STUDIA MATHEMATICA 198 (1) (2010)

The continuity of pseudo-differential operators on weighted local Hardy spaces

by

MING-YI LEE, CHIN-CHENG LIN and YING-CHIEH LIN (Chung-Li)

Abstract. We first show that a linear operator which is bounded on L^2_w with $w \in A_1$ can be extended to a bounded operator on the weighted local Hardy space h^1_w if and only if this operator is uniformly bounded on all h^1_w -atoms. As an application, we show that every pseudo-differential operator of order zero has a bounded extension to h^1_w .

1. Introduction. Pseudo-differential operators are generalizations of differential operators and singular integrals. They are formally defined by

(1)
$$Tf(x) = \int_{\mathbb{R}^n} \sigma(x,\xi) \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi,$$

where " $\hat{}$ " denotes the Fourier transform, and σ , the symbol of T, is a complex-valued function defined on $\mathbb{R}^n \times \mathbb{R}^n$. Symbols are classified according to their size and the size of their derivatives. The standard symbol class of order $m \in \mathbb{Z}$, denoted by S^m , consists of the $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ functions σ that satisfy the differential inequalities

$$|\partial_x^\beta \partial_\xi^\alpha \sigma(x,\xi)| \le C_{\alpha,\beta} (1+|\xi|)^{m-|\alpha|}$$

for all multi-indices α and β . If $\sigma \in S^m$, then the operator defined by (1) is called a *pseudo-differential operator of order m*.

Pseudo-differential operators given by (1) can be rewritten as

$$Tf(x) = \int_{\mathbb{R}^n} K(x, x - y) f(y) \, dy,$$

where

$$K(x,z) = \int_{\mathbb{R}^n} \sigma(x,\xi) e^{2\pi i z \cdot \xi} d\xi$$

In other words, for fixed $x, K(x, \cdot)$ is the inverse Fourier transform of $\sigma(x, \cdot)$. If $\sigma \in S^0$, then one can show that $|\partial_x^\beta \partial_y^\alpha K(x, y)| \leq A_{\alpha,\beta} |y|^{-n-|\alpha|-|\beta|}$ for all

2010 Mathematics Subject Classification: 42B20, 47G30.

Key words and phrases: pseudo-differential operators, weighted local Hardy spaces.

DOI: 10.4064/sm198-1-4

 α, β , and $y \neq 0$. By the singular integral theory, T can be extended to a bounded operator on $L^p(\mathbb{R}^n)$, 1 (cf. [S, p. 250]). For the weighted case, Miller [M] showed that

THEOREM A. Suppose 1 . Every pseudo-differential operator $of order 0 has a bounded extension to <math>L^p_w(\mathbb{R}^n)$ if and only if $w \in A_p$.

In 1979, Goldberg [G] introduced the local Hardy spaces h^1 and showed that every pseudo-differential operator of order 0 is bounded on h^1 . In this article, we study the boundedness of pseudo-differential operators acting on weighted local Hardy spaces h_w^1 , where $w \in A_1$. To obtain the h_w^1 -boundedness of a linear operator, we reduce the problem to the L_w^1 boundedness of this linear operator acting on all h_w^1 -atoms.

THEOREM 1. Let $w \in A_1$. For a linear operator P bounded on $L^2_w(\mathbb{R}^n)$, P can be extended to a bounded operator on $h^1_w(\mathbb{R}^n)$ if and only if there exists an absolute constant C such that

 $||Pa||_{h^1_w} \leq C$ for any $(h^1_w, 2)$ -atom a.

We apply Theorem 1 to extend Goldberg's result to the weighted case as follows.

THEOREM 2. Let $w \in A_1$. Every pseudo-differential operator of order 0 has a bounded extension to $h^1_w(\mathbb{R}^n)$.

Throughout the article, we will use C to denote a positive constant which is independent of main parameters and not necessarily the same at each occurrence. By writing $A \approx B$, we mean that there exists a constant C > 1 such that $1/C \leq A/B \leq C$.

