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Dimension functions, scaling sequences, and wavelet sets

by

Ljiljana Arambašić, Damir Bakić and Rajna Rajić (Zagreb)

Abstract. The paper is a continuation of our study of dimension functions of or-
thonormal wavelets on the real line with dyadic dilations. The main result of Section 2 is
Theorem 2.8 which provides an explicit reconstruction of the underlying generalized mul-
tiresolution analysis for any MSF wavelet. In Section 3 we reobtain a result of Bownik,
Rzeszotnik and Speegle which states that for each dimension function D there exists an
MSF wavelet whose dimension function coincides with D. Our method provides a com-
pletely new explicit construction of an admissible generalized multiresolution analysis
(and, a posteriori, of a wavelet) from an arbitrary dimension function. Several examples
are included.

1. Introduction. An orthonormal wavelet with dyadic dilations on
the real line is a function ψ ∈ L2(R) for which the system {ψj,k(·) =
2j/2ψ(2j · −k) : j, k ∈ Z} is an orthonormal basis for L2(R). For simplic-
ity, throughout the paper such functions will be called wavelets. An MSF
wavelet is a wavelet ψ whose Fourier transform is of the form ψ̂ = χW ,
where W is a measurable subset of R. Such sets W are called wavelet sets.
There are many papers in the literature devoted to various aspects of wavelet
sets: their properties, interrelations with other relevant objects, construction
methods, etc. We refer the reader to [2], [6], [13], [14], [18] and references
therein.

In particular, in [6] all wavelet sets are described in terms of scaling sets.
Recall that a measurable set S ⊂ R is called a scaling set if W = 2S \ S
is a wavelet set. In fact, this defines a bijective correspondence: if W is a
wavelet set, the corresponding scaling set S is given by S =

⋃∞
j=1 2−jW . It

is well known that a measurable set S ⊂ R is a scaling set if and only if
the following three conditions are satisfied: (i) 2S \ S is a Z-tiling domain,
(ii) 1

2S ⊂ S, up to a null-set, (iii) for a.e. ξ ∈ R there exists an integer j ≥ 0
such that 2−jξ ∈ S. Theorem 2.2 from [6] shows that finding all scaling sets
(and hence, a posteriori, all wavelet sets) reduces to finding all measurable
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sets E ⊂ R with the property 1
2E ⊂ E together with the associated pairs of

so called complementary maps for E.
Another interesting method for construction of wavelet sets is presented

in [12]. Recall that the dimension function Dψ of an orthonormal wavelet
ψ ∈ L2(R) is defined as

Dψ(ξ) =
∞∑
j=1

∑
k∈Z
|ψ̂(2j(ξ + k))|2, ξ ∈ R.

It is known that Dψ is a well-defined measurable function, non-negative
and integer-valued ([3], [15], [19]). An abstract characterization of dimension
functions of wavelets is given in Theorem 4.2 of [12]. Moreover, by the same
theorem, for each dimension function D there exists an MSF wavelet ψ
whose dimension function Dψ coincides with D. In fact, the proof of that
result provides an algorithm for construction of such a wavelet (i.e., the
corresponding wavelet set).

One of the goals of the present article is to give another method for con-
struction of MSF wavelets from dimension functions. This is a continuation
of our preceding paper [1]. On the technical level, our method uses some
of the results obtained in [1]. On the other hand, we have developed in [1]
a method for construction of dimension functions. In this sense, the results
of Section 3 of the present paper describe the second and final step of a new
method for construction of MSF wavelets.

In contrast to [12], our approach is based on the multiresolution tech-
nique. In a nutshell, our method consists in constructing a suitable general-
ized multiresolution analysis (GMRA; see Section 2 for relevant definitions
and facts). In this way, similarly to [6], we focus our attention on scaling sets,
rather than wavelet sets. The difference is that our construction provides not
only a scaling set, but also the scaling sequence of the underlying multiresolu-
tion structure. Since the number of generators (i.e., scaling functions) is equal
to the essential maximum of the dimension function, only MRA wavelets can
arise from a single scaling function. In all other cases, a sequence (possibly
finite) of scaling functions is needed. This means that most scaling sets have
a complex structure. Our construction gives an insight into this structure by
describing a scaling set in terms of its constituting components.

It is known that each wavelet arises from a uniquely determined GMRA.
Thus, the corresponding GMRA serves not only as a tool, but also provides
some intrinsic information. Moreover, there is some evidence that a precise
description of an MSF wavelet in terms of the underlying generalized mul-
tiresolution structure may lead to a technique for building more sophisticated
wavelets from MSF ones. For a more specific comment on this we refer to
Remark 2.11 and Examples 2.12, 2.13 below.
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We point out that both aforementioned papers which are concerned
with wavelet sets, [6] and [12], are written in a general setting of dilations
in L2(Rn) induced by expanding matrices with integer coefficients. In the
present paper we restrict ourselves to the dyadic case on the real line. The
main reason for doing so is that we need some auxiliary results that are
available in the literature only in the dyadic case, and extending such results
to n dimensions, even when straightforward, would make our exposition un-
reasonably long. In particular, this applies to the results from [7] that serve
as the key technical tool in Section 2.

The paper is organized as follows. In Section 2 we summarize necessary
technical results on GMRA’s from the literature. Proposition 2.7 gives a
simple formula for a wavelet arising from a GMRA with the scaling system
consisting of characteristic functions. Theorem 2.8 provides an explicit de-
scription of the underlying GMRA for any given MSF wavelet. At the end of
the section we describe a possible application of Theorem 2.8: a scheme that
can be used to construct new wavelets from MSF ones. As an illustration of
the proposed technique, we construct two examples of non-MSF wavelets.

In Section 3 we describe our method for construction of wavelets from
dimension functions. It is well known that many different wavelets may share
the same dimension function (notice that the dimension function of each
MRA wavelet is almost identically equal to 1). Given a dimension functionD,
we construct an MSF wavelet ψ with Dψ = D. In fact, our method provides
an explicit GMRA such that the dimension function (i.e., the multiplicity
function) of its core space coincides with D. The section ends with a couple
of examples which illustrate our technique.

Throughout the paper we use the Fourier transform in the form f̂(ξ) =	
R f(x)e−2πixξ dx.

By |S| we denote the Lebesgue measure of a set S ⊆ R.
The space of square integrable functions on the 1-dimensional torus T =

R/Z is denoted by L2(T).
We denote by τ : R → [−1/2, 1/2) the translation projection onto the

unit interval. We say that measurable sets S, T ⊆ R are congruent and write
S ≡ T if there exists a measurable partition (Sk), k ∈ Z, of S such that
(Sk + k), k ∈ Z, is, up to a null-set, a partition of T .

2. Admissible GMRA’s revisited. Our goal in this section is to de-
scribe the interrelation between an MSF wavelet and the underlying mul-
tiresolution structure. It is known how to obtain wavelets associated with a
given generalized multiresolution analysis (see Remark 2.6 below). A related
result in the opposite direction, namely, an explicit reconstruction of the
associated generalized multiresolution analysis from a given MSF wavelet
(Theorem 2.8) is new.
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Let us begin by summarizing some relevant definitions and facts well
known from the literature.

Definition 2.1. A sequence (Vj), j ∈ Z, of closed subspaces of L2(R)
is said to be a generalized multiresolution analysis (GMRA) if the following
conditions are satisfied:

(1) Vj ⊆ Vj+1 for all j;
(2) DVj = Vj+1 for all j (where Df(x) =

√
2 f(2x), f ∈ L2(R));

(3)
⋂
j Vj = {0},

⋃
j Vj = L2(R);

(4) the core space V0 is a shift invariant space (i.e., TkV0 ⊆ V0 for all
k ∈ Z, where Tkf(x) = f(x− k), f ∈ L2(R)).

Recall that each shift invariant space V0 admits a standard decomposition
of the form V0 =

⊕∞
i=1〈ϕi〉, where 〈ϕi〉 is the minimal closed shift invariant

subspace of L2(R) that contains ϕi and, additionally, the system {Tkϕi :
k ∈ Z} is a Parseval frame for 〈ϕi〉 for all i ∈ N. Since ϕi is a Parseval
generator for 〈ϕi〉, there exists a measurable Z-periodic set Ωi ⊆ R such that
σϕi(ξ) :=

∑
k∈Z |ϕ̂i(ξ + k)|2 = χΩi(ξ) a.e. In addition, one can choose the

generators ϕi (which are called scaling functions when V0 is the core space of
some GMRA) of V0 so that Ω1 ⊇ Ω2 ⊇ · · · . The function ξ 7→

∑∞
i=1 χΩi(ξ)

is called the multiplicity function (or the dimension function) of V0.
It may happen that V0 has only finitely many, say n, scaling functions.

If this is the case, we shall still write V0 =
⊕∞

i=1〈ϕi〉 assuming that ϕi = 0
and Ωi = ∅ for all i > n.

We shall frequently work with scaling functions ϕi, i ∈ N, such that
ϕ̂i = χSi , where each Si is a measurable set. A description of such sets is
obtained in Proposition 4.1 of [7]. For the reader’s convenience we restate
that description in the following remark.

Remark 2.2. Let (Si) be a finite or infinite sequence of measurable
subsets of R. Suppose that Ω1 ⊇ Ω2 ⊇ · · · , where Ωi = Si + Z, i ∈ N. Let
ϕ̂i = χSi , i ∈ N. Then (ϕi) is a sequence of scaling functions for a GMRA if
the following conditions are satisfied:

(1) |Si ∩ Sj | = 0, i 6= j;
(2) |Si ∩ (Si + k)| = 0, k ∈ Z \ {0}, i ∈ N;
(3) 1

2Si ⊆
⋃∞
j=1 Sj , i ∈ N, up to a null-set;

(4)
∑∞

i=1 |Si| <∞;
(5) for a.e. ξ there exists m(ξ) ∈ N ∪ {0} such that 2−m(ξ)ξ ∈

⋃∞
j=1 Sj .

Given a GMRA (Vj), one defines a new sequence of subspaces (Wj),
j ∈ Z, byWj = Vj+1	Vj . It turns out thatW0 is shift invariant,Wj = DjW0

for all j ∈ Z, and L2(R) =
⊕

j∈ZWj . Hence, if there exists a function



Dimension functions, scaling sequences, and wavelet sets 5

ψ ∈W0 such that W0 = 〈ψ〉 and ψ is an orthonormal generator for W0 (i.e.,
{Tkψ : k ∈ Z} is an orthonormal basis for W0), then, clearly, ψ is a wavelet.

Definition 2.3. We say that a GMRA (Vj) is admissible if W0, as a
shift invariant space, has a single orthonormal generator ψ. We then say
that ψ is a wavelet associated with (Vj).

Our interest in GMRA’s arises from the following well-known fact:

Remark 2.4. Each wavelet ψ is associated with a uniquely determined
GMRA.

Indeed, let V0 = span{DjTkψ : j < 0, k ∈ Z} and, for j ∈ Z, Vj = DjV0.
It turns out that (Vj) is a GMRA for which W0 = V1 	 V0 = 〈ψ〉; in other
words, (Vj) is an admissible GMRA and ψ is a wavelet associated to it.

If (V ′j ) is any GMRA such thatW ′0 := V ′1	V ′0 = 〈ψ〉, one easily concludes
that V ′0 = span{DjTkψ : j < 0, k ∈ Z} = V0.

By the preceding remark, all wavelets arise from admissible GMRA’s.
Thus, it is important to recognize admissible ones among all GMRA’s. For
the reader’s convenience we shall restate a relevant result (keeping the nota-
tions of the discussion following Definition 2.1) in our next remark. For the
details we refer the reader to [6], [10] and [8].

Remark 2.5. A GMRA (Vj) is admissible if and only if the following
two conditions are satisfied:

(1)
∑∞

i=1 χΩi(ξ) <∞ a.e. (i.e., |
⋂∞
i=1Ωi| = 0);

(2)
∑∞

i=1 χΩi(ξ) +
∑∞

i=1 χΩi(ξ + 1/2)−
∑∞

i=1 χΩi(2ξ) = 1 a.e.

