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Abstract. Belinschi and Nica introduced a composition semigroup of maps on the set
of probability measures. Using this semigroup, they introduced a free divisibility indicator,
from which one can know quantitatively if a measure is freely infinitely divisible or not.

In the first half of the paper, we further investigate this indicator: we calculate how the
indicator changes with respect to free and Boolean powers; we prove that free and Boolean
1/2-stable laws have free divisibility indicators equal to infinity; we derive an upper bound
of the indicator in terms of Jacobi parameters. This upper bound is achieved only by free
Meixner distributions. We also prove Bożejko’s conjecture that the Boolean powers µ]t,
t ∈ [0, 1], of a probability measure µ are freely infinitely divisible if the measure µ is freely
infinitely divisible.

In the other half of the paper, we introduce an analogous composition semigroup for
multiplicative convolutions and define free divisibility indicators for these convolutions.
Moreover, we prove that a probability measure on the unit circle is freely infinitely divisible
relative to the free multiplicative convolution if and only if the indicator is not less than
one. We also prove how the multiplicative divisibility indicator changes under free and
Boolean powers and then we establish the multiplicative analogue of Bożejko’s conjecture.
We include an appendix, where the Cauchy distributions and point measures are shown
to be the only fixed points of the Boolean-to-free Bercovici–Pata bijection.

1. Introduction. The class of infinitely divisible distributions has been
a central theme in probability theory because they appear as the laws of
Lévy processes. The same is true for free probability, with Lévy processes
replaced by free Lévy processes [16]. Infinitely divisible distributions in free
probability also arise from the eigenvalue distributions of infinitely divisible
random matrices [10, 21]. Important distributions among them are Wigner’s
semicircle law and the free Poisson law that respectively appear in the eigen-
value distributions of Gaussian unitary ensembles and Wishart matrices. In
this paper we will develop the theory of free infinite divisibility.
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For probability measures µ, ν on R, let us denote by µ � ν their free
additive convolution. µ� ν is the distribution of X +Y , where X and Y are
self-adjoint free random variables with distributions µ and ν, respectively.
A probability measure µ is said to be freely infinitely divisible if for any
n ∈ N, there exists µn such that µ = µn � · · · � µn = µ�n

n , the n-fold free
convolution of µn. A striking property of free convolution is that for any
t ≥ 1 and any probability measure µ, the convolution power µ�t exists as a
probability measure. This is in contrast to probability theory, because the
usual convolution µ∗t is not necessarily defined even for t ≥ 1, unless µ is
∗-infinitely divisible; the reader is referred to page 2 of [32]. Hence, in free
probability, for fixed µ the half-line (0,∞) for time parameter is simply di-
vided into two connected components (intervals) according to whether µ�t

exists or not. The boundary of these distinct intervals is given by the quan-
tity φ̃(µ) := inf{t > 0 : µ�t exists as a probability measure}. A probability

measure µ is freely infinitely divisible if and only if φ̃(µ) = 0.

Another famous convolution arising from non-commutative random vari-
ables is the Boolean additive convolution µ]ν, which is defined as the prob-
ability distribution of X+Y for self-adjoint, Boolean independent X and Y
with distributions µ and ν, respectively. It is known that the power µ]t can
be defined for any probability measure µ and any t ≥ 0. Thus a difference
can be observed between classical, free and Boolean convolutions as regards
the existence of convolution powers.

Using the above properties of free and Boolean convolutions, Belinschi
and Nica [9] introduced a family of maps

Bt : µ 7→ (µ�(1+t))]
1

1+t , t ≥ 0,

which turns out to have the semigroup property Bt(Bs(µ)) = Bt+s(µ). By
looking at the image of the map Bt, the so-called free divisibility indicator
φ(µ) can be defined for a probability measure µ. Unexpectedly, this quantity

coincides with 1− φ̃(µ) if µ is not freely infinitely divisible.

The explicit calculation of this indicator is expected to be useful to un-
derstand free convolution and free infinite divisibility. In that direction, we
prove the relation

φ(µ]t) = φ(µ)/t for t > 0.

As a byproduct, we find a different characterization of the indicator in
terms of Boolean convolution powers:

φ(µ) = sup{t ≥ 0 : µ]t is freely infinitely divisible}.

