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Semiconjugacy to a map of a constant slope

by

Jozef Bobok (Praha)

Abstract. It is well known that any continuous piecewise monotone interval map f
with positive topological entropy htop(f) is semiconjugate to some piecewise affine map
with constant slope ehtop(f). We prove this result for a class of Markov countably piecewise
monotone continuous interval maps.

1. Introduction. Let us consider continuous maps f : X → X and
g : Y → Y , where X,Y are compact Hausdorff spaces and ϕ : X → Y is
continuous such that the diagram

X
f−→ X

ϕ
y yϕ
Y

g−→ Y

commutes, i.e., ϕ◦f = g◦ϕ. When ϕ is surjective, we say that f is semicon-
jugate to g via the map ϕ and in that case the topological entropy htop(·)
satisfies htop(f) ≥ htop(g) [1].

Let X = Y = [0, 1]. A continuous map f : [0, 1] → [0, 1] is said to be
piecewise monotone if there are k ∈ N and points 0 = c0 < c1 < · · · < ck = 1
such that f is monotone on each [ci, ci+1], i = 0, . . . , k−1. We shall say that
a piecewise monotone map g has a constant slope s if on each of its pieces
of monotonicity it is affine with slope of absolute value s.

In one-dimensional dynamical systems the following interesting result
has been proved.

Theorem 1.1 ([6], [9]). If f is piecewise monotone and htop(f) > 0 then
f is semiconjugate via a nondecreasing map to some map g of constant slope
ehtop(f).

It is known that if g has constant slope s then htop(g) = max(0, log s) [8].
Thus, the slope of g from Theorem 1.1 is maximal possible, i.e., when a
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nondecreasing semiconjugacy ϕ collapses intervals to points we do not lose
any information measurable by the entropy. In this paper we focus on the
class of Markov countably piecewise monotone continuous interval maps and
find a large subclass of it in which the conclusion of Theorem 1.1 remains
true.

Some of the notions used are recalled in the Appendix.

2. General observations. An admissible set P is a finite or countably
infinite closed subset of [0, 1] containing the points 0, 1. An interval [a, b] ⊂
[0, 1] is P -basic if a, b ∈ P and (a, b)∩P = ∅. The set of all P -basic intervals
will be denoted by B(P ).

A continuous map f : [0, 1] → [0, 1] is in the class CPM if there is an
admissible set P such that f(P ) ⊂ P and f is monotone (perhaps constant)
on each P -basic interval. A map f ∈ CPM which is not piecewise monotone
will be called countably piecewise monotone.

For P admissible, we denote by MP the set of all (possibly generalized,
multi-infinite) matrices indexed by P -basic intervals and with entries from
[0,∞]. Also we denote by `1P the Banach space of all real absolutely conver-
gent (again possibly multi-infinite) sequences indexed by P -basic intervals,
i.e.,

(2.1) `1P =
{
u = (uI)I∈B(P ) :

∑
I∈B(P )

|uI | <∞
}
.

The cone of all nonnegative sequences from `1P is denoted by K+
P .

Remark 2.1. For an admissible set P , a matrix M ∈MP can be mod-
eled as a table (P × [0, 1]) ∪ ([0, 1] × (1 − P )); an entry of M is a number
from [0,∞] in one window I × J , where I ∈ B(1 − P ) and J ∈ B(P ).
Let us denote by P ′ the set of all limit points of P . In accordance with
the above model, a matrix M ∈ MP will be infinite in the usual sense if
P ′ = {1}. We call it multi-infinite when cardP ′ > 1. For example, for the
choice P = {0} ∪ { 1

2m + 1
2n }m,n≥1 we get cardP ′ =∞.

Proposition 2.2. Let M = (mIJ) ∈MP . Then

(i) M represents a bounded linear operator M on `1P defined as

(2.2) (Mu)I :=
∑

J∈B(P )

mIJuJ , u ∈ `1P ,

if and only if (‖M‖ =) supJ∈B(P )

∑
I∈B(P ) |mIJ | <∞. In that case

the operator M is K+
P -positive.
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(ii) The operator M is compact if and only if its representing matrix M
satisfies

∀ε > 0 ∃δ ∀J ∈ B(P ) :
∑
|I|<δ

|mIJ | < ε.

Proof. Recall that the entries of M are from [0,∞]. The result is well
known if the set of limit points of the admissible set P equals {1} [10, Sec.
4.51, 5.5]. In the general case the arguments are completely analogous.

