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The continuity of pseudo-differential operators
on weighted local Hardy spaces

by

Ming-Yi Lee, Chin-Cheng Lin and Ying-Chieh Lin (Chung-Li)

Abstract. We first show that a linear operator which is bounded on L2
w with w ∈ A1

can be extended to a bounded operator on the weighted local Hardy space h1
w if and only

if this operator is uniformly bounded on all h1
w-atoms. As an application, we show that

every pseudo-differential operator of order zero has a bounded extension to h1
w.

1. Introduction. Pseudo-differential operators are generalizations of
differential operators and singular integrals. They are formally defined by

(1) Tf(x) =
�

Rn

σ(x, ξ)f̂(ξ)e2πix·ξ dξ,

where “ ˆ ” denotes the Fourier transform, and σ, the symbol of T , is a
complex-valued function defined on Rn×Rn. Symbols are classified according
to their size and the size of their derivatives. The standard symbol class of
order m ∈ Z, denoted by Sm, consists of the C∞(Rn×Rn) functions σ that
satisfy the differential inequalities

|∂βx∂αξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α|

for all multi-indices α and β. If σ ∈ Sm, then the operator defined by (1) is
called a pseudo-differential operator of order m.

Pseudo-differential operators given by (1) can be rewritten as

Tf(x) =
�

Rn

K(x, x− y)f(y) dy,

where
K(x, z) =

�

Rn

σ(x, ξ)e2πiz·ξ dξ.

In other words, for fixed x,K(x, ·) is the inverse Fourier transform of σ(x, ·).
If σ ∈ S0, then one can show that |∂βx∂αyK(x, y)| ≤ Aα,β|y|−n−|α|−|β| for all
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α, β, and y 6= 0. By the singular integral theory, T can be extended to a
bounded operator on Lp(Rn), 1 < p <∞ (cf. [S, p. 250]). For the weighted
case, Miller [M] showed that

Theorem A. Suppose 1 < p < ∞. Every pseudo-differential operator
of order 0 has a bounded extension to Lpw(Rn) if and only if w ∈ Ap.

In 1979, Goldberg [G] introduced the local Hardy spaces h1 and showed
that every pseudo-differential operator of order 0 is bounded on h1. In
this article, we study the boundedness of pseudo-differential operators act-
ing on weighted local Hardy spaces h1

w, where w ∈ A1. To obtain the
h1
w-boundedness of a linear operator, we reduce the problem to the L1

w-
boundedness of this linear operator acting on all h1

w-atoms.

Theorem 1. Let w ∈ A1. For a linear operator P bounded on L2
w(Rn),

P can be extended to a bounded operator on h1
w(Rn) if and only if there

exists an absolute constant C such that

‖Pa‖h1
w
≤ C for any (h1

w, 2)-atom a.

We apply Theorem 1 to extend Goldberg’s result to the weighted case
as follows.

Theorem 2. Let w ∈ A1. Every pseudo-differential operator of order 0
has a bounded extension to h1

w(Rn).

Throughout the article, we will use C to denote a positive constant
which is independent of main parameters and not necessarily the same at
each occurrence. By writing A ≈ B, we mean that there exists a constant
C > 1 such that 1/C ≤ A/B ≤ C.

2. Weighted local Hardy spaces. We recall the definition and proper-
ties of Ap weights. For 1 < p <∞, a locally integrable nonnegative function
w on Rn is said to belong to Ap if there exists C > 0 such that(

1
|B|

�

B

w(x) dx
)(

1
|B|

�

B

w(x)−1/(p−1) dx

)p−1

≤ C ∀ ball B ⊂ Rn.

For the case p = 1, we have w ∈ A1 if
1
|B|

�

B

w(x) dx ≤ C ess inf
x∈B

w(x) ∀ ball B ⊂ Rn.

For E ⊂ Rn, we use w(E) to denote the weighted measure
	
E w(x) dx, which

satisfies the doubling condition. More specifically, we have

Lemma B ([GR, p. 396]). Let w ∈ Ap, p ≥ 1. Then, for any ball B(x, r)
and λ > 1,

w(B(x, λr)) ≤ Cλnpw(B(x, r)),
where C does not depend on B(x, r) or on λ.
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Lemma C ([GR, p. 412]). Let w ∈ Ap, p > 1. Then, for all r > 0 and
x0 ∈ Rn, there exists a constant C > 0 independent of r such that

�

|x−x0|≥r

w(x)
|x− x0|np

dx ≤ Cr−np
�

|x−x0|≤r

w(x) dx.