This new characterization enables us to interpret the indicator quite natu-
rally in terms of Boolean convolutions.
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Another consequence of this relation is that µ]t is freely infinitely divis-
ible for 0 ≤ t ≤ 1 whenever µ is freely infinitely divisible. This has been
conjectured by Bożejko from many calculations [20].

Also, we give an upper bound of the indicator in terms of Jacobi param-
eters for any probability measure with a finite fourth moment. Moreover,
we show that only free Meixner distributions achieve that upper bound.

Delta and Cauchy distributions have free divisibility indicators equal to
infinity. This is because they are the fixed points of the semigroup Bt [9].
They have been the only known examples whose free divisibility indicators
are infinite. We will provide other ones: free stable laws and Boolean strictly
stable laws of index 1/2. However, these examples are not fixed points of the
semigroup. To get these results, we prove that the free divisibility indicator is
invariant under shifts and under Boolean convolution with a delta measure.
Moreover, we prove in the Appendix that the Cauchy distributions and delta
measures are the only fixed points of these maps.

Multiplicative free convolution � and Boolean convolution ×∪ and the
associated infinite divisibility, which we explain in more detail in Section 2,
can be defined on the positive real line and on the unit circle. So, concerning
multiplicative free infinite divisibility, a natural question is if a divisibility
indicator and a composition semigroup exist for these convolutions.

The main subject of the second part of this paper is the existence of a
counterpart of the semigroup of [9] for multiplicative convolutions. Remark-
ably, the same commutation relation used in the additive case is true for
multiplicative convolutions. In contrast to additive convolutions, some dif-
ficulties appear for multiplicative convolutions on the positive real line and
on the unit circle. On the unit circle, the problem is the non-uniqueness of
convolution powers: neither µ�t nor µ

×∪t can be defined uniquely [7, 23]. On

the positive real line, a difficulty comes from the fact that µ
×∪t cannot be de-

fined for large t [11]. We manage, however, to define composition semigroups
and free divisibility indicators for multiplicative convolutions, following the
additive case.

Moreover, we prove several results analogous to the additive case. We
define free divisibility indicators for these convolutions. For instance, a prob-
ability measure on the unit circle is freely infinitely divisible with respect to
multiplicative free convolution if and only if the indicator is not less than 1.
We also prove how the multiplicative divisibility indicator changes under
free and Boolean powers and we establish the multiplicative analogue of
Bożejko’s conjecture.

This paper is organized as follows. In Section 2 we discuss additive and
multiplicative convolutions, both free and Boolean. Section 3 is devoted to
the study of the additive free divisibility indicator. In Section 4 we develop
the multiplicative counterparts of composition semigroups. Combining the
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results of [9] and Section 4, we obtain simple commutation relations between
various pairs of convolutions: additive free and additive Boolean; multiplica-
tive free and multiplicative Boolean. In Section 5, we prove more commuta-
tion relations between additive convolutions and multiplicative convolutions.
These properties provide new examples of freely infinitely divisible distribu-
tions with respect to both multiplicative and additive free convolutions. In
the Appendix, the Cauchy distributions and point measures are shown to
be the only fixed points of the Boolean-to-free Bercovici–Pata bijection.

2. Preliminaries

2.1. Additive free convolution. Let P(R) denote the set of proba-
bility measures on R. The upper and lower half-planes are denoted by C+

and C− respectively. In this article, Gµ : C+ → C− denotes the Cauchy
transform

Gµ(z) :=
�

R

µ(dx)

z − x

of a probability measure µ, and Fµ : C+ → C+ denotes its reciprocal
1/Gµ(z). An additive free convolution was introduced by Voiculescu in [33]
for compactly supported measures and later extended to all probability mea-
sures in [14]. Let φµ(z) be the Voiculescu transform of µ defined by

φµ(z) = F−1µ (z)− z

for z in a suitable open subset of C+. The free convolution µ�ν of probability
measures µ and ν is characterized by φµ�ν(z) = φµ(z) + φν(z) for z in a
common domain where φµ(z) and φν(z) are defined. As mentioned in the
Introduction, a measure µ�t ∈ P(R), satisfying φµ�t(z) = tφµ(z), exists for
any t ≥ 1 and µ ∈ P(R).

Free infinite divisibility is characterized in terms of φµ [14].