Definition 2.3. For f ∈ CPM we define its matrix M(f) ∈ MP : the
mIJ entry of M(f) is 1 if f(I) ⊃ J , and 0 otherwise.

It can be easily seen with the help of Proposition 2.2 that for some f
from CPM (in fact for many of them) the matrix M(f) does not represent
a (bounded) operator on `1P .

Using the formal equality 0 · ∞ = 0 we can consider the product of
nonnegative matrices from MP : given such L,M ∈MP we put

(2.3) LM = N ∈MP , nIK =
∑

J∈B(P )

lIJmJK .

Proposition 2.4. Let M(f) = (mIJ) ∈ MP be the matrix of f ∈
CPM. Then

(i) for each k ∈ N and I, J ∈ B(P ), the entry mk
IJ of Mk(f) is finite,

(ii) the entry mk
IJ of Mk(f) equals m if and only if there are closed

subintervals J1, . . . , Jm of I with pairwise disjoint interiors such that
fk(Ji) ⊃ J .

Proof. (i) From the continuity of f it follows that
∑

I∈B(P )mIJ is finite

for each J ∈ B(P ), which directly implies (i). We prove (ii) by induction. For
k = 1 this is Definition 2.3 of M(f). The induction step follows immediately
from the definition of the product of the nonnegative matrices M(f) and
M(f)k−1 from MP .

Despite the fact that not every matrix M(f) with f ∈ CPM represents
a (bounded) operator on `1P , we can prove the following general result that
can justify further research.

Denote the class of all maps from CPM of constant slope λ by CPMλ,
i.e., f ∈ CPMλ if |f ′(x)| = λ for all x ∈ [0, 1], possibly except at the
points of P . For a continuous nondecreasing map ψ : [0, 1]→ [0, 1] its support
supp(ψ) is defined as

supp(ψ) = {x ∈ [0, 1] : ψ(x− ε, x+ ε) is nondegenerate for each ε > 0}.

Theorem 2.5. Let f ∈ CPM with M(f) = (mIJ) ∈ MP . Then
f is semiconjugate via a continuous nondecreasing map ψ to some map
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g ∈ CPMλ, λ > 1, if and only if there is a nonzero vector v = (vI)I∈B(P )

from K+
P such that

(2.4) ∀I ∈ B(P ) :
∑

J∈B(P )

mIJvJ = λvI .

Proof. To simplify the technicalities as much as possible we will assume
that f is countably piecewise monotone.

In order to show that the condition (2.4) is necessary, assume that for
some nondecreasing map ψ and g ∈ CPMλ,

(2.5) ψ ◦ f = g ◦ ψ.
Using the notation ψ[a, b] := ψ(b) − ψ(a) define v = (vI)I∈B(P ) ∈ K+

P by
vI = ψ[I]. Assuming ψ[I] 6= 0 for I ∈ B(P ), with the help of (2.5) and the
definition of M(f) we can write

(2.6)
∑

J∈B(P )

mIJvJ =
∑

J⊂f(I)

ψ[J ] = ψ[f(I)] = λψ[I] = λvI ,

since if I is a P -basic interval for f then ψ(I) is a ψ(P )-basic interval for g.
Clearly the equalities (2.6) hold true also when ψ[I] = vI = 0.

Let us prove that the condition (2.4) is sufficient. Our proof is a modified
version of the one for piecewise monotone maps in [1, Lemma 4.6.5].

We may assume that f is not constant on any P -basic interval. If f is
constant on some P -basic intervals, we can replace f by a map h constructed
as follows.

Let f correspond to an admissible set P and call a P -basic interval I
f -vanishing if vI = 0 (for example, this is true when f is constant on I).
More generally, for u, v ∈ P , u < v, a block

[u, v]B(P ) = {I ∈ B(P ) : I ⊂ [u, v]}
is f -vanishing if it consists of f -vanishing P -basic intervals. Let H denote the
union of the interiors of all f -vanishing P -basic intervals. The characteristic
function χ[0,1]\H is defined as usual by

χ[0,1]\H(x) =

{
1, x /∈ H,
0, x ∈ H.