2. Weighted local Hardy spaces. We recall the definition and properties of A_p weights. For 1 , a locally integrable nonnegative function<math>w on \mathbb{R}^n is said to belong to A_p if there exists C > 0 such that

$$\left(\frac{1}{|B|} \int_{B} w(x) \, dx\right) \left(\frac{1}{|B|} \int_{B} w(x)^{-1/(p-1)} \, dx\right)^{p-1} \le C \quad \forall \text{ ball } B \subset \mathbb{R}^n$$

For the case p = 1, we have $w \in A_1$ if

$$\frac{1}{|B|} \int_{B} w(x) \, dx \le C \operatorname{ess\,inf}_{x \in B} w(x) \quad \forall \text{ ball } B \subset \mathbb{R}^{n}.$$

For $E \subset \mathbb{R}^n$, we use w(E) to denote the weighted measure $\int_E w(x) dx$, which satisfies the doubling condition. More specifically, we have

LEMMA B ([GR, p. 396]). Let $w \in A_p$, $p \ge 1$. Then, for any ball B(x, r)and $\lambda > 1$,

$$w(B(x,\lambda r)) \le C\lambda^{np}w(B(x,r)),$$

where C does not depend on B(x,r) or on λ .

LEMMA C ([GR, p. 412]). Let $w \in A_p$, p > 1. Then, for all r > 0 and $x_0 \in \mathbb{R}^n$, there exists a constant C > 0 independent of r such that

$$\int_{|x-x_0| \ge r} \frac{w(x)}{|x-x_0|^{np}} \, dx \le Cr^{-np} \int_{|x-x_0| \le r} w(x) \, dx.$$

The theory of local Hardy spaces was established by Goldberg [G] and extended to the weighted case by Bui [Bu]. We now recall the theory of weighted local Hardy spaces. Let φ and ψ be functions in $\mathcal{S}(\mathbb{R}^n)$, the Schwartz space of rapidly decreasing smooth functions, satisfying $\int_{\mathbb{R}^n} \varphi(x) dx = 1$ and $\int_{\mathbb{R}^n} \psi(x) dx = 0$. Also, let $\widetilde{\Gamma}(x)$ denote the cone $\{(y,t) : |x-y| < t, 0 < t < 1\}$. For t > 0 and $x \in \mathbb{R}^n$, set $\phi_t(x) = t^{-n}\phi(x/t)$. For $f \in \mathcal{S}'(\mathbb{R}^n)$, we define the local versions of the radial maximal function \widetilde{f}^+ , the nontangential maximal function \widetilde{f}^* , and the Lusin integral function $\widetilde{S}(f)$ by

$$\widetilde{f}^+(x) = \sup_{0 < t < 1} |\varphi_t * f(x)|, \quad \widetilde{f}^*(x) = \sup_{(y,t) \in \widetilde{\Gamma}(x)} |\varphi_t * f(y)|,$$
$$\widetilde{S}(f)(x) = \left(\int_{\widetilde{\Gamma}(x)} |\psi_t * f(y)|^2 \frac{dy \, dt}{t^{n+1}}\right)^{1/2}.$$

Let $w \in A_1$. The weighted local Hardy space $h_w^1(\mathbb{R}^n)$ consists of those tempered distributions $f \in \mathcal{S}'(\mathbb{R}^n)$ for which $\tilde{f}^+ \in L_w^1(\mathbb{R}^n)$ with $\|f\|_{h_w^1} =$ $\|\tilde{f}^+\|_{L_w^1}$. The space $h_w^1(\mathbb{R}^n)$ can also be characterized by $\tilde{f}^* \in L_w^1(\mathbb{R}^n)$ or $\tilde{S}(f) \in L_w^1(\mathbb{R}^n)$, and $\|\tilde{f}^*\|_{L_w^1} \approx \|\tilde{f}^+\|_{L_w^1} \approx \|\tilde{S}(f)\|_{L_w^1}$ (cf. [Bu]).

As for weighted Hardy spaces, we also have the atomic decomposition characterization of $h^1_w(\mathbb{R}^n)$.

DEFINITION. A function a is called an (h_w^1, q) -atom centered at $x_0, 1 < q \leq \infty$, if

- (i) the support of a is contained in a ball $B(x_0, r)$,
- (ii) $||a||_{L^q_w} \le w(B(x_0, r))^{1/q-1}$,
- (iii) if r < 1, then $\int_{\mathbb{R}^n} a(x) dx = 0$.

The condition (ii) is interpreted as $||a||_{\infty} \leq w (B(x_0, r))^{-1}$ if $q = \infty$.

