The continuity of pseudo-differential operators on weighted local Hardy spaces

by
Ming-Yi Lee, Chin-Cheng Lin and Ying-Chieh Lin (Chung-Li)

Abstract

We first show that a linear operator which is bounded on L_{w}^{2} with $w \in A_{1}$ can be extended to a bounded operator on the weighted local Hardy space h_{w}^{1} if and only if this operator is uniformly bounded on all h_{w}^{1}-atoms. As an application, we show that every pseudo-differential operator of order zero has a bounded extension to h_{w}^{1}.

1. Introduction. Pseudo-differential operators are generalizations of differential operators and singular integrals. They are formally defined by

$$
\begin{equation*}
T f(x)=\int_{\mathbb{R}^{n}} \sigma(x, \xi) \hat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi \tag{1}
\end{equation*}
$$

where " ^" denotes the Fourier transform, and σ, the symbol of T, is a complex-valued function defined on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. Symbols are classified according to their size and the size of their derivatives. The standard symbol class of order $m \in \mathbb{Z}$, denoted by S^{m}, consists of the $C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ functions σ that satisfy the differential inequalities

$$
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{m-|\alpha|}
$$

for all multi-indices α and β. If $\sigma \in S^{m}$, then the operator defined by (1) is called a pseudo-differential operator of order m.

Pseudo-differential operators given by (1) can be rewritten as

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, x-y) f(y) d y
$$

where

$$
K(x, z)=\int_{\mathbb{R}^{n}} \sigma(x, \xi) e^{2 \pi i z \cdot \xi} d \xi
$$

In other words, for fixed $x, K(x, \cdot)$ is the inverse Fourier transform of $\sigma(x, \cdot)$. If $\sigma \in S^{0}$, then one can show that $\left|\partial_{x}^{\beta} \partial_{y}^{\alpha} K(x, y)\right| \leq A_{\alpha, \beta}|y|^{-n-|\alpha|-|\beta|}$ for all

[^0]α, β, and $y \neq 0$. By the singular integral theory, T can be extended to a bounded operator on $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$ (cf. [S, p. 250]). For the weighted case, Miller [M] showed that

Theorem A. Suppose $1<p<\infty$. Every pseudo-differential operator of order 0 has a bounded extension to $L_{w}^{p}\left(\mathbb{R}^{n}\right)$ if and only if $w \in A_{p}$.

In 1979, Goldberg [G] introduced the local Hardy spaces h^{1} and showed that every pseudo-differential operator of order 0 is bounded on h^{1}. In this article, we study the boundedness of pseudo-differential operators acting on weighted local Hardy spaces h_{w}^{1}, where $w \in A_{1}$. To obtain the h_{w}^{1}-boundedness of a linear operator, we reduce the problem to the $L_{w^{-}}^{1}$ boundedness of this linear operator acting on all h_{w}^{1}-atoms.

Theorem 1. Let $w \in A_{1}$. For a linear operator P bounded on $L_{w}^{2}\left(\mathbb{R}^{n}\right)$, P can be extended to a bounded operator on $h_{w}^{1}\left(\mathbb{R}^{n}\right)$ if and only if there exists an absolute constant C such that

$$
\|P a\|_{h_{w}^{1}} \leq C \quad \text { for any }\left(h_{w}^{1}, 2\right) \text {-atom } a
$$

We apply Theorem 1 to extend Goldberg's result to the weighted case as follows.

Theorem 2. Let $w \in A_{1}$. Every pseudo-differential operator of order 0 has a bounded extension to $h_{w}^{1}\left(\mathbb{R}^{n}\right)$.