The map ψ1 : [0, 1]→ [0, 1] given by

ψ1(x) =

x�

0

χ[0,1]\H(t) dt

is continuous, nondecreasing and supp(ψ1) = [0, 1] \H. In particular, ψ1 is
increasing if and only if H = ∅. We have assumed that v ∈ K+

P , is nonzero,
which implies that ψ1([0, 1]) is not degenerate. Notice that by (2.4) if vI = 0
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and mIJ = 1 then vJ = 0, i.e., if I ∈ B(P ) is f -vanishing and f(I) contains
a P -basic interval J then J is also f -vanishing. More generally, if a block
[u, v]B(P ) is f -vanishing then so is the block f([u, v])B(P ). This property
together with the continuity of ψ1 and the countability of P implies that
if ψ1|C is constant, so is ψ1|f(C). Thus, the map h : [0, ψ1(1)] → [0, ψ1(1)]
satisfying

ψ1 ◦ f = h ◦ ψ1 on [0, 1]

is (uniquely) well defined; it is also continuous by Proposition 4.4 (see Ap-
pendix). We can assume that h : [0, 1] → [0, 1] by rescaling (by an affine
conjugacy). Obviously h ∈ CPM and its matrix M(h) ∈ Mψ1(P ) arises
from M(f) by omitting the rows and columns corresponding to all f -vanish-
ing P -basic intervals. If we denote by u = (uI)I∈B(ψ1(P )) the vector from

K+
ψ1(P ) ⊂ `1ψ1(P ) obtained from v = (vI)I∈B(P ) by omitting the coordinates

corresponding to the f -vanishing P -basic intervals, we clearly obtain

∀I ∈ B(ψ1(P )) :
∑

J∈B(ψ1(P ))

mIJuJ = λuI .

It can be easily seen that h is not constant on any ψ1(P )-basic interval (we
do not claim that h is strictly monotone on basic intervals).

We will need a genealogical tree (Pn)∞n=0 of P with respect to f (see [1,
p. 64]). It is defined inductively as follows.

We set P0 = P . By the above, f is not constant on any P0-basic interval.

Suppose that Pn is already defined and f is not constant on any Pn-basic
intervals. Since f is countably piecewise monotone, f−1(Pn)∩[0, 1] is a union
of (at most) countably many closed intervals (perhaps degenerate). Since f
was not constant on any Pn-basic interval, no component of f−1(Pn)∩ [0, 1]
contains more than one element of Pn. From each of these components we
choose one point, if possible an element of Pn, and we define Pn+1 to be
the set of those chosen points. Thus Pn ⊂ Pn+1 and Pn+1 is invariant since
f(Pn+1) ⊂ Pn. By construction, Pn+1 is a countable set and f is not constant
on any Pn+1-basic interval.

Denote by Jn the set of all Pn-basic intervals. In particular, J0 = B(P ).
Let v = (vI)I∈B(P ) ∈ K+

P be a normalized vector satisfying (2.4).

In order to define the map ψ : Q =
⋃∞
n=0 Pn → [0, 1] we put ψ(0) = 0

and for x ∈ Pn ∩ (0, 1],

(2.7) ψ(x) = λ−n
∑

J∈Jn, J≤x
vfn(J).

Since for any fixed K ∈ Jn, fn|K is monotone and fn(K) ∈ B(P ), using
(2.4) one gets
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(2.8) λ−n−1
∑

J∈Jn+1, J⊂K
vfn+1(J) = λ−n−1

∑
J∈J1, J⊂fn(K)

vf(J)

= λ−n−1
∑

J∈B(P )

mfn(K)JvJ = λ−n−1λvfn(K) = λ−nvfn(K),

hence also ∑
J∈Jn

vfn(J) = λ
∑

J∈Jn−1

vfn−1(J) = λ2
∑

J∈Jn−2

vfn−2(J)

= · · · = λn
∑
J∈J0

vJ = λn.

This shows that the map ψ is well defined, nondecreasing and ψ(1) = 1.
From the fact that v is normalized and (2.7) we get

(2.9) sup
[x,y]∈Jn

|ψ(x)− ψ(y)| ≤ λ−n.

Moreover, if x ∈ Pn is a left limit point of Pn then

lim
ε→0+

λ−n
∑

J∈Jn∩(x−ε,x)

vfn(J) = 0

and similarly for x being a right limit point of Pn. Let x ∈ (0, 1) \Q. Then
for each n there is an interval J = J(n) such that x ∈ J ∈ Jn. From the
above properties of ψ we obtain

lim
x→0+, x∈Q

ψ(x) = 0, lim
x→1−, x∈Q

ψ(x) = 1,

and for each x ∈ (0, 1),

sup
y<x, y∈Q

ψ(y) = inf
y>x, y∈Q

ψ(y).