THEOREM D ([Bu]). Let $1 < q \leq \infty$ and $w \in A_1$. A function f is in $h^1_w(\mathbb{R}^n)$ if and only if there exists a sequence $\{a_j\}$ of (h^1_w, q) -atoms and a sequence $\{\lambda_j\}$ of scalars with $\sum |\lambda_j| < \infty$ such that $f = \sum \lambda_j a_j$ in L^1_w . Furthermore,

$$\|f\|_{h^1_w} \approx \inf \Big\{ \sum |\lambda_j| : \sum \lambda_j a_j \text{ is a decomposition of } f \text{ into } (h^1_w, q) \text{-atoms} \Big\}.$$

To prove Theorem 1, we need to construct an atomic decomposition of elements in $h_w^1 \cap L_w^2$, which converges in L_w^2 .

THEOREM 3. Let $w \in A_1$. For $f \in h^1_w(\mathbb{R}^n) \cap L^2_w(\mathbb{R}^n)$, there exist a sequence $\{a_j\}$ of $(h^1_w, 2)$ -atoms and a sequence $\{\lambda_j\}$ of scalars satisfying $\sum |\lambda_j| \leq C ||f||_{h^1_w}$ such that $f = \sum \lambda_j a_j$ in $L^2_w(\mathbb{R}^n)$.

The proof of Theorem 3 appeals to the following two lemmas about the properties of $H^1_w(\mathbb{R}^n)$. The space $H^1_w(\mathbb{R}^n)$ consists of all f's satisfying $S(f) \in L^1_w(\mathbb{R}^n)$ with $\|f\|_{H^1_w} = \|S(f)\|_{L^1_w}$, where

$$S(f)(x) = \left(\int_{0}^{\infty} \int_{|x-y| < t} |\psi_t * f(y)|^2 \frac{dy \, dt}{t^{n+1}}\right)^{1/2}.$$

We can characterize elements of $H^1_w(\mathbb{R}^n)$ in terms of atoms. A real-valued function $a \in L^2_w(\mathbb{R}^n)$, $w \in A_2$, is called a w-(1, 2, n)-atom if (i) a is supported on a ball B, (ii) $||a||_{L^2_w} \leq w(B)^{-1/2}$, and (iii) $\int_{\mathbb{R}^n} a(x)x^{\alpha} dx = 0$ for every multi-index α with $|\alpha| \leq n$.

LEMMA E ([Bu]). Let $w \in A_1$ and $f \in h^1_w(\mathbb{R}^n)$. If Φ is a function in $\mathcal{S}(\mathbb{R}^n)$ such that $\int \Phi(x) \, dx = 1$ and $\int x^{\alpha} \Phi(x) \, dx = 0$ for all $\alpha \neq 0$, then $f - \Phi * f \in H^1_w(\mathbb{R}^n)$ and $\|f - \Phi * f\|_{H^1_w} \leq C \|f\|_{h^1_w}$.

LEMMA F ([HLL]). Let $w \in A_2$. For $f \in H^1_w(\mathbb{R}^n) \cap L^2_w(\mathbb{R}^n)$, there exist a sequence $\{a_i\}$ of w-(1, 2, n)-atoms and a sequence $\{\lambda_i\}$ of scalars satisfying $\sum |\lambda_i| \leq C ||f||_{H^1_w}$ such that $f = \sum \lambda_i a_i$ in $L^2_w(\mathbb{R}^n)$.

Proof of Theorem 3. Let $w \in A_1$, $f \in h^1_w(\mathbb{R}^n) \cap L^2_w(\mathbb{R}^n)$, and Φ satisfy the assumption of Lemma E. Then $f - \Phi * f \in H^1_w$. Since $f \in L^2_w$ implies $\Phi * f \in L^2_w$, it follows from Lemma F that $f - \Phi * f = \sum \eta_j b_j$ in L^2_w , where b_j 's are w-(1, 2, n)-atoms and $\sum |\eta_j| \leq C ||f - \Phi * f||_{H^1_w} \leq C ||f||_{h^1_w}$. It is clear that a w-(1, 2, n)-atom is also an $(h^1_w, 2)$ -atom.

Let $\{Q_j\}$ be the family of cubes whose vertices are the lattice points $n^{-1/2}\mathbb{Z}^n$. Then

- (i) diam $(Q_j) = 1$ for all j;
- (ii) $\bigcup_{i} Q_{j} = \mathbb{R}^{n};$
- (iii) the cubes Q_i 's are nonoverlapping.