Throughout the article, we will use C to denote a positive constant which is independent of main parameters and not necessarily the same at each occurrence. By writing $A \approx B$, we mean that there exists a constant $C>1$ such that $1 / C \leq A / B \leq C$.
2. Weighted local Hardy spaces. We recall the definition and properties of A_{p} weights. For $1<p<\infty$, a locally integrable nonnegative function w on \mathbb{R}^{n} is said to belong to A_{p} if there exists $C>0$ such that

$$
\left(\frac{1}{|B|} \int_{B} w(x) d x\right)\left(\frac{1}{|B|} \int_{B} w(x)^{-1 /(p-1)} d x\right)^{p-1} \leq C \quad \forall \text { ball } B \subset \mathbb{R}^{n}
$$

For the case $p=1$, we have $w \in A_{1}$ if

$$
\frac{1}{|B|} \int_{B} w(x) d x \leq C \underset{x \in B}{\operatorname{essinf}} w(x) \quad \forall \text { ball } B \subset \mathbb{R}^{n}
$$

For $E \subset \mathbb{R}^{n}$, we use $w(E)$ to denote the weighted measure $\int_{E} w(x) d x$, which satisfies the doubling condition. More specifically, we have

Lemma B ([GR, p. 396]). Let $w \in A_{p}, p \geq 1$. Then, for any ball $B(x, r)$ and $\lambda>1$,

$$
w(B(x, \lambda r)) \leq C \lambda^{n p} w(B(x, r))
$$

where C does not depend on $B(x, r)$ or on λ.

Lemma $\mathrm{C}([\mathrm{GR}, \mathrm{p} .412])$. Let $w \in A_{p}, p>1$. Then, for all $r>0$ and $x_{0} \in \mathbb{R}^{n}$, there exists a constant $C>0$ independent of r such that

$$
\int_{\left|x-x_{0}\right| \geq r} \frac{w(x)}{\left|x-x_{0}\right|^{n p}} d x \leq C r^{-n p} \int_{\left|x-x_{0}\right| \leq r} w(x) d x .
$$

The theory of local Hardy spaces was established by Goldberg [G] and extended to the weighted case by Bui $[\mathrm{Bu}]$. We now recall the theory of weighted local Hardy spaces. Let φ and ψ be functions in $\mathcal{S}\left(\mathbb{R}^{n}\right)$, the Schwartz space of rapidly decreasing smooth functions, satisfying $\int_{\mathbb{R}^{n}} \varphi(x) d x=1$ and $\int_{\mathbb{R}^{n}} \psi(x) d x=0$. Also, let $\widetilde{\Gamma}(x)$ denote the cone $\{(y, t):|x-y|<t, 0<t<1\}$. For $t>0$ and $x \in \mathbb{R}^{n}$, set $\phi_{t}(x)=t^{-n} \phi(x / t)$. For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, we define the local versions of the radial maximal function $\widetilde{f}_{\widetilde{\sim}}^{+}$, the nontangential maximal function \widetilde{f}^{*}, and the Lusin integral function $\widetilde{S}(f)$ by

$$
\begin{gathered}
\widetilde{f}^{+}(x)=\sup _{0<t<1}\left|\varphi_{t} * f(x)\right|, \quad \widetilde{f}^{*}(x)=\sup _{(y, t) \in \widetilde{\Gamma}(x)}\left|\varphi_{t} * f(y)\right| \\
\widetilde{S}(f)(x)=\left(\int_{\widetilde{\Gamma}(x)}\left|\psi_{t} * f(y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{1 / 2}
\end{gathered}
$$

Let $w \in A_{1}$. The weighted local Hardy space $h_{w}^{1}\left(\mathbb{R}^{n}\right)$ consists of those tempered distributions $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for which $\widetilde{f}^{+} \in L_{w}^{1}\left(\mathbb{R}^{n}\right)$ with $\|f\|_{h_{w}^{1}}=$ $\left\|\widetilde{f}^{+}\right\|_{L_{w}^{1}}$. The space $h_{\underset{\sim}{w}}^{1}\left(\mathbb{R}^{n}\right)$ can also be characterized by $\widetilde{f}^{*} \in L_{w}^{1}\left(\mathbb{R}^{n}\right)$ or $\widetilde{S}(f) \in L_{w}^{1}\left(\mathbb{R}^{n}\right)$, and $\left\|\widetilde{f}^{*}\right\|_{L_{w}^{1}} \approx\left\|\widetilde{f}^{+}\right\|_{L_{w}^{1}} \approx\|\widetilde{S}(f)\|_{L_{w}^{1}}(\mathrm{cf} .[\mathrm{Bu}])$.

As for weighted Hardy spaces, we also have the atomic decomposition characterization of $h_{w}^{1}\left(\mathbb{R}^{n}\right)$.