Theorem 2.1. The following are equivalent for a probability measure
µ ∈ P(R):

(1) The measure µ is freely (�- for short) infinitely divisible.
(2) The Voiculescu transform φµ extends analytically to C+ with values

in C− ∪ R.
(3) For each 0 < t <∞, there exists a probability measure µ�t satisfying

φµ�t(z) = tφµ(z).
(4) The Lévy–Khintchine representation exists:

φµ(z) = γµ +
�

R

1 + xz

z − x
τµ(dx),

where γµ ∈ R and τµ is a non-negative finite Borel measure.
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An infinitely divisible distribution can also be characterized as a weak
limit of infinitesimal triangular arrays [22].

2.2. Multiplicative free convolutions. Let R+, D and T denote the
positive real line [0,∞), the unit disc {z ∈ C : |z| < 1} and the unit circle of
the complex plane, respectively. Moreover, let P(R+) and P(T) denote the
respective sets of probability measures. For probability measures µ, ν on T
and R+, multiplicative free convolutions µ � ν on T and R+ respectively
were introduced in [34] for compactly supported probability measures. The
measure µ�ν on T is the distribution of UV , where U and V are unitary free
random variables with distributions µ and ν, respectively. Similarly, µ � ν
on R+ is defined as the distribution of X1/2Y X1/2, where X and Y are
positive free random variables with distributions µ and ν, respectively. The
multiplicative convolution of probability measures on R+ with non-compact
supports was considered in [14].

A probability measure µ on T (resp., R+) is said to be �-infinitely di-
visible if for any n ∈ N, there is µn on T (resp., R+) such that µ = µ�n

n =
µn � · · · � µn.

To investigate multiplicative convolutions, an important transform is

ηµ(z) =
ψµ(z)

1 + ψµ(z)

for µ ∈ P(R+) or P(T), where ψµ(z) is the moment generating function
defined by

	
supp µ

tz
1−tz µ(dt). Note that for µ ∈ P(R+), ηµ = 0 if and only if

µ = δ0, and for µ ∈ P(T), ηµ = 0 if and only if µ = ω, the normalized Haar
measure on T. The transform ηµ is characterized as follows [7].

Proposition 2.2.

(1) Let η : C \ R+ → C be an analytic map satisfying η(z) = η(z) and
η 6= 0. Then the following properties are equivalent:

(1a) η = ηµ for some µ ∈ P(R+), µ 6= δ0.
(1b) η(−0) = 0 and arg η(z) ∈ [arg z, π) for any z ∈ C+.

(2) Let η : D→ C be an analytic map. Then the following properties are
equivalent:

(2a) η = ηµ for some µ ∈ P(T).
(2b) |η(z)| ≤ |z| for z ∈ D.

If µ ∈ P(R+) \ {δ0}, the function ηµ is injective in (−∞, 0), so that one
can define η−1µ (z) and

Σµ(z) := η−1µ (z)/z

in a suitable open set of C, which actually contains an interval of the form
(−α, 0), α > 0. The multiplicative free convolution � is characterized by the
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multiplication of Σ:

(2.1) Σµ�ν(z) = Σµ(z)Σν(z)

for z in an interval (−β, 0), provided µ 6= δ0 6= ν. A measure µ ∈ P(R+) is
�-infinitely divisible if and only if Σµ can be written as [14]

(2.2) Σµ(z) = exp

(
−aµz + bµ +

�

R+

1 + xz

z − x
τµ(dx)

)
,

where aµ ≥ 0, bµ ∈ R and τµ is a non-negative finite measure on R+.
For a measure µ on T with m1(µ) :=

	
T ζ µ(dζ) = η′µ(0) 6= 0, the inverse

η−1µ (z) exists in a neighborhood of 0. The multiplicative convolution � is
characterized by the same relation (2.1), but now the domain for z is a
neighborhood of 0. Now a measure µ ∈ P(T) is �-infinitely divisible if and
only if Σµ can be written as [13]

(2.3) Σµ(z) = γµ exp

(�
T

1 + ζz

1− ζz
τµ(dζ)

)
for z ∈ D, where γµ ∈ T and τµ is a non-negative finite measure.

If µ ∈ P(R+), the convolution power µ�t ∈ P(R+), satisfying Σµ�t(z) =

(Σµ(z))t, is well defined for any µ and any t ≥ 1. However this is not true
for µ ∈ P(T). With the additional assumptions that ηµ does not vanish in
D and m1(µ) = η′µ(0) 6= 0, µ�t ∈ P(T) exists for any µ and any t ≥ 1. There
is however another problem which will be explained in Section 4.

