ or Qk,i ⊂ Qm,j when k,m ∈ N, k ≥ m, i ∈
{1, . . . , nk} and j ∈ {1, . . . , nm}.

(iii) For every k ∈ N and i ∈ {1, . . . , nk}, there exists a point xk,i ∈ X
so that U(xk,i, 4

−k) ⊂ Qk,i ⊂ B(xk,i, 4
−k+2).

Given a sequence 0 < αn < 1, we define a Cantor set F using the following
procedure: We first let F0 = X = Q1,1. Assume that Fn has been defined
and that it is a pairwise disjoint union

Fn =
⋃
j

Qj
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of elements
{Qj} ⊂

⋃
k∈N, i∈{1,...,nk}

{Qk,i}.

For each Qj , we choose Q̃j ∈
⋃
i{Qk,i} such that Q̃j ⊂ Qj , where k =

k(Qj) ∈ N is in turn chosen such that

4−k+3 < αn diam(Qj) ≤ 4−k+4.

Then we define
Fn+1 =

⋃
j

(Qj \ Q̃j)

and the resulting Cantor set as

F =
⋂
n∈N

Fn.

To prove that F is thin, let µ be a doubling measure on X. Consider
Fn =

⋃
j Q

j as above. Then it follows from (2.1) that for some c > 0 and

0 < s < ∞ (depending on µ but not on n), we have µ(Q̃j) ≥ cαsnµ(Qj) for
all Qj and consequently

µ(Fn+1) ≤ (1− cαsn)µ(Fn)

for all n. If
∑

n α
s
n = ∞, this implies µ(F ) = 0. Moreover, if we choose

(αn) /∈
⋃

0<p<∞ `
p, then this holds simultaneously for all µ ∈ D(X), thus

implying that F is thin.
The last claim follows from the fact that there are two doubling measures

µ and ν on X that are singular with respect to each other. In the compact
case, this was proved in [8]. For the general, unbounded case, see e.g. [7].

Remark 2.4. 1. The main property of the set F above is that it is
(cαn)-porous for the defining sequence (αn)n. It is a known result that this
implies the thinnes of F provided (αn) /∈

⋃
0<p<∞ `

p. See [15], [9], or [2].
2. It may be worthwhile to compare the notions of being thin or fat with

other concepts of size such as dimension. In such a comparison, we easily
observe that thin and fat sets cannot be completely characterized in terms
of dimension. For instance, given a complete doubling metric space X and
ε > 0, there is always a set E ⊂ X with (Hausdorff and packing) dimension
at most ε which is not thin. See [7, Theorem 4.1]. On the other hand, there
can be sets with full dimension that are not fat: consider, for instance, a
Lebesgue null set E ⊂ R of dimension one.

3. A sufficient condition for fatness. The aim of this section is to
give a sufficient condition for a Cantor type set being fat, provided that
the “complementary holes” of the Cantor set are small enough. A result
similar to Theorem 3.2 was proved by Staples and Ward [13, Theorem 1.4]



202 T. Ojala et al.

on the real-line and, in fact, the proof presented here is based on iterative
use of (2.2) similarly to their proof. However, the definition of (αn)-thickness
we present here is a relaxed version of the previous definition also on the
real-line, since we do not require the covering sets to be totally disjoint, but
instead assume a uniform bound on the overlaps. It is easy to check that a
set E ⊂ R that is (αn)-thick as defined in [13] is a countable union of sets
that are (αn)-thick in the sense of the Definition 3.1 below.

Definition 3.1. We say that a set E ⊂ X is (αn)-thick for a sequence
0 < αn < 1 if there exist constants N ∈ N, 0 < c ≤ 1 and finite or countable
collections of Borel sets In = {In,j ⊂ X} and Jn = {Jn,j ⊂ In,j} for all
n ∈ N with the properties:

(i) E0 =
⋃
n∈N

⋃
I∈In I is bounded.