Definition. A function a is called an $\left(h_{w}^{1}, q\right)$-atom centered at $x_{0}, 1<$ $q \leq \infty$, if
(i) the support of a is contained in a ball $B\left(x_{0}, r\right)$,
(ii) $\|a\|_{L_{w}^{q}} \leq w\left(B\left(x_{0}, r\right)\right)^{1 / q-1}$,
(iii) if $r<1$, then $\int_{\mathbb{R}^{n}} a(x) d x=0$.

The condition (ii) is interpreted as $\|a\|_{\infty} \leq w\left(B\left(x_{0}, r\right)\right)^{-1}$ if $q=\infty$.
Theorem $\mathrm{D}([\mathrm{Bu}])$. Let $1<q \leq \infty$ and $w \in A_{1}$. A function f is in $h_{w}^{1}\left(\mathbb{R}^{n}\right)$ if and only if there exists a sequence $\left\{a_{j}\right\}$ of $\left(h_{w}^{1}, q\right)$-atoms and a sequence $\left\{\lambda_{j}\right\}$ of scalars with $\sum\left|\lambda_{j}\right|<\infty$ such that $f=\sum \lambda_{j} a_{j}$ in L_{w}^{1}. Furthermore,
$\|f\|_{h_{w}^{1}} \approx \inf \left\{\sum\left|\lambda_{j}\right|: \sum \lambda_{j} a_{j}\right.$ is a decomposition of f into $\left(h_{w}^{1}, q\right)$-atoms $\}$.
To prove Theorem 1, we need to construct an atomic decomposition of elements in $h_{w}^{1} \cap L_{w}^{2}$, which converges in L_{w}^{2}.

Theorem 3. Let $w \in A_{1}$. For $f \in h_{w}^{1}\left(\mathbb{R}^{n}\right) \cap L_{w}^{2}\left(\mathbb{R}^{n}\right)$, there exist a sequence $\left\{a_{j}\right\}$ of ($h_{w}^{1}, 2$)-atoms and a sequence $\left\{\lambda_{j}\right\}$ of scalars satisfying $\sum\left|\lambda_{j}\right| \leq C\|f\|_{h_{w}^{1}}$ such that $f=\sum \lambda_{j} a_{j}$ in $L_{w}^{2}\left(\mathbb{R}^{n}\right)$.

The proof of Theorem 3 appeals to the following two lemmas about the properties of $H_{w}^{1}\left(\mathbb{R}^{n}\right)$. The space $H_{w}^{1}\left(\mathbb{R}^{n}\right)$ consists of all f 's satisfying $S(f) \in L_{w}^{1}\left(\mathbb{R}^{n}\right)$ with $\|f\|_{H_{w}^{1}}=\|S(f)\|_{L_{w}^{1}}$, where

$$
S(f)(x)=\left(\int_{0}^{\infty} \int_{|x-y|<t}\left|\psi_{t} * f(y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{1 / 2} .
$$

We can characterize elements of $H_{w}^{1}\left(\mathbb{R}^{n}\right)$ in terms of atoms. A real-valued function $a \in L_{w}^{2}\left(\mathbb{R}^{n}\right), w \in A_{2}$, is called a $w-(1,2, n)$-atom if (i) a is supported on a ball B, (ii) $\|a\|_{L_{w}^{2}} \leq w(B)^{-1 / 2}$, and (iii) $\int_{\mathbb{R}^{n}} a(x) x^{\alpha} d x=0$ for every multi-index α with $|\alpha| \leq n$.

Lemma $\mathrm{E}([\mathrm{Bu}])$. Let $w \in A_{1}$ and $f \in h_{w}^{1}\left(\mathbb{R}^{n}\right)$. If Φ is a function in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $\int \Phi(x) d x=1$ and $\int x^{\alpha} \Phi(x) d x=0$ for all $\alpha \neq 0$, then $f-\Phi * f \in H_{w}^{1}\left(\mathbb{R}^{n}\right)$ and $\|f-\Phi * f\|_{H_{w}^{1}} \leq C\|f\|_{h_{w}^{1}}$.

