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Universal zero solutions of linear partial
differential operators

by

Thomas Kalmes (Trier) and Markus Niess (Eichstätt)

Abstract. A generalized approach to several universality results is given by replacing
holomorphic or harmonic functions by zero solutions of arbitrary linear partial differen-
tial operators. Instead of the approximation theorems of Runge and others, we use an
approximation theorem of Hörmander.

1. Introduction. The first universality result in complex analysis is
the famous theorem of G. D. Birkhoff [3], which (slightly modified) reads as
follows:

Theorem 1.1 (Birkhoff (1929)). There exists an entire function u such
that for every entire function f , every compact set K ⊂ C and for every
ε > 0, there is a p ∈ N satisfying

|u(z + p)− f(z)| < ε for all z ∈ K.

We then say that u has universal translates. Analogues were obtained
by Seidel and Walsh [14] for non-Euclidean translates in the unit disk D in
1941, and for dilations u(p · z), with p ∈ C∗ := C \ {0}, instead of translates
by Zappa [16] in 1989. Using linear transformations u(a · z + b) Luh [11]
generalized the concept of universality to simply connected domains in 1979,
and to arbitrary domains later on with his colleagues. The residuality of the
corresponding sets of universal functions was discovered by Duyos-Ruiz [5]
in 1984.

A further generalization is due to Bernal and Montes [2] (1995), who
considered composition operators induced by a sequence (fn) of conformal
automorphisms on a general open Ω ⊂ C. Such a sequence is called run-away
if for every compact subset K of Ω there is some n ∈ N with K∩fn(K) = ∅.
In these terms, they stated the following result.
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Theorem 1.2 (Bernal and Montes (1995)). Let Ω ⊂ C be an open set
that is not conformally equivalent to C∗, and let (fn) be a sequence of auto-
morphisms of Ω. Then there exists a function u holomorphic on Ω for which
the set {u◦fn : n ∈ N} is dense in H(Ω), the space of all holomorphic func-
tions on Ω, if and only if (fn) is a run-away sequence. In that case the set
of such functions u is residual in H(Ω).

The first universality result in harmonic analysis is due to Dzagnidze [6]
(1969) and is the harmonic analogue of Birkhoff’s Theorem.

Our aim is to give a generalized approach and proof of all these univer-
sality results. That is, instead of considering the special polynomials

P1 : R2 → C, ξ 7→ 1
2

(ξ1 + iξ2), and P2 : RN → C, ξ 7→
N∑
j=1

ξ2j ,

which give P1(∂)f = ∂̄f , i.e. the Cauchy–Riemann operator, and P2(∂)f =
∆f , the Laplacian, respectively, we consider arbitrary differential operators
P (∂) and their kernels, where P is a non-constant polynomial on RN with
complex coefficients. We are interested in properties of sequences (fm)m∈N
of diffeomorphisms of Ω such that there is an element u of the kernel of
P (∂) such that {u ◦ fm;m ∈ N} is dense in the kernel.

As domain of definition of the operator P (∂) we choose the Fréchet spaces⋂∞
j=1B

loc
pj ,kj

(Ω) introduced by Hörmander [10] (see Section 2). As a special
case, they include the space C∞(Ω) equipped with its standard Fréchet
space topology, i.e. local uniform convergence of all partial derivatives, which
we denote as usual by E (Ω). Since the kernels of P1(∂) and P2(∂) consid-
ered as operators on E (Ω) are the space H(Ω) of holomorphic functions on
Ω ⊂ R2 ∼= C and the space h(Ω) of harmonic functions on Ω ⊂ RN , respec-
tively, holomorphic as well as harmonic universal functions are covered by
this framework. (Note that by a standard application of the Open Mapping
Theorem for Fréchet spaces, the topologies inherited from E (Ω) are indeed
the usual Fréchet space topologies on H(Ω) and h(Ω), respectively!)

The price we have to pay for this generality is that we lose special struc-
tures of the function spaces. Instead of the approximation theorems of Runge
and others, we use a general approximation theorem due to Hörmander (cf.
Theorem 4.2) which forces us to impose stronger geometrical conditions
on Ω, namely we assume the components of Ω to be convex.

A similar approach in the case of translations has been taken by Calderón-
Moreno and Müller [4]. They use the famous Lax–Malgrange theorem which
guarantees less losses in the structure of the open sets Ω, but one is restricted
to elliptic partial differential operators.

Finally, we also want to mention two recent and different directions that
are related to the above mentioned results. Gauthier and Pouryayevali [7]
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obtained universal subharmonic functions on RN and universal plurisubhar-
monic functions on CN . They understand the universality in the sense of
Birkhoff. Grosse-Erdmann and Mortini [9] worked on an analogue of Theo-
rem 1.2 but for sequences (fn) of eventually injective or arbitrary holomor-
phic self-maps of Ω.

The paper is organized as follows. In Section 2 we recall some facts about
the Fréchet spaces

⋂∞
j=1B

loc
pj ,kj

(Ω). In Section 3 we consider the kernel of
P (∂) as a subspace of

⋂∞
j=1B

loc
pj ,kj

(Ω) and introduce composition operators
u 7→ u◦f on these kernels. It turns out that in general f can only be chosen
from a very small class of diffeomorphisms in order to ensure that the com-
position operator is well-defined. Section 4 contains a sufficient condition on
the sequence (fm)m∈N of diffeomorphisms ensuring the existence of universal
zero solutions of P (∂) as well as a result analogous to Theorem 1.2. Finally,
Section 5 deals with dense subspaces of universal zero solutions.

Throughout the paper, we use the following notations. The interior of a
subset M of RN is denoted by M◦. The Fourier transform of a tempered
distribution u is denoted by û or F(u) (where for u ∈ L1(RN ) we set û(ξ) =	
e−i〈x,ξ〉u(x) dx). For a topological vector space E its topological dual E′

is always equipped with the weak∗-topology, and by a diffeomorphism we
always mean a C∞-diffeomorphism. As usual, we denote by S ′ the space of
tempered distributions on RN ; D(Ω) is the space of compactly supported
C∞-functions on Ω equipped with its usual inductive limit topology, and
D ′(Ω) its dual, i.e. the space of distributions on Ω; and for an arbitrary
subset A of RN , E ′(A) denotes the space of distributions on RN having
compact support in A. Besides that, we use the standard notation from
functional analysis (see e.g. [12, 13]).

2. The Fréchet space
⋂∞
j=1B

loc
pj ,kj

(Ω). In this section we recall some
facts about the spaces

⋂∞
j=1B

loc
pj ,kj

(Ω) for Ω ⊂ RN open, introduced by
Hörmander. As a reference see e.g. [10, Section 10.1]. A special case is the
Fréchet space E (Ω), i.e. the space C∞(Ω) equipped with its natural topol-
ogy, induced by the seminorms

pK,m(f) := max
x∈K, |α|≤m

|∂αf(x)|, m ∈ N0,K ⊂ Ω compact.