(ii) For all n ∈ N, each x ∈ X belongs to at most N different sets In,j .
(iii) cdiam(Jn,j) ≤ αn diam(In,j) for all Jn,j .
(iv) For all In,j there exists some xn,j ∈ In,j so that

B(xn,j , δn,j) ⊂ In,j \
n−1⋃
k=1

⋃
i

Jk,i,

where 0 < δn,j = cdiam(In,j).
(v) We have

E0 \
∞⋃
n=1

⋃
j

Jn,j ⊂ E.

Theorem 3.2. Let (X, d) be a uniformly perfect metric space. If (αn)∞n=1

∈ `0 and E ⊂ X is (αn)-thick, then E is fat.

Proof. Let µ ∈ D(X). For n ∈ N, define

En = En−1 \
n−1⋃
k=1

⋃
j

Jk,j ,

rn,j = diam(Jn,j), Rn,j = diam(In,j) and pick m ∈ N such that 2−m < c,
where c is from Definition 3.1. Let N0 < n ∈ N and pick yn,j ∈ Jn,j for
each Jn,j . Now it follows from (2.2) that there exist constants 0 < t,C1 <∞
such that

µ(Jn,j) ≤ C1

(
rn,j
Rn,j

)t
µ(B(yn,j , Rn,j))

By the doubling property, there is also 1≤C2<∞ such that µ(B(yn,j , Rn,j))
≤ C2µ(B(xn,j , Rn,j)). We combine the previous two estimates and recall the
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definitions of rn,j , Rn,j , δn,j and m to get

µ(Jn,j) ≤ c−tC1C2α
t
nµ(B(xn,j , Rn,j)) ≤ c−tC1C2α

t
nµ(B(xn,j , 2

mδn,j))

≤ C3α
t
nµ(B(xn,j , δn,j)),

where C3 = c−tC1C2C
m. Now

µ
(⋃

j

Jn,j

)
≤ C3α

t
n

∑
j

µ(B(xn,j , δn,j)) ≤ C3Nα
t
nµ(En),

and thus

µ(En+1) = µ
(
X \

n⋃
k=1

⋃
j

Jk,j

)
≥ µ(En)− µ

(⋃
j

Jn,j

)
≥ (1− C3Nα

t
n)µ(En).

Applying this for k = N0, . . . , n− 1 yields

µ(En) ≥
n−1∏
k=N0

(1− C3Nα
t
n)µ(EN0)

for all n > N0. Finally, since
∑∞

n=1 α
t
n < ∞, there exists N0 such that

1− C3Nα
t
n > 0 for all n ≥ N0, and that

∞∏
n=N0

(1− C3Nα
t
n) > 0,

which implies µ(E) > 0.

Remark 3.3. 1. It is an interesting fact that if E ⊂ X is fat and nowhere
dense, then the set X \E cannot carry nontrivial doubling measures. For if it
did, these measures could be extended as zero to the set E, which would then
contradict the set E being fat in X. Thus, from Theorem 3.2 we can conclude
that if (αn)∞n=1 ∈ `0 and E ⊂ X is nowhere dense and (αn)-thick, then the
set X\E does not support doubling measures. We remark that Saksman [12]
used essentially this idea to show that any nonempty metric space without
isolated points has an open dense subset that carries no doubling measures.

2. For sufficiently regular Cantor sets C ⊂ R, it can be shown that
the condition (αn) ∈ `0 is also necessary for the set being fat. See [1],
[4], [2]. It is an open question whether such results can be generalized
to higher-dimensional Euclidean spaces or to more general metric spaces.
Similar questions can be asked about (αn)-porous sets and the condition
(αn)∞n=1 /∈

⋃
0<p<∞ `

p.

4. Proof of Theorem 1.1. We start the proof with a couple of lemmas.
In the case of the Lebesgue measure on Rn, the measure of an annulus
B(x, r + ε) \ B(x, r) behaves like rn−1ε and can thus be pushed small by
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choosing ε > 0 small enough. Although such an estimate does not generalize
directly to doubling measures in uniformly perfect metric spaces, we still get
an estimate that is good enough for our purposes. This is the part of the
proof which requires the balls to be closed.

