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Abstract. A bounded linear operator T on a Banach space X is called an (m,p)-
isometry for a positive integer m and a real number p > 1 if, for any vector x € X,

:Z()(l)’“ () )iral o

We prove that any power of an (m,p)-isometry is also an (m,p)-isometry. In general
the converse is not true. However, we prove that if 77 and T"! are (m,p)-isometries
for a positive integer r, then T is an (m, p)-isometry. More precisely, if T is an (m, p)-
isometry and T is an ([, p)-isometry, then T* is an (h,p)-isometry, where t = gcd(r, s)
and h = min(m, ).

1. Introduction. The m-isometric operators on a Hilbert space H have
been introduced in [A]. Given a positive integer m, a (bounded linear) op-
erator T on H is called an m-isometry if

(1.1) f:(—n’f <”k?) T Tk = 0,

k=0
where T™ denotes the adjoint operator of T'. A detailed study of m-isometries
was developed by J. Agler and M. Stankus [AS1]-[AS3]. Those operators
have been considered by many authors, for example in [At], [BMM], [BJ],
[FEL1), [FH2], [GE], [H], [PL], [PR] and [E].

A simple manipulation proves that (|L.1]) is equivalent to

(1.2) Z(_nk(’Z) ITF2|2=0 for all z € H.
k=0

It is clear that the notions of 1-isometry and isometry coincide. Moreover,
any m-isometry is also an (m + 1)-isometry.
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Sid Ahmed [S] has used as the definition of an m-isometric operator
T on a Banach space X. However, Bayart [B] has observed that the exponent
2 that appears in the norm does not play a particular role and considered
(m, p)-isometries with p > 1 a real number, which are defined in the following
way (X always denotes a Banach space and L(X) the algebra of all bounded
linear operators on X).

DEFINITION 1.1. Let T' € L(X), m a positive integer and p > 1 a real
number. We say that 7" is an (m, p)-isometry if, for any = € X,

(13 > vt(7)irtet <o

k=0
T is called an m-isometry if it is an (m, p)-isometry for some p > 1.

Recently, Hoffmann et al. [HMS] took off the restriction p > 1 and defined
(m, p)-isometries for all p > 0. They studied when an (m,p)-isometry is
an (u, q)-isometry for some pair (u,q). In particular, for any positive real
number p they gave an example of an operator 7' that is a (2, p)-isometry,
but is not a (2, g)-isometry for any ¢ different from p [HMS, Example 1.2].
In general, for a fixed positive integer m, there is no relation between being
an (m, p)-isometry and an (m,2)-isometry with p # 2.

Patel [P, Theorem 2.1] proved that any power of a (2, 2)-isometry is again
a (2, 2)-isometry. In this paper we improve the above property. Indeed, we
answer the following natural problems.

(1) Is the class of m-isometries stable under powers?
(2) Find sufficient conditions that guarantee that operators which have
some powers in the class of m-isometries are in the same class.

It is a simple observation that if 7" and 77! are isometries for some pos-
itive integer r, then T is an isometry: indeed, ||z|| = |T" 2| = |T"Tz| =
|ITz|| for every x € X.

In the study of m-isometries we will use recursive equations. This tech-
nique was used by V. Miiller in the study of m-contractions [M]. This is our
main tool in proving these two theorems:

(1) If T € L(X) is an (m,p)-isometry, then any power 7" is also an
(m, p)-isometry (Theorem [3.1)).

(2) If T" is an (m, p)-isometry and T is an (I, p)-isometry, then T is an
(h, p)-isometry, where t is the greatest common divisor of r and s,
and A is the minimum of m and [ (Theorem . In particular, if 7"
and 77! are (m, p)-isometries, then so is T (Corollary [3.7)).