�-infinite divisibility is equivalent to the existence of a weakly continuous
convolution semigroup µ�t for t ≥ 0 with µ�0 = δ1. Another characterization
of infinitely divisible distributions is found in [15] in terms of infinitesimal
triangular arrays.

2.3. Additive and multiplicative Boolean convolutions. Additive
and multiplicative Boolean convolutions on R and T were introduced in [31]
and [23] respectively. Let Kµ(z) be the energy function [31] defined by

Kµ(z) = z − Fµ(z), z ∈ C+,

for µ ∈ P(R). The Boolean convolution µ ] ν is characterized by

Kµ]ν(z) = Kµ(z) +Kν(z).

For any t > 0 and any probability measure µ there exists a probability mea-
sure µ]t such that Kµ]t(z) = tKµ(z). The Lévy–Khintchine representation
is written as [31]

Kµ(z) = γµ +
�

R

1 + xz

z − x
τµ(dx),

where γµ and τµ satisfy the same conditions as in the free case. We note
that ηµ and Kµ are related through the formula ηµ(z) = zKµ(1/z).
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Now an important transform is the meromorphic function kµ(z) :=
z/ηµ(z), defined if ηµ 6= 0. For µ, ν ∈ P(T), both different from the Haar
measure on T, the multiplicative Boolean convolution µ ×∪ ν is character-
ized by

(2.4) kµ×∪ν(z) = kµ(z)kν(z).

If µ, ν ∈ P(R+) \ δ0, the convolution µ ×∪ ν is characterized by the same
relation (2.4). A probability measure µ ∈ P(T) is said to be ×∪-infinitely

divisible if for any n ∈ N, we can find µn such that µ = µ
×∪n
n . This is

equivalent to the condition that 1/kµ(z) does not have a zero in D, and is
also equivalent to the existence of the Lévy–Khintchine formula [23]

(2.5) kµ(z) = γµ exp

(�
T

1 + ζz

1− ζz
τµ(dζ)

)
,

where γµ and τµ satisfy the same conditions as in the free case (2.3).

Bercovici proved in [11] that the multiplicative Boolean convolution does

not preserve P(R+). However, there still exists a Boolean power µ
×∪t ∈P(R+)

for 0 ≤ t ≤ 1. Results on infinitesimal triangular arrays can be found in [35].

3. On the free divisibility indicator. A central object of this paper
is the composition semigroup {Bt}t≥0, introduced by Belinschi and Nica [9],
defined to be

Bt(µ) = (µ�(1+t))]
1

1+t , µ ∈ P(R).

In addition to having the semigroup property

(3.1) Bt(Bs(µ)) = Bt+s(µ),

the map Bt is a homomorphism with respect to the multiplicative free con-
volution �:

(3.2) Bt(µ � ν) = Bt(µ) � Bt(ν)

for probability measures µ, ν, one of which is supported on R+. It is known
that B1 coincides with the Bercovici–Pata bijection ΛB from the Boolean
convolution to the free one. The reader is referred to [12] for the definition
of ΛB. Let φ(µ) denote the free divisibility indicator defined by

φ(µ) := sup{t ≥ 0 : µ ∈ Bt(P(R))}.
For a probability measure µ, Belinschi and Nica proved that there exists
a unique probability measure ν such that Bφ(µ)(ν) = µ. Therefore, Bt(µ)
can be defined as a probability measure for any t ≥ −φ(µ). This is a nat-
ural extension to possibly negative t because the semigroup property (3.1)
still holds if t, s, t + s ≥ −φ(µ). Here we collect the properties of the free
divisibility indicator [9].
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Theorem 3.1.

(1) µ�t exists for t ≥ max{1− φ(µ), 0}.
(2) µ is �-infinitely divisible if and only if φ(µ) ≥ 1.
(3) φ(Bt(µ)) can be calculated as

(3.3) φ(Bt(µ)) = φ(µ) + t for t ≥ −φ(µ).

The following property was crucial to proving the semigroup property
of Bt [9]. This will also be crucial in Theorem 3.3 below.

Proposition 3.2. Let µ ∈ P(R) and p, q be real numbers such that p ≥ 1
and 1− 1/p < q. Then

(3.4) (µ�p)]q = (µ]q
′
)�p
′
,

where p′, q′ are defined by p′ := pq/(1− p+ pq), q′ := 1− p+ pq.