Lemma 4.1. Let X be a bounded uniformly perfect metric space and let
µ ∈ D(X). Let further (Bi)

∞
i=1 be a sequence of closed balls in X for which

(diam(Bi))
∞
i=1 ∈ `0 and µ

(
X \

∞⋃
i=1

Bi

)
= ε > 0,

and which is ordered so that diam(Bi) ≥ diam(Bi+1) for all i ∈ N. Then
there exist constants N0 ∈ N and 0 < Q <∞ such that

(4.1) µ
( N⋃
i=1

Bi(2N
−Q)

)
< µ(X)− ε

2

whenever N ≥ N0.

Proof. Let us choose 0 < Q < ∞ such that Λ(D + 2)t21−tQ < ε/6,
where Λ and t are from Lemma 2.1. For any N ∈ N, let L(N) = max{i :
diam(Bi) ≥ N−Q}. Since for any ball Bi =B(xi, ri) we have ri≤ diam(Bi)D,
we get

N∑
i=L(N)+1

µ(Bi(2N
−Q)) ≤

N∑
i=L(N)+1

Λ(ri + 2N−Q)t

≤
N∑

i=L(N)+1

Λ(diam(Bi)D + 2N−Q)t

≤
N∑

i=L(N)+1

Λ((D + 2)N−Q)t ≤ Λ(D + 2)tN1−tQ<
ε

6

for all N ≥ 2 by the choice of Q. If N < L(N) + 1 we interpret the above
sums as zero.

Now choose N1 ∈ N such that

L(N)∑
i=N1

µ(Bi(2N
−Q)) ≤

L(N)∑
i=N0

µ(8Bi) ≤ C3

L(N)∑
i=N1

µ(Bi)

≤ C3

L(N)∑
i=N1

Λrti ≤ C3ΛDt
∞∑

i=N1

diam(Bi)
t <

ε

6

for all N ∈ N. This can be done because
∑∞

i=1 diam(Bi)
t <∞. If L(N) < N1

we again interpret the sums as zero.
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Finally choose N0 > N1 such that

µ
( N1⋃
i=1

Bi(2N
−Q
0 )

)
≤ µ

( N1⋃
i=1

Bi

)
+
ε

6
.

Now we compute the measure of the neighborhood in three parts and get

µ
( N⋃
i=1

Bi(2N
−Q)

)

≤ µ
( N1⋃
i=1

Bi(2N
−Q)

)
+

L(N)∑
i=N1

Bi(2N
−Q) +

N∑
i=L(N)+1

Bi(2N
−Q)

< µ
( N1⋃
i=1

Bi

)
+
ε

6
+
ε

6
+
ε

6
≤ µ(X)− ε

2
,

when N ≥ N0.

Our next lemma gives an estimate on the size of the largest sub-ball
of the Nth approximation EN = X \

⋃N
i=1Bi of the cut-out set, provided

that the diameters of the cut-out balls have the required decay and that the
cut-out set is not thin.

Lemma 4.2. Let X be a bounded uniformly perfect metric space and
µ ∈ D(X). Let further (Bi)

∞
i=1 be a sequence of closed balls in X for which

(diam(Bi))
∞
i=1 ∈ `0 and µ

(
X \

∞⋃
i=1

Bi

)
> 0,

and which are ordered so that diam(Bi) ≥ diam(Bi+1) for all i. Then there
exists 0 < R < ∞ and N1 ∈ N such that for all N ≥ N1 there exists a ball
GN ⊂ X \

⋃N
i=1Bi such that diam(GN ) ≥ N−R.