More generally recall that k : RN → (0,∞) is called a tempered weight
function if there are constants C > 0 and m ∈ N such that

∀ ξ, η ∈ RN : k(ξ + η) ≤ (1 + C|ξ|)mk(η).

Typical examples of tempered weight functions are k(ξ) = (1 + |ξ|2)s/2,
where s is an arbitrary real number, or P̃ (ξ) = (

∑
|α|≥0 |∂α P (ξ)|2)1/2, where

P ∈ C[X1, . . . , XN ] is a polynomial (see [10, Example 10.1.3]).
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For a tempered weight function k and 1 ≤ p <∞ let

Bp,k :=
{
u ∈ S ′; û is a function and

‖u‖p,k :=
(

(2π)−N
�

RN
|k(ξ)û(ξ)|p dξ

)1/p
<∞

}
.

Then Bp,k together with the norm ‖·‖p,k is a Banach space (cf. [10, Theorem
10.1.7]).

Moreover, for 1 ≤ p <∞ and a tempered weight function k let

Bloc
p,k(Ω) := {u ∈ D ′(Ω); ∀φ ∈ D(Ω) : φu ∈ Bp,k}.

Bloc
p,k(Ω) equipped with the family of seminorms u 7→ ‖φu‖p,k, φ ∈ D(Ω),

becomes a Fréchet space. For p = 2 and k(ξ) = (1 + |ξ|2)s/2, s ∈ R, one
obtains in this way the local Sobolev space H loc

(s) (Ω) of order s.
Obviously, for any compact exhaustion (Kn)n∈N ofΩ and φn ∈ D(Ω) sat-

isfying Kn ⊂ {φn = 1} the topology of Bloc
p,k(Ω) is generated by the sequence

of seminorms u 7→ ‖φnu‖p,k, n ∈ N. Furthermore, E (Ω) ⊂ Bloc
p,k(Ω), and the

inclusion is continuous and has dense range (cf. [10, Theorems 10.1.26 and
10.1.17]).

Finally, for a sequence (pj)j∈N ∈ [1,∞)N and a sequence (kj)j∈N of tem-
pered weight functions let

⋂∞
j=1B

loc
pj ,kj

(Ω) be equipped with the family of
seminorms u 7→ ‖ϕu‖j := ‖ϕu‖pj ,kj , j ∈ N, ϕ ∈ D(Ω). With these semi-
norms

⋂∞
j=1B

loc
pj ,kj

(Ω) is a Fréchet space whose topology is obviously gener-
ated by the increasing sequence of seminorms

qn(u) := max
1≤k,j≤n

‖φku‖j , n ∈ N,

with φk as above.
By the preceding remarks we have E (Ω) ↪→

⋂∞
j=1B

loc
pj ,kj

(Ω) continuously
with dense range (cf. [10, Theorem 10.1.17]). Since polynomials are dense
in E (Ω) (cf. [15, p. 160]), it now follows immediately that polynomials with
coefficients in Q + iQ are dense in

⋂∞
j=1B

loc
pj ,kj

(Ω), so that
⋂∞
j=1B

loc
pj ,kj

(Ω) is
a separable Fréchet space for each open subset Ω ⊂ RN .

For the special case kj(ξ) = (1 + |ξ|)j and arbitrary 1 ≤ pj < ∞ one
obtains E (Ω) =

⋂∞
j=1B

loc
pj ,kj

(Ω) as Fréchet spaces (cf. [10, Remark following
Theorem 10.1.26]).

3. The space of zero solutions. For a polynomial P ∈ C[X1, . . . , XN ]
let P̃ (ξ) = (

∑
|α|≥0 |∂αP (ξ)|2)1/2. Then P̃ is a tempered weight function (see

[10, Example 10.1.3]) and since real powers and products of tempered weight
functions are again tempered weight functions (cf. [10, Theorem 10.1.4]),
k/P̃ is a tempered weight function whenever so is k.
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By [10, Theorem 10.1.22 and its proof] the mapping
P (D) : Bloc

p,k(Ω)→ Bloc
p,k/P̃

(Ω), u 7→ P (D)u,

is continuous, where as usual P (D)u =
∑
|α|≤m(−i)|α|aα∂αu for P (ξ) =∑

|α|≤m aαξ
α. Therefore,

P (D) :
∞⋂
j=1

Bloc
pj ,kj

(Ω)→
∞⋂
j=1

Bloc
pj ,kj/P̃

(Ω)

is continuous, so that

NP,(pj ,kj)(Ω) :=
{
u ∈

∞⋂
j=1

Bloc
pj ,kj

(Ω); P (D)u = 0
}

is a closed subspace of the separable Fréchet space
⋂∞
j=1B

loc
pj ,kj

(Ω), hence a
separable Fréchet space itself. When it is clear from the context, we omit
the reference to the sequences (kj)j∈N and (pj)j∈N and simply write NP (Ω)
instead of NP,(pj ,kj)(Ω). For the special case kj(ξ) = (1 + |ξ|)j , that is,⋂∞
j=1B

loc
pj ,kj

(Ω) = E (Ω), we simply write EP (Ω) instead of NP,(pj ,kj)(Ω), i.e.
EP (Ω) is the vector space

{u ∈ C∞(Ω); P (D)u = 0}
equipped with the topology induced by the seminorms

pK,m(u) := max
x∈K, |α|≤m

|∂αu(x)|, m ∈ N0, K ⊂ Ω compact.

Obviously, EP (Ω) ⊂ NP,(pj ,kj)(Ω) for every (pj , kj)j∈N. Note that for a
hypoelliptic polynomial P one always has NP,(pj ,kj)(Ω) ⊂ C∞(Ω). Hence
it follows from the continuity of the inclusion E (Ω) ↪→

⋂∞
j=1B

loc
pj ,kj

(Ω) and
the Open Mapping Theorem that NP,(pj ,kj)(Ω) = EP (Ω) as Fréchet spaces
whenever P is hypoelliptic.

In the special case when N = 2 and P (D) = 1
2(∂1 + i∂2) we find again,

by the Open Mapping Theorem, that EP (Ω) is the space of holomorphic
functions on Ω equipped with the compact-open topology.

We now introduce composition operators on NP,(pj ,kj)(Ω). For two open
subsets Ω1 and Ω2 of RN and a diffeomorphism f : Ω1 → Ω2 there is a
unique continuous linear mapping f∗ : D ′(Ω2) → D ′(Ω1) such that f∗u =
u◦f if u ∈ C(Ω2). For ϕ ∈ D(Ω1) one has 〈f∗u, ϕ〉 = 〈u, |det Jf−1|ϕ◦f−1〉,
where Jf−1 denotes the Jacobian of f−1. Moreover, (g ◦ f)∗u = f∗g∗u for a
second diffeomorphism g from Ω2 to Ω3 and every distribution u on Ω3 (see
e.g. [10, Section 6.1]). We sometimes use the notation u(f) or u ◦ f instead
of f∗u.