If (Vj) is an admissible GMRA and if ψ is an associated wavelet then it is
also known that Dψ(ξ) =

∑∞
i=1 χΩi(ξ) a.e.

Notice that the first condition is trivially fulfilled when V0 is finitely
generated as a shift invariant space.

We conclude this introductory part by presenting a method for obtaining
wavelets associated with a given admissible GMRA. The following remark
summarizes several results from [7]. A similar technique is described in [11]
in terms of so called low-pass and high-pass matrix masks; see a generalized
Unitary Extension Principle in Theorem 3.1 of [11].

Remark 2.6. Let (Vj) be an admissible GMRA, let V0 =
⊕∞

i=1〈ϕi〉,
σϕi(ξ) = χΩi(ξ) a.e., Ω1 ⊇ Ω2 ⊇ · · · . Let us describe all wavelets associated
with (Vj) in terms of the sequence (ϕi) of scaling functions. It suffices to
obtain one associated wavelet ψ, since then, by the general theory of shift
invariant spaces, any other associated wavelet ψs is given by ψ̂s(ξ) = s(ξ)ψ̂(ξ)
where s is some measurable, a.e. unimodular, and Z-periodic function.
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First, for each f ∈ V1, there exists a unique sequence µ(f) = t = (tj)
of functions tj ∈ L2(T), j ∈ N, such that f̂(2ξ) =

∑∞
j=1 tj(ξ)ϕ̂j(ξ) a.e. and

tj(ξ) = 0 for all ξ 6∈ Ωj and each j. Notice that the sum is finite when V0 is
finitely generated. When V0 has infinitely many generators, the above series
converges in norm. However, by condition (1) of Remark 2.5, for a.e. ξ there
exists a natural number j(ξ) such that ξ 6∈ Ωj for j > j(ξ). Thus, the above
sum is finite for a.e. ξ.

Let µ(ϕi) = mi = (mij), i ∈ N. The sequence mi = (mij) is called the
minimal filter for the scaling function ϕi and satisfies

ϕ̂i(2ξ) =
∞∑
j=1

mij(ξ)ϕ̂j(ξ) a.e.,

mij(ξ) = 0, ∀ξ 6∈ Ωj , ∀j ∈ N.

If we define, for each i ∈ N and ξ ∈ R, a double sequence

md
i (ξ) = (mi1(ξ),mi2(ξ), . . . ,mi1(ξ + 1/2),mi2(ξ + 1/2), . . .),

then md
i (ξ) ⊥ md

k(ξ) for i 6= k and a.e. ξ (in the sense
∑∞

j=1mij(ξ)mkj(ξ) +∑∞
j=1mij(ξ + 1/2)mkj(ξ + 1/2) = 0) and

∑∞
j=1 |mij(ξ)|2 +

∑∞
j=1 |mij(ξ +

1/2)|2 = ‖md
i (ξ)‖2 = χΩi(2ξ) for each i and a.e. ξ.

By Propositions 2.7 and 2.9 of [7], there exists a sequence v = (vj) of
functions vj ∈ L2(T) satisfying vj(ξ) = 0 for all ξ 6∈ Ωj and all j, such that
the sequence vd(ξ) = (v1(ξ), v2(ξ), . . . , v1(ξ + 1/2), v2(ξ + 1/2), . . .), ξ ∈ R,
has the properties:

(1) vd(ξ) ⊥ md
i (ξ) for each i and a.e. ξ;

(2) ‖vd(ξ)‖2 = 1 a.e.

A sequence (vj) with these properties is uniquely determined if we addi-
tionally require that the first non-trivial component of vd(ξ) is positive, for
a.e. ξ.

Finally, by Theorem 1.9 of [7], if (vj) is a sequence of functions in L2(T)
satisfying vj(ξ) = 0 for all ξ 6∈ Ωj and all j, and the above conditions (1)
and (2), then the function ψ defined by ψ̂(2ξ) =

∑∞
j=1 vj(ξ)ϕ̂j(ξ) is a wavelet

associated with (Vj).

Our first proposition is known and we include it only for completeness.
It can be proved using the technique of the preceding remark, but here we
include a sketch of a more direct proof as proposed by the referee.

Proposition 2.7. Let (Vj) be an admissible GMRA such that V0 =⊕∞
i=1〈ϕi〉, ϕ̂i = χSi , i ∈ N. Then an associated wavelet ψ is given by ψ̂ = χW

where W = 2S \ S and S =
⋃∞
i=1 Si.
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Proof. Denoting by ˇ the inverse Fourier transform, we have V0 = Ľ2(S)
and hence V1 = Ľ2(2S). Thus, W0 = V1 	 V0 = Ľ2(W ) where W = 2S \ S.
So, ψ̂ = χW must be a wavelet associated with (Vj).

Suppose now that we are given an MSF wavelet ψ, ψ̂ = χW . By Re-
mark 2.4, ψ is associated with a unique GMRA (Vj). Now we want to re-
construct the core space V0, in other words, the sequence of scaling func-
tions (ϕi).

Recall that S =
⋃∞
j=1 2−jW is the corresponding scaling set.

For ξ ∈ τ(S) define m1(ξ) ∈ Z by

|ξ +m1(ξ)| = min{|ξ +m| : m ∈ Z, ξ +m ∈ S}
and

(2.1) M1 = {ξ +m1(ξ) : ξ ∈ τ(S)}.
Notice that |ξ + m1| = |ξ + m2| with ξ ∈ [−1/2, 1/2) and m1,m2 ∈ Z,
m1 6= m2, implies ξ = −1/2 or ξ = 0. This shows that the function m1 is
well defined on the set τ(S) \ {−1/2, 0}. It is also easy to see that M1 is a
measurable set.

By defining M1 we have chosen a unique representative (the smallest
in absolute value) in the congruence class for each point in S \ 1

2Z. Let us
proceed by induction.

Suppose we have pairwise disjoint, measurable setsM1, . . . ,Mn ⊆ S such
that the restriction of the translation projection τ to eachMi is an injection.
For ξ ∈ τ(S \

⋃n
i=1Mi), ξ 6∈ {−1/2, 0}, define mn+1(ξ) by

|ξ +mn+1(ξ)| = min
{
|ξ +m| : m ∈ Z, ξ +m ∈ S \

n⋃
i=1

Mi

}
and

(2.2) Mn+1 =
{
ξ +mn+1(ξ) : ξ ∈ τ

(
S \

n⋃
i=1

Mi

)}
.

Clearly, this gives us a sequence (possibly finite) of pairwise disjoint measur-
able sets (Mi) such that S\ 1

2Z =
⋃∞
i=1Mi. Thus, up to a set of measure zero,

the sequence (Mi) makes up a partition of S. For i ∈ N, define ϕi ∈ L2(R)
by ϕ̂i = χMi and Ωi = Mi + Z. It follows from the construction that the
sequence (Ωi) decreases.

We claim that (ϕi) is a sequence of scaling functions for a GMRA (Vj)
whose core space is V0 =

⊕∞
i=1〈ϕi〉.

To see this, we need to check the conditions of Remark 2.2. Conditions
(1) and (2) follow immediately from the construction, while (4) is trivially
satisfied since S, as a scaling set, has Lebesgue measure equal to 1. The
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remaining conditions (3) and (5) are direct consequences of conditions (ii)
and (iii) in Theorem 3.3 of [12].

It remains to show that (Vj) is the underlying GMRA for ψ. First observe
that Dψ(ξ) =

∑∞
j=1

∑
k∈Z |ψ̂(2j(ξ + k))|2 =

∑∞
j=1

∑
k∈Z χW (2j(ξ + k)) =∑∞

j=1

∑
k∈Z χ2−jW (ξ + k) =

∑
k∈Z χS(ξ + k) =

∑∞
i=1 χΩi(ξ). This, together

with Theorem 4.2 of [12], directly implies properties (1) and (2) of Re-
mark 2.5; hence, (Vj) is an admissible GMRA.

We are now in a position to apply the preceding proposition: an associated
wavelet is an MSF wavelet whose wavelet set is 2S \ S; since 2S \ S = W ,
this is precisely our original wavelet ψ.

This completes the proof of the following theorem.

Theorem 2.8. Let ψ be an MSF wavelet such that ψ̂ = χW . Define a
sequence (ϕi) of functions ϕi ∈ L2(R) by ϕ̂i = χMi, i ∈ N, where the sets
Mi are given by (2.1) and (2.2). Then ψ arises from the GMRA (Vj) with
core space V0 =

⊕∞
i=1〈ϕi〉.

Example 2.9. Consider the Journé wavelet set W = [−16/7,−2) ∪
[−1/2,−2/7) ∪ [2/7, 1/2) ∪ [2, 16/7). The corresponding scaling set is S =
[−8/7,−1) ∪ [−4/7,−1/2) ∪ [−2/7, 2/7) ∪ [1/2, 4/7) ∪ [1, 8/7). Following
the construction from the above proof, one obtains M1 = [−4/7,−1/2) ∪
[−2/7, 2/7) ∪ [1/2, 4/7) and M2 = [−8/7,−1) ∪ [1, 8/7).

Remark 2.10. The scaling sequence (ϕi) with ϕ̂i = χMi , obtained in the
preceding theorem, is not unique. To see this, take any n ≥ 2 and an arbitrary
measurable set E ⊆ Mn. Let k < n. Since Ωn = Mn + Z ⊆ Ωk = Mk + Z,
there is a measurable set F ⊆Mk such that F ≡ E. It is easy to see that the
sequence (Si) defined by Sn = (Mn \ E) ∪ F , Sk = (Mk \ F ) ∪ E, Si = Mi

for i 6= n, k, satisfies the conditions of Remark 2.2; hence, the sequence (φi)
defined by φ̂i = χSi is a new scaling sequence. Since Si+Z = Mi+Z = Ωi for
all i, and

⋃∞
i=1 Si =

⋃∞
i=1Mi = S, the resulting GMRA produces the same

wavelet ψ. Recalling that each wavelet has a uniquely determined GMRA,
we conclude that the sequences (Mi) and (Si) generate the same GMRA.
In fact, we have obtained two different standard decompositions of the core
space: V0 =

⊕∞
i=1〈ϕi〉 =

⊕∞
i=1〈φi〉.

As is known from the literature, there are several techniques for construc-
tion of wavelet sets (i.e., MSF wavelets). The class of MSF wavelets is an
important source of examples and counterexamples. However, MSF wavelets
are not very useful in applications due to discontinuities of their Fourier
transforms. Hence, it is natural to ask: is it possible to build new wavelets
from MSF ones? Theorem 2.8 may be used as a first step toward achieving
that goal.
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Remark 2.11. Given an MSF wavelet ψ one can explore the follow-
ing scheme. First, by using Theorem 2.8, one reconstructs the underlying
GMRA, i.e., the sequence (Mi). Put Ωi = Mi+Z, i ∈ N. By Remark 2.5, we
know that the sequence (Ωi) satisfies admissibility conditions (1) and (2) of
Remark 2.5. The idea is now to find a new sequence of scaling functions (φi)
for another GMRA (Uj) such that {ξ ∈ R : φ̂i(ξ) 6= 0}+ Z = Ωi, i ∈ N. To
be more specific, we want to find sequences (Pi) and (Ri) of measurable sets
such that Pi ⊆Mi and Pi + Z = Ri + Z, i ∈ N, and a sequence of functions
(φi) such that {ξ ∈ R : φ̂i(ξ) 6= 0} = Mi ∪Ri, i ∈ N. If this is done in such a
way that (φi) is a scaling sequence, then the core space U0 of the resulting
GMRA (Uj) has the same multiplicity function, since σφi = σϕi = χΩi for
all i ∈ N. Hence, (Uj) is a new admissible GMRA. To obtain associated
wavelets, it only remains to apply the technique described in Remark 2.6.

In the following two examples we illustrate the proposed method.