Thus ψ can be continuously extended from Q to the whole interval [0, 1],
constant on the components of [0, 1] \Q.

Claim 2.6. For any x, y ∈ [0, 1] such that f is monotone on [x, y],

(2.10) |ψ(f(y))− ψ(f(x))| = λ|ψ(y)− ψ(x)|.
Proof. Let [x, y] ∈ Jn. Then as in (2.8),

|ψ(f(y))− ψ(f(x))| =
∑

J∈J1, J⊂fn([x,y])

vf(J)

= λvfn([x,y]) = λ|ψ(y)− ψ(x)|.

By taking sums and limits, we obtain (2.10) for every x, y ∈ Q such that
f is monotone on [x, y]. If z < w and Q ∩ (z, w) = ∅ then f is monotone
on [z, w] and by the construction of the genealogical tree of P and Q also
Q ∩ f((z, w)) = ∅. The map ψ is constant on each component of [0, 1] \ Q.
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Hence ψ(z) = ψ(w) and ψ(f(z)) = ψ(f(w)). This proves that (2.10) holds
for all x, y ∈ [0, 1] with f monotone on [x, y].

Let us define g. If z ∈ [0, 1] then ψ−1(z) is a closed interval. It contains
countably many subintervals Jk satisfying

• f is monotone on each Jk,
• f(ψ−1(z)) \

⋃
k f(Jk) is countable.

By (2.10), the map ψ is constant on each image f(Jk), so by the second
property, ψ is constant on the whole f(ψ−1(z)). This means that f(ψ−1(z))
⊂ ψ−1(w) for some w ∈ [0, 1]. We then set g(z) = w. For every v ∈ ψ−1(z)
we have ψ(f(v)) = g(ψ(v)) = w. This shows that with our definition of
g we get ψ ◦ f = g ◦ ψ on [0, 1], hence Proposition 4.4 and (2.10) imply
g ∈ CPMλ.

Remark 2.7. In Theorem 2.5, if f is transitive then ψ is increasing, i.e.,
f is conjugate to g (see [1, Proposition 4.6.9]).

Example 2.8. In order to illustrate Theorem 2.5 put P = {1} ∪ {xn =
1− 1/n}n≥1} with P -basic interval I(n) = [xn, xn+1] and consider a map f
from CPM such that f(x2) = x1 = 0 and

f(xn) =

{
1, n ≥ 1 odd,

xn−2, n ≥ 4 even.

Then

M(f) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 · ·
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·



.

Put v = (vI(n))I(n)∈B(P ) with

vI(2k+1) = vI(2k+2) =
k + 1

λ

(
λ− 1

2λ

)k
, k ≥ 0,
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and λ = 3+
√

8. The reader can directly verify that v ∈ K+
P , v is normalized

and the condition (2.4) is fulfilled. Thus, by Theorem 2.5 our map f is
semiconjugate via a nondecreasing map ψ to some map g ∈ CPM3+

√
8 (in

fact one can show that htop(f) = log(3 +
√

8)).

From Proposition 2.2 it follows that the matrix M(f) does not represent
a bounded linear operator on `1P .

x
1

x
2

x
3

Fig. 1. A transitive map f ∈ CPM from Example 2.8

3. Case of bounded operators. In order to use Theorem 2.5 effec-
tively we restrict our attention to a (still sufficiently rich) subclass of maps
from CPM.

To this end denote by P the set of all pairs (P,ϕ) such that

(A1) P is admissible,
(A2) ϕ : P → P is continuous,
(A3) the continuous ‘connect-the-dots’ map ϕP : [0, 1] → [0, 1] defined

by ϕP |P = ϕ, ϕP |J affine for any interval J ⊂ conv(P ) such that
J ∩ P = ∅, satisfies

∃L = L(P,ϕ) > 0 ∀I ∈ B(P ) ∀y ∈ I◦ : cardϕ−1P (y) < L.

In this section we will deal with restrictively countably piecewise mono-
tone continuous maps from the class RCPM, where f ∈ RCPM if and only
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if it corresponds to some pair (P,ϕ) ∈ P, i.e., f |P = ϕ and f is monotone
on each P -basic interval.

Below, for each f ∈ RCPM we consider the matrix M(f) of Defini-
tion 2.3.