Note that for φ ∈ E(Ω2) one has
〈f∗(φu), ϕ〉 = 〈u, |det Jf−1|(φ ◦ f ◦ f−1)(ϕ ◦ f−1)〉 = 〈(f∗φ)(f∗u), ϕ〉

for every ϕ ∈ D(Ω1), i.e. f∗(φu) = (f∗φ)(f∗u).
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A simple property of f∗ is stated in the next proposition.

Proposition 3.1. Let f : Ω1 → Ω2 be a diffeomorphism. For u ∈
D ′(Ω2) one has supp f∗u = f−1(suppu).

Proof. Let V be an open superset of Ω2 \ suppu, i.e. 〈u, ϕ〉 = 0 for
all ϕ ∈ D(V ). If ψ ∈ D(f−1(V )), then clearly ψ ◦ f−1 ∈ D(V ), hence
|det Jf−1|(ψ ◦ f−1) ∈ D(V ), so that

〈f∗u, ψ〉 = 〈u, |det Jf−1|(ψ ◦ f−1)〉 = 0.

Because f−1(V ) is open it follows that supp f∗u ⊂ Ω1 \ f−1(V ). Since V
was an arbitrary open subset of Ω2 \ suppu it follows that

supp f∗u ⊂
⋂

V⊂Ω2\suppu, V open

Ω1 \ f−1(V ) = Ω1 \ f−1(
⋃

V⊂Ω2\ suppu, V open

V )

= Ω1 \ f−1(Ω2 \ suppu) = f−1(suppu).

Applying to the diffeomorphism f−1 what has been shown so far, we also
see

suppu = supp (f−1)∗f∗u ⊂ f(supp f∗u),

i.e. f−1(suppu) ⊂ supp f∗u, too.

We are interested in diffeomorphisms which respect the kernel of a given
differential operator on

⋂∞
j=1B

loc
pj ,kj

(Ω2). This is expressed by the following
notion.

Definition 3.2. Let Ω1, Ω2 ⊂ RN be open, (pj)j∈N ∈ [1,∞)N, (kj)j∈N
be a sequence of tempered weight functions, and let f : Ω1 → Ω2 be a
diffeomorphism. A polynomial P is called (pj , kj)j∈N-f -invariant (or simply
f -invariant) if for every u ∈ D ′(Ω2) one has u ∈ NP,(pj ,kj)(Ω2) if and only
if u ◦ f ∈ NP,(pj ,kj)(Ω1).

Remark 3.3. (i) Obviously, P is f -invariant if and only if P is f−1-
invariant. Moreover, if Ω1 = Ω2, for given P the set of diffeomorphisms f on
Ω1 for which P is (pj , kj)j∈N-f -invariant forms a group under composition.

(ii) Since the translations τb(x) = x + b commute with P (D) and
F(u◦τb)(ξ) = ei〈b,ξ〉F(u)(ξ) it follows that P is τb-invariant for every b ∈ RN .

(iii) Because EP (Ω2) ⊂ NP (Ω2) it is necessary for the f -invariance of
P that for ϕ ∈ C∞(Ω2) one has P (D)ϕ = 0 if and only if P (D)(ϕ ◦ f)
= 0. Therefore, if NP,(pj ,kj)(Ω2) = EP (Ω2) (which holds in particular when
kj(ξ) = (1 + |ξ|)j , j ∈ N, or when P is hypoelliptic), the aforementioned
necessary condition is also sufficient for (pj , kj)j∈N-f -invariance of P .

(iv) For a given polynomial P the conditions on f = (f1, . . . , fN ) ensuring
that P is f -invariant can be quite restrictive. Since exponential solutions of
P (D)u = 0, i.e. solutions of the form u(x) = Q(x) exp(i〈ζ, x〉) where Q is
a polynomial and ζ ∈ CN is a root of P , always belong to NP (Ω), one can
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derive certain differential equations which have to be satisfied by f in order
that P is f -invariant.

For example, if P is a polynomial of degree 2, P (ζ) =
∑N

j,k=1 aj,lζjζk +∑N
j=1 bjζj + c, and one defines for 1 ≤ j, k ≤ N the differential operators

Bj(ζ, f) :=
N∑
m=1

ζm∂jfm

and

Aj,k(ζ, f) :=
N∑

m,l=1

ζmζl∂jfm∂kfl − i
N∑
m=1

ζm∂j∂kfm,

then f has to satisfy (by taking Q ≡ 1) the (non-linear!) differential equa-
tions

(1) ∀ζ ∈ {z ∈ CN ; P (z) = 0} :
N∑

j,k=1

aj,kAj,k(ζ, f) +
N∑
j=1

bjBj(ζ, f) + c = 0.

To end this section we give characterizations of those f such that certain
important polynomials are f -invariant.

Proposition 3.4. Let f : Ω1 → Ω2 be a diffeomorphism. If P is a
(pj , kj)j∈N-f -invariant polynomial then f∗ : NP,(pj ,kj)(Ω2) → NP,(pj ,kj)(Ω1)
is a topological isomorphism.

Proof. By the f -invariance of P the mapping is well-defined and obvi-
ously linear. From the continuity of

⋂∞
j=1B

loc
pj ,kj

(Ω2) ↪→ D ′(Ω2) and f∗ :
D ′(Ω2) → D ′(Ω1) the continuity of f∗ follows immediately by the Closed
Graph Theorem for Fréchet spaces. Since f∗ is obviously one-to-one and
onto, the Open Mapping Theorem for Fréchet spaces gives the result.

Recall that for φ ∈ E (Ω) and u ∈ D ′(Ω) one has f∗(φu) = f∗(φ)f∗(u).
Moreover, recall that the topology on NP,(pj ,kj)(Ω) is generated by the in-
creasing sequence of seminorms qn(u) := max1≤l,j≤n ‖ϕlu‖j , n ∈ N, where
‖ϕu‖j = ‖ϕu‖pj ,kj and (ϕn)n∈N ∈ D(Ω)N satisfies suppϕn ⊂ Kn+1 ⊂
{ϕn+1 = 1}, n ∈ N, for a compact exhaustion (Kn)n∈N of Ω.

Corollary 3.5. Let Ω ⊂ RN be open, Ω1 ⊂ Ω open, and f : Ω →
Ω1 a diffeomorphism. If P is a (pj , kj)j∈N-f -invariant polynomial then the
mapping

NP,(pj ,kj)(Ω)→ NP,(pj ,kj)(Ω), u 7→ u|Ω1
◦ f,

is linear and continuous. We denote it again by f∗ and sometimes also write
u ◦ f instead of f∗u. With this notation supp f∗u = f−1(suppu ∩Ω1).
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Moreover,

∀n ∈ N : qn(f∗u) ≤ max
1≤l≤n

qn+1(f∗[(ϕl ◦ f−1)u]).