Example 2.12. Let W = [−2/3,−1/3) ∪ [2/3, 4/3). Since each of the
families (W + k), k ∈ Z, and (2jW ), j ∈ Z, makes up a partition of R, W is
a wavelet set, i.e., the function ψ defined by ψ̂ = χW is an MSF wavelet. It
is easy to see that Dψ ≡ 1; thus, ψ is an MRA wavelet. The corresponding
scaling set is S =

⋃∞
j=1 2−jW = [−1/3, 2/3). As in the proof of Theorem 2.8,

one finds M1 = S and Mn = ∅ for all n ≥ 2. This shows that ψ arises from
an MRA (Vj), where V0 = 〈ϕ〉 and ϕ̂ = χS . In particular, if we denote
Ω = S + Z, we know that χΩ(ξ) + χΩ(ξ + 1/2) − χΩ(2ξ) = 1 for all ξ ∈ R
(which is obvious in this situation; since S is a Z-tiling domain, Ω = R).

Let P = [−1/3,−1/6) ⊂ S and R = P + 1 ≡ P . Choose arbitrary
L2-functions a and b on P such that |a(ξ)|2 + |b(ξ)|2 = 1 for all ξ ∈ P and
0 < |a(ξ)| < 1 for a.e. ξ ∈ P . Now define a function φ by

φ̂(ξ) =


1, ξ ∈ S \ P,
a(ξ), ξ ∈ P,
b(ξ − 1), ξ ∈ P + 1,
0, otherwise.

Notice that {ξ ∈ R : φ̂(ξ) 6= 0} = S ∪ R and (S ∪ R) + Z = S + Z. One
easily finds that σφ(ξ) = 1 for all ξ ∈ R, which shows that, as was the key
idea in the preceding discussion, by passing from ϕ to φ we did not change
the original set Ω = R. Furthermore, an easy application of Theorem 7.5.2
of [17] shows that φ is a scaling function. Hence, the sequence of subspaces
(Uj), j ∈ Z, where Uj = DjU0 and U0 = 〈φ〉, is a new MRA. To obtain
associated wavelets, we follow the procedure of Remark 2.6 which, in this
situation, reduces to the well known high pass filter technique. After a simple
computation (we omit the details) one obtains a wavelet ψφ which is given
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by

(2.3) ψ̂φ(2ξ) =



a(ξ), ξ ∈ P = [−1/3,−1/6),
b(2ξ), ξ ∈ 1/2P = [−1/6,−1/12),
−a(2ξ − 1), ξ ∈ 1/2(P + 1) = [1/3, 5/12),
1, ξ ∈ [5/12, 2/3),
b(ξ − 1), ξ ∈ P + 1 = [2/3, 5/6),
0, otherwise.

We shall now specify a and b. Our goal is to obtain a wavelet ψφ whose
Fourier transform ψ̂φ is a smooth function. Put

a(ξ) = sin(f(ξ)), ξ ∈ [−1/3,−1/6),(2.4)
b(ξ) = cos(f(ξ)), ξ ∈ [−1/3,−1/6),(2.5)

where f is a temporarily unspecified real function. Obviously, such a and b
satisfy the condition |a(ξ)|2 + |b(ξ)|2 = 1 for all ξ ∈ P = [−1/3,−1/6).

Finally, observe that if f is a C∞-function defined on some open set that
contains P with the properties

(2.6) f (n)

(
−1

3

)
=f (n)

(
−1

6

)
=0, ∀n∈N, f

(
−1

3

)
=0, f

(
−1

6

)
=
π

2
,

then (2.3) gives us a wavelet ψφ,∞ with C∞ Fourier transform. To obtain
such an f , consider first the function g defined by

(2.7) g(ξ) =

{
e

1
(ξ+1/6)(ξ+1/3) , ξ ∈ (−1/3,−1/6),

0, otherwise.

An easy computation shows that g is a C∞-function with g(n)(−1/3) =
g(n)(−1/6) = 0 for all n ∈ N ∪ {0}. The only problem is that the value of g
at −1/6 is not π/2, but 0. To adjust g appropriately, let K =

	−1/6
−1/3 g(t) dt

and

(2.8) f(ξ) =
π

2K

ξ�

−1/3

g(t) dt.

Obviously, f is an increasing function with f(−1/3) = 0 and f(−1/6)
= π/2. Moreover, since f (n)(ξ) = π

2K g
(n−1)(ξ) for all n ∈ N, we also have

f (n)(−1/3) = f (n)(−1/6) = 0 for all n ∈ N.

We note that a similar family of smooth wavelets is obtained in [16] by
a different technique. Example 1 of [16] describes an explicit construction
of a smooth wavelet ψα with supp |ψ̂α| ⊂ Sα =

[
− 4

3πα, 2 −
2
3πα

)
for any

α ∈ (0, π]. Notice that for α = π/2 this gives Sπ/2 = [−2/3, 5/3), which is
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Fig. 1. The graph of ψ̂φ,∞

precisely the minimal interval that contains the support of ψ̂φ,∞ given by
(2.3).

Let us also mention that the technique of Example 2.12 cannot be ex-
tended to the class of non-MRA MSF wavelets if we want to obtain a wavelet
with a continuous compactly supported Fourier transform. This is a direct
consequence of Theorem 3.12 of [16]. Thus, if we want to produce a non-MRA
wavelet with a continuous Fourier transform by using the technique of Re-
mark 2.11, we must choose sets Ri in such a way that the Fourier transform
of the resulting wavelet has an unbounded support.

In our next example we construct a non-MSF non-MRA wavelet ψ whose
Fourier transform is compactly supported (and hence discontinuities of ψ̂
must be present).

Example 2.13. Consider Journé’s dimension function

D(ξ) =


2, ξ∈ [−1/7, 1/7) + Z,
1, ξ∈([−1/2,−3/7)∪[−2/7,−1/7)∪[1/7, 2/7)∪[3/7, 1/2)) + Z,
0, otherwise,

and an MSF wavelet χW where W = 2S \ S, S = M1 ∪M2 and

M1 = [−1/2,−3/7)∪ [−2/7, 2/7)∪ [3/7, 1/2), M2 = [−1,−6/7)∪ [6/7, 1).

Observe that Dψ = D (cf. Example 3.19).
The corresponding scaling functions are given by ϕ̂1 = χM1 and ϕ̂2 =

χM2 . Here we introduce new scaling functions φ1 and φ2 in the following
way. First, let a and b be measurable functions on [−4/7,−3/7) such that
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|a(ξ)|2 + |b(ξ)|2 = 1 for all ξ ∈ [−4/7,−3/7). Now put

φ̂1(ξ) =


a(ξ), ξ ∈ [−4/7,−3/7),
1, ξ ∈ [−2/7, 2/7),
b(ξ − 1), ξ ∈ [3/7, 4/7),
0, otherwise,

φ̂2(ξ) =


a(ξ/2), ξ ∈ [−8/7,−6/7),
b(ξ/2− 1), ξ ∈ [6/7, 8/7),
0, otherwise.

It is easy to verify that φ1 and φ2 serve as scaling functions of a new
GMRA (Uj). However, since σϕ1 = σφ1 = χΩ1 and σϕ2 = σφ2 = χΩ2 where
Ω1 = ([−1/2,−3/7)∪ [−2/7, 2/7)∪ [3/7, 1/2))+Z and Ω2 = [−1/7, 1/7)+Z,
we conclude that (Uj) admits orthonormal wavelets.

−16
7

−12
7

−3
7

−4
7

−2
7

2
7

3
7

4
7

12
7

16
7

1

ξ

Fig. 2. The graph of ψ̂1

To obtain the resulting wavelet(s), we only need to find the filters and
apply the technique of Remark 2.6. A short computation (the details are
omitted) yields the Fourier transform of the associated wavelet ψ1:

ψ̂1(ξ) =



a(ξ/4), ξ ∈ [−16/7,−12/7),
b(ξ), ξ ∈ [−4/7, 3/7),
1, ξ ∈ [−3/7,−2/7) ∪ [2/7, 3/7),
−a(ξ − 1), ξ ∈ [3/7, 4/7),
b(ξ/4− 1), ξ ∈ [12/7, 16/7),
0, otherwise.
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Observe that ψ1 is a non-MSF non-MRA wavelet with Journé’s dimension
function D. Note that some constructions (using different techniques) based
on the Journé dimension function can be found in [4] and [5].

The function ψ̂1 with a(ξ) = sin((7ξ + 4)π), b(ξ) = cos((7ξ + 4)π),
ξ ∈ (−4/7,−3/7) is shown in Figure 2.

3. From dimension functions to MSF wavelets. Let D : R →
N ∪ {0} be an arbitrary dimension function. In this section we describe
a method for construction of an MSF wavelet ψ such that Dψ = D a.e.
Throughout the section, the function D will be fixed. We note that a similar
construction (in Rn) that uses a dimension function as the starting object
appears in [11].

For the reader’s convenience, we begin by restating Theorem 2 of [1].
That result characterizes dimension functions and will be repeatedly used in
the course of our construction.

Theorem 3.1. Let D : R→ N∪{0} be a measurable Z-periodic function
that is integrable on the unit interval [−1/2, 1/2). Then D is the dimension
function of some orthonormal wavelet if and only if the following conditions
are satisfied:

(a) lim infj→∞D(2−jξ) ≥ 1 a.e.;
(b) D(ξ) +D(ξ + 1/2) = D(2ξ) + 1 a.e.;
(c) for a.e. ξ such that D(ξ) ≥ 1 there is j ∈ N satisfying D(2−jξ +

1/2) ≥ 1;
(d) for a.e. ξ such that D(ξ) ≥ 1 there is k ∈ Z such that D(2−j(ξ + k))
≥ 1 for all j ∈ Z, j ≥ 0.

Basically, this theorem tells us that condition (3) of Theorem 4.2 in [12] is
equivalent to conditions (c) and (d) above, provided that all other conditions
are satisfied. Notice that (d) means that for a.e. ξ such that D(ξ) ≥ 1 there
exists at least one k ∈ Z such that ξ + k ∈ ∆, where

(3.1) ∆ = {ξ ∈ R : D(2−jξ) ≥ 1, ∀j ≥ 0}.
Clearly, this is considerably weaker than (3) in Theorem 4.2 of [12] where
one requires, for a.e. ξ such that D(ξ) ≥ 1, the existence of at least D(ξ)
integers k with ξ + k ∈ ∆.

Observe that all conditions of the above theorem are satisfied for almost
all ξ’s. By neglecting a null-set, we can suppose that these conditions are
fulfilled for each point ξ on the real line.

Define, for all n ∈ N, the sets

Tn = {ξ ∈ [−1/2, 1/2) : D(ξ) ≥ n}.
Denote Ωn = Tn + Z, n ∈ N. Observe that, since D is a periodic function,
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Ωn = {ξ ∈ R : D(ξ) ≥ n} and Tn = Ωn ∩ [−1/2, 1/2). Obviously, we have
T1 ⊇ T2 ⊇ · · · and Ω1 ⊇ Ω2 ⊇ · · · . If D is essentially bounded, say by m, we
understand Tn = Ωn = ∅ for all n > m, and both sequences are considered
to be finite.

Remark 3.2. Our goal is to construct measurable functions kn : Tn → Z,
n ∈ N, such that the sets defined by

(3.2) Sn := {ξ + kn(ξ) : ξ ∈ Tn}, n ∈ N,

satisfy the conditions of Remark 2.2, so that the functions ϕn defined by
ϕ̂n = χSn , n ∈ N, make up a scaling sequence for the GMRA (Vj), where
V0 =

⊕∞
n=1〈ϕn〉. Notice that the resulting GMRA (Vj) will be automatically

admissible. Namely, Sn ≡ Tn implies Sn + Z = Tn + Z = Ωn = {ξ ∈ R :
D(ξ) ≥ n} for all n ∈ N. From this we conclude that

∑∞
n=1 χSn+Z(ξ) =∑∞

n=1 χΩn(ξ) =
∑∞

n=1 χ{η∈R :D(η)≥n}(ξ) = D(ξ). Since it is known that D
is finite a.e. and satisfies (b) of Theorem 3.1, we immediately conclude that
both conditions of Remark 2.5 are satisfied as well.