3.1. Free powers, Boolean powers and shifts. The following results
describe the behavior of the divisibility indicator under free powers, Boolean
powers and shifts, which gives a better understanding of this indicator as
an object independent of the evolution Bt. In particular, these results give a
clear and quantitative explanation of why Bożejko’s conjecture is true. First,
we explicitly calculate the free divisibility indicator for free and Boolean time
evolutions.

Theorem 3.3. Let µ ∈ P(R). Then φ(µ]t) = (1/t)φ(µ) for t > 0.
Moreover, φ(µ�t)− 1 = (1/t)(φ(µ)− 1) for t > max{1− φ(µ), 0}.

Proof. Suppose φ(µ) = s < ∞. Then there is ν such that Bs(ν) = µ,
and so

µ]t =
(
(ν�(1+s))]

t+s
1+s
)] t

t+s =
(
(ν]t)�

t+s
t
)] t

t+s

=
(
(ν]t)�(1+s/t)

)] 1
1+s/t = Bs/t(ν]t),

where Proposition 3.2 was applied in the second line with p = 1+s, q = t+s
1+s .

Therefore, φ(µ]t) ≥ s/t = φ(µ)/t. Replacing t by 1/t and µ by µ]t, we see
that φ(µ) ≥ tφ(µ]t). Therefore, the conclusion φ(µ]t) = φ(µ)/t follows when
φ(µ) <∞. In the case φ(µ) =∞, taking any s <∞, we obtain φ(µ]t) ≥ s/t
from the same argument and hence φ(µ]t) = ∞ by letting s → ∞. From
this result and (3.3), we can prove that

φ(µ�(t+1)) = φ(Bt(µ)](1+t)) =
1

1 + t
φ(Bt(µ)) =

φ(µ) + t

1 + t

for t > max{−φ(µ),−1}.
The first identity of Theorem 3.3 leads to a new interpretation of φ(µ) in

terms of Boolean powers. Let us mention that this characterization is very
useful for deriving the value of the free divisibility indicator, as we will see
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in the next section. This is because, in practice, it is much easier to calculate
Boolean powers than free powers.

Corollary 3.4. φ(µ) = sup{t ≥ 0 : µ]t is �-infinitely divisible}.
Bożejko’s conjecture follows immediately.

Proposition 3.5. If µ is �-infinitely divisible, then so is µ]t for 0 ≤
t ≤ 1. Moreover,

φµ]t(z) = K(µ�(1−t))]t/(1−t)(z) =
t

1− t
Kµ�(1−t)(z)

for 0 < t < 1. In terms of the Boolean Bercovici–Pata bijection ΛB,

(3.5) ΛB((µ�(1−t))]t/(1−t)) = µ]t.

Proof. Infinite divisibility is immediate from Theorem 3.3. For t ∈ (0, 1),

ΛB((µ�(1−t))]t/(1−t)) = B1((µ
�(1−t))]t/(1−t)) =

(
((µ�(1−t))]t/(1−t))�2

)]1/2
=
(
((µ]2t)�1/2)�2

)]1/2
= µ]t,

where Proposition 3.2 was applied in the last line.

Remark 3.6. Note that (3.5) also implies Bożejko’s conjecture and is
independent of Theorem 3.3. However, Theorem 3.3 gives a refinement of
this fact.

Free divisibility indicators are invariant under shifts of probability mea-
sures and also under Boolean convolutions with delta measures. Let us first
note the following.

Lemma 3.7. Let µ be a probability measure on R. Then the following are
equivalent:

(1) µ is freely infinitely divisible;
(2) µ ] δa is freely infinitely divisible for any a ∈ R.

Proof. The following identity holds:

φµ]δa(z) = a+ φµ(z + a).

The conclusion now follows from the application of Theorem 2.1.

Now, since µ � δa is just translation of µ by a, Corollary 3.4 combined
with the above lemma enables us to prove the invariance of φ(µ) under shifts
and Boolean convolution with δa.

Proposition 3.8. Let µ be a probability measure on R and a ∈ R. Then
φ(µ) = φ(µ ] δa) = φ(µ � δa).

Proof. For t ≥ 0, we have (µ] δa)]t = µ]t] δat. Lemma 3.7 then implies
that µ]t is freely infinitely divisible if and only if (µ ] δa)]t is. Therefore,
φ(µ) = φ(µ ] δa) from Corollary 3.4.
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The second identity follows similarly from the identity

(µ � δa)
]t = (µ]t � δa) ] δ(t−1)a.