Let x_j and χ_{Q_j} denote the center and the characteristic function of Q_j , respectively. Write

$$(\varPhi * f)\chi_{\scriptscriptstyle Q_j} = \lambda_j a_j, \quad \text{where} \quad \lambda_j = w(B(x_j,1)) \|(\varPhi * f)\chi_{\scriptscriptstyle Q_j}\|_\infty.$$

Then a_j 's are $(h_w^1, 2)$ -atoms and $\Phi * f = \sum \lambda_j a_j$ almost everywhere. Owing to Lemma B and diam $(Q_j) = 1$,

$$\begin{split} \sum_{j} |\lambda_{j}| &= \sum_{j} w(B(x_{j},1)) \| (\varPhi * f) \chi_{Q_{j}} \|_{\infty} \\ &\leq C \sum_{j} w(Q_{j}) \| (\varPhi * f) \chi_{Q_{j}} \|_{\infty} = C \sum_{j} \int_{Q_{j}} \sup_{y \in Q_{j}} |\varPhi * f(y)| w(x) \, dx \\ &\leq C \int_{\mathbb{R}^{n}} \sup_{(y,t) \in \widetilde{\Gamma}(x)} |\varPhi_{t} * f(y)| w(x) \, dx \leq C \| f \|_{h^{1}_{w}}. \end{split}$$

Since $\Phi * f \in L^2_w$, the series $\sum \lambda_j a_j$ converges to $\Phi * f$ in L^2_w .

Proof of Theorem 1. If P is bounded on h_w^1 , then Theorem D gives

$$||Pa||_{h^1_w} \le C ||a||_{h^1_w} \le C$$
 for any $(h^1_w, 2)$ -atom a .

Conversely, for $w \in A_1$ and $f \in h_w^1 \cap L_w^2$, we have an atomic decomposition $f = \sum \lambda_j a_j$ in L_w^2 and $\sum |\lambda_j| \leq C ||f||_{h_w^1}$ by Theorem 3. Let $\psi \in \mathcal{S}(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \psi(x) \, dx = 0$. By the L_w^2 -boundedness of P,

$$\psi_t * Pf = \sum_{j=1}^{\infty} \lambda_j \psi_t * Pa_j \quad \text{in } L^2_w,$$

which implies that there exists a subsequence (we still use the same indices) such that

$$\psi_t * Pf = \sum_{j=1}^{\infty} \lambda_j \psi_t * Pa_j$$
 almost everywhere.

Fatou's lemma and Minkowski's inequality yield

$$\widetilde{S}(Pf)(x) = \left(\int_{\widetilde{\Gamma}(x)} |\psi_t * Pf(y)|^2 \frac{dy \, dt}{t^{n+1}}\right)^{1/2}$$

$$\leq \liminf_{M \to \infty} \left(\int_{\widetilde{\Gamma}(x)} \left|\sum_{j=1}^M \lambda_j \psi_t * Pa_j(y)\right|^2 \frac{dy \, dt}{t^{n+1}}\right)^{1/2}$$

$$\leq \sum_{j=1}^\infty |\lambda_j| \left(\int_{\widetilde{\Gamma}(x)} |\psi_t * Pa_j(y)|^2 \frac{dy \, dt}{t^{n+1}}\right)^{1/2} = \sum_{j=1}^\infty |\lambda_j| \widetilde{S}(Pa_j)(x).$$

Therefore,

$$\int_{\mathbb{R}^n} \widetilde{S}(Pf)(x)w(x) \, dx \leq \sum_{j=1}^\infty |\lambda_j| \int_{\mathbb{R}^n} \widetilde{S}(Pa_j)(x)w(x) \, dx$$
$$\leq C \sum_{j=1}^\infty |\lambda_j| \cdot \|Pa_j\|_{h^1_w} \leq C \|f\|_{h^1_w},$$

which gives the h_w^1 -boundedness of P on $h_w^1 \cap L_w^2$. Theorem D implies that $h_w^1 \cap L_w^2$ is dense in h_w^1 , so P can be extended to a bounded operator on h_w^1 .