We proceed by imposing certain conditions on the functions (kn) in order
to ensure the conditions of Remark 2.2 (in other words, to ensure that the
sequence (ϕn) with ϕ̂n = χSn is a scaling sequence for a GMRA).

Let us first rewrite the consistency equation (b) of Theorem 3.1 with ξ
replaced by ξ/2:

(3.3) D(ξ/2) +D(ξ/2 + 1/2) = D(ξ) + 1.

Since D is a periodic function, the second term on the left hand side may
also be written as D(ξ/2− 1/2). As our functions kn are going to be defined
inside the unit interval, we shall need to know, for ξ ∈ [−1/2, 1/2), which
of the points ξ/2− 1/2, ξ/2 + 1/2 belongs to [−1/2, 1/2). Observe that the
right choice is precisely (ξ − sgn ξ)/2 (with the convention sgn 0 = 1).

Let us now suppose that the functions kn : Tn → Z have already been
constructed. For ξ ∈ T1 and n ∈ N we introduce the following notations:

ln(ξ) = min{n,D(ξ/2)}, rn(ξ) = min{n,D((ξ − sgn ξ)/2)},(3.4)
Ln(ξ) = {2ki(ξ/2) : i = 1, . . . , ln(ξ)},(3.5)
Rn(ξ) = {2kj((ξ − sgn ξ)/2)− sgn ξ : j = 1, . . . , rn(ξ)},(3.6)
Kn(ξ) = Ln(ξ) ∪Rn(ξ).(3.7)

We understand that in the case ln(ξ) = 0 the set Ln(ξ) is empty and,
similarly, if rn(ξ) = 0 the set Rn(ξ) is empty. However, by the consistency
equation (3.3), for each ξ in the unit interval, we have D(ξ/2) ≥ 1 or
D((ξ − sgn ξ)/2) ≥ 1. Hence, at least one of the numbers ln(ξ) and rn(ξ)
must be positive, and consequently Kn(ξ) is non-empty for every ξ ∈ T1.
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Next we check that the numbers 2ki(ξ/2), i = 1, . . . , ln(ξ), resp.
2kj((ξ − sgn ξ)/2) − sgn ξ, j = 1, . . . , rn(ξ), make sense for every ξ ∈ T1

such that ln(ξ) ≥ 1, resp. rn(ξ) ≥ 1. Suppose that ln(ξ) ≥ 1. Since ξ/2 ∈
[−1/2, 1/2) and D(ξ/2) ≥ ln(ξ), we have ξ/2 ∈ Ti for i = 1, . . . , ln(ξ), i.e.,
ξ/2 belongs to the domains of ki, i = 1, . . . , ln(ξ). Hence, the expressions
2ki(ξ/2), i = 1, . . . , ln(ξ), make sense. In a similar way one concludes that
the integers 2kj((ξ − sgn ξ)/2) − sgn ξ, j = 1, . . . , rn(ξ), are well defined
whenever rn(ξ) ≥ 1.

Finally, it is clear that Kn(ξ) ⊆ Kn+1(ξ) for all n ∈ N and ξ ∈ T1.

The sets Kn(ξ) will play a central role in verifying that the sequence
(Sn) satisfies the conditions of Remark 2.2. Let us begin with two auxiliary
results.

Lemma 3.3. Let kn : Tn → Z and Sn = {ξ + kn(ξ) : ξ ∈ Tn}, n ∈ N. If
ξ ∈ [−1/2, 1/2) and k ∈ Z are such that 1

2(ξ + k) ∈ Sj for some j ∈ N, then
k = 2kj(ξ/2) or k = 2kj((ξ − sgn ξ)/2)− sgn ξ. In particular, k ∈ Kj(ξ).

Proof. Since 1
2(ξ+k) ∈ Sj , there is ξ′ ∈ Tj such that 1

2(ξ+k) = ξ′+kj(ξ′).
Suppose first that k = 2l for some l ∈ Z. Then ξ/2+ l = ξ′+kj(ξ′), hence

ξ/2−ξ′ = kj(ξ′)− l ∈ Z. However, ξ/2−ξ′ ∈ (−3/4, 3/4) yields ξ/2−ξ′ = 0,
i.e., ξ′ = ξ/2. We conclude that l = kj(ξ′) = kj(ξ/2), so k = 2kj(ξ/2). Since
ξ/2 ∈ Tj , we have lj(ξ) = min{j,D(ξ/2)} = j, which implies k ∈ Kj(ξ).

Suppose now that k = 2l−sgn ξ for some l ∈ Z. Then ξ/2+l−(sgn ξ)/2 =
ξ′+kj(ξ′), so (ξ − sgn ξ)/2−ξ′ ∈ Z. Furthermore, (ξ − sgn ξ)/2−ξ′ ∈ (−1, 1),
yielding (ξ − sgn ξ)/2 − ξ′ = 0. Hence, l = kj(ξ′) = kj((ξ − sgn ξ)/2), so
k = 2kj((ξ − sgn ξ)/2) − sgn ξ. Also, (ξ − sgn ξ)/2 ∈ Tj implies rj(ξ) =
min{j,D((ξ − sgn ξ)/2)} = j; thus, k ∈ Kj(ξ).

Lemma 3.4. Let kn : Tn → Z and Sn = {ξ + kn(ξ) : ξ ∈ Tn}, n ∈ N.

(a) Let i < j. Then Si∩Sj = ∅ if and only if ki(ξ) 6= kj(ξ) for all ξ ∈ Tj .
(b) 1

2Sn ⊆ S1 ∪ · · · ∪ Sn if and only if kn(ξ) ∈ Kn(ξ) for all ξ ∈ Tn.

Proof. (a) Suppose that ki(ξ) 6= kj(ξ) for all ξ ∈ Tj , and there is ζ ∈
Si ∩ Sj . Then there are ξ ∈ Ti and η ∈ Tj such that ζ = ξ + ki(ξ) =
η + kj(η). It follows that ξ − η = kj(η) − ki(ξ). Since ξ, η ∈ [−1/2, 1/2)
and ki(ξ), kj(η) ∈ Z, we have ξ − η = kj(η) − ki(ξ) ∈ (−1, 1) ∩ Z = {0}.
Therefore, ξ = η and ki(ξ) = kj(ξ), which is not the case. Hence, Si∩Sj = ∅.
The converse is obvious.

(b) First, suppose that 1
2Sn ⊆ S1 ∪ · · · ∪ Sn. Let ξ ∈ Tn. Then 1

2(ξ +
kn(ξ)) ∈ Sj for some j ∈ {1, . . . , n}. By Lemma 3.3, kn(ξ) ∈ Kj(ξ) ⊆ Kn(ξ).

Conversely, suppose that kn(ξ) ∈ Kn(ξ) for all ξ ∈ Tn. Let ζ ∈ 1
2Sn.

Then there is ξ ∈ Tn such that ζ = 1
2(ξ + kn(ξ)).
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If kn(ξ) = 2ki(ξ/2) for some i ∈ {1, . . . , ln(ξ)}, then ξ/2 ∈ Ti and

ζ =
1
2

(ξ + 2ki(ξ/2)) = ξ/2 + ki(ξ/2) ∈ Si ⊆
n⋃
j=1

Sj .

Similarly, if kn(ξ) = 2ki((ξ − sgn ξ)/2)−sgn ξ for some i ∈ {1, . . . , rn(ξ)},
then (ξ − sgn ξ)/2 ∈ Ti and

ζ =
1
2

(
ξ + 2ki

(
ξ − sgn ξ

2

)
− sgn ξ

)
=
ξ − sgn ξ

2
+ ki

(
ξ − sgn ξ

2

)
∈ Si ⊆

n⋃
j=1

Sj .

Thus, 1
2Sn ⊆ S1 ∪ · · · ∪ Sn.

We are now ready to give sufficient conditions on functions (kn) in order
to obtain a desired admissible GMRA.

Theorem 3.5. Let D be a dimension function, Ωn = {ξ ∈ R : D(ξ) ≥ n}
and Tn = Ωn ∩ [−1/2, 1/2), n ∈ N. Suppose that (kn) is a sequence of
measurable functions kn : Tn → Z with the properties:

(a) ki(ξ) 6= kj(ξ) for a.e. ξ ∈ Tj and all i < j;
(b) kn(ξ) ∈ Kn(ξ) for a.e. ξ ∈ Tn and all n ∈ N;
(c) k1(ξ) = 0 for all ξ ∈ T1 ∩∆.

Let Sn = {ξ + kn(ξ) : ξ ∈ Tn}, n ∈ N. Then the sequence of functions
(ϕn) defined by ϕ̂n = χSn is a scaling sequence for an admissible GMRA.
In particular, an associated wavelet ψ is given by ψ̂ = χ2S\S, where S =⋃∞
i=1 Si, and satisfies Dψ(ξ) = D(ξ) for a.e. ξ ∈ R.

Proof. We need to check the conditions of Remark 2.2. Condition (1)
follows from (a) and the first statement of the preceding lemma. Since, for
each n ∈ N, we have Sn ≡ Tn and |Tn ∩ (Tn + k)| = 0 for all k ∈ Z \ {0},
condition (2) is satisfied as well. Condition (3) follows from (b) and Lem-
ma 3.4(b). Further, recall from [12] that each dimension function D satisfies	1/2
−1/2D(ξ) dξ = 1. Since |Sn| = |Tn| for all n ∈ N, it follows that

∑∞
n=1 |Sn| =∑∞

n=1 |Tn| =
	1/2
−1/2D(ξ) dξ = 1, which shows that (4) is fulfilled too.

It remains to verify (5). Pick ξ ∈ R. First, let j0 be the smallest non-
negative integer for which (1/2j0)ξ ∈ [−1/2, 1/2). By Theorem 3.1(a) ap-
plied to the point (1/2j0)ξ, there exists a non-negative integer k0 such that
D
(

1
2k

1
2j0
ξ
)
≥ 1 for all k ≥ k0. In particular, 1

2k0
1

2j0
ξ ∈ T1 ∩ ∆; thus, by

(c), we have 1
2k0

1
2j0
ξ ∈ S1. This gives us condition (5) of Remark 2.2 with

m(ξ) = k0 + j0.
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We have already noted in Remark 3.2 that the resulting GMRA is ad-
missible. From Proposition 2.7 we know that an associated wavelet ψ is
given by ψ̂ = χ2S\S . Finally, combining Remark 3.2 and the last assertion
of Remark 2.5, we conclude Dψ =

∑∞
n=1 χSn+Z = D.

Remark 3.6. (a) Observe that under the assumptions of the preceding
theorem we end up with a sequence (Sn) with 1

2Sn ⊆
⋃n
i=1 Si, which is

stronger than condition (3) in Remark 2.2: 1
2Sn ⊆

⋃∞
i=1 Si.

(b) It is also useful to note that 1
2Sn ⊆

⋃∞
i=1 Si implies Sn ⊆ ∆ for all

n ∈ N. Indeed, for every ξ ∈ Sn and i ∈ N ∪ {0} there is ki ∈ N such that
2−iξ ∈ Ski . Therefore, D(2−iξ) ≥ 1 for all i ∈ N ∪ {0}.

(c) One can think of our construction of (kn) as finding the minimal
integer translation Sn of each Tn such that the sets Sn are pairwise disjoint
and lie in ∆. Observe that the assumption (c) in the preceding theorem that
poses a condition on k1 is in accordance with that principle. This would mean
that our construction yields, for a given dimension function, a wavelet set
with the smallest possible diameter. This is demonstrated in Example 3.19
for the Journé dimension function. However, we have not been able to prove
this in full generality.

The rest of the section is devoted to a construction of a sequence (kn)
that satisfies the conditions of Theorem 3.5. Let us begin by constructing k1.

Lemma 3.7. Let D : R → N ∪ {0} be a dimension function. For every
ξ ∈ T1 \ {−1/2} let k1(ξ) ∈ Z be such that

(3.8) |ξ + k1(ξ)| = min{|ξ + k| : k ∈ Z such that ξ + k ∈ ∆}.
Then ξ 7→ k1(ξ) ∈ Z is a well-defined function which satisfies k1(ξ) ∈ K1(ξ)
for all ξ ∈ T1 \ {−1/2}.