Proof. The continuity follows immediately from the obvious continuity
of the restriction map NP (Ω) → NP (Ω1), u 7→ u|Ω1

, and Proposition 3.4,
while supp f∗u = f−1(suppu∩Ω1) is a direct consequence of Proposition 3.1.

Finally, because suppϕl ⊂ Kl+1 ⊂ {ϕl+1 = 1} we have

ϕl+1f
∗[(ϕl ◦ f−1)u] = ϕl+1f

∗(ϕl ◦ f−1)f∗(u) = ϕl+1ϕlf
∗(u) = ϕlf

∗(u),

so that

qn(f∗u)= max
1≤l,j≤n

‖ϕlf∗(u)‖j = max
1≤l,j≤n

‖ϕl+1f
∗[(ϕl ◦ f−1)u]‖j

≤ max
1≤l,j≤n

qn+1(ϕl+1f
∗[(ϕl ◦ f−1)u])= max

1≤l≤n
qn+1(f∗[(ϕl ◦ f−1)u]).

We now give characterizations of those f such that certain important
polynomials P are f -invariant. We are sure that these are known. Never-
theless, since we could not find a reference, we give the proofs for the sake
of completeness. To formulate the next proposition more conveniently, we
write x = (x′, xN ) with x′ ∈ RN−1 and xN ∈ R for x = (x1, . . . , xN ) ∈ RN .

Proposition 3.6.

(a) Let N = 2 and P (ξ) = 1
2(iξ1 − ξ2), i.e. P (D) = ∂̄ is the Cauchy–

Riemann operator. Then P is f -invariant if and only if ∂̄f = 0, i.e.
f is holomorphic.

(b) Let P (ξ) = −|ξ|2, i.e. P (D) = ∆ is the Laplacian. Then P is f -
invariant if and only if the following conditions hold.

(i) ∆fj = 0 for all 1 ≤ j ≤ N .
(ii) |∇fj | = |∇fk| and 〈∇fj ,∇fk〉 = 0 for all 1 ≤ j 6= k ≤ N ,

that is, the Jacobian of f is a multiple of an orthogonal matrix at
each point.

(c) On RN+1 let P (ξ) = |ξ′|2 + iξN+1, i.e. P (D) is the heat operator
H = ∆x′ − ∂N+1, where the (N + 1)th variable is considered as time
and ∆x′ denotes the Laplacian with respect to the first N variables.
Then P is f -invariant if and only if

f(x) = (αAx′, α2xN+1) + b

where α ∈ R \ {0}, b ∈ RN+1, and A ∈ RN×N is an orthogonal
matrix.

(d) On RN+1 let P (ξ) = ξ2N+1 − |ξ′|2, i.e. P (D) is the wave operator
� = ∆x′ − ∂2

N+1, where again the (N + 1)th variable is considered
as time and ∆x′ denotes the Laplacian with respect to the first N
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variables. If all tempered weight functions kj are radial functions
and one requires ∂kfN+1 = ∂N+1fk = 0 for all 1 ≤ k ≤ N (i.e. via
the transformation f the time variable has no influence on the space
variables and vice versa), then P is f -invariant if and only if

f(x) = α(Ax′, xN+1) + b

where α ∈ R\{0}, b ∈ RN+1 and A ∈ RN×N is an orthogonal matrix.

Proof. Since the polynomials in (a)–(c) are hypoelliptic, in these cases
f -invariance of P means that for u ∈ C∞(Ω2) one has P (D)u = 0 if and
only if P (D)(u ◦ f) = 0. Now (a) follows after a short calculation from the
Cauchy–Riemann equations.

In case of (b), takingQ(x) = xj and ζ = 0, the corresponding exponential
solution Q(x) exp(i〈ζ, x〉) shows that ∆fj = 0, 1 ≤ j ≤ N, is necessary for
P to be f -invariant. With this, the necessary conditions (1) above turn into

∀ ζ ∈ {z ∈ CN ; P (z) = 0} : 0 = −
N∑

m,l=1

ζmζl〈∇fm,∇fl〉.

For 1 ≤ j 6= k ≤ N set ζj = 1, ζk = i and ζl = 0 for l /∈ {j, k}. Then ζ is a
root of P and hence

∀ 1 ≤ j 6= k ≤ N : 0 = |∇fk|2 − |∇fj |2 − 2i〈∇fj ,∇fk〉
is necessary, which gives necessity of conditions (i) and (ii).

On the other hand, a straightforward calculation gives, for u ∈ C∞(Ω2),

∆(u ◦ f) =
N∑
j=1

(∆fj)((∂ju) ◦ f) +
N∑

j,k=1

((∂j∂ku) ◦ f)〈∇fj ,∇fk〉.

Therefore, if f satisfies (i) and (ii) we have, for all u ∈ C∞(Ω2),

∆(u ◦ f) = |∇f1|2((∆u) ◦ f).

Since f is a diffeomorphism, we have |∇f1|2 6= 0 everywhere, so it follows
that ∆u = 0 if and only if ∆(u◦f) = 0, so that (i) and (ii) are also sufficient
for the f -invariance of P .

To show necessity in (c), assume that P is f -invariant. Take Q(x) = xj
for 1 ≤ j ≤ N and ζ = 0. From the corresponding exponential solutions it
follows that Hfj = 0 for 1 ≤ j ≤ N . Therefore, the necessary conditions (1)
become

∀ζ ∈ {z ∈ CN ; P (z) = 0} : 0 = iBN+1(ζ, f) +
N∑
j=1

Aj,j(ζ, f)

= iζN+1HfN+1 +
N+1∑
l,m=1

ζlζm〈∇x′fl,∇x′fm〉
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where ∇x′fj := (∂1fj , . . . , ∂Nfj) denotes the gradient of fj with respect to
the space variables x′.

Taking ζj = 1 for a fixed j ∈ {1, . . . , N}, ζN+1 = i and ζl = 0 for
l /∈ {j,N + 1} we get a root of P giving

0 = −HfN+1 − |∇x′fN+1|2 + |∇x′fj |2 + 2i〈∇x′fj ,∇x′fN+1〉,
so that

∀1 ≤ j ≤ N : HfN+1 + |∇x′fN+1|2 = |∇x′fj |2, 〈∇x′fj ,∇x′fN+1〉 = 0.