Proposition 3.1. Let f ∈ RCPM. Then M(f) represents a bounded
K+
P -positive linear operator on `1P .

Proof. Let M(f) = (mIJ), and let L = L(P,ϕ) be as in (A3). Then each
column (mIJ)I∈B(P ) contains at most L units, hence by Proposition 2.2(i),
M(f) represents an operator M satisfying ‖M‖ ≤ L.

Proposition 3.2. Let f ∈ RCPM. Then for each k ∈ N and I, J ∈
B(P ) the entry mk

IJ of Mk(f) is less than or equal to Lk−1, where L =
L(P,ϕ) is the constant given by (A3).

Proof. We leave the proof to the reader.

Using Theorem 4.6 below for the operator M represented by a ma-
trix M(f) associated to f ∈ RCPM, we find that r(M) ∈ σ(M). Up to
now we have no information on the relationship of the entropy of f ∈
RCPM and its spectral radius r(M). This is provided by the following
theorem.

Theorem 3.3. Let f ∈ RCPM, denote by M the operator on `1P repre-

sented by M(f), and assume that htop(f) > 0. Then r(M) ≥ ehtop(f).

Proof. This is a consequence of Theorem 4.3. In what follows we re-
peatedly use the following: if some continuous map g satisfies g([a, b]) ⊃
[c, d] with [a, b], [c, d] compact intervals, then [a, b] is g-optimal for [c, d] if
g((a, b)) = (c, d). Then either g(a) = c and g(b) = d (increasing type) or
g(a) = d and g(b) = c (decreasing type).

So let closed intervals J1 ≤ · · · ≤ Jsn with pairwise disjoint interiors
create an sn-horseshoe of fkn , i.e.,

(3.1) fkn(Ji) ⊃
sn⋃
i=1

Ji for each i ∈ {1, . . . , sn}.

We can assume that each Ji is fkn-optimal for the interval [min J1,max Jsn ].
Since each Ji has its monotonicity type and the map fkn has its local extrema
in fkn-preimages of P , each Ji can be enlarged (if necessary) to satisfy

• (3.1),
• min

⋃
Ji,max

⋃
Ji ∈ P ,

• J1 ≤ · · · ≤ Jsn ,
• Ji is optimal for [min

⋃
Ji,max

⋃
Ji].
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Clearly this means that there is a P -basic interval K such that fkn(Ji) ⊃ K
for each i and it enables us to consider for each i a Pkn-basic interval Li ⊂ Ji
such that Li is fkn-optimal for K. Notice that

• each Li lies in some P -basic interval,
• two neighbors Li, Li+1 can/need not lie in the same P -basic interval,
• L1 ≤ · · · ≤ Lsn ,

In any case, using Proposition 2.4(ii) we obtain

(3.2)
∑

I∈B(P )

mkn
IK ≥ sn.

From (3.2) and Proposition 2.2(i) we get

‖Mkn‖ ≥ sn,
hence Gelfand’s formula gives

r(M) = lim
n→∞

‖Mkn‖1/kn ≥ lim
n→∞

s1/knn = ehtop(f).

In Appendix we introduce the Radon–Nikol’skĭı operators. For that class
of operators we can say even more.

Theorem 3.4. Let f ∈ RCPM, denote by M the operator on `1P repre-
sented by M(f) and assume that htop(f) > 0. If τ(M) is a Radon–Nikol’skĭı
operator on `1P for some τ holomorphic in the neighborhood of the spectrum

σ(M) then r(M) = ehtop(f).

Proof. Fix ε > 0. Let Mδ be the operator represented by the matrix
Mδ = (mIJ(δ)) ∈ MP from Theorem 4.9. By that theorem for some suffi-
ciently small δ > 0,

(3.3) r(Mδ) > r(M)− ε.
Since by (4.1) the matrix Mδ contains only finitely many nonzero elements,
just as for every finite matrix [1, Lemma 4.4.2] we get

(3.4) r(Mδ) = lim
k→∞

k

√ ∑
I∈B(P )

mk
II(δ) = lim

k→∞
k

√√√√∑̀
n=1

mk
InIn

(δ),

where the matrix Mk
δ = (mk

IJ(δ)) ∈ MP represents the kth power Mk
δ of

the operator Mδ and the P -basic intervals I1, . . . , I` do not depend on k.
From (3.4), (3.3) for some j ∈ {1, . . . , `} and a sufficiently large k we obtain
` < (1 + ε)k and

(3.5) k

√
` ·mk

IjIj
(δ) ≥ k

√√√√∑̀
n=1

mk
InIn

(δ) > r(M)− ε,
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hence

m = mk
IjIj (δ) ≥

(
1

1 + ε
k

√√√√∑̀
n=1

mk
InIn

(δ)

)k
>

(
r(M)− ε

1 + ε

)k
.