3.2. Jacobi parameters and free Meixner laws. In this section,
we give an upper bound for the free divisibility indicator in terms of Ja-
cobi parameters. We start from the definition of Jacobi parameters [25].
For a probability measure µ with all moments finite, let us orthogonal-
ize the sequence (1, x, x2, x3, . . .) in the Hilbert space L2(R, µ), following
the Gram–Schmidt method. This procedure yields orthogonal polynomials
(P0(x), P1(x), P2(x), . . .) with degPn(x) = n. Multiplying by constants, we
take Pn to be monic, i.e., the coefficient of xn is one. It is known that they
satisfy a recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γn−1Pn−1(x)

for n ≥ 0, under the convention that P−1(x) = 0. The coefficients βn and γn
are called Jacobi parameters and they satisfy βn ∈ R and γn ≥ 0. Indeed,
it is known that γ0 · · · γn =

	
R |Pn+1(x)|2 µ(dx) for n ≥ 0. Moreover, the

measure µ has a finite support of cardinality N if and only if γN−1 = 0 and
γn > 0 for n = 0, . . . , N − 2. We write Jacobi parameters as

J(µ) =

(
β0, β1, β2, β3, · · ·
γ0, γ1, γ2, γ3, · · ·

)
.

The continued fraction representation of Gµ can be expressed in terms of
the Jacobi parameters:

�

R

µ(dx)

z − x
=

1

z − β0 −
γ0

z − β1 −
γ1

z − β2 − · · ·

.

This is useful to calculate Gµ from the Jacobi parameters.

In this section, we also consider Jacobi parameters β0, β1, γ0, γ1 for a
probability measure µ with a finite fourth moment. We can define them
just by orthogonalizing the sequence (1, x, x2) in L2(R, µ). The resulting
orthogonal monic polynomials (P0(x), P1(x), P2(x)) are expressed as

P0(x) = 1, P1(x) = x− β0, P2(x) = (x− β0)(x− β1)− γ0
for some real numbers β0, β1, γ0. Then γ0 =

	
R |P1(x)|2 µ(dx), β0 is the mean

of µ, and γ0 coincides with the variance of µ. If γ0 = 0, we define γ1 := 0,
and if γ0 6= 0, we define γ1 := γ−10

	
R |P2(x)|2 µ(dx).

Proposition 3.9. Let µ 6= δa be a probability measure with a finite
fourth moment. Let (γi, βi)i=0,1 be the Jacobi parameters of µ. Then φ(µ)
≤ γ1/γ0.
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Proof. It was observed in [20] that taking the tth Boolean power is noth-
ing else than multiplying both β0 and γ0 by t. On the other hand, it was
proved in [28] that if a probability measure is �-infinitely divisible, then
γ0 ≤ γ1 (this is still true under the assumption of finite fourth moment).
Therefore, φ(µ) ≤ γ1/γ0 from Theorem 3.3.

Corollary 3.10. Let µ 6= δa be a probability measure with finite fourth
moment. Then µ]t is not �-infinitely divisible for t large enough.

The last proposition extends Theorem 3.7 in [5] which gives an up-
per bound for the divisibility indicator in terms of the Boolean kurtosis:
Kurt](µ) ≥ φ(µ). Indeed, for a probability measure with mean zero and
finite fourth moment, we have Kurt](µ) = (γ1 +β21)/γ0 ≥ γ1/γ0. Therefore,
Proposition 3.9 gives a sharper estimate.

Example 3.11. The family of q-Gaussian distributions introduced by
Bożejko and Speicher in [19] (see also the paper [18] of Bożejko, Kümmerer
and Speicher) interpolates the normal (q = 1) and the semicircle (q = 0)
laws. It is determined in terms of their orthogonal polynomials Hn,q(x),
called the q-Hermite polynomials, via the recurrence relation

xHn,q(x) = Hn+1,q(x) +
1− qn

1− q
Hn−1,q(x).

It was proved in [2] that the q-Gaussian distributions are freely infinitely
divisible for all q ∈ [0, 1]. A direct application of Proposition 3.9 gives the
estimate φ(µ) ≤ γ1/γ0 = 1+q. In particular, this shows that the q-Gaussian
distributions are not freely infinitely divisible when q ∈ [−1, 0).