Proof. Let us first choose Q and N0 as in Lemma 4.1. For any N ≥ N0,
let BN be a maximal packing of open balls of radius 1/(2NQ) in the whole
of X. Since X ⊂

⋃
BN 2B, we find a disjoint cover PN = {P1, P2, . . .} of

the space X such that, for any P ∈ PN , there exists B ∈ BN such that
B ⊂ P ⊂ 2B. Indeed, we can simply define P1 = 2B1 \

⋃
i≥2Bi and then

inductively

Pn = 2Bn \
( n−1⋃
j=1

Pj ∪
⋃
i>n

Bi

)
,

for n ≥ 2.



206 T. Ojala et al.

Denote ε = µ (X \
⋃∞
i=1Bi). According to Lemma 4.1, we have∑

P∈PN

P∩
⋃N

i=1Bi 6=∅

µ(P ) ≤ µ
( N⋃
i=1

Bi(2N
−Q)

)
< µ(X)− ε

2
=
∑
P∈PN

µ(P )− ε

2
,

and so there exist P ∈ PN and B(x, 1/(2NQ)) with

B(x, 1/(2NQ)) ⊂ P ⊂ X \
N⋃
i=1

Bi.

For this ball diam(B) ≥ 1/(2DNQ). By choosing R > Q, we find N1 ≥ N0

such that
diam(GN ) ≥ 1/(2DNQ) > N−R

for all N ≥ N1.

We also employ an easy algebraic lemma:

Lemma 4.3. For each ε > 0 and δ > γ + 1, where γ > 0, there exists
M ∈ N such that

∞∑
m=N

1

mδ
<

ε

Nγ

for all N ≥M .

Proof. It is enough to observe that

Nγ
∞∑

m=N

1

mδ
< Nγ

∞�

N−1

1

xδ
dx =

Nγ

δ − 1
(N − 1)1−δ → 0

as N →∞.

Now we are ready to prove our main result.

Proof of Theorem 1.1. Assume that E is not thin so that µ(E) > 0 for
some µ ∈ D(X). Let ν ∈ D(X). We have to show that also ν(E) > 0.

We first reduce the problem to the case when X is bounded. Pick x0 ∈ X
and choose T > 0 so large that µ(B(x0, T ) ∩ E) > 0 and diam(Bi) < T for
all i ∈ N. Moreover, let A ⊃ B(x0, 2T ) be as in Proposition 2.2. For each
Bi ∈ {Bi}∞i=1 for which

(4.2) Bi ∩A 6= ∅ 6= Bi \A,
we pick yi ∈ Bi∩A and define B̃i = B(yi, diam(Bi))∩A. Let (B′i)

∞
i=1 consist

of all the original cut-out balls that are completely inside A and of the balls
B̃i for those Bi that satisfy (4.2). Now, if we replace X by A, µ by µ|A, and
(Bi)i by (B′i)i, we have reduced the problem to the case when X is bounded.
Observe that A \

⋃
iB
′
i ⊂ E, µ(A \

⋃
iB
′
i) > 0 by the choice of T , and that

(diam(B′i))i ∈ `0 since diam(B̃i) ≤ 2 diam(Bi) for each i ∈ N.
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From now on, we assume that X is bounded. By reordering, we may
also assume that the balls Bi satisfy diam(Bi) ≥ diam(Bi+1) for all i ∈ N.
Because µ(E) > 0, we can apply Lemma 4.2. Let N1 and R be as in Lemma
4.2 and take N > N1. Let GN be the ball given by Lemma 4.2 for which
GN ⊂ X \

⋃N
i=1Bi and diam(GN ) ≥ N−R. Now we estimate

ν(E) ≥ ν(GN ∩ E)(4.3)

= ν
(
GN \

∞⋃
m=N+1

Bm

)
= ν(GN )− ν

( ∞⋃
m=N+1

Bm ∩GN
)
.