2. Preliminaires. We first recall certain facts about recursive equa-
tions.
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For T € L(X) and = € X, denote ay, := ||T%z||P for k = 0,1,.... The
equation ((1.3)) then reads

(2.1) i}—l)k (7)o =

k=0
or equivalently

(2.2 Ejj(—mk (’Z) S

k=0
for all n > 0.
Notice that is a recursive equation. Let us introduce some classical
results to solve this type of equations. We are interested in the sequences
(Yn)n>0 which satisfy the recursive equation

(23) Ynt+m + Ym—1Yn+m—1 + Ym—2Un+m—2 + -+ V1Yn+1 + YoYn = 0
for certain m > 1 and any n > 0, y; being complex numbers (0 < i < k—1).
The characteristic polynomial of (2.3]) is given by
q(2) = 2" + Ym-12" Y22+ 12+ Y0,
which can be written in the form
(2.4) qz)=(z—z)™ (2 —2z)",
where my + .-+ +m, = m and z; # z; for i # j. It is well known (see for
example [KP, Theorem 3.7] and [Ag, p. 104]) that the set of all complex
i

sequences which satisfy (2.3) is a vector subspace of the space CN of all
complex sequences, it has dimension m and a basis formed by the sequences

(z1)n>0, (n21)nz0, (W22 )nz0, . - ., (W™ 7120 ) 0,

n n 2.n mo—1.n
(2.5) (25)n>0, (N2 )n>0, (N°25 )n>0s - - -, (1 25 )n>0,
(2")n>0, (N2 )00, (W22 )nz0, - - -, (W™ 7120 ) 0.

There exists an identification between the recursive equation ([2.3)), the char-
acteristic polynomial (2.4)), the subspace of sequences which satisfy the re-
cursive equation and its basis (2.5)).

3. Main results. It is clear that if 7" is an isometry, then so is 7".
Patel [Pl Theorem 2.1] proved that any power of a (2, 2)-isometry is again a
(2,2)-isometry. The next result shows that any power of an (m, p)-isometry
is an (m, p)-isometry.

THEOREM 3.1. Let X be a Banach space, T € L(X), m be a positive
integer and p > 1 a real number. If T is an (m,p)-isometry, then so is any
power T,



252 T. Bermudez et al.

Proof. Fix x € X and denote a,, := ||[T"z||P for n = 0,1,.... Then the
sequence (a,)n>0 satisfies

m
(3.1) > Joren =0

k=0
for every n > 0. The characteristic polynomial associated with is
q1(z) = (z — 1)™, hence (an)n>0 is a linear combination of the sequences
(1)n>0, (n)n>0, (n2)n>0, - - -, (N 1) p>0. Consequently, given a positive inte-
ger 7, (an)n>0 is also a linear combination of the sequences

(1)n>0, (M)n>0, (M®)n>0,-- -, (B Hn>o0,
(3.2) (#5)n>0, (25)n>0, (W*25)n>0, - - -, (W™ 7125 >0,
(@) n>0, () n>0, (P22 )00, - -5+, (W2 )00,
where 21 := 1, x9, ..., x, are the r-roots of unity. Hence the sequence (ay,)n>0
satisfies the equation
_“ m
(33) Z(—nk( k)am 0
k=0

for any n > 0. Since x € X is arbitrary, we conclude that 7" is an (m, p)-
isometry. m

REMARK 3.2. Related to the previous result we have the following prob-
lem. Given an operator T' € L(X) that is an m-isometry, determine the class
of functions f such that the operator f(7T') € L(X) is also an m-isometry.
It is known that the spectrum of an m-isometry is the closed unit disc or a
closed subset of its boundary ([AS1, Lemma 1.21] & [Bl, Proposition 2.3)).
So, the eligible functions must leave invariant the unit disc and its boundary.
In particular:

(1) If f(z) = 2", then the result is true by Theorem (3.1
(2) If f(z) = e'z" for some real ¢, then the result is true by ||e*T*xz|| =
|T*2|| and Theorem
(3) If f(z2) = (22—1)/(2— %) and T is an isometry, then f(7) is not
always an isometry. Indeed, consider
22 —1 = 3 .,
f(Z) = 9_ . = _2+nz:02”+1z
and T'(z1,x2,...) = (0,21, 22,...) defined on ¢,(N) such that p > 1
with p # 2. Then || f(T)(e1 + e2)||? # ||e1 + e2]|P.