Notice from the last example that the semicircle distribution satisfies the
equality φ(µ) = γ1/γ0. In the next example we will see that the class of free
Meixner distributions also satisfies this equality.

Example 3.12. The free Meixner distributions µβ0,γ0,β1,γ1 are probabil-
ity measures with Jacobi parameters

J(µ) =

(
β0, β1, β1, β1, · · ·
γ0, γ1, γ1, γ1, · · ·

)
where β0, β1 ∈ R and γ0, γ1 ≥ 0. More explicitly, µ0,1,b,1+c is written as

1

2π
·
√

[4(1 + c)− (x− b)2]+
1 + bx+ cx2

dx+ (0, 1 or 2 atoms),

where f(x)+ := max{f(x), 0}. General free Meixner distributions are affine
transformations of this case; see [1], [17].
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Let γ = γ1 − γ0 and β = β1 − β0. Then

(3.6) J(µ�t) =

(
β0t, β + β0t, β + β0t, β + β0t, · · ·
γ0t, γ + γ0t, γ + γ0t, γ + γ0t, · · ·

)
,

as shown in [3]. On the other hand, from [20], we have

(3.7) J(µ]s) =

(
β0s, β1, β1, β1, · · ·
γ0s, γ1, γ1, γ1, · · ·

)
.

Now, it is easy to derive the free divisibility indicator of µβ0,γ0,β1,γ1 . Let us
denote by γi(ν) Jacobi parameters of ν to distinguish a probability measure.
We get γ1(µ

]t
β0,γ0,β1,γ1

) − γ0(µ]tβ0,γ0,β1,γ1) = γ1(µβ0,γ0,β1,γ1) − tγ0(µβ0,γ0,β1,γ1)

using (3.7). By the way, Saitoh and Yoshida [30] showed that a free Meixner
distribution µ is �-infinitely divisible if and only if γ1(µ)−γ0(µ) ≥ 0. There-
fore, we conclude that

φ(µβ0,γ0,β1,γ1) = γ1(µβ0,γ0,β1,γ1)/γ0(µβ0,γ0,β1,γ1)

from Corollary 3.4. In particular, for the so-called Kesten–McKay distribu-
tion µt, with absolutely continuous part

1

2π
·
√

4t− x2
1− (1− t)x2

,

we get φ(µt) = t. This distribution was studied by Kesten [26] in connection
with simple random walks on free groups. They appear in free probabil-
ity theory as free additive powers of a Bernoulli distribution. For relations
between d-regular graphs and these distributions, see [27].

As shown in the above example, every free Meixner distribution achieves
the upper bound of Proposition 3.9. More strongly, this characterizes free
Meixner distributions.

Theorem 3.13. Let µ 6= δa be a probability measure with a finite fourth
moment and Jacobi parameters (γi, βi)i=0,1. Then φ(µ) = γ1/γ0 if and only
if µ is a free Meixner distribution.

Proof. Let us use the notation γi(µ) to distinguish probability measures.
We assume that φ(µ) = γ1(µ)/γ0(µ). If γ0(µ) = 0, then µ is a delta measure
at a point, so that φ(µ) =∞. We assume that the variance γ0(µ) is non-zero.

First, suppose that γ1(µ) = 0. From the paragraph before Proposi-
tion 3.9, the L2-norm of P2(x) is zero, which implies that µ is supported on
at most two points. In other words, µ is of the form pδa + (1− p)δb, i.e., µ is
a Bernoulli law. This is a free Meixner law since its Jacobi parameters are
given by

J(µ) =

(
β0(µ), β1(µ), β1(µ), β1(µ), · · ·
γ0(µ), 0, 0, 0, · · ·

)
,
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where β0(µ) = pa + (1 − p)b, γ0(µ) = p(1 − p)(b − a)2 and β1(µ) =
pb+(1−p)a. This calculation can be checked by using the continued fraction
of the Stieltjes transform.

Next assume that t := φ(µ) = γ1(µ)/γ0(µ) > 0. Then there exists ν
such that Bt(ν) = µ. Using the relation φ(Bt(µ)) = φ(µ) + t, we conclude

φ(ν) = 0. Since γ0 is equal to variance, γ0(µ) = γ0(ν
�(1+t))/(1 + t) = γ0(ν).

From the relation (3.14) of [28] and (3.9) of [20],

γ1(µ) = γ1(ν
�(1+t)) = γ1(ν) + tγ0(ν).