On the other hand, taking ζN+1 = 1, for fixed j ∈ {1, . . . , N} any square
root ζj =

√
i of i, and ζl = 0 for l /∈ {j,N+1} gives another root of P which

yields

0 = iHfN+1 + |∇x′fN+1|2 + i|∇x′fj |2 + 2
√
i 〈∇x′fN+1,∇x′fj〉,

so that |∇x′fN+1|2 = 0, i.e. fN+1 only depends on xN+1.
From the last two sets of equations it follows that |∇x′fj |2 = HfN+1 =

∂N+1fN+1 for all 1 ≤ j ≤ N . Because fN+1 only depends on xN+1 it follows
that ∆x′fj = 0 for all 1 ≤ j ≤ N , so that in addition 0 = Hfj = ∂N+1fj
for all 1 ≤ j ≤ N . Therefore, fj does not depend on xN+1 for 1 ≤ j ≤ N .
Since fN+1 does not depend on x′ and |∇x′fj |2 = ∂N+1fN+1 it follows that
∇x′fj as well as ∂N+1fN+1 are constant, i.e. fj is an affine function of x′

and fN+1 is an affine function of xN+1.
This means that there are γ, β ∈ R, a ∈ RN and B ∈ RN×N such that

∀x ∈ Ω1 : f(x′, xN+1) = (Bx′ + a, γxN+1 + β).

Since f is a diffeomorphism and |∇x′fj |2 = ∂N+1fN+1 we have γ > 0 and
B has to be invertible.

To see that B is actually a multiple of an orthogonal matrix, fix 1 ≤ j 6=
k ≤ N and set ζj = 1, ζk = i and ζl = 0 for l /∈ {j, k}. This gives another
root of P yielding the equation

0 = |∇x′fj |2 − |∇x′fk|2 + 2i〈∇x′fj ,∇x′fk〉
so that

∀1 ≤ j 6= k ≤ N : |∇x′fj | = |∇x′fk|, 〈∇x′fj ,∇x′fk〉 = 0,

which means, since |∇x′fj |2 = ∂N+1fN+1 = γ > 0, that A := (1/
√
γ)B is

orthogonal.
This shows that the condition on f stated in (b) is necessary for P to

be f -invariant.
To show its sufficiency as well, observe that by a straightforward calcu-

lation for f of the stated form one obtains

∀u ∈ C∞(Ω2) : H(u ◦ f) = α2((Hu) ◦ f)

so that indeed Hu = 0 if and only if H(u ◦ f) = 0.
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In order to prove (d) we assume that all tempered weight functions
are radial and that ∂kfN+1 = ∂N+1fk = 0 for all 1 ≤ k ≤ N . To prove
necessity assume that P is f -invariant. Taking Q(x) = xj and ζ = 0 it
follows from the corresponding exponential solution that �fj = 0 for all
1 ≤ j ≤ N + 1. Since by assumption fN+1 is independent of x′ it follows
that 0 = �fN+1 = ∂2

N+1fN+1 so that fN+1 has to be an affine function of
xN+1, i.e. there are α, β ∈ R such that fN+1(x′, xN+1) = αxN+1 + β.

With this, the necessary conditions (1) turn into

∀ζ ∈ {z ∈ CN ; P (z) = 0} : 0 =
N+1∑
l,m=1

ζlζm(〈∇x′fl,∇x′fm〉−∂N+1fl∂N+1fm).

For fixed 1 ≤ j 6= k ≤ N set ζj = 1, ζk = i and ζl = 0 for l /∈ {j, k} so that
ζ is a root of P giving

0 = |∇x′fj |2 − |∇x′fk|2 + 2i〈∇x′fj ,∇x′fk〉,
so that

∀1 ≤ j 6= k ≤ N : |∇x′fj | = |∇x′fk|, 〈∇x′fj ,∇x′fk〉 = 0.
On the other hand, for 1 ≤ j ≤ N fixed, let ζj = ζN+1 = 1 and ζl = 0 for
l /∈ {j,N + 1} so that ζ is a root of P yielding

∀1 ≤ j ≤ N : 0 = |∇x′fj |2 − (∂N+1fN+1)2 = |∇x′fj |2 − α2.

In particular ∇x′fj is a constant function for all 1 ≤ j ≤ N , independent of
xN+1 by hypothesis, i.e. fj is an affine function of x′. Because α2 = |∇x′fj |2
and 〈∇x′fj ,∇x′fk〉 = 0 for all 1 ≤ j 6= k ≤ N there are b′ ∈ RN and an
orthogonal matrix A ∈ RN×N such that (f1, . . . , fN )(x′, xN+1) = αAx′ + b′,
proving the necessity.

In order to prove the sufficiency, recall that for b ∈ RN+1 and invertible
B ∈ R(N+1)×(N+1) one has F(u ◦ B)(ξ) = |detB−1|F(u)((Bt)−1ξ), where
Bt denotes the transpose of B, as well as F(u ◦ τb)(ξ) = ei〈b,ξ〉F(u)(ξ).

Since kj is a tempered weight function, there are C > 0 and m ∈ N such
that kj(ξ + η) ≤ (1 + C|ξ|)mkj(η) for all ξ, η ∈ RN+1. This yields

∀ξ ∈ RN+1 : kj(0)(1 + C|ξ|)−m ≤ kj(ξ) ≤ kj(0)(1 + C|ξ|)m.
Since kj is supposed to be a radial function and A is orthogonal, it follows
that k(ξ) = k(Aξ′, ξN+1). Using this we obtain, for φ ∈ D(Ω2),

�

RN+1

|kj(ξ)F(φ(u ◦ f))(ξ)|pj dξ

=
�

RN+1

|kj(ξ)α−(N+1)F((φ ◦ f−1)u)(α−1(Aξ′, ξN+1))|pj dξ

=
�

RN+1

|kj(ξ)F((φ ◦ f−1)u)(ξ)|pj
(
k(αξ)
k(ξ)

)pj
dξ
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Since k(αξ)/k(ξ) ≤ max{1, |α|} and since f−1 is of the same form as f , it
follows that u ∈

⋂∞
j=1B

loc
pj ,kj

(Ω2) if and only if u◦f ∈
⋂∞
j=1B

loc
pj ,kj

(Ω1). Using
again that f−1 is of the same form as f , it is straightforward to show that

∀u ∈ D ′(Ω) : �(u ◦ f) = α2(�u) ◦ f.

This finally shows that P is indeed f -invariant.

4. Universal zero solutions. In this section we give a sufficient con-
dition for a sequence of diffeomorphisms fm : Ω → Ωm ⊂ Ω, m ∈ N, to have
(f∗m)-universal elements in NP (Ω). We first introduce the following notion.

Definition 4.1. Let Ω1 ⊂ Ω be open subsets of RN , P be a non-
constant polynomial, (pj)j∈N ∈ [1,∞)N, and (kj)j∈N a sequence of tempered
weight functions. We say that Ω1 is P -approximable in Ω if {u|Ω1

; u ∈
NP,(pj ,kj)(Ω)} is dense in NP,(pj ,kj)(Ω1). Again, if there is no danger of con-
fusion we omit the reference to (pj)j∈N ∈ [1,∞)N and (kj)j∈N.

As is usually the case, the heart of our universality result is an approxi-
mation theorem. In our case it is the following theorem due to L. Hörmander.
Recall that for an arbitrary subset A of RN , E ′(A) denotes the space of dis-
tributions on RN having compact support contained in A.