Lemma $\mathrm{F}([\mathrm{HLL}])$. Let $w \in A_{2}$. For $f \in H_{w}^{1}\left(\mathbb{R}^{n}\right) \cap L_{w}^{2}\left(\mathbb{R}^{n}\right)$, there exist a sequence $\left\{a_{i}\right\}$ of $w-(1,2, n)$-atoms and a sequence $\left\{\lambda_{i}\right\}$ of scalars satisfying $\sum\left|\lambda_{i}\right| \leq C\|f\|_{H_{w}^{1}}$ such that $f=\sum \lambda_{i} a_{i}$ in $L_{w}^{2}\left(\mathbb{R}^{n}\right)$.

Proof of Theorem 3. Let $w \in A_{1}, f \in h_{w}^{1}\left(\mathbb{R}^{n}\right) \cap L_{w}^{2}\left(\mathbb{R}^{n}\right)$, and Φ satisfy the assumption of Lemma E. Then $f-\Phi * f \in H_{w}^{1}$. Since $f \in L_{w}^{2}$ implies $\Phi * f \in L_{w}^{2}$, it follows from Lemma F that $f-\Phi * f=\sum \eta_{j} b_{j}$ in L_{w}^{2}, where b_{j} 's are w - $(1,2, n)$-atoms and $\sum\left|\eta_{j}\right| \leq C\|f-\Phi * f\|_{H_{w}^{1}} \leq C\|f\|_{h_{w}^{1}}$. It is clear that a w - $(1,2, n)$-atom is also an $\left(h_{w}^{1}, 2\right)$-atom.

Let $\left\{Q_{j}\right\}$ be the family of cubes whose vertices are the lattice points $n^{-1 / 2} \mathbb{Z}^{n}$. Then
(i) $\operatorname{diam}\left(Q_{j}\right)=1$ for all j;
(ii) $\bigcup_{j} Q_{j}=\mathbb{R}^{n}$;
(iii) the cubes Q_{j} 's are nonoverlapping.

Let x_{j} and $\chi_{Q_{j}}$ denote the center and the characteristic function of Q_{j}, respectively. Write

$$
(\Phi * f) \chi_{Q_{j}}=\lambda_{j} a_{j}, \quad \text { where } \quad \lambda_{j}=w\left(B\left(x_{j}, 1\right)\right)\left\|(\Phi * f) \chi_{Q_{j}}\right\|_{\infty} .
$$

Then a_{j} 's are $\left(h_{w}^{1}, 2\right)$-atoms and $\Phi * f=\sum \lambda_{j} a_{j}$ almost everywhere. Owing to Lemma B and $\operatorname{diam}\left(Q_{j}\right)=1$,

$$
\begin{aligned}
\sum_{j}\left|\lambda_{j}\right| & =\sum_{j} w\left(B\left(x_{j}, 1\right)\right)\left\|(\Phi * f) \chi_{Q_{j}}\right\|_{\infty} \\
& \leq C \sum_{j} w\left(Q_{j}\right)\left\|(\Phi * f) \chi_{Q_{j}}\right\|_{\infty}=C \sum_{j} \int_{Q_{j}} \sup _{y \in Q_{j}}|\Phi * f(y)| w(x) d x \\
& \leq C \int_{\mathbb{R}^{n}} \sup _{(y, t) \in \widetilde{\Gamma}(x)}\left|\Phi_{t} * f(y)\right| w(x) d x \leq C\|f\|_{h_{w}^{1}}
\end{aligned}
$$

Since $\Phi * f \in L_{w}^{2}$, the series $\sum \lambda_{j} a_{j}$ converges to $\Phi * f$ in L_{w}^{2}.
Proof of Theorem 1. If P is bounded on h_{w}^{1}, then Theorem D gives $\|P a\|_{h_{w}^{1}} \leq C\|a\|_{h_{w}^{1}} \leq C \quad$ for any $\left(h_{w}^{1}, 2\right)$-atom a.
Conversely, for $w \in A_{1}$ and $f \in h_{w}^{1} \cap L_{w}^{2}$, we have an atomic decomposition $f=\sum \lambda_{j} a_{j}$ in L_{w}^{2} and $\sum\left|\lambda_{j}\right| \leq C\|f\|_{h_{w}^{1}}$ by Theorem 3. Let $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \psi(x) d x=0$. By the L_{w}^{2}-boundedness of P,

$$
\psi_{t} * P f=\sum_{j=1}^{\infty} \lambda_{j} \psi_{t} * P a_{j} \quad \text { in } L_{w}^{2}
$$

which implies that there exists a subsequence (we still use the same indices) such that

$$
\psi_{t} * P f=\sum_{j=1}^{\infty} \lambda_{j} \psi_{t} * P a_{j} \quad \text { almost everywhere. }
$$