Using Lemmas 2.1 and 4.2, we find constants 0 < C1, s <∞ such that

ν(GN ) ≥ C1 diam(GN )s ≥ C1N
−Rs.(4.4)

Also, by Lemma 2.1 we have constants 0 < t,C2 < ∞ such that, for all
p > 0,

(4.5) ν
( ∞⋃
m=N+1

Bm ∩GN
)

≤
∞∑

m=N+1

ν(Bm ∩GN ) ≤
∞∑

m=N+1

C2 diam(Bm)t

≤ C2

∞∑
m=N

(
1

m

m∑
k=1

diam(Bk)
p

)t/p
≤ C2

∞∑
m=N

(
cp
m

)t/p
,

where cp =
∑∞

k=1 diam(Bk)
p.

Finally, let us choose p such that 0 < p < t/(Rs+ 1) and use Lemma 4.3

with ε = C1c
−t/p
p C−12 , δ = t/p and γ = Rs. We thus find M such that for

any N > max{N0,M}, according to Lemma 4.3, (4.3), (4.5) and (4.4), we
have

ν(E) ≥ C1

NRs
− ct/pp C2

∞∑
m=N

(
1

m

)t/p
> 0.

Since ν ∈ D(X) was arbitrary, we conclude that E is fat.

5. Examples and open problems. The first example illustrates the
conclusion of Theorem 1.1 in the simplest case when X is an interval on the
real line.

Example 5.1. Let (αn)∞n=1 ∈ `0 and X = [0, T ] with the Euclidean
distance, where T =

∑∞
n=1 αn. Let I1, I2, . . . ⊂ X be closed intervals with

length |In| = αn. Now, simply by looking at the Lebesgue measure of E =
X \

⋃∞
n=1 In, Theorem 1.1 implies that the set E is thin if and only if the
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interiors of the intervals Ii are pairwise disjoint. Observe that in this case,
E is often a Cantor type set as well.

The next example illustrates why the balls in Theorem 1.1 have to be
closed. See [11, Example 6.3] for another use of a similar construction.

Example 5.2. Take (βn)∞n=1 ∈ `s \ `r for some 0 < r < s < 1, and con-
sider the middle interval Cantor set C(βn) ⊂ [0, 1] induced by the sequence
(βn)∞n=1 and defined as

C(βn) =
⋂
k∈N

2k⋃
i=1

Ik,i,

where I1,1 = [0, 1] and the intervals Ik+1,i are achieved by removing an
open interval of length βk|Ik,i| from the middle of each interval Ik,i. As
proved by Buckley, Hanson, and MacManus [1, Theorem 0.4], the choice
(βn)∞n=1 ∈ `s \ `r implies that C(βn) is neither thin nor fat in [0, 1].

Next we define a mapping

f : [0, 1]→ R2 : x 7→
(
x,

dE(x, C(βn))

2dE(1/2, C(βn))

)
,

where dE is the standard Euclidean metric in R. Let X be the graph of f
and equip it with the maximum metric:

d((x, f(x)), (y, f(y)) = max{|x− y|, |f(x)− f(y)|}.
Now measures on [0, 1] can be mapped onto measures on X under x 7→
(x, f(x)) and it is easy to check that doubling measures of [0, 1] are trans-
formed onto doubling measures of X. Thus, we conclude that the set

∂B((1/2, 1/2), 1/2) = {(x, 0) : x ∈ C(βn)} ⊂ X
is neither thin nor fat in X. Finally, this set can be realized as a cut-out
set corresponding to the sequence (αn) = (2−n) with open cut-out balls
Ui = U((1/2, 1/2), 2−i). Indeed, X \

⋃∞
i=1 Ui = X \U1 = ∂B((1/2, 1/2), 1/2)

and we observe that Theorem 1.1 does not hold if open balls are used in
place of closed balls.