Theorem 4.2 ([10, Theorem 10.5.2]). Let P be a non-constant polyno-
mial, and Ω1 ⊂ Ω open subsets of RN . Assume that for every µ ∈ E ′(Ω)
the inclusion suppP (−D)µ ⊂ Ω1 implies suppµ ⊂ Ω1. Then Ω1 is P -
approximable in Ω.

In general, P -convexity for supports of neither Ω nor Ω1 is sufficient for
Ω1 to be P -approximable in Ω. For example, let Ω be any open subset of
R2 containing the unit disk, Ω1 = {x ∈ Ω; |x| > 1/2}, and let P (D) =
1
2(∂1 + i∂2). Then EP (Ω) consists of the holomorphic functions in Ω, and
P (D) being elliptic, Ω as well as Ω1 are P -convex for supports. However,
z = x1 + ix2 7→ 1/z obviously belongs to EP (Ω1) but not to the closure of
{u|Ω1

; u ∈ EP (Ω)} in EP (Ω).
The next proposition gives a simple sufficient condition for P -approx-

imability.

Proposition 4.3. Let Ω ⊂ RN be open and P a non-constant polyno-
mial.

(i) If Ω1 ⊂ Ω has convex components then Ω1 is P -approximable in Ω.
(ii) Let Ωm ⊂ Ω be open subsets of Ω such that Ωm∩

⋃
n6=mΩn = ∅. As-

sume that for every m and u ∈ E ′(Ω̄) the inclusion suppP (−D)u ⊂
Ωm implies u ∈ E ′(Ωm). Then

⋃
mΩm is P -approximable in Ω.
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Proof. (i) follows immediately from Theorem 4.2 and by applying to
each component of Ω1 the fact that ch suppu = ch suppP (−D)u where
chK denotes the closed convex hull of a set K (cf. [10, Theorem 7.3.2]).

(ii) We show that the hypothesis of Theorem 4.2 is satisfied with
⋃
mΩm

in place of Ω1. Let u ∈ E ′(Ω̄) with suppP (−D)u ⊂
⋃
mΩm. Set f :=

P (−D)u. Then, by compactness of supp f , there is r ∈ N such that supp f ⊂⋃r
l=1Ωml . Let ϕ1, . . . , ϕr ∈ E (Ω) satisfy Ωml ⊂ {ϕl = 1} and suppϕl ∩

suppϕk = ∅ for all 1 ≤ l 6= k ≤ r.
For φ ∈ D(Ωml) it follows that Dαϕl = 0 in a neighbourhood of suppφ

for all α 6= 0, so that by Leibniz’ formula,

〈f, φ〉 = 〈ϕlf, φ〉 = 〈u, P (D)(ϕlφ)〉 = 〈u, ϕlP (D)φ〉 = 〈P (−D)(ϕlu), φ〉
for all φ ∈ D(Ωml). Since the equation P (−D)v = f has at most one solution
with compact support (cf. [10, Theorem 7.3.2]), it follows that u =

∑r
l=1 ϕlu.

Moreover, ϕlu ∈ E ′(Ω̄) and P (−D)(ϕlu) = ϕlf ∈ E ′(Ωml), so that by
hypothesis on Ωml we have suppϕlu ⊂ Ωml . Hence suppu ⊂

⋃
mΩm.

Theorem 4.4. Let Ω be an open subset of RN and let fm : Ω →
Ωm, m ∈ N, be diffeomorphisms with Ωm ⊂ Ω. Moreover, let P be a non-
constant polynomial which is fm-invariant for all m ∈ N. If for every com-
pact subset K of Ω there are m ∈ N and U ⊂ Ω open with K ⊂ U such that
fm(U) ∪ U is P -approximable in Ω and fm(U) ∩ U = ∅ then

U := {u ∈ NP (Ω); (u ◦ fm)m∈N is dense in NP (Ω)}
is a dense Gδ-subset of NP (Ω).

Proof. Since NP (Ω) is a separable Fréchet space, by [8, Theorem 1]
it suffices to show that for every pair of non-empty open subsets V,W ⊂
NP (Ω) there is m ∈ N with f∗m(V ) ∩W 6= ∅.

In order to do so, let (Kn)n∈N be a compact exhaustion of Ω and for
n ∈ N choose ϕn ∈ D(RN ) such that suppϕn ⊂ Kn+1 and Kn ⊂ {ϕn = 1}.
As mentioned in Section 2, the topology of NP (Ω) is generated by the
increasing sequence of seminorms qn(u) = max1≤j,k≤n ‖ϕku‖j , n ∈ N.

Let V,W be two non-empty open subsets of NP (Ω). Pick v ∈ V and
w ∈W . Then there are n ∈ N and ε > 0 such that

{u ∈ NP (Ω); qn(u− v) < ε} ⊂ V, {u ∈ NP (Ω); qn(u− w) < ε} ⊂W.
By hypothesis there are m ∈ N and U ⊂ Ω open with Kn+2 ⊂ U such that
fm(U) ∩ U = ∅ and fm(U) ∪ U is P -approximable. Since f∗m is continuous,
there are C ≥ 1 and n′ ∈ N such that

(2) ∀u ∈ NP (Ω) : qn+1(f∗mu) ≤ Cqn′(u).

From the choice of U it follows that ϕk ∈ D(U) as well as ϕk ◦ f−1
m ∈

D(fm(U)) for 1 ≤ k ≤ n. We define ũ ∈ D ′(fm(U) ∪ U) via
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∀φ ∈ D(U) : 〈ũ, φ〉 := 〈v, φ〉,
∀φ ∈ D(fm(U)) : 〈ũ, φ〉 := 〈w ◦ f−1

m , φ〉.

Note that ũ is well-defined since fm(U) ∩ U = ∅. Because v ∈ NP (Ω) and
w ◦ f−1

m ∈ NP (Ωm) it follows that ũ ∈ NP (U ∪ fm(U)).
Because ϕk ∈ D(U) and ϕk ◦ f−1

m ∈ D(fm(U)), 1 ≤ k ≤ n, it follows
that qn as well as max1≤k≤n qn′((ϕk ◦ f−1

m ) ·) are continuous seminorms on
NP (U ∪fm(U)). By the P -approximability of U ∪fm(U) in Ω it follows that
there is u ∈ NP (Ω) such that

qn(u− ũ) < ε/C

as well as

max
1≤k≤n

qn′((ϕk ◦ f−1
m )(u− ũ)) < ε/C.