Fatou's lemma and Minkowski's inequality yield

$$
\begin{aligned}
\widetilde{S}(P f)(x) & =\left(\int_{\widetilde{\Gamma}(x)}\left|\psi_{t} * P f(y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{1 / 2} \\
& \leq \liminf _{M \rightarrow \infty}\left(\int_{\widetilde{\Gamma}(x)}\left|\sum_{j=1}^{M} \lambda_{j} \psi_{t} * P a_{j}(y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{1 / 2} \\
& \leq \sum_{j=1}^{\infty}\left|\lambda_{j}\right|\left(\int_{\widetilde{\Gamma}(x)}\left|\psi_{t} * P a_{j}(y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{1 / 2}=\sum_{j=1}^{\infty}\left|\lambda_{j}\right| \widetilde{S}\left(P a_{j}\right)(x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \widetilde{S}(P f)(x) w(x) d x & \leq \sum_{j=1}^{\infty}\left|\lambda_{j}\right| \int_{\mathbb{R}^{n}} \widetilde{S}\left(P a_{j}\right)(x) w(x) d x \\
& \leq C \sum_{j=1}^{\infty}\left|\lambda_{j}\right| \cdot\left\|P a_{j}\right\|_{h_{w}^{1}} \leq C\|f\|_{h_{w}^{1}}
\end{aligned}
$$

which gives the h_{w}^{1}-boundedness of P on $h_{w}^{1} \cap L_{w}^{2}$. Theorem D implies that $h_{w}^{1} \cap L_{w}^{2}$ is dense in h_{w}^{1}, so P can be extended to a bounded operator on h_{w}^{1}.
3. Proof of Theorem 2. Let $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ be a fixed nonnegative radial decreasing function supported in the unit ball $B(0,1)$ with $\int_{\mathbb{R}^{n}} \phi(x) d x=1$. For $t>0$, define K_{t} by

$$
K_{t}(x, z)=\int_{\mathbb{R}^{n}} K(x-y, z-y) \phi_{t}(y) d y
$$

Goldberg [G, Lemma 6] obtained an estimate of K_{t} as follows, which will be used to prove Theorem 2.

Lemma G. Suppose $\sigma \in S^{0}$. Then, for all $\alpha, \beta \in(\mathbb{N} \cup\{0\})^{n}$,

$$
\sup _{x \in \mathbb{R}^{n}}\left|\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial z}\right)^{\beta} K_{t}(x, z)\right| \leq \frac{C_{\alpha, \beta}}{|z|^{n+|\beta|}} \quad \text { for } z \neq 0
$$

where $C_{\alpha, \beta}$ is independent of t if $0<t<1$.
Proof of Theorem 2. Let T be a pseudo-differential operator given by (1). By Theorem A, T is bounded on L_{w}^{2}. We will prove that there exists a constant $C>0$ such that $\|T a\|_{h_{w}^{1}} \leq C$ for any $\left(h_{w}^{1}, 2\right)$-atom a. Then Theorem 2 follows from Theorem 1.