The theory of local Hardy spaces was established by Goldberg [G] and
extended to the weighted case by Bui [Bu]. We now recall the theory of
weighted local Hardy spaces. Letϕ andψ be functions in S(Rn), the Schwartz
space of rapidly decreasing smooth functions, satisfying

	
Rn ϕ(x) dx = 1 and	

Rn ψ(x) dx= 0. Also, let Γ̃ (x) denote the cone {(y, t) : |x−y|< t, 0< t< 1}.
For t > 0 and x ∈ Rn, set φt(x) = t−nφ(x/t). For f ∈ S ′(Rn), we define the
local versions of the radial maximal function f̃+, the nontangential maximal
function f̃∗, and the Lusin integral function S̃(f) by

f̃+(x) = sup
0<t<1

|ϕt ∗ f(x)|, f̃∗(x) = sup
(y,t)∈ eΓ (x)

|ϕt ∗ f(y)|,

S̃(f)(x) =
( �

eΓ (x)

|ψt ∗ f(y)|2 dy dt
tn+1

)1/2

.

Let w ∈ A1. The weighted local Hardy space h1
w(Rn) consists of those

tempered distributions f ∈ S ′(Rn) for which f̃+ ∈ L1
w(Rn) with ‖f‖h1

w
=

‖f̃+‖L1
w

. The space h1
w(Rn) can also be characterized by f̃∗ ∈ L1

w(Rn) or
S̃(f) ∈ L1

w(Rn), and ‖f̃∗‖L1
w
≈ ‖f̃+‖L1

w
≈ ‖S̃(f)‖L1

w
(cf. [Bu]).

As for weighted Hardy spaces, we also have the atomic decomposition
characterization of h1

w(Rn).

Definition. A function a is called an (h1
w, q)-atom centered at x0, 1 <

q ≤ ∞, if

(i) the support of a is contained in a ball B(x0, r),
(ii) ‖a‖Lq

w
≤ w(B(x0, r))1/q−1,

(iii) if r < 1, then
	
Rn a(x) dx = 0.

The condition (ii) is interpreted as ‖a‖∞ ≤ w
(
B(x0, r)

)−1 if q =∞.

Theorem D ([Bu]). Let 1 < q ≤ ∞ and w ∈ A1. A function f is in
h1
w(Rn) if and only if there exists a sequence {aj} of (h1

w, q)-atoms and a
sequence {λj} of scalars with

∑
|λj | < ∞ such that f =

∑
λjaj in L1

w.
Furthermore,

‖f‖h1
w
≈ inf

{∑
|λj | :

∑
λjaj is a decomposition of f into (h1

w, q)-atoms
}
.

To prove Theorem 1, we need to construct an atomic decomposition of
elements in h1

w ∩ L2
w, which converges in L2

w.



72 M.-Y. Lee et al.

Theorem 3. Let w ∈ A1. For f ∈ h1
w(Rn) ∩ L2

w(Rn), there exist a
sequence {aj} of (h1

w, 2)-atoms and a sequence {λj} of scalars satisfying∑
|λj | ≤ C‖f‖h1

w
such that f =

∑
λjaj in L2

w(Rn).

The proof of Theorem 3 appeals to the following two lemmas about
the properties of H1

w(Rn). The space H1
w(Rn) consists of all f ’s satisfying

S(f) ∈ L1
w(Rn) with ‖f‖H1

w
= ‖S(f)‖L1

w
, where

S(f)(x) =
(∞�

0

�

|x−y|<t

|ψt ∗ f(y)|2 dy dt
tn+1

)1/2

.

We can characterize elements of H1
w(Rn) in terms of atoms. A real-valued

function a ∈ L2
w(Rn), w ∈ A2, is called a w-(1, 2, n)-atom if (i) a is supported

on a ball B, (ii) ‖a‖L2
w
≤ w(B)−1/2, and (iii)

	
Rn a(x)xα dx = 0 for every

multi-index α with |α| ≤ n.

Lemma E ([Bu]). Let w ∈ A1 and f ∈ h1
w(Rn). If Φ is a function in

S(Rn) such that
	
Φ(x) dx = 1 and

	
xαΦ(x) dx = 0 for all α 6= 0, then

f − Φ ∗ f ∈ H1
w(Rn) and ‖f − Φ ∗ f‖H1

w
≤ C‖f‖h1

w
.

Lemma F ([HLL]). Let w ∈ A2. For f ∈ H1
w(Rn)∩L2

w(Rn), there exist a
sequence {ai} of w-(1, 2, n)-atoms and a sequence {λi} of scalars satisfying∑
|λi| ≤ C‖f‖H1

w
such that f =

∑
λiai in L2

w(Rn).