3. Proof of Theorem 2. Let $\phi \in \mathcal{S}(\mathbb{R}^n)$ be a fixed nonnegative radial decreasing function supported in the unit ball B(0,1) with $\int_{\mathbb{R}^n} \phi(x) dx = 1$. For t > 0, define K_t by

$$K_t(x,z) = \int_{\mathbb{R}^n} K(x-y,z-y)\phi_t(y) \, dy.$$

Goldberg [G, Lemma 6] obtained an estimate of K_t as follows, which will be used to prove Theorem 2.

LEMMA G. Suppose $\sigma \in S^0$. Then, for all $\alpha, \beta \in (\mathbb{N} \cup \{0\})^n$,

$$\sup_{x \in \mathbb{R}^n} \left| \left(\frac{\partial}{\partial x} \right)^{\alpha} \left(\frac{\partial}{\partial z} \right)^{\beta} K_t(x, z) \right| \le \frac{C_{\alpha, \beta}}{|z|^{n+|\beta|}} \quad \text{for } z \neq 0,$$

where $C_{\alpha,\beta}$ is independent of t if 0 < t < 1.

Proof of Theorem 2. Let T be a pseudo-differential operator given by (1). By Theorem A, T is bounded on L^2_w . We will prove that there exists a constant C > 0 such that $||Ta||_{h^1_w} \leq C$ for any $(h^1_w, 2)$ -atom a. Then Theorem 2 follows from Theorem 1.

Let a be an $(h_w^1, 2)$ -atom centered at x_0 with $\operatorname{supp}(a) \subset B(x_0, r)$. Denote by M the Hardy–Littlewood maximal operator, we have $(\widetilde{T}a)^+(x) \leq M(Ta)(x)$. By Theorem A and Lemma B,

(2)
$$\int_{B(x_0,3r)} (\widetilde{Ta})^+(x)w(x) \, dx \leq \int_{B(x_0,3r)} M(Ta)(x)w(x) \, dx$$
$$\leq w(B(x_0,3r))^{1/2} \|M(Ta)\|_{L^2_w}$$
$$\leq Cw(B(x_0,r))^{1/2} \|Ta\|_{L^2_w}$$
$$\leq Cw(B(x_0,r))^{1/2} \|a\|_{L^2_w} \leq C.$$

To estimate $\int_{B(x_0,3r)^c} (\widetilde{Ta})^+(x)w(x) dx$, we consider the case r < 1 first. For $x \in B(x_0,3r)^c$, we use the fact that

$$\phi_t * (Ta)(x) = \int_{B(x_0,r)} K_t(x, x-z)a(z) \, dz.$$

Applying Taylor's theorem to the function $K_t(x, x - \cdot)$ near x_0 , we have

$$K_t(x, x - z) = K_t(x, x - x_0) + R_{x_0, t}(x, z),$$

where

$$R_{x_0,t}(x,z) = \sum_{|\alpha|=1} \left[\left(\frac{\partial}{\partial z} \right)^{\alpha} K_t(x,z) \right]_{z=x-\xi} \cdot (z-x_0)^{\alpha}$$

and $\xi \in \mathbb{R}^n$ is a point lying on the line segment from x_0 to z. Note that

 $|x-\xi|\approx |x-x_0|.$ It follows from Lemma G that

(3)
$$|R_{x_0,t}(x,z)| \le C \frac{|z-x_0|}{|x-x_0|^{n+1}}$$
 for $z \in B(x_0,r)$ and $0 < t < 1$.

Using (3) and the moment condition of a, we get

$$(4) \int_{B(x_{0},3r)^{c}} (\widetilde{Ta})^{+}(x)w(x) dx$$

$$\leq \int_{B(x_{0},3r)^{c}} \sup_{0 < t < 1} \Big\{ \int_{B(x_{0},r)} |K_{t}(x,x-z) - K_{t}(x,x-x_{0})| |a(z)| dz \Big\} w(x) dx$$

$$\leq C \int_{B(x_{0},3r)^{c}} \Big\{ \int_{B(x_{0},r)} \frac{|z-x_{0}|}{|x-x_{0}|^{n+1}} |a(z)| dz \Big\} w(x) dx$$

$$\leq Cr \Big(\int_{B(x_{0},3r)^{c}} \frac{w(x) dx}{|x-x_{0}|^{n+1}} \Big) \Big(\int_{B(x_{0},r)} |a(z)| dz \Big).$$