Let a be an $\left(h_{w}^{1}, 2\right)$-atom centered at x_{0} with $\operatorname{supp}(a) \subset B\left(x_{0}, r\right)$. Denote by M the Hardy-Littlewood maximal operator, we have $(\widetilde{T a})^{+}(x) \leq$ $M(T a)(x)$. By Theorem A and Lemma B,

$$
\begin{align*}
\int_{B\left(x_{0}, 3 r\right)}(\widetilde{T a})^{+}(x) w(x) d x & \leq \int_{B\left(x_{0}, 3 r\right)} M(T a)(x) w(x) d x \tag{2}\\
& \leq w\left(B\left(x_{0}, 3 r\right)\right)^{1 / 2}\|M(T a)\|_{L_{w}^{2}} \\
& \leq C w\left(B\left(x_{0}, r\right)\right)^{1 / 2}\|T a\|_{L_{w}^{2}} \\
& \leq C w\left(B\left(x_{0}, r\right)\right)^{1 / 2}\|a\|_{L_{w}^{2}} \leq C
\end{align*}
$$

To estimate $\int_{B\left(x_{0}, 3 r\right)^{c}}(\widetilde{T a})^{+}(x) w(x) d x$, we consider the case $r<1$ first. For $x \in B\left(x_{0}, 3 r\right)^{c}$, we use the fact that

$$
\phi_{t} *(T a)(x)=\int_{B\left(x_{0}, r\right)} K_{t}(x, x-z) a(z) d z
$$

Applying Taylor's theorem to the function $K_{t}(x, x-\cdot)$ near x_{0}, we have

$$
K_{t}(x, x-z)=K_{t}\left(x, x-x_{0}\right)+R_{x_{0}, t}(x, z)
$$

where

$$
R_{x_{0}, t}(x, z)=\sum_{|\alpha|=1}\left[\left(\frac{\partial}{\partial z}\right)^{\alpha} K_{t}(x, z)\right]_{z=x-\xi} \cdot\left(z-x_{0}\right)^{\alpha}
$$

and $\xi \in \mathbb{R}^{n}$ is a point lying on the line segment from x_{0} to z. Note that
$|x-\xi| \approx\left|x-x_{0}\right|$. It follows from Lemma G that

$$
\begin{equation*}
\left|R_{x_{0}, t}(x, z)\right| \leq C \frac{\left|z-x_{0}\right|}{\left|x-x_{0}\right|^{n+1}} \quad \text { for } z \in B\left(x_{0}, r\right) \text { and } 0<t<1 \tag{3}
\end{equation*}
$$

Using (3) and the moment condition of a, we get

$$
\begin{align*}
& \int_{B\left(x_{0}, 3 r\right)^{c}}(\widetilde{T a})^{+}(x) w(x) d x \tag{4}\\
\leq & \int_{B\left(x_{0}, 3 r\right)^{c}} \sup _{0<t<1}\left\{\int_{B\left(x_{0}, r\right)}\left|K_{t}(x, x-z)-K_{t}\left(x, x-x_{0}\right)\right||a(z)| d z\right\} w(x) d x \\
\leq & C \int_{B\left(x_{0}, 3 r\right)^{c}}\left\{\int_{B\left(x_{0}, r\right)} \frac{\left|z-x_{0}\right|}{\left.\left|x-x_{0}\right|^{n+1}|a(z)| d z\right\} w(x) d x}\right. \\
\leq & C r\left(\int_{B\left(x_{0}, 3 r\right)^{c}} \frac{w(x) d x}{\left|x-x_{0}\right|^{n+1}}\right)\left(\int_{B\left(x_{0}, r\right)}|a(z)| d z\right) .
\end{align*}
$$

By Lemmas B and C,

$$
\begin{equation*}
\int_{B\left(x_{0}, 3 r\right)^{c}} \frac{w(x) d x}{\left|x-x_{0}\right|^{n+1}} \leq C r^{-(n+1)} w\left(B\left(x_{0}, r\right)\right) . \tag{5}
\end{equation*}
$$

Since $w \in A_{2}$, Hölder's inequality gives

$$
\begin{align*}
\int_{B\left(x_{0}, r\right)}|a(z)| d z & \leq\left(\int_{B\left(x_{0}, r\right)}|a(z)|^{2} w(z) d z\right)^{1 / 2}\left(\int_{B\left(x_{0}, r\right)} w(z)^{-1} d z\right)^{1 / 2} \tag{6}\\
& \leq C r^{n} w\left(B\left(x_{0}, r\right)\right)^{-1}
\end{align*}
$$

Inequalities (4)-(6) yield

$$
\int_{B\left(x_{0}, 3 r\right)^{c}}(\widetilde{T a})^{+}(x) w(x) d x \leq C \quad \text { for } r<1 .
$$