Since ϕk ∈ D(U), 1 ≤ k ≤ n, we have ϕkũ = ϕkv so that

qn(u− v) = max
1≤k,j≤n

‖ϕk(u− v)‖j = max
1≤k,j≤n

‖ϕk(u− ũ)‖j = qn(u− ũ) < ε,

i.e. u ∈ V . Moreover, because ϕk ◦ f−1
m ∈ D(fm(U)), 1 ≤ k ≤ n, we obtain

(ϕk ◦ f−1
m )ũ = (ϕk ◦ f−1

m )(w ◦ f−1
m ), 1 ≤ k ≤ n. From Corollary 3.5 and (2)

applied to w ◦ f−1
m − u it therefore follows that

qn(w − u ◦ fm) = qn(f∗m(w ◦ f−1
m − u))

≤ max
1≤k≤n

qn+1(f∗m[(ϕk ◦ f−1
m )(w ◦ f−1

m − u)])

≤ C max
1≤k≤n

qn′((ϕk ◦ f−1
m )(w ◦ f−1

m − u))

= C max
1≤k≤n

qn′((ϕk ◦ f−1
m )(ũ− u)) < ε,

i.e. u ◦ fm ∈W so that f∗m(V )∩W 6= ∅. Since V,W were chosen arbitrarily,
the conclusion follows from [8, Theorem 1].

Remark 4.5. Let P (D) be either the ∂̄, Laplace, heat or wave operator.
Moreover, consider the tempered weight functions kj(ξ) = (1 + |ξ|)j , j ∈ N,
so that we are dealing with EP (Ω) as the kernel of P (D). (Note, however,
that this is no restriction for the ∂̄, Laplace, or heat operator since these
are hypoelliptic operators!) Let f : Ω → Ω1 ⊂ Ω be a diffeomorphism such
that P is f -invariant, and in the case of the wave operator, assume that f
satisfies the additional mild conditions posed in Proposition 3.6(d).

Then by Proposition 3.6 a straightforward calculation shows that for all
ϕ ∈ E (Ω) one has

P (D)(ϕ ◦ f) = g((P (D)ϕ) ◦ f),
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where

g =


2∂̄f1 if P (D) = ∂̄,
|∇f1|2 if P (D) is the Laplacian,
α2 6= 0 if P (D) is the heat or wave operator,

which has no zero in Ω, because f is a diffeomorphism. Hence, the follow-
ing corollary covers the cases when P (D) is the ∂̄, Laplace, heat or wave
operator.

In the case of the ∂̄ operator, i.e. when dealing with holomorphic func-
tions, the next result is due to Bernal and Montes (Theorem 1.2); cf. [2].

Corollary 4.6. Let Ω be an open subset of RN having convex compo-
nents and let P be a non-constant polynomial. Moreover, let fm : Ω → Ω,
m ∈ N, be diffeomorphisms of Ω such that for every m ∈ N there is
gm ∈ E (Ω) having no zero in Ω such that P (D)(f∗m u) = gm f

∗
m(P (D)u)

for every u ∈ E (Ω) and m ∈ N. Then P is fm-invariant for every m ∈ N
and the following are equivalent.

(i) The set {u ∈ EP (Ω); (u ◦ fm)m∈N is dense in EP (Ω)} is a dense
Gδ-subset of EP (Ω).

(ii) There is u ∈ EP (Ω) such that (u ◦ fm)m∈N is dense in EP (Ω).
(iii) For every compact subset K of Ω there is m ∈ N such that fm(K)

∩K = ∅.

Proof. That P is fm-invariant for eachm follows immediately. Obviously,
(i) implies (ii). In order to show that (iii) implies (i), observe that it follows
immediately from the hypothesis on Ω that there is a compact exhaustion
(Kn)n∈N of Ω such that for every n the components of Kn are convex.
By hypothesis, for every n there is m such that fm(Kn) ∩ Kn = ∅, i.e.
the closures of fm(K◦n) and K◦n are disjoint. The components of K◦n being
convex, it follows that every u ∈ E ′(Ω̄) with suppP (−D)u ⊂ K◦n satisfies
suppu ⊂ K◦n. We also show that suppu ⊂ fm(K◦n) for every u ∈ E ′(Ω̄) with
suppP (−D)u ⊂ fm(K◦n), so that fm(K◦n) ∪K◦n is P -approximable in Ω by
Proposition 4.3(ii). Since (Kn)n∈N is a compact exhaustion of Ω, this will
show that the hypothesis of Theorem 4.4 is satisfied, giving (i). In order to
simplify notation, we simply write f instead of fm from now on.

So, let u ∈ E ′(Ω̄) with suppP (−D)u ⊂ f(K◦n). As Ω has convex com-
ponents, it follows that suppu ⊂ Ω, so we can apply f∗ to u. By hypothesis
we have

P (D)(ϕ ◦ f) = g((P (D)ϕ) ◦ f)

for all ϕ ∈ E (Ω), where g has no zero in Ω. In particular P (D)ϕ =
g((P (D)(ϕ ◦ f−1)) ◦ f). For v ∈ D ′(Ω) and ϕ ∈ D(Ω) we therefore have
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〈P (−D)(v ◦ f), ϕ〉 = 〈v, |det Jf−1|(P (D)ϕ) ◦ f−1〉
= 〈v, |det Jf−1|(g ◦ f−1)P (D)(ϕ ◦ f−1)〉
= 〈P (−D)(|det Jf−1|(g ◦ f−1)v), ϕ ◦ f−1〉
= 〈P (−D)(|det Jf−1|(g ◦ f−1)v), |det(Jf) ◦ f−1| |det Jf−1|ϕ ◦ f−1〉
= 〈f∗(P (−D)(|det Jf−1|(g ◦ f−1)v), |det Jf |ϕ〉
= 〈|det Jf | f∗(P (−D)(|det Jf−1|(g ◦ f−1)v), ϕ〉,

i.e. P (−D)(f∗v) = |det Jf | f∗(P (−D)(|det Jf−1|(g ◦ f−1)v)) for all v ∈
D ′(Ω). Therefore,

P (−D)u = (f−1)∗
[

1
|det Jf |

P (−D)
[
f∗
(

1
|det Jf−1|(g ◦ f−1)

u

)]]
,

which shows

supp(f−1)∗
[

1
|det Jf |

P (−D)
[
f∗
(

1
|det Jf−1|(g ◦ f−1)

u

)]]
= suppP (−D)u ⊂ f(K◦n).

From Proposition 3.1 we get

supp
1

|det Jf |
P (−D)

[
f∗
(

1
|det Jf−1|(g ◦ f−1)

u

)]
⊂ K◦n.

Since 1/|det Jf | 6= 0 we get

suppP (−D)
[
f∗
(

1
|det Jf−1|(g ◦ f−1)

u

)]
⊂ K◦n,

so that by the convexity of the components of K◦n,

supp f∗
(

1
|det Jf−1|(g ◦ f−1)

u

)
⊂ K◦n.

Using Proposition 3.1 once more gives

supp
1

|det Jf−1|(g ◦ f−1)
u ⊂ f(K◦n),

hence suppu ⊂ f(K◦n), finally giving (i) of the corollary.
Observe that this last conclusion is the only one where we used that

f(Ω) = Ω, for if this was not the case we would only obtain

f(Ω) ∩ supp
1

|det Jf−1|(g ◦ f−1)
u ⊂ f(K◦n)

from Proposition 3.5.
Finally, that (ii) implies (iii) is shown exactly as in [2, Theorem 3.5].