Proof of Theorem 3. Let w ∈ A1, f ∈ h1
w(Rn) ∩ L2

w(Rn), and Φ satisfy
the assumption of Lemma E. Then f − Φ ∗ f ∈ H1

w. Since f ∈ L2
w implies

Φ ∗ f ∈ L2
w, it follows from Lemma F that f − Φ ∗ f =

∑
ηjbj in L2

w, where
bj ’s are w-(1, 2, n)-atoms and

∑
|ηj | ≤ C‖f−Φ∗f‖H1

w
≤ C‖f‖h1

w
. It is clear

that a w-(1, 2, n)-atom is also an (h1
w, 2)-atom.

Let {Qj} be the family of cubes whose vertices are the lattice points
n−1/2Zn. Then

(i) diam(Qj) = 1 for all j;
(ii)

⋃
j Qj = Rn;

(iii) the cubes Qj ’s are nonoverlapping.

Let xj and χQj
denote the center and the characteristic function of Qj ,

respectively. Write

(Φ ∗ f)χQj
= λjaj , where λj = w(B(xj , 1))‖(Φ ∗ f)χQj

‖∞.

Then aj ’s are (h1
w, 2)-atoms and Φ ∗ f =

∑
λjaj almost everywhere. Owing

to Lemma B and diam(Qj) = 1,
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j

|λj | =
∑
j

w(B(xj , 1))‖(Φ ∗ f)χQj
‖∞

≤ C
∑
j

w(Qj)‖(Φ ∗ f)χQj
‖∞ = C

∑
j

�

Qj

sup
y∈Qj

|Φ ∗ f(y)|w(x) dx

≤ C
�

Rn

sup
(y,t)∈ eΓ (x)

|Φt ∗ f(y)|w(x) dx ≤ C‖f‖h1
w
.

Since Φ ∗ f ∈ L2
w, the series

∑
λjaj converges to Φ ∗ f in L2

w.

Proof of Theorem 1. If P is bounded on h1
w, then Theorem D gives

‖Pa‖h1
w
≤ C‖a‖h1

w
≤ C for any (h1

w, 2)-atom a.

Conversely, for w ∈ A1 and f ∈ h1
w ∩L2

w, we have an atomic decomposi-
tion f =

∑
λjaj in L2

w and
∑
|λj | ≤ C‖f‖h1

w
by Theorem 3. Let ψ ∈ S(Rn)

with
	
Rn ψ(x) dx = 0. By the L2

w-boundedness of P ,

ψt ∗ Pf =
∞∑
j=1

λjψt ∗ Paj in L2
w,

which implies that there exists a subsequence (we still use the same indices)
such that

ψt ∗ Pf =
∞∑
j=1

λjψt ∗ Paj almost everywhere.

Fatou’s lemma and Minkowski’s inequality yield

S̃(Pf)(x) =
( �

eΓ (x)

|ψt ∗ Pf(y)|2 dy dt
tn+1

)1/2

≤ lim inf
M→∞

( �

eΓ (x)

∣∣∣ M∑
j=1

λjψt ∗ Paj(y)
∣∣∣2 dy dt
tn+1

)1/2

≤
∞∑
j=1

|λj |
( �

eΓ (x)

|ψt ∗ Paj(y)|2 dy dt
tn+1

)1/2

=
∞∑
j=1

|λj |S̃(Paj)(x).

Therefore,
�

Rn

S̃(Pf)(x)w(x) dx ≤
∞∑
j=1

|λj |
�

Rn

S̃(Paj)(x)w(x) dx

≤ C
∞∑
j=1

|λj | · ‖Paj‖h1
w
≤ C‖f‖h1

w
,

which gives the h1
w-boundedness of P on h1

w ∩ L2
w. Theorem D implies that

h1
w∩L2

w is dense in h1
w, so P can be extended to a bounded operator on h1

w.
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3. Proof of Theorem 2. Let φ ∈ S(Rn) be a fixed nonnegative radial
decreasing function supported in the unit ball B(0, 1) with

	
Rn φ(x) dx = 1.

For t > 0, define Kt by

Kt(x, z) =
�

Rn

K(x− y, z − y)φt(y) dy.

Goldberg [G, Lemma 6] obtained an estimate of Kt as follows, which will
be used to prove Theorem 2.

Lemma G. Suppose σ ∈ S0. Then, for all α, β ∈ (N ∪ {0})n,

sup
x∈Rn

∣∣∣∣( ∂

∂x

)α( ∂

∂z

)β
Kt(x, z)

∣∣∣∣ ≤ Cα,β

|z|n+|β| for z 6= 0,

where Cα,β is independent of t if 0 < t < 1.

Proof of Theorem 2. Let T be a pseudo-differential operator given by (1).
By Theorem A, T is bounded on L2

w. We will prove that there exists a con-
stant C > 0 such that ‖Ta‖h1

w
≤ C for any (h1

w, 2)-atom a. Then Theorem 2
follows from Theorem 1.