Remark 5.3. We remark that in concrete situations Theorem 3.2 is
sometimes more useful than Theorem 1.1. For instance, if C(βn) is as in Ex-
ample 5.2, we see that the assumptions of Theorem 3.2 are satisfied precisely
when (βn)∞n=1 ∈ `0 whereas for the natural cut-out balls (i.e. the comple-
mentary intervals of the set C(βn)) the assumptions of Theorem 1.1 are not
satisfied even for βn = 2−n. See [13, Example 2.2]. However, the strength
of Theorem 1.1 (compared to Theorem 3.2, for instance) is that there are
no geometric assumptions on the location of the cut-out balls. As the above
example indicates, in general the assumption (βn)∞n=1 ∈ `0 seems to be too
strong and thus it seems reasonable to pose the following question:
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Question 5.4. Given a doubling uniformly perfect metric space X, does
there exist p = p(X) > 0 such that the conclusion of Theorem 1.1 holds for
cut-out sets for which (diam(Bi)) ∈ `p? In particular, is any value 0 < p < 1
suitable as p(R) or p([0, 1])?

The following example shows that necessarily p([0, 1]) < 1.

Example 5.5. Let µ be any doubling measure on [0, 1] which is sin-
gular with respect to the Lebesgue measure. Then we can find pairwise
disjoint closed intervals I1, I2, . . . ⊂ [0, 1] such that for αn = |In|, we have∑∞

n=1 αn = 1 but µ([0, 1] \
⋃∞
n=1 In) > 0.

Our final example shows that the assumption of uniform perfectness in
our results is really needed.

Example 5.6. We construct a Cantor set C(βn) ⊂ R (which is not uni-
formly perfect) as in Example 5.2 and show that the conclusion of Theorem
1.1 does not hold for X = C(βn) equipped with the Euclidean metric. The
numbers 1/3 < βn < 1 will be determined later. In fact, it would be possi-
ble to choose (βn)n such that any compact E ⊂ C(βn) is a cut-out set for
some (Bi)i with (diam(Bi))

∞
i=1 ∈ `0 and then use the general existence re-

sult of Proposition 2.3. For the sake of concreteness, we give a more detailed
example below.

Let mj = blog2(j + 1)c, where b·c denotes integer part. Define k1 = 1
and kj+1 = kj + mj for j ∈ N. We construct a set E ⊂ X inductively,
using the sequences (kj)

∞
j=1 and (mj)

∞
j=1 as follows: We first remove from

C(βn) the left construction interval of level k2 = 2 (i.e. [0, (1 − β1)/2]). At
step j > 1, we have removed from C(βn) some of the level kj construction
intervals. From each of the remaining level kj intervals, we then remove the
left-most level kj+1 interval. We let E ⊂ C(βn) be the remaining set.

For each 0 < p < 1, consider the binomial measure µp on C(βn) that
is obtained by assigning the weight p to the left interval and 1 − p to the
right interval at each step in the construction of C(βn). Now the µp measure
of E is

µp(E) =

∞∏
i=0

(1− pmi),

which is zero if and only if
∞∑
i=0

pmi =
∞∑
i=0

(j + 1)1/logp 2 =∞,

which is the case if and only if p ≥ 1/2. Thus, for example, µ1/3(E) > 0
and µ2/3(E) = 0. Next we observe that since βn > 1/3 for all n, we have
µp ∈ D(X) for all 0 < p < 1. We thus conclude that the set E is neither fat
nor thin in C(βn).
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Let (In)n∈N be the construction intervals removed from C(βn). Since
βn > 1/3, the sets Bn = In ∩ C(βn) are balls as subsets of C(βn). More-
over, since we are free to choose each βn as close to 1 as we wish, we can
easily guarantee that (diam(Bi))

∞
i=1 ∈ `0. Notice that by Theorem 1.1, we

know that the resulting Cantor set C(βn) is not uniformly perfect, i.e. that
lim supn→∞ βn = 1.

The set E ⊂ C(βn) constructed above is clearly (1−βn)n-thick (also any
singleton in C(βn) is (1−βn)-thick) and thus choosing (1−βn)n ∈ `0 implies
that the assumption of uniform perfectness is needed also in Theorem 3.2.
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