Proof. Since D is a dimension function, for every ξ ∈ T1, by Theo-
rem 3.1(d), there is k ∈ Z such that ξ + k ∈ ∆. Therefore, the set {|ξ + k| :
k ∈ Z such that ξ + k ∈ ∆} is non-empty and, obviously, has a minimum.

Let us show that the relation (3.8) uniquely determines k1(ξ) for every
ξ ∈ T1 \ {−1/2}. Notice that 0 ∈ T1 ⇒ 0 ∈ ∆ ⇒ k1(0) = 0. Now suppose
that ξ ∈ T1 \ {0,−1/2} is such that there are l,m ∈ Z satisfying |ξ + l| =
|ξ+m| = min{|ξ+ k| : k ∈ Z such that ξ+ k ∈ ∆}. Then ξ+m = ±(ξ+ l).
Observe that ξ + m = −(ξ + l) implies 2ξ = −m − l ∈ Z ∩ ((−1, 1) \ {0}),
so this case cannot happen. Thus, ξ + m = ξ + l, i.e., m = l, so k1(ξ) is
uniquely determined on T1 \ {−1/2}.

It remains to show the second statement. Let ξ ∈ T1 \ {−1/2}. First,
k1(0) = 2k1(0/2) = 0 ∈ K1(0), so let ξ 6= 0.

Suppose that k1(ξ) is even. Since ξ + k1(ξ) ∈ ∆ and D is Z-periodic, it
follows that D(ξ/2) = D(2−1(ξ + k1(ξ))) ≥ 1. Hence, ξ/2 ∈ T1 \ {−1/2}, so
k1(ξ/2) is well defined by (3.8). Also, l1(ξ) = 1 implies 2k1(ξ/2) ∈ K1(ξ). It is
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obvious that ξ/2+k1(ξ)/2 ∈ ∆. Moreover, if k ∈ Z is such that ξ/2+k ∈ ∆,
then ξ + 2k ∈ ∆. Now, (3.8) implies |ξ + k1(ξ)| ≤ |ξ + 2k| for all k ∈ Z with
ξ/2 +k ∈ ∆, i.e., |ξ/2 +k1(ξ)/2| ≤ |ξ/2 +k| for all such k. We conclude that
k1(ξ/2) = k1(ξ)/2, i.e., k1(ξ) = 2k1(ξ/2).

Suppose now that k1(ξ) is odd. Since ξ+ k1(ξ) ∈ ∆ and D is Z-periodic,
it follows that D((ξ − sgn ξ)/2) = D(2−1(ξ + k1(ξ))) ≥ 1. Therefore,
(ξ − sgn ξ)/2 ∈ T1 \ {−1/2}, so k1((ξ − sgn ξ)/2) is well defined. Also, r1(ξ)
= 1 implies 2k1((ξ − sgn ξ)/2)− sgn ξ ∈ K1(ξ). Obviously, (k1(ξ) + sgn ξ)/2
∈ Z, and (ξ − sgn ξ)/2 + (k1(ξ) + sgn ξ)/2 ∈ ∆. Furthermore, for all k ∈ Z
such that (ξ − sgn ξ)/2 + k ∈ ∆, we have ξ + 2k − sgn ξ ∈ ∆. Therefore,
|ξ+k1(ξ)| ≤ |ξ+2k−sgn ξ| for all k ∈ Z such that (ξ − sgn ξ)/2+k ∈ ∆, i.e.,
|(ξ − sgn ξ)/2+(k1(ξ) + sgn ξ)/2| ≤ |(ξ − sgn ξ)/2+k| for all k ∈ Z such that
(ξ − sgn ξ)/2 + k ∈ ∆. It follows that k1((ξ − sgn ξ)/2) = (k1(ξ) + sgn ξ)/2,
i.e., k1(ξ) = 2k1((ξ − sgn ξ)/2)− sgn ξ.

Remark 3.8. Notice that if −1/2 ∈ T1, then k1(−1/2) does not have to
be uniquely determined by (3.8). Namely, from the first part of the proof of
Lemma 3.7 it is obvious that if k0 ∈ Z satisfies (3.8) then so does 1−k0 ∈ Z,
and k0 6= 1−k0. Without loss of generality we can assume that k1(−1/2) = k0

if |k0| < |1 − k0|, and k1(−1/2) = 1 − k0 if |k0| > |1 − k0|. Then the
second part of the proof of Lemma 3.7 can be derived for ξ = −1/2, so
k1(−1/2) ∈ K1(−1/2).

It follows from Lemma 3.7 and the preceding remark that for every di-
mension function there is a function k1 : T1 → Z satisfying (3.8) and such
that k1(ξ) ∈ K1(ξ) for every ξ ∈ T1.

Theorem 3.9. Let D : R→ N∪{0} be a dimension function. Then there
exist functions kn : Tn → Z, n ∈ N, satisfying the following conditions:

(a) ki(ξ) 6= kn(ξ) for all i < n and for every ξ ∈ Tn, n ∈ N.
(b) kn(ξ) ∈ Kn(ξ) for each n ∈ N and every ξ ∈ Tn. Moreover, for each

n ≥ 2 and every ξ ∈ Tn we have:
(b1) if D(ξ/2) ≥ 1 and D((ξ − sgn ξ)/2) ≥ 1, then kn(ξ) ∈ Kn−1(ξ);
(b2) if D(ξ/2) = 0 or D((ξ − sgn ξ)/2) = 0, then kn(ξ) ∈ Kn(ξ) \

Kn−1(ξ). Furthermore, there are m ∈ N, η ∈ Tn and p ∈ Z such
that kn(ξ) = 2mkn(η) + p and kn(η) ∈ Kn−1(η).

(c) k1(ξ) = 0 for all ξ ∈ T1 ∩∆.

Proof. We prove the theorem by induction. Using Lemma 3.7 and Re-
mark 3.8 we can construct k1 which satisfies (b) and (c).

Let n ≥ 2. Suppose that we have constructed functions ki : Ti → Z,
i = 1, . . . , n− 1, satisfying (a) and (b). Let us construct kn : Tn → Z.
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Let ξ ∈ Tn. Then D(ξ/2) + D((ξ − sgn ξ)/2) = D(ξ) + 1 ≥ n + 1. We
have the following two cases:

(1) D(ξ/2) ≥ 1 and D((ξ − sgn ξ)/2) ≥ 1,
(2) D(ξ/2) = 0 or D((ξ − sgn ξ)/2) = 0.

(1) Suppose that D(ξ/2) ≥ 1 and D((ξ − sgn ξ)/2) ≥ 1. We split the
argument into three cases.

If D(ξ/2) ≤ n− 1 and D((ξ − sgn ξ)/2) ≤ n− 1, then ln−1(ξ) = D(ξ/2)
and rn−1(ξ) = D((ξ − sgn ξ)/2).

If D(ξ/2) ≥ n, then ln−1(ξ) = n− 1 and rn−1(ξ) ≥ 1.
If D((ξ − sgn ξ)/2) ≥ n, then ln−1(ξ) ≥ 1 and rn−1(ξ) = n− 1.
Notice that in each case ln−1(ξ) + rn−1(ξ) ≥ n, so Kn−1(ξ) contains

at least n different elements. By the inductive assumption we have k1(ξ),
. . . , kn−1(ξ) ∈ Kn−1(ξ). Therefore, Kn−1(ξ) \ {k1(ξ), . . . , kn−1(ξ)} is non-
empty, so we can define kn(ξ) by

(3.9) |ξ + kn(ξ)| = min{|ξ + k| : k ∈ Kn−1(ξ) \ {k1(ξ), . . . , kn−1(ξ)}}.

(As in Lemma 3.7, it can be shown that this relation uniquely determines
kn(ξ) if ξ ∈ Tn \ {−1/2}. Also, we define kn(−1/2) as in Remark 3.8.) It is
obvious that (a) and (b) are satisfied.

(2) Now suppose that D(ξ/2) = 0 or D((ξ − sgn ξ)/2) = 0.
First notice that for every ξ′ ∈ Tn such that D(ξ′/2) = 0 we have

Kj(ξ′) = {2ki((ξ′ − sgn ξ′)/2)− sgn ξ′ : i = 1, . . . , j} for all j = 1, . . . , n− 1.
Therefore, ki(ξ′) = 2ki((ξ′ − sgn ξ′)/2) − sgn ξ′ for i = 1, . . . , n − 1. Sim-
ilarly, in the case D((ξ′ − sgn ξ′)/2) = 0 we have ki(ξ′) = 2ki(ξ′/2) for
i = 1, . . . , n− 1. Hence,

(3.10) ki(ξ′) =

{
2ki(ξ′/2) if D((ξ′ − sgn ξ′)/2) = 0,
2ki((ξ′ − sgn ξ′)/2)− sgn ξ′ if D(ξ′/2) = 0,

for all i = 1, . . . , n− 1 and ξ′ ∈ Tn.
Since D(ξ) ≥ n ≥ 1, by Theorem 3.1(d) there is q ∈ Z such that

D(2−i(ξ+q)) ≥ 1 for all i ∈ N∪{0}. By Theorem 3.1(c), there is j ∈ N such
that D(2−j(ξ+ q) + 1/2) ≥ 1. Notice that j ≥ 2, since j = 1 implies D(ξ/2)
≥ 1 and D((ξ − sgn ξ)/2) ≥ 1, which is not the case. Suppose that we have
chosen the smallest j with the above property, i.e., D(2−i(ξ + q) + 1/2) = 0
for i = 1, . . . , j − 1.

Let ξi = τ(2−i(ξ + q)) for all i = 0, . . . , j − 1. Then ξ0 = ξ and, for all
i = 0, . . . , j − 2, we have

ξi+1 =
ξi
2

or ξi+1 =
ξi − sgn ξi

2
.
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Since D(ξi) = D(2−i(ξ + q)) ≥ 1 for i = 0, . . . , j − 1, it is clear that
D((ξi − sgn ξi)/2) = 0 implies ξi+1 = ξi/2, while D(ξi/2) = 0 implies
ξi+1 = (ξi − sgn ξi)/2 for i = 0, . . . , j − 2.

Conversely, if ξi+1 = ξi/2 then

D

(
ξi − sgn ξi

2

)
= D

(
ξi+1 −

sgn ξi
2

)
= D

(
2−(i+1)(ξ + q) + 1/2

)
= 0,

while in the case ξi+1 = (ξi − sgn ξi)/2,

D

(
ξi
2

)
= D

(
ξi+1 +

sgn ξi
2

)
= D

(
2−(i+1)(ξ + q) +

1
2

)
= 0

for i = 0, . . . , j − 2. Therefore,

ξi+1 =
ξi
2
⇔ D

(
ξi − sgn ξi

2

)
= 0,

ξi+1 =
ξi − sgn ξi

2
⇔ D

(
ξi
2

)
= 0,(3.11)

for i = 0, . . . , j − 2.
Moreover, for all i = 1, . . . , j − 1 we have

D(ξi) = D(ξi) +D

(
2−i(ξ + q) +

1
2

)
= D(ξi) +D

(
ξi +

1
2

)
= D(2ξi) + 1 = D(ξi−1) + 1,

so that D(ξi) ≥ n, i.e., ξi ∈ Tn.
Notice that ξj−1 satisfies

D(ξj−1) ≥ n, D

(
ξj−1

2

)
= D(2−j(ξ + q)) ≥ 1,

D

(
ξj−1 − sgn ξj−1

2

)
= D

(
2−j(ξ + q) +

1
2

)
≥ 1,

which is case (1). Therefore, kn(ξj−1) ∈ Kn−1(ξj−1) is defined by using (3.9).
Now we define kn(ξj−2), kn(ξj−3), . . . , kn(ξ1) and finally kn(ξ0) = kn(ξ) by

(3.12) kn(ξj−i) =

{
2kn(ξj−i+1) if ξj−i+1 = ξj−i/2,
2kn(ξj−i+1)− sgn ξj−i if ξj−i+1 = (ξj−i − sgn ξj−i)/2,

for all i = 2, . . . , j. In other words,

(3.13) kn(ξj−i)

=

{
2kn(ξj−i/2) if D((ξj−i − sgn ξj−i)/2) = 0,
2kn((ξj−i − sgn ξj−i)/2)− sgn ξj−i if D(ξj−i/2) = 0,

for all i = 2, . . . , j.
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Next we show that kn(ξ) 6= ki(ξ) for i = 1, . . . , n−1. First, since kn(ξj−1)
is defined by (3.9), we have kn(ξj−1) 6= ki(ξj−1) for i = 1, . . . , n− 1.