In general the converse of Theorem is false.
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EXAMPLE 3.3. Let S,, be the unilateral weighted forward shift on ¢2(N)
with weight sequence (w,,) given by wap+1 1= % and wey, := 2 for all n > 0,
that is,

Sw(xl, L2, . - ) = (0, %l’l, 2.7}2, %1‘3, 21‘4, .. )

Then ||S2 (21, 72,...)|| = |(z1,22,...)||, so S2 is an isometry, but S, is not.

LEMMA 3.4 ([BMN, Remark 3.9]). Let S, be the unilateral weighted
forward shift operator on ly(N) with weight sequence w = (Wy)n>1 € loo(N).
Then Sy is a (2,2)-isometry if and only if

njwi]? — (n — 1)
(n = Dfwi* = (n - 2)

lw,|* = >0

for n > 1. Observe that
nlwi|* — (n —1)
(n—Duw|* = (n—2)
EXAMPLE 3.5. The converse of Theorem [3.1] is not true for the class of
unilateral weighted shifts. Set ws := wopy1 := 4 and wopio = (ggig)Q for
all n > 1. By Lemma S2 is a (2,2)-isometry but S,, is not.

However, if we impose that two suitable different powers of T' are m-
isometries, then T' is m-isometry.

THEOREM 3.6. Let X be a Banach space and T € L(X). Let r,s,m,1 be
positive integers and p > 1 a real number. If T" is an (m,p)-isometry and
TS is an (I, p)-isometry, then Tt is an (h, p)-isometry, where t is the greatest
common divisor of r and s, and h is the minimum of m and [.

Proof. Fix z € X and denote a,, := ||[T"z||” for n = 0,1,.... As T" is
an m-isometry, the sequence (a,),>0 satisfies the recursive equation

>0 & |w1|21.

m
(3.4 > () )1Farn =0

k=0
for all n > 0. This equation has characteristic polynomial ¢(z) := ¢,(2)™ :=
(2" — 1)™. Let V™ be the subspace of C" formed by all complex sequences
which satisfy . Then dim V,* = mr and a basis B, of V" is formed by
the sequences (nix;?)nzo, where 0 < i <m —1,1 < j <r and x; are the
roots of ¢,(z) = 2" — 1.

Analogously, as T* is an l-isometry, the sequence (ay)n>0 also satisfies

l
l
(3.5) > (k) (=1 aghin = 0
k=0
for all n > 0. Now the set of all sequences which satisfy (3.5) is a vector
subspace V! of CN, dimV! = sl and a basis By of V! is formed by the
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sequences (niy?)nzo, where 0 < ¢ <1 —-1,1<j < s and y; are the roots
of ¢s(2) := 2° — 1; moreover, p(z) := qs(2)! = (2° — 1) is the characteristic
polynomial of .

Using the factorization 2™ — 1 = (z — 1)q(2) for a polynomial ¢(z), we
obtain ¢.(z) = ¢(2)q1(z) and gs(z) = q:(2)g2(z) for some polynomials ¢ (z)
and ¢o(z), where ¢t = ged(r, s).

Therefore the sequences which satisfy both and are those in
the subspace V™ NV, whose characteristic polynomial is ged(g.(2)™, gs(2)")
= q4(2)", where t = ged(r, s) and h = min(m,[). As z is arbitrary, 7" is an
(h,p)-isometry. m

In the following result we have some particular cases of Theorem [3.6]

COROLLARY 3.7. Let X be a Banach space and T € L(X). Let r,s,m
positive integers and p > 1 a real number.

1) If T is an (m,p)-isometry and T° is an isometry, then T is an iso-
Y Y
metry.
(2) If T" and T" 1 are (m, p)-isometries, then so is T.
3) If T" is an (m,p)-isometry and T™T' is an (n,p)-isometry with
p Y p Y
m < n, then T is an (m,p)-isometry.

COROLLARY 3.8. Let X be a Banach space and T € L(X). Let m be a
positive integer and p > 1 a real number. If T is a proper (m,p)-isometry,
in the sense that it is not an (m — 1, p)-isometry, then any power of T is a
proper (m, p)-isometry.

EXAMPLE 3.9. It is not difficult to prove that T := (} 1) defined in C?
with the euclidean norm is a proper 3-isometry. Using Theorem and
Corollary we find that TF = ((1) ’f) is a proper 3-isometry.
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