Assume there is a compact subset K of Ω such that fm(K) ∩ K 6= ∅ for
all m ∈ N. So, there are xm ∈ K with fm(xm) ∈ K for every m. Since in
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every case under consideration, P is a non-constant polynomial, the function
v(x) = 1 + maxy∈K |u(y)| belongs to EP (Ω). For every m we have

max
x∈K
|v(x)− u(fm(x))| ≥ |v(xm)− u(fm(xm))| ≥ |v(xm)| − |u(fm(xm))| ≥ 1,

contradicting the denseness of (u ◦ fm)m∈N in EP (Ω).

Example 4.7. LetΩ=B1(0)×R⊂RN+1 withB1(0)={x′ ∈ RN ; |x′|<1}.
Moreover, let Am ∈ RN×N be an orthogonal matrix and bm ∈ span{eN+1},
where eN+1 is the (N + 1)th unit vector in RN+1. Clearly,

fm : Ω → Ω, (x′, xN+1) 7→ (Amx′, xN+1) + bm,

is a well-defined diffeomorphism.
By Proposition 3.6, both polynomials PH(ξ) = |ξ|2+iξN+1 and PW (ξ) =

|ξ|2−ξ2N+1 are fm-invariant for every m ∈ N. PH(D) gives the heat operator,
whereas PW (D) gives the wave operator.

It follows from Corollary 4.6 and Remark 4.5 that there is an (fm)m∈N-
universal zero solution of the heat operator, respectively the wave operator,
if and only if lim supm→∞ |bm| =∞. While sufficiency of this condition is ob-
vious, to show necessity assume that (|bm|)m∈N is bounded by a constant C.
Let K = {x′ ∈ RN ; |x′| ≤ 1/2} × [−C,C]. Then 0 ∈ K ∩ fm(K) for all
m ∈ N, so that necessity follows from Corollary 4.6 too.

5. Dense subspaces of universal zero solutions. Under a slight
modification of the hypothesis of Theorem 4.4 one can even prove the fol-
lowing stronger result.

Theorem 5.1. Let Ω be an open subset of RN , and fm : Ω → Ωm,
m ∈ N, diffeomorphisms with Ωm ⊂ Ω. Moreover, let P be a non-constant
polynomial which is fm-invariant for all m ∈ N. If for every compact subset
K of Ω there are m ∈ N and U ⊂ Ω open and bounded with K ⊂ U ⊂ Ū ⊂ Ω
such that fm(U)∩U = ∅ and fm(U)∪U is P -approximable in Ω then there
is a dense subspace L ⊂ NP (Ω) with

L \ {0} ⊂ U := {u ∈ NP (Ω); (u ◦ fm)m∈N is dense in NP (Ω)}.
Proof. Let (Kn)n∈N be a compact exhaustion of Ω. By the hypothesis

we construct inductively an increasing sequence of open, bounded subsets
(Un)n∈N of Ω with Kn ⊂ Un ⊂ Un ⊂ Ω and a strictly increasing sequence
(mn)n∈N of positive integers such that

(i) ∀n ∈ N : fmn(Un) ∪ Un is P -approximable in Ω,
(ii) ∀n ∈ N : fmn(Un) ∩ Un = ∅.

For n = 1 by hypothesis there are m1 ∈ N and U1 ⊂ Ω open and bounded
such that K1 ⊂ U1 ⊂ U1 ⊂ Ω, fm1(U1) ∩ U1 = ∅, and fm1(U1) ∪ U1 is
P -approximable in Ω.



50 T. Kalmes and M. Niess

If U1, . . . , Un,m1, . . . ,mn have been constructed we apply the hypothesis
to the compact set

Un ∪ f1(Un) ∪ · · · ∪ fmn(Un) ∪Kn+1

to obtain some mn+1 ∈ N and Un+1 ⊂ Ω open and bounded such that

Un ∪ f1(Un) ∪ · · · ∪ fmn(Un) ∪Kn+1 ⊂ Un+1 ⊂ Un+1 ⊂ Ω

with fmn+1(Un+1)∩Un+1 = ∅ and fmn+1(Un+1)∪Un+1 P -approximable in Ω.
In particular, from fmn+1(Un+1)∩Un+1 = ∅ it follows that for all 1 ≤ j ≤ mn

we have fmn+1(Un) ∩ fj(Un) = ∅, hence mn+1 > mn.
We will now show that for the subsequence (fmn)n∈N there is a dense

linear subspace L of NP (Ω) such that (u ◦ fmn)n∈N is dense in NP (Ω) for
every u ∈ L \ {0}, proving the theorem. Since we will be dealing with
subsequences of (fmn)n∈N we simply write (fm)m∈N instead of (fmn)n∈N to
simplify notation.

Let (fmn)n∈N be an arbitrary subsequence of (fm)m∈N. For a given
compact subset K ⊂ Ω there is n ∈ N such that K ⊂ Kmn ⊂ Umn
and fmn(Umn) ∩ Umn = ∅ and fmn(Umn) ∪ Umn is P -approximable in Ω.
Therefore, {u ∈ NP (Ω); (u ◦ fmn)n∈N is dense in NP (Ω)} is a dense subset
of NP (Ω) by Theorem 4.4. Since (fmn)n∈N is an arbitrary subsequence of
(fm)m∈N it follows from [1, Theorem 2] that there is a dense linear subspace
L of NP (Ω) such that (u◦fm)m∈N is dense in NP (Ω) for every u ∈ L\{0}.

Referring to Theorem 5.1 rather than Theorem 4.4, the proof of Corollary
4.6 gives the result below. By Remark 4.5, in the case of the ∂̄, Laplace, heat
and wave operator its hypothesis on the diffeomorphisms fm is automatically
satisfied if the corresponding polynomial is fm-invariant.

Corollary 5.2. Let Ω be an open subset of RN having convex compo-
nents and let P be a non-constant polynomial. Moreover, let fm : Ω → Ω,
m ∈ N, be diffeomorphisms of Ω such that for every m ∈ N there is
gm ∈ E (Ω) having no zero in Ω such that P (D)(f∗m u) = gm f

∗
m(P (D)u)

for every u ∈ E (Ω). Then P is fm-invariant for every m ∈ N and the
following are equivalent.

(i) There is a dense subspace L ⊂ EP (Ω) with

L \ {0} ⊂ {u ∈ EP (Ω); (u ◦ fm)m∈N is dense in EP (Ω)}.

(ii) The set {u ∈ EP (Ω); (u ◦ fm)m∈N is dense in EP (Ω)} is a dense
Gδ-subset of EP (Ω).

(iii) There is u ∈ EP (Ω) such that (u ◦ fm)m∈N is dense in EP (Ω).
(iv) For every compact subset K of Ω there is m ∈ N such that fm(K)

∩K = ∅.
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