Suppose that D(ξj−2/2) = 0. By (3.11), ξj−1 = (ξj−2 − sgn ξj−2)/2, and
by (3.13), kn(ξj−2) = 2kn((ξj−2 − sgn ξj−2)/2) − sgn ξj−2 = 2kn(ξj−1) −
sgn ξj−2. Also, by (3.10), ki(ξj−2) = 2ki((ξj−2 − sgn ξj−2)/2) − sgn ξj−2 =
2ki(ξj−1) − sgn ξj−2 for i = 1, . . . , n − 1. Finally, for all i = 1, . . . , n − 1 we
get

kn(ξj−1) 6= ki(ξj−1) ⇒ 2kn(ξj−1)− sgn ξj−2 6= 2ki(ξj−1)− sgn ξj−2

⇒ kn(ξj−2) 6= ki(ξj−2).

The same conclusion is obtained in the case D((ξj−2 − sgn ξj−2)/2) = 0.
Similarly, kn(ξj−3) 6= ki(ξj−3) for i = 1, . . . , n − 1, etc. Finally, kn(ξ0) 6=
ki(ξ0), i.e., kn(ξ) 6= ki(ξ) for i = 1, . . . , n− 1.

From this and (3.13) it now follows that kn(ξ) ∈ Kn(ξ) \Kn−1(ξ).
It is easy to see that kn(ξ) = 2j−1kn(ξj−1) + p for some p ∈ Z. If we put

m := j − 1 ∈ N, η := ξj−1, we get (b2).

Remark 3.10. From the proof of Theorem 3.9 (i.e., (3.10) and (3.13))
one can see that, for each ξ ∈ Tn such that D(ξ/2) = 0 or D((ξ − sgn ξ)/2)
= 0, we have

ki(ξ) =

{
2ki(ξ/2) if D((ξ − sgn ξ)/2) = 0,
2ki((ξ − sgn ξ)/2)− sgn ξ if D(ξ/2) = 0,

for all i = 1, . . . , n.

Remark 3.11. Observe that the sequence (kn) constructed in Lemma 3.7
and Theorem 3.9 satisfies conditions (a)–(c) of Theorem 3.5. Thus, in order
to finish our construction we only need to show that each kn is a measurable
function, i.e., Sn = {ξ + kn(ξ) : ξ ∈ Tn}, n ∈ N, is a measurable set.

Recall that, by Lemma 3.4, Si ∩ Sj = ∅ for i 6= j, and 1
2Sn ⊆

⋃n
i=1 Si.

First we note the following simple consequence of Theorem 3.9.

Corollary 3.12. Let D : R → N ∪ {0} be a dimension function. Let
ξ ∈ Sn+1. Then

(a) ξ/2 ∈ S1 ∪ · · · ∪ Sn if and only if D(ξ/2 + 1/2) ≥ 1;
(b) ξ/2 ∈ Sn+1 if and only if D(ξ/2 + 1/2) = 0;
(c) there is j ∈ N such that ξ ∈ Sn+1, . . . , ξ/2j−1 ∈ Sn+1, ξ/2j ∈ S1 ∪
· · · ∪ Sn.

Proof. Set ξ = ξ′ + kn+1(ξ′) where ξ′ ∈ Tn+1.

(a) Suppose that ξ/2 ∈ S1∪ · · · ∪Sn. If D(ξ/2 + 1/2) = 0, then D(ξ′/2 +
1/2) = 0 or D(ξ′/2) = 0. By Remark 3.10, it follows kn+1(ξ′) = 2kn+1(ξ′/2)
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or kn+1(ξ′) = 2kn+1((ξ′ − sgn ξ′)/2) − sgn ξ′. But this contradicts the as-
sumption, since in the first case we would get

ξ

2
=
ξ′ + kn+1(ξ′)

2
=
ξ′

2
+ kn+1

(
ξ′

2

)
∈ Sn+1,

while in the second case
ξ

2
=
ξ′ + kn+1(ξ′)

2
=
ξ′ − sgn ξ′

2
+ kn+1

(
ξ′ − sgn ξ′

2

)
∈ Sn+1,

which is impossible by Lemma 3.4(a). Therefore, D(ξ/2 + 1/2) ≥ 1.
Conversely, suppose that D(ξ/2 + 1/2) ≥ 1. Since ξ ∈ Sn+1 ⊆ ∆ by

Remark 3.6(b), we have D(ξ/2) ≥ 1. Hence, D(ξ′/2) ≥ 1 and D(ξ′/2 + 1/2)
≥ 1, so by Theorem 3.9(b1) there is j ≤ n such that kn+1(ξ′) = 2kj(ξ′/2) or
kn+1(ξ′) = 2kj((ξ′ − sgn ξ′)/2)− sgn ξ′. It follows that

ξ

2
=
ξ′ + kn+1(ξ′)

2
=
ξ′

2
+ kj

(
ξ′

2

)
∈ Sj

or
ξ

2
=
ξ′ + kn+1(ξ′)

2
=
ξ′ − sgn ξ′

2
+ kj

(
ξ′ − sgn ξ′

2

)
∈ Sj ,

which proves the statement.
(b) This follows directly from (a) and Lemma 3.4.
(c) First, Lemma 3.4(b) implies ξ/2j ∈ S1 ∪ · · · ∪ Sn+1 for all j ∈ N. If

ξ/2j ∈ Sn+1 for all j ∈ N, then (b) would imply that D(2−jξ + 1/2) = 0 for
all j ∈ N, which is impossible by Theorem 3.1(c). Therefore, there is j ∈ N
such that ξ/2j 6∈ Sn+1. The smallest such j is as desired.

We now turn to the proof of measurability of the functions kn constructed
in Lemma 3.7 and Theorem 3.9.

Lemma 3.13. The function k1 is measurable.

Proof. We must show that the sets k−1
1 ({n}) = {ξ ∈ T1 : k1(ξ) = n} are

measurable for all n ∈ Z. First k−1
1 ({0}) = T1 ∩∆ is measurable.

In general, for ξ ∈ T1 such that ξ > 0, the number k1(ξ) is the first n
in the sequence 0,−1, 1,−2, 2,−3, 3, . . . for which ξ + n ∈ ∆. Analogously,
if ξ < 0, then k1(ξ) is the first n in the sequence 0, 1,−1, 2,−2, 3,−3, . . . for
which ξ + n ∈ ∆. Therefore, for every n ∈ Z \ {0} we have: k1(ξ) = n if and
only if the following conditions are satisfied:

(1) ξ ∈ T1 and ξ + n ∈ ∆,
(2) ξ + k 6∈ ∆ for all k = −|n− sgnn|, . . . , |n− sgnn|,
(3) if sgn ξ = sgnn then ξ − n 6∈ ∆.
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In other words,

k−1
1 ({n}) = (T1∩ (∆−n))\

|n−sgnn|⋃
k=−|n−sgnn|

(∆+k)∪{ξ ∈ ∆+n : sgn ξ = sgnn},

so k−1
1 ({n}) is measurable.

To show that the sets Sn, n ≥ 2, are measurable, for a fixed n ∈ N we
introduce the following sets:

B1 = {ξ ∈ Sn+1 : ξ/2 ∈ S1 ∪ · · · ∪ Sn},
and for j ≥ 2,

Bj = {ξ ∈ Sn+1 : 2−1ξ ∈ Sn+1, . . . , 2−(j−1)ξ ∈ Sn+1, 2−jξ ∈ S1 ∪ · · · ∪ Sn}.
By statements (a) and (b) of Corollary 3.12, it is obvious that

B1 = {ξ ∈ Sn+1 : D(ξ/2 + 1/2) ≥ 1},
Bj = {ξ ∈ Sn+1 : D(2−1ξ + 1/2) = · · · = D(2−(j−1)ξ + 1/2) = 0,

D(2−jξ + 1/2) ≥ 1}, j ≥ 2.

Moreover, by Corollary 3.12(c), we have Sn+1 =
⋃
j∈NBj . Therefore it is

enough to prove that the sets Bj , j ∈ N, are measurable. The following
result shows that it suffices to handle B1.

Lemma 3.14. For each j ≥ 2,

Bj = {ξ ∈ 2Bj−1 : D(ξ) ≥ n+ 1, D(ξ/2 + 1/2) = 0}.
Proof. It follows from the definition that 1

2Bj ⊆ Bj−1, so obviously

Bj ⊆ {ξ ∈ 2Bj−1 : D(ξ) ≥ n+ 1, D(ξ/2 + 1/2) = 0}.
Conversely, take ξ ∈ 2Bj−1 such that D(ξ) ≥ n+1 and D(ξ/2+1/2) = 0.

Then ξ/2 ∈ Bj−1, so D(2−1ξ + 1/2) = · · · = D(2−(j−1)ξ + 1/2) = 0 and
D(2−jξ+1/2) ≥ 1. To prove that ξ ∈ Bj , it is enough to check that ξ ∈ Sn+1.
Since D(ξ) ≥ n + 1, we can write ξ = ξ′ + k, where ξ′ ∈ Tn+1 and k ∈ Z.
Then (ξ′ + k)/2 = ξ/2 ∈ Sn+1; hence, by Lemma 3.3, k = 2kn+1(ξ′/2) or
k = 2kn+1((ξ′ − sgn ξ′)/2)− sgn ξ′.

In the first case (ξ − ξ′)/2 = k/2 = kn+1(ξ′/2) ∈ Z, so the Z-periodicity
of D yields D(ξ′/2 + 1/2) = D(ξ/2 + 1/2) = 0. By Remark 3.10, we have
kn+1(ξ′) = 2kn+1(ξ′/2) = k. So, ξ = ξ′ + k = ξ′ + kn+1(ξ′) ∈ Sn+1.

Suppose now that k = 2kn+1((ξ′ − sgn ξ′)/2)− sgn ξ′. Then

((ξ + sgn ξ′)− ξ′)/2 = k/2 + (sgn ξ′)/2 = kn+1((ξ′ − sgn ξ′)/2) ∈ Z,
so D(ξ′/2) = D((ξ + sgn ξ′)/2) = D(ξ/2 + 1/2) = 0. Using Remark 3.10,
we see that kn+1(ξ′) = 2kn+1((ξ′ − sgn ξ′)/2)− sgn ξ′ = k, i.e., ξ = ξ′ + k =
ξ′ + kn+1(ξ′) ∈ Sn+1. This proves our statement.

Proposition 3.15. The sets Sn, n ∈ N, are measurable.



24 Lj. Arambašić et al.

Proof. We prove the statement by induction. The set S1 is measurable
by Lemma 3.13. Suppose that S1, . . . , Sn are measurable for some n ∈ N. To
show that Sn+1 is also measurable, set

A = 2(S1 ∪ · · · ∪ Sn) \ (S1 ∪ · · · ∪ Sn),
C = {ξ ∈ Tn+1 : D(ξ/2) ≥ 1, D(ξ/2 + 1/2) ≥ 1}.

For each ξ ∈ C, let k(ξ) ∈ Z be such that

|ξ + k(ξ)| = min{|ξ + k| : k ∈ Z such that ξ + k ∈ A}.

As in the proof of Lemma 3.7 (see also Remark 3.8), ξ 7→ k(ξ) is a well-defined
function on C. Since A and C are measurable, so is

G = {ξ + k(ξ) : ξ ∈ C},

being defined in the same way as S1, already proved to be measurable. (No-
tice that the roles of the sets T1 and ∆ from the definition of S1 are now
taken by the sets C and A, respectively.) Let us show that B1 = G.