Let a be an (h1
w, 2)-atom centered at x0 with supp(a) ⊂ B(x0, r). De-

note by M the Hardy–Littlewood maximal operator, we have (T̃ a)+(x) ≤
M(Ta)(x). By Theorem A and Lemma B,

�

B(x0,3r)

(T̃ a)+(x)w(x) dx ≤
�

B(x0,3r)

M(Ta)(x)w(x) dx(2)

≤ w(B(x0, 3r))1/2‖M(Ta)‖L2
w

≤ Cw(B(x0, r))1/2‖Ta‖L2
w

≤ Cw(B(x0, r))1/2‖a‖L2
w
≤ C.

To estimate
	
B(x0,3r)c(T̃ a)+(x)w(x) dx, we consider the case r < 1 first.

For x ∈ B(x0, 3r)c, we use the fact that

φt ∗ (Ta)(x) =
�

B(x0,r)

Kt(x, x− z)a(z) dz.

Applying Taylor’s theorem to the function Kt(x, x− ·) near x0, we have

Kt(x, x− z) = Kt(x, x− x0) +Rx0,t(x, z),

where

Rx0,t(x, z) =
∑
|α|=1

[(
∂

∂z

)α
Kt(x, z)

]
z=x−ξ

· (z − x0)α

and ξ ∈ Rn is a point lying on the line segment from x0 to z. Note that
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|x− ξ| ≈ |x− x0|. It follows from Lemma G that

(3) |Rx0,t(x, z)| ≤ C
|z − x0|
|x− x0|n+1

for z ∈ B(x0, r) and 0 < t < 1.

Using (3) and the moment condition of a, we get

(4)
�

B(x0,3r)c

(T̃ a)+(x)w(x) dx

≤
�

B(x0,3r)c

sup
0<t<1

{ �

B(x0,r)

|Kt(x, x− z)−Kt(x, x− x0)| |a(z)| dz
}
w(x) dx

≤ C
�

B(x0,3r)c

{ �

B(x0,r)

|z − x0|
|x− x0|n+1

|a(z)| dz
}
w(x) dx

≤ Cr
( �

B(x0,3r)c

w(x) dx
|x− x0|n+1

)( �

B(x0,r)

|a(z)| dz
)
.

By Lemmas B and C,

(5)
�

B(x0,3r)c

w(x) dx
|x− x0|n+1

≤ Cr−(n+1)w(B(x0, r)).

Since w ∈ A2, Hölder’s inequality gives
�

B(x0,r)

|a(z)| dz ≤
( �

B(x0,r)

|a(z)|2w(z) dz
)1/2( �

B(x0,r)

w(z)−1 dz
)1/2

(6)

≤ Crnw(B(x0, r))−1.

Inequalities (4)–(6) yield
�

B(x0,3r)c

(T̃ a)+(x)w(x) dx ≤ C for r < 1.

For the case r ≥ 1, we split T = T1 + T2 by decomposing its kernel

K(x, z) = K1(x, z) +K2(x, z) = η(z)K(x, z) + (1− η(z))K(x, z),

where η ∈ C∞(Rn) is a radial function satisfying 0 ≤ η(z) ≤ 1, η(z) = 1 for
|z| < 2r, and η(z) = 0 for |z| ≥ 4r. If we consider the corresponding symbols
σ1 = η̌ ∗ σ and σ2 = (1 − η)̌ ∗ σ, where “ ˇ ” denotes the inverse Fourier
transform, then T1 and T2 are pseudo-differential operators of order 0. We
note that supp(T1a) ⊂ B(x0, 5r). Since φ is supported in B(0, 1), by an
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argument similar to (2),

‖T1a‖h1
w

=
�

B(x0,6r)

(T̃1a)+(x)w(x) dx ≤ C.

For the estimate of
	
B(x0,3r)c(T̃2a)+(x)w(x) dx, σ2 ∈ S0 gives (cf. [S, p. 241])

|K2(x, z)| ≤ CM |z|−(n+M) for z 6= 0 and M > 0.

Thus, for 0 < t < 1 and |z| ≥ 2r,

|(K2)t(x, z)| ≤
�

|y|<t

CM
|z − y|n+M

φt(y) dy ≤ C

|z|n+M
,

which implies, for x ∈ B(x0, 3r)c,

(T̃2a)+(x) = sup
0<t<1

∣∣∣∣ �

B(x0,r)

(K2)t(x, x− z) a(z) dz
∣∣∣∣

≤ C

|x− x0|n+M

�

B(x0,r)

|a(z)| dz.

Inequality (6) and the same argument as for (5) lead to
�

B(x0,3r)c

(T̃2a)+(x)w(x) dx

≤
( �

B(x0,3r)c

w(x) dx
|x− x0|n+M

)( �

B(x0,r)

|a(z)| dz
)
≤ Cr−M ≤ C for r ≥ 1.

Thus, the proof is complete.
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