For the case $r \geq 1$, we split $T=T_{1}+T_{2}$ by decomposing its kernel

$$
K(x, z)=K_{1}(x, z)+K_{2}(x, z)=\eta(z) K(x, z)+(1-\eta(z)) K(x, z),
$$

where $\eta \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is a radial function satisfying $0 \leq \eta(z) \leq 1, \eta(z)=1$ for $|z|<2 r$, and $\eta(z)=0$ for $|z| \geq 4 r$. If we consider the corresponding symbols $\sigma_{1}=\check{\eta} * \sigma$ and $\sigma_{2}=(1-\eta)^{`} * \sigma$, where " " " denotes the inverse Fourier transform, then T_{1} and T_{2} are pseudo-differential operators of order 0 . We note that $\operatorname{supp}\left(T_{1} a\right) \subset B\left(x_{0}, 5 r\right)$. Since ϕ is supported in $B(0,1)$, by an
argument similar to (2),

$$
\left\|T_{1} a\right\|_{h_{w}^{1}}=\int_{B\left(x_{0}, 6 r\right)}\left(\widetilde{T_{1} a}\right)^{+}(x) w(x) d x \leq C .
$$

For the estimate of $\int_{B\left(x_{0}, 3 r\right)^{c}}\left(\widetilde{T_{2} a}\right)^{+}(x) w(x) d x, \sigma_{2} \in S^{0}$ gives (cf. [S, p. 241])

$$
\left|K_{2}(x, z)\right| \leq C_{M}|z|^{-(n+M)} \quad \text { for } z \neq 0 \text { and } M>0 .
$$

Thus, for $0<t<1$ and $|z| \geq 2 r$,

$$
\left|\left(K_{2}\right)_{t}(x, z)\right| \leq \int_{|y|<t} \frac{C_{M}}{|z-y|^{n+M}} \phi_{t}(y) d y \leq \frac{C}{|z|^{n+M}},
$$

which implies, for $x \in B\left(x_{0}, 3 r\right)^{c}$,

$$
\begin{aligned}
\left(\widetilde{T_{2} a}\right)^{+}(x) & =\sup _{0<t<1}\left|\int_{B\left(x_{0}, r\right)}\left(K_{2}\right)_{t}(x, x-z) a(z) d z\right| \\
& \leq \frac{C}{\left|x-x_{0}\right|^{n+M}} \int_{B\left(x_{0}, r\right)}|a(z)| d z .
\end{aligned}
$$

Inequality (6) and the same argument as for (5) lead to

$$
\begin{aligned}
& \int_{B\left(x_{0}, 3 r\right)^{c}}\left(\widetilde{T_{2} a}\right)^{+}(x) w(x) d x \\
& \quad \leq\left(\int_{B\left(x_{0}, 3 r\right)^{c}} \frac{w(x) d x}{\left|x-x_{0}\right|^{n+M}}\right)\left(\int_{B\left(x_{0}, r\right)}|a(z)| d z\right) \leq C r^{-M} \leq C \quad \text { for } r \geq 1
\end{aligned}
$$

Thus, the proof is complete.
Acknowledgements. Research by the first and second authors supported by NSC of Taiwan under Grant \#NSC $97-2115-\mathrm{M}-008-005$ and Grant \#NSC 97-2115-M-008-021-MY3, respectively.

References

[Bu] H.-Q. Bui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45-62.
[GR] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[G] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
[HLL] Y. Han, M.-Y. Lee, and C.-C. Lin, Atomic decomposition and boundedness of operators on weighted Hardy spaces, Canad. Math. Bull., to appear.
[M] N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans. Amer. Math. Soc. 269 (1982), 91-109.
[S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.

Ming-Yi Lee, Chin-Cheng Lin, Ying-Chieh Lin
Department of Mathematics
National Central University
Chung-Li, Taiwan 320, Republic of China
E-mail: mylee@math.ncu.edu.tw
clin@math.ncu.edu.tw
linyj@math.ncu.edu.tw

[^0]: 2010 Mathematics Subject Classification: 42B20, 47G30.
 Key words and phrases: pseudo-differential operators, weighted local Hardy spaces.