First, let η ∈ B1. Then η = ξ+kn+1(ξ), where ξ ∈ Tn+1. Also,D(η/2) ≥ 1
and D(η/2 + 1/2) ≥ 1, which implies D(ξ/2) ≥ 1 and D(ξ/2 + 1/2) ≥ 1.
Hence, ξ ∈ C. To prove that η ∈ G, we must show that kn+1(ξ) = k(ξ).
So, let k ∈ Z be such that ξ + k ∈ A. Then 1

2(ξ + k) ∈ S1 ∪ · · · ∪ Sn, so
k ∈ Kn(ξ) by Lemma 3.3. However, ξ + k 6∈ S1 ∪ · · · ∪ Sn, so k ∈ Kn(ξ) \
{k1(ξ), . . . , kn(ξ)}. Therefore, the definition of kn+1 : Tn+1 → Z (formula
(3.9)) yields |ξ + kn+1(ξ)| ≤ |ξ + k|. Also, ξ + kn+1(ξ) = η ∈ B1 ⊆ A. We
conclude that kn+1(ξ) = k(ξ); hence, η ∈ G. Thus, B1 ⊆ G.

Conversely, let ξ ∈ C. Since D(ξ/2) ≥ 1 and D(ξ/2 + 1/2) ≥ 1, we get
D((ξ + kn+1(ξ))/2 + 1/2) ≥ 1, so ξ + kn+1(ξ) ∈ B1 ⊆ G. Thus, kn+1(ξ) =
k(ξ), which implies ξ + k(ξ) = ξ + kn+1(ξ) ∈ B1. Therefore, G ⊆ B1.

In particular, B1 is measurable. Since D is a measurable function, it fol-
lows inductively from Lemma 3.14 that all Bj , j ∈ N, are measurable. By
Corollary 3.12(c), we have Sn+1 =

⋃
j∈NBj ; hence, Sn+1 is also measur-

able.

This completes our argument. Notice that our entire construction of an
MSF wavelet from a given dimension function is described in Theorem 3.5,
Lemma 3.7, and (the proof of) Theorem 3.9.

A natural question is whether it is possible to find simpler formulae
for (kn). The answer is negative since a thorough examination of the proof
of Theorem 3.9 shows that the process of defining the value of kn at a point ξ
depends on D(ξ/2) and D(ξ/2 + 1/2). Thus, a certain discussion depending
on those two numbers is unavoidable.

However, the construction becomes easier and more transparent if we
impose some additional conditions on the starting dimension function D. In
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our last proposition we shall review the preceding construction under the
additional assumption that D(ξ) ≥ 1 for all ξ ∈ [−1/4, 0).

Lemma 3.16. Let D : R → N ∪ {0} be a dimension function that is
positive on [−1/4, 0). For ξ ∈ T1, let j(ξ) be the smallest natural number
with D(2−j(ξ)ξ − 1/2) ≥ 1. Then the function k1 : T1 → Z defined by (3.8)
is given by

k1(ξ) =

{
0, ξ ∈ T1 ∩∆,
−2j(ξ)−1, ξ ∈ T1 \∆.

Proof. First, j(ξ) is well defined by Proposition 1 of [1].
Observe that ξ ∈ ∆ for all ξ ∈ T1 ∩ [−1/2, 0). For such ξ we have

k1(ξ) = 0.
Now take ξ ∈ T1 ∩ [0, 1/2). If ξ ∈ ∆, then k1(ξ) = 0, so the assertion is

true.
Let ξ 6∈ ∆. Observe that ξ−2j(ξ)−1 ∈ ∆. Indeed, if j(ξ) ≥ 2, then, by the

choice of j(ξ) we have D(2−jξ − 1/2) = 0 for all j = 1, . . . , j(ξ)− 1; thus,

D(2−jξ) = D(2−jξ) +D(2−jξ − 1/2) = D(2−(j−1)ξ) + 1 ≥ 1.

Then we get
D(2−j(ξ − 2j(ξ)−1)) = D(2−jξ) ≥ 1

for j = 0, . . . , j(ξ)− 1. Furthermore,

D(2−j(ξ)(ξ − 2j(ξ)−1)) = D(2−j(ξ)ξ − 1/2) ≥ 1,

while for j > j(ξ) we have 2−j(ξ − 2j(ξ)−1) ∈ [−1/4, 0), so D(2−j(ξ −
2j(ξ)−1)) ≥ 1 by assumption. Thus, ξ − 2j(ξ)−1 ∈ ∆.

It remains to prove that |ξ − 2j(ξ)−1| ≤ |ξ + k| for all k ∈ Z such that
ξ + k ∈ ∆. Fix such a k. (Notice that k 6= 0, since ξ 6∈ ∆.) First, we
show that |k| ≥ 2j(ξ)−1. This is obvious if j(ξ) = 1, so let j(ξ) ≥ 2. If
2−jk + 1/2 = 2−j(ξ + k) − (2−jξ − 1/2) ∈ Z for some j = 1, . . . , j(ξ) − 1,
we would have D(2−j(ξ + k)) = D(2−jξ − 1/2) = 0, which is impossible
since ξ + k ∈ ∆. Therefore, 2−jk + 1/2 6∈ Z for all j = 1, . . . , j(ξ) − 1,
so k 6= 2j−1(2l + 1) for all j = 1, . . . , j(ξ) − 1 and l ∈ Z. We conclude that
|k| 6= 2j(2l+1) for all j = 0, . . . , j(ξ)−2 and l ∈ N∪{0}. Hence, |k| ≥ 2j(ξ)−1.
Now we have

|ξ − 2j(ξ)−1| = −ξ + 2j(ξ)−1 ≤ −ξ + |k| = |k| − |ξ| ≤ |ξ + k|;

hence, k1(ξ) = −2j(ξ)−1 and the proof is complete.

Proposition 3.17. Let D : R → N ∪ {0} be a dimension function that
is positive on [−1/4, 0). For ξ ∈ T1 let j(ξ) be the smallest natural number
with D(2−j(ξ)ξ−1/2) ≥ 1. If D(2−j(ξ)ξ) = 0, let n(ξ) be the smallest natural
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number with D(2−n(ξ)(2−j(ξ)ξ − 1/2) + 1/2) ≥ 1. Then the functions kn :
Tn → Z, n ≥ 2, constructed in Theorem 3.9 are given by

kn(ξ)=

{
2j(ξ)−1kn(2−j(ξ)+1ξ) if D(2−j(ξ)ξ)≥1,
2j(ξ)+n(ξ)−1kn(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ))−2j(ξ)−1 if D(2−j(ξ)ξ)=0.

Moreover, if D(2−j(ξ)ξ) ≥ 1, then

kn(2−j(ξ)+1ξ) ∈ Kn−1(2−j(ξ)+1ξ) \ {k1(2−j(ξ)+1ξ), . . . , kn−1(2−j(ξ)+1ξ)};
if D(2−j(ξ)ξ) = 0, then

kn(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ)) ∈ Kn−1(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ))\
{k1(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ)), . . . , kn−1(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ))}.

Proof. First, Proposition 1 of [1] ensures the existence of j(ξ) and n(ξ).
Second, recall that the preceding lemma gives us an explicit formula for

the function k1 of Lemma 3.7.
Let us repeat the inductive construction from the proof of Theorem 3.9.

Suppose that k1, . . . , kn−1 have been constructed for some n ≥ 2. Let ξ ∈ Tn.
If j(ξ) ≥ 2, then D(2−jξ − 1/2) = 0 for all j = 1, . . . , j(ξ)− 1, so

D(2−jξ) = D(2−jξ) +D(2−jξ − 1/2) = D(2−(j−1)ξ) + 1

for all j = 1, . . . , j(ξ)− 1. Since D(ξ) ≥ n, this implies

(3.14) D(2−jξ) ≥ n, j = 0, . . . , j(ξ)− 1.

Moreover, from Remark 3.10, it follows that kn(ξ) satisfies

(3.15) kn(ξ) = 2j(ξ)−1kn(2−(j(ξ)−1)ξ).

Next, if D(2−j(ξ)ξ) ≥ 1, then we define kn(2−(j(ξ)−1)ξ) ∈ Kn−1(2−j(ξ)+1ξ) \
{k1(2−j(ξ)+1ξ), . . . , kn−1(2−j(ξ)+1ξ)} by using (3.9).

It remains to consider the case D(2−j(ξ)ξ) = 0. Then ξ ∈ [0, 1/2) since
D is positive on [−1/4, 0). Therefore, 2−j(ξ)ξ − 1/2 ∈ [−1/2, 0), so

(3.16) D(2−j(2−j(ξ)ξ − 1/2)) ≥ 1, j ≥ 0.

Using (3.14), we have

D(2−j(ξ)ξ− 1/2) = D(2−j(ξ)ξ) +D(2−j(ξ)ξ− 1/2) = D(2−(j(ξ)−1)ξ) + 1 > n;

thus, 2−j(ξ)ξ − 1/2 ∈ Tn. Furthermore, by the choice of n(ξ),

(3.17) D(2−j(2−j(ξ)ξ − 1/2) + 1/2) = 0, j = 0, . . . , n(ξ)− 1.

Hence,

D(2−j(2−j(ξ)ξ − 1/2))

= D(2−j(2−j(ξ)ξ − 1/2)) +D(2−j(2−j(ξ)ξ − 1/2) + 1/2)

= D(2−(j−1)(2−j(ξ)ξ − 1/2)) + 1
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for j = 0, . . . , n(ξ)−1. As D(2−j(ξ)ξ−1/2) > n, this implies D(2−j(2−j(ξ)ξ−
1/2)) > n for all j = 0, . . . , n(ξ)− 1. Hence, 2−(n(ξ)−1)(2−j(ξ)ξ − 1/2) ∈ Tn.
Since D(2−n(ξ)(2−j(ξ)ξ − 1/2) + 1/2) ≥ 1 and D(2−n(ξ)(2−j(ξ)ξ − 1/2)) ≥ 1
(which follows from (3.16)), we define

kn(2−(n(ξ)−1)(2−j(ξ)ξ − 1/2)) ∈ Kn−1(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ))\
{k1(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ)), . . . , kn−1(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ))}

using (3.9). Now we claim that the value kn(ξ) can be expressed in terms
of kn(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ)). To see this, first observe that (3.14) implies
2−(j(ξ)−1)ξ ∈ Tn and recall that D(2−j(ξ)ξ) = 0. Thus, by Remark 3.10,

(3.18) kn(2−(j(ξ)−1)ξ) = 2kn(2−j(ξ)ξ − 1/2)− 1.

Furthermore, by (3.17) and Remark 3.10,

(3.19) kn(2−j(ξ)ξ − 1/2) = 2n(ξ)−1kn(2−(n(ξ)−1)(2−j(ξ)ξ − 1/2)).

Therefore, (3.15), (3.18) and (3.19) imply

kn(ξ) = 2j(ξ)−1kn(2−(j(ξ)−1)ξ) = 2j(ξ)kn(2−j(ξ)ξ − 1/2)− 2j(ξ)−1

= 2j(ξ)+n(ξ)−1kn(2−j(ξ)−n(ξ)+1ξ − 2−n(ξ))− 2j(ξ)−1.

We give a couple of examples to illustrate our technique for obtaining
wavelets from dimension functions.

Example 3.18. Consider the MRA dimension function D(ξ) = 1, ξ ∈ R.
Clearly, we then have ∆ = R and Tn = ∅ for all n ≥ 2. A direct application of
Lemma 3.7 gives k1 ≡ 0; thus S1 = T1 = [−1/2, 1/2). Applying Theorem 3.5,
we end up with the Shannon wavelet set W = [−1,−1/2) ∪ [1/2, 1).

Example 3.19. Consider Journé’s dimension function

D(ξ) =


2, ξ∈ [−1/7, 1/7) + Z,
1, ξ∈([−1/2,−3/7) ∪ [−2/7,−1/7) ∪ [1/7, 2/7) ∪ [3/7, 1/2)) + Z,
0, otherwise.