Using Proposition 3.2(ii) one can see that there are closed subintervals
J1, . . . , Jm of Ij with pairwise disjoint interiors such that fk(Ji) ⊃ Ij , i.e.,
the map fk has an m-horseshoe; hence by Proposition 4.2,

ehtop(f) ≥ k
√
m >

r(M)− ε
1 + ε

.

Since ε was arbitrary, we have

ehtop(f) ≥ r(M).

The opposite inequality follows from Theorem 3.3.

The previous results lead to the following theorem.

Theorem 3.5. Let f ∈ RCPM, denote by M the operator on `1P repre-
sented by M(f), and assume that htop(f) = log β > 0. If τ(M) is a Radon–
Nikol’skĭı operator on `1P for a suitable τ holomorphic in the neighborhood
of the spectrum σ(M) then f is semiconjugate via a nondecreasing map ψ
to some map g ∈ RCPMβ. In particular this is so when M itself is a
Radon–Nikol’skĭı operator.

Proof. By our assumptions Theorem 4.8 can be applied to the operator
M, the real Banach space `1P and the cone K+

P . By that theorem r(M) ∈
Pσ(M) with corresponding eigenvector in K+

P . Since from Theorem 3.4 we

get r(M) = ehtop(f) = β > 1, our conclusion follows from Theorem 2.5 with
λ = β.

Definition 3.6. For an integer m > 1, we say that a pair (P,ϕ) ∈ P is
m-ruled if there are P -basic intervals I1, . . . , Im such that

• ϕP : [0, 1]→ [0, 1] has anm-horseshoe created by the intervals I1, . . . , Im
(see Definition 4.1),
• ∀I ∈ B(P ) ∀y ∈ I◦ : card[ϕ−1P (y) ∩ ([0, 1] \

⋃m
i=1 Ii)] < m.

Theorem 3.7. Let f ∈RCPM correspond to an m-ruled pair (P,ϕ)∈P.
Then f is semiconjugate via a nondecreasing map ψ to some map g ∈
RCPMβ with β = ehtop(f).

Proof. Let M(f) = (mIJ) ∈ MP be the matrix of f ∈ RCPM, and
denote by M the operator on `1P represented by M(f). We show that under
our assumptions M is a Radon–Nikol’skĭı operator.
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For a set K ⊂ [0, 1] define a matrix M(f,K) = (mIJ(K)) ∈MP by

(3.6) mIJ(K) =

{
mIJ , I ⊂ K,
0, otherwise.

Since the pair (P,ϕ) ∈ P is m-ruled, the map ϕP (hence also f) has an
m-horseshoe created by P -basic intervals I1, . . . , Im. Let

C = M
(
f,

m⋃
i=1

Ii

)
and B = M

(
f, [0, 1] \

m⋃
i=1

Ii

)
.

Then M(f) = C +B and by Proposition 2.2(i) the matrices C,B represent
bounded operators on `1P ; denote them C,B, and set M = C + B. Clearly
by our definition the matrix C has (finitely many) nonzero Ii-rows, hence
by Proposition 2.2(ii) the operator C is compact. Due to Definition 4.7 it is
sufficient to verify that r(M) > r(B). Using Proposition 2.2 and Gelfand’s
formula we consequently get

r(M) ≥ r(C) ≥ m > m− 1 ≥ ‖B‖ ≥ r(B).

This shows that the operator M is Radon–Nikol’skĭı and the conclusion
follows from Theorem 3.5.

Example 3.8. Let P = {an : n = 0, 1, . . . ,∞} be an admissible set with
the only limit point equal to 1. Assume that 0 = a0 < a1 < · · · < a∞ = 1
and define the map ϕ : P → P by

ϕ(a0) = ϕ(a2) = ϕ(a4) = a∞, ϕ(a1) = ϕ(a3) = ϕ(a5) = a0, ϕ(a6) = a6

a0 a1 a5 a6a3 a8 a9a4a2 a10a7

Fig. 2. f ∈ RCPM transitive (left), g ∈ RCPMr(M), r(M) = ehtop(f) ∼ 6.5616 from
Example 3.8
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and for each k ≥ 0,

ϕ(a3k+7) = a3k+9, ϕ(a3k+8) = a3k+5, ϕ(a3k+9) = a3k+9.