By Lemmas B and C,

(5)
$$\int_{B(x_0,3r)^c} \frac{w(x) \, dx}{|x - x_0|^{n+1}} \le Cr^{-(n+1)} w(B(x_0,r))$$

Since $w \in A_2$, Hölder's inequality gives

(6)
$$\int_{B(x_0,r)} |a(z)| dz \leq \left(\int_{B(x_0,r)} |a(z)|^2 w(z) dz\right)^{1/2} \left(\int_{B(x_0,r)} w(z)^{-1} dz\right)^{1/2} \leq Cr^n w(B(x_0,r))^{-1}.$$

Inequalities (4)-(6) yield

$$\int_{B(x_0,3r)^c} (\widetilde{Ta})^+(x)w(x)\,dx \le C \quad \text{ for } r < 1.$$

For the case $r \ge 1$, we split $T = T_1 + T_2$ by decomposing its kernel

$$K(x,z) = K_1(x,z) + K_2(x,z) = \eta(z)K(x,z) + (1 - \eta(z))K(x,z),$$

where $\eta \in C^{\infty}(\mathbb{R}^n)$ is a radial function satisfying $0 \leq \eta(z) \leq 1$, $\eta(z) = 1$ for |z| < 2r, and $\eta(z) = 0$ for $|z| \geq 4r$. If we consider the corresponding symbols $\sigma_1 = \check{\eta} * \sigma$ and $\sigma_2 = (1 - \eta)^* * \sigma$, where " $\check{}$ " denotes the inverse Fourier transform, then T_1 and T_2 are pseudo-differential operators of order 0. We note that $\operatorname{supp}(T_1a) \subset B(x_0, 5r)$. Since ϕ is supported in B(0, 1), by an

argument similar to (2),

$$||T_1a||_{h^1_w} = \int_{B(x_0,6r)} (\widetilde{T_1a})^+(x)w(x) \, dx \le C.$$

For the estimate of $\int_{B(x_0,3r)^c} (\widetilde{T_2a})^+(x)w(x) dx$, $\sigma_2 \in S^0$ gives (cf. [S, p. 241])

$$|K_2(x,z)| \le C_M |z|^{-(n+M)}$$
 for $z \ne 0$ and $M > 0$.

Thus, for 0 < t < 1 and $|z| \ge 2r$,

$$|(K_2)_t(x,z)| \le \int_{|y| < t} \frac{C_M}{|z-y|^{n+M}} \phi_t(y) \, dy \le \frac{C}{|z|^{n+M}},$$

which implies, for $x \in B(x_0, 3r)^c$,

$$\widetilde{(T_2a)}^+(x) = \sup_{0 < t < 1} \left| \int_{B(x_0, r)} (K_2)_t(x, x - z) \, a(z) \, dz \right|$$
$$\leq \frac{C}{|x - x_0|^{n+M}} \int_{B(x_0, r)} |a(z)| \, dz.$$

Inequality (6) and the same argument as for (5) lead to

$$\int_{B(x_0,3r)^c} (\widetilde{T_2a})^+(x)w(x) \, dx$$

$$\leq \left(\int_{B(x_0,3r)^c} \frac{w(x) \, dx}{|x-x_0|^{n+M}}\right) \left(\int_{B(x_0,r)} |a(z)| \, dz\right) \leq Cr^{-M} \leq C \quad \text{for } r \geq 1.$$

Thus, the proof is complete. \blacksquare

Acknowledgements. Research by the first and second authors supported by NSC of Taiwan under Grant #NSC 97-2115-M-008-005 and Grant #NSC 97-2115-M-008-021-MY3, respectively.

References

- [Bu] H.-Q. Bui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45–62.
- [GR] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- [G] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42.
- [HLL] Y. Han, M.-Y. Lee, and C.-C. Lin, Atomic decomposition and boundedness of operators on weighted Hardy spaces, Canad. Math. Bull., to appear.
- [M] N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans. Amer. Math. Soc. 269 (1982), 91–109.

[S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.

Ming-Yi Lee, Chin-Cheng Lin, Ying-Chieh Lin Department of Mathematics National Central University Chung-Li, Taiwan 320, Republic of China E-mail: mylee@math.ncu.edu.tw clin@math.ncu.edu.tw linyj@math.ncu.edu.tw

Received September 4, 2009

(6689)