Applying Lemma 3.7, we immediately get k1 ≡ 0; it follows that S1 = T1 =
[−1/2,−3/7) ∪ [−2/7, 2/7) ∪ [3/7, 1/2).

Further, notice that K1(ξ) = {−1, 0} or K1(ξ) = {0, 1}, for all ξ ∈ T2,
depending on sgn ξ. Observe that, for ξ ∈ T2, we have D(ξ/2) ≥ 1 and
D((ξ − sgn ξ)/2) ≥ 1, so we are in case (1) of the proof of Theorem 3.9.
Hence, for ξ ∈ T2, we must take k2(ξ) ∈ K1(ξ) \ {k1(ξ)}. Since k1(ξ) = 0,
this gives k2(ξ) = −1 for ξ ≥ 0 and k2(ξ) = 1 for ξ < 0. Therefore, S2 =
[−1,−6/7) ∪ [6/7, 1). Applying Theorem 3.5, we obtain

S = S1 ∪S2 = [−1,−6/7)∪ [−1/2,−3/7)∪ [−2/7, 2/7)∪ [3/7, 1/2)∪ [6/7, 1)
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and

W = 2S \ S = [−2,−12/7) ∪ [−4/7,−1/2) ∪ [−3/7,−2/7)
∪ [2/7, 3/7) ∪ [1/2, 4/7) ∪ [12/7, 2).

Recall that the original Journé wavelet set is given by

WJ = [−16/7,−2) ∪ [−1/2,−2/7) ∪ [2/7, 1/2) ∪ [2, 16/7).

Observe thatW has a smaller diameter thanWJ . Moreover, we claim that the
diameter of W is smallest possible (as already mentioned in Remark 3.6(c)).

To prove this, let k′i : Ti → Z, i = 1, 2, be such that S′i = {ξ + k′i(ξ) :
ξ ∈ Ti}, i = 1, 2, satisfy the conditions of Remark 2.2. Let S′ = S′1 ∪ S′2 and
W ′ = 2S′ \ S′.

For every ξ ∈ T1 we have k1(ξ) = 0, so |ξ + k1(ξ)| = |ξ| ≤ |ξ + k|
for all k ∈ Z and therefore |ξ + k1(ξ)| ≤ |ξ + k′1(ξ)|. This means that the
diameter of S1 is smaller than that of S′1 (and of S′). If ξ ∈ T2 then k2(ξ) =
− sgn ξ, so |ξ + k2(ξ)| = |ξ − sgn ξ| ≤ |ξ + k| for all k ∈ Z, k 6= 0. In
particular, since k′1(ξ) 6= k′2(ξ) and therefore k′1(ξ) 6= 0 or k′2(ξ) 6= 0, we have
|ξ + k2(ξ)| ≤ |ξ + k′1(ξ)| or |ξ + k2(ξ)| ≤ |ξ + k′2(ξ)|. Then |ξ + k2(ξ)| ≤
max{|ξ+k′1(ξ)|, |ξ+k′2(ξ)|} for all ξ ∈ T2, so S2 has a smaller diameter than
S′1 ∪ S′2 = S′. Therefore, W has a smaller diameter than W ′.

Example 3.20. Consider the unbounded dimension function D con-
structed in [1]. On [−1/2, 1/2), it is given by

(3.20) D(ξ) =


n, ξ ∈ [−1/4n,−1/4n+1) ∪ [1/4n+1, 1/4n), n ∈ N,
0, ξ ∈ F ∪H ∪ (−F ) ∪ (−H),
1, ξ ∈ E ∪G ∪ (−E) ∪ (−G),

where

E =
⋃
k≥0

⋃
n≥1

Ekn, G =
⋃
k≥1

⋃
n≥1

Gkn,

F =
⋃
k≥0

⋃
n≥2

Fkn, H =
⋃
k≥1

⋃
n≥2

Hkn,

and

Ekn =
[
−1

3
− 1

3 · 22k+1
+

1
4k+n+1

,−1
3
− 1

3 · 22k+1
+

1
2 · 4k+n

)
,

Fkn =
[
−1

3
− 1

3 · 22k+1
+

1
2 · 4k+n

,−1
3
− 1

3 · 22k+1
+

1
4k+n

)
,

Gkn =
[
−1

3
+

1
3 · 4k

− 1
4k+n

,−1
3

+
1

3 · 4k
− 1

2 · 4k+n

)
,

Hkn =
[
−1

3
+

1
3 · 4k

− 2
4k+n

,−1
3

+
1

3 · 4k
− 1

4k+n

)
.
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We first observe that for ξ ∈ T1 we have 2−jξ ∈ [−1/4, 1/4), j ≥ 0; therefore
D(2−jξ) ≥ 1, j ≥ 0. This gives k1(ξ) = 0 for ξ ∈ T1 and S1 = T1.

Notice that Tj = [−1/4j , 1/4j), j ≥ 2. Since D is symmetric we will work
with Tj ∩ (0, 1/2). Let An = [1/4n+1, 1/(2 · 4n)) and Bn = [1/(2 · 4n), 1/4n).
Then

⋃
n≥j(An ∪Bn) = (0, 1/4j) = Tj ∩ (0, 1/2).

It is easy to verify that for ξ ∈ (0, 1/16) we have

(3.21) j(ξ) =

{
1, ξ ∈

⋃
n≥2Bn,

2, ξ ∈
⋃
n≥2An,

where j(ξ) is as in Proposition 3.17.
Let us determine Kj(ξ) for ξ ∈ (0, 1/4j), j ≥ 2. If ξ ∈

⋃
n≥j An then

D((ξ − 1)/2) = 0 and D(ξ/2) = D(ξ) + 1 ≥ j, so lj(ξ) = j and rj(ξ) = 0.
If ξ ∈

⋃
n≥j Bn then D((ξ − 1)/2) = 1 and D(ξ/2) = D(ξ) ≥ j, so lj(ξ) = j

and rj(ξ) = 1. This gives, for j ≥ 2,

(3.22) Kj(ξ)

=
{
{2k1(ξ/2), 2k2(ξ/2), . . . , 2kj(ξ/2)}, ξ ∈

⋃
n≥j An,

{2k1(ξ/2), 2k1((ξ − 1)/2)− 1, 2k2(ξ/2), . . . , 2kj(ξ/2)}, ξ ∈
⋃
n≥j Bn.

Since D(2−j(ξ)ξ) ≥ 1 for all ξ ∈ T2, by Proposition 3.17 we have

kj(ξ) = 2j(ξ)−1kj(2−j(ξ)+1ξ), j ≥ 2.

It now follows from (3.21) that

(3.23) kj(ξ) = 2kj(ξ/2), ξ ∈
⋃
n≥j

An,

where kj(ξ/2) ∈ Kj−1(ξ/2) \ {k1(ξ/2), . . . , kj−1(ξ/2)} is chosen by minimal-
ity principle; furthermore, ξ/2 ∈

⋃
n≥j Bn.

Also, (3.21) implies that kj(ξ) ∈ Kj−1(ξ) \ {k1(ξ), . . . , kj−1(ξ)} for ξ ∈⋃
n≥j Bn. In particular, for j = 2 and ξ ∈

⋃
n≥2Bn we get

(3.24) k2(ξ) ∈ K1(ξ) \ {k1(ξ)}
= {2k1(ξ/2), 2k1((ξ − 1)/2)− 1} \ {0} = {−1}.

For j = 3 and ξ ∈
⋃
n≥3Bn we get, using (3.22),

k3(ξ) ∈ K2(ξ) \ {k1(ξ), k2(ξ)} = {0,−1, 2k2(ξ/2)} \ {0,−1} = {2k2(ξ/2)}.

In general, for j ≥ 3, we get

(3.25) kj(ξ) = 2kj−1(ξ/2), ξ ∈
⋃
n≥j

Bn,

and moreover ξ/2 ∈
⋃
n≥j An. Finally, using (3.23), (3.24) and (3.25), we
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conclude that

kj(ξ) =

{
−22j−3, ξ ∈

⋃
n≥j An,

−22j−4, ξ ∈
⋃
n≥j Bn,

for j ≥ 2. Then, for j ≥ 2,

Sj =
⋃
n≥j

((An − 22j−3) ∪ (Bn − 22j−4))

∪
⋃
n≥j

((−An + 22j−3) ∪ (−Bn + 22j−4)),

and W = 2S \ S = W+ ∪ (−W+) where

W+ = 2E01 ∪
⋃
k≥1

⋃
n≥1

2Ekn ∪
⋃
k≥0

⋃
n≥2

Fkn ∪
⋃
k≥1

⋃
n≥1

2Gkn

∪
⋃
k≥1

⋃
n≥2

Hkn ∪
⋃
n≥2

(2An − 22n−2) ∪
⋃
n≥2

(2Bn − 22n−3).

Finally, let us briefly discuss possible generalizations/extensions of Theo-
rem 3.1. One can ask if it is possible to characterize more general dimension
functions in a similar way. (Again, for simplicity, we restrict ourselves to the
dyadic case on the real line.)

Recall from [12] that an integrable Z-periodic function D : R→ N ∪ {0}
is a dimension function of some orthonormal wavelet if and only if D satisfies
(a), (b) and

(∆)
∑

k∈Z χ∆(ξ + k) ≥ D(ξ) where ∆ = {ξ ∈ R : D(2−jξ) ≥ 1, ∀j ≥ 0}.
Thus, conditions (c) and (d) from Theorem 3.1 are equivalent to (∆),

provided that (a) and (b) are satisfied.
It is well known that one can similarly characterize dimension functions

of Parseval frame wavelets as well as dimension functions of GMRA’s. For
the reader’s convenience we state the latter result from [9].

Theorem A ([9, Theorem 3.6]). Let D : R → N ∪ {0} be a measurable
Z-periodic function. Then D is the dimension function of the core space V0

of some GMRA (Vj) if and only if the following conditions are satisfied:

(a) lim infj→∞D(2−jξ) ≥ 1 a.e.;
(b) D(ξ) +D(ξ + 1/2) ≥ D(2ξ) a.e.;

(∆)
∑

k∈Z χ∆(ξ + k) ≥ D(ξ) a.e., where ∆ = {ξ ∈ R : D(2−jξ) ≥ 1,
∀j ≥ 0}.

So it is natural to ask if one can prove a variant of Theorem A in which
(∆) is replaced by (c) and (d). It turns out the answer is negative. As a
counterexample, consider the function D(ξ) = χΩ where Ω = S + Z and
S = [−1/4, 1/4). It is easy to verify that D is the dimension function of the
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semi-orthogonal Parseval frame wavelet ψ̂ = χW with W = 2S \S; hence D
is the dimension function of the core space of the underlying GMRA. Thus,
D satisfies the conditions of the above Theorem A. On the other hand, D
obviously does not satisfy

(c) for a.e. ξ with D(ξ) ≥ 1 there is j ∈ N satisfying D(2−jξ + 1/2) ≥ 1.

Quite surprisingly, it can be shown that an analogue of our Theorem 3.1
is valid if one modifies the above condition (c):

Theorem B. Let D : R→ N∪{0} be a measurable Z-periodic function.
Then D is the dimension function of the core space V0 of some GMRA (Vj)
if and only if the following conditions are satisfied:

(a) lim infj→∞D(2−jξ) ≥ 1 a.e.;
(b) D(ξ) +D(ξ + 1/2) ≥ D(2ξ) a.e.;
(c′) for a.e. ξ with D(ξ) ≥ 2 there is j ∈ N satisfying D(2−jξ+1/2) ≥ 1;
(d) for a.e. ξ with D(ξ) ≥ 1 there is k ∈ Z such that D(2−j(ξ + k)) ≥ 1

for all j ∈ Z, j ≥ 0.

In particular, this implies that our Theorem 3.1 remains true if one re-
places (c) with (c′). The details will appear elsewhere.

Acknowledgments. We thank the referee for several valuable sugges-
tions that helped us to improve the presentation of our results.
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