Then (P,ϕ) ∈ P and it is 6-ruled, where ϕP has a 6-horseshoe created by
the P -basic intervals [a0, a1], . . . , [a5, a6]. Let us consider a map f ∈ RCPM
that corresponds to (P,ϕ). By Theorem 3.7 the map f is semiconjugate
via a nondecreasing map ψ to some map g ∈ RCPMβ with β = ehtop(f).
In particular, the maps f, g are conjugate when f is transitive—see Re-
mark 2.7.

The matrices M(f), C,B from Example 3.8 are

M(f) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·



=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · ·
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·


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+



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·



.

4. Appendix

Definition 4.1. A function f : [a, b] → [a, b] is said to have a d-horse-
shoe if there exist d subintervals I1, . . . , Id of [a, b] with disjoint interiors
such that f(Ii) ⊃ Ij for all 1 ≤ i, j ≤ d.

Proposition 4.2 ([7]). If f : [a, b] → [a, b] is continuous and has a d-
horseshoe then htop(f) ≥ log d.

Theorem 4.3 ([7]). Assume that f has positive entropy. Then there exist
sequences {kn}∞n=1 and {sn}∞n=1 of positive integers such that limn→∞ kn
=∞, for each n the map fkn has an sn-horseshoe and

lim
n→∞

1

kn
log sn = htop(f).

Proposition 4.4 ([1, Lemma 4.6.1]). Let f : [0, 1]→ [0, 1] be continuous
and ψ : [0, 1]→ [0, 1] a nondecreasing continuous map satisfying ψ([0, 1]) =
[0, 1]. Assume that g : [0, 1]→ [0, 1] satisfies ψ ◦f = g ◦ψ on [0, 1]. Then g is
continuous and if f is nondecreasing (respectively nonincreasing) on some
interval J then g is nondecreasing (respectively nonincreasing) on ψ(J).

Let E be a real Banach space.

Definition 4.5. A closed set K ⊂ E is called a cone if it satisfies

(i) K +K ⊂ K,
(ii) aK ⊂ K for a ∈ R+, where R+ = [0,∞),
(iii) K ∩ (−K) = {θ}, where θ is the zero element from E .
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A cone K is called

(iv) reproducing if K −K = E ,
(v) normal if there exists a constant b > 0 such that ‖x‖ ≤ b‖y‖

whenever y − x ∈ K.

An operator T on E is called K-positive if TK ⊂ K.

For a bounded linear operator A on a Banach space E we will consider its
spectrum σ(A) = Pσ(A)∪Rσ(A)∪Cσ(A) partitioned into the point, residual
and continuous part respectively.

Theorem 4.6 ([2], [3]). Let K be a normal reproducing cone in a real
Banach space E. Then for every bounded K-positive operator A the spectral
radius r(A) of A belongs to the spectrum σ(A).

Following [5] we introduce the Radon–Nikol’skĭı operators.

Definition 4.7. A bounded linear operator A defined on a (complex)
Banach space F will be called Radon–Nikol’skĭı if A may be represented as
A = C + B, where

(i) C is compact,
(ii) r(A) > r(B).

Theorem 4.8 ([5, Theorem 3.2]). Let τ be a function holomorphic in
the neighborhood of the spectrum σ(A) of the operator A. Assume that A is
K-positive and τ(A) is a Radon–Nikol’skĭı operator on a real Banach space
E. Then r(A) ∈ Pσ(A) with corresponding eigenvector in K.

Let P, MP and `1P be as in Section 2.

Theorem 4.9 ([5]). Given P ∈ P let M = (mIJ) ∈MP be a matrix rep-
resenting an operator M on `1P . Assume that for some function τ holomor-
phic in the neighborhood of σ(M) the operator τ(M) is a Radon–Nikol’skĭı
operator on `1P . For δ > 0, denote by Mδ the operator on `1P represented by
the matrix Mδ = (mIJ(δ)) ∈MP defined as

(4.1) mIJ(δ) =

{
mIJ , min{|I|, |J |} ≥ δ,
0, otherwise.

Then

lim
δ→0

r(Mδ) = r(M).
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