Divided by γ0(µ) = γ0(ν), the above equality becomes

γ1(µ)

γ0(µ)
=
γ1(ν)

γ0(ν)
+ t.

Using the assumption φ(µ) = γ1(µ)/γ0(µ), we have

φ(µ) = t =
γ1(µ)

γ0(µ)
=
γ1(ν)

γ0(ν)
+ t.

Therefore, γ1(ν) = 0, so that ν is a Bernoulli law. (3.6) and (3.7) imply that
the set of free Meixner laws is closed under Bt, so that µ = Bt(ν) is also a
free Meixner law.

3.3. Free stable and Boolean stable laws. We now investigate free
and Boolean stable distributions in terms of free divisibility indicators. Free
and Boolean stable laws were respectively introduced in [14] and [31], and
their domains of attraction were studied in [12]. Using Theorem 3.3, we show
that the free divisibility indicator of a Boolean stable distribution takes only
two possible values, 0 or∞. Similarly, in the free case we get two possibilities,
1 or ∞.

Let Dt denote the dilation operation defined by (Dtµ)(B) := µ(t−1B)
for every Borel set B. Since Bt(Ds(µ)) = Ds(Bt(µ)) for t, s > 0, φ(µ) does
not change under dilations.

In this paper, a probability measure να is said to be ]-stable of index α
if να ] να = D1/2α(να)] δb for some b ∈ R. If b = 0, the probability measure
να is said to be ]-strictly stable of index α. Now it is clear from Theorem 3.3
and Proposition 3.8 that a ]-stable law να satisfies

1
2φ(να) = φ(να ] να) = φ(D1/2α(να)) = φ(να),

which is possible only if φ(να) = 0 or φ(να) = ∞, depending on whether µ
is freely infinitely divisible or not. Note that both 0 and ∞ can be achieved
since the Cauchy distribution (α = 1) is freely infinitely divisible and the
Bernoulli distribution (α = 2) is not.

Analogously, a probability measure σα is said to be �-stable of index α
if σα � σα = D1/2α(σα) � δb for some b ∈ R. Also, σα is said to be �-strictly
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stable when b = 0. As in the Boolean case, we see that
1
2(1− φ(σα)) = (1− φ(σα)).

This yields only two possibilities, either φ(σα) = 1 or φ(σα) =∞. Also in the
free case, both values 1 and ∞ can be achieved: the semicircle law (α = 2)
satisfies φ(σ2) = 1 [9]; the Cauchy distribution σ1, which is �-strictly stable
of index α = 1, satisfies φ(σ1) =∞. Later we also consider free and Boolean
1/2-stable laws.

Remark 3.14. An upper bound can be estimated for the free divisibil-
ity indicator of the Gaussian distribution N(0, 1), i.e., the 2-stable law in
probability theory. Indeed, one can show, using Theorem 3.3 and numeri-
cal computations of cumulants (1), that φ(N(0, 1)) < 1.2. The lower bound
φ(N(0, 1)) ≥ 1, which is much harder to prove, is implicit in Belinschi et
al. [8].

The free divisibility indicators of Cauchy and delta distributions are
infinity since they are the fixed points of Bt [9]. The following theorem
shows that there are other measures with free divisibility indicators equal
to ∞, while they are not fixed points of Bt.

Theorem 3.15. Any ]-stable distribution ν of index 1/2 is �-infinitely
divisible. Moreover, φ(ν) =∞.

Proof. Thanks to Proposition 3.8, we may assume that ν is ]-strictly
stable. The reciprocal Cauchy transform of ν is given by (see [31])

Fν(z) = z + bz1/2, 0 ≤ arg b ≤ π/2.
The Voiculescu transform then becomes

φν(z) = b2/2−
√
b2z + b4/4.

φν(z) can be extended to a continuous function from (C+ ∪ R) ∪ {∞} to
C ∪ {∞}. In addition, this mapping is homeomorphic. To understand the
situation, it helps to define ψ := J ◦ φν ◦ J−1 as a function in D = {|z| ≤ 1},
where J : C ∪ {∞} → C ∪ {∞} is an analytic isomorphism, mapping C+

onto D. To prove that ν is freely infinitely divisible, it is sufficient to prove
that Imφν(x) takes non-positive values on R. Indeed, suppose Imφν(x) ≤ 0
for some x ∈ R. This is equivalent to ψ(∂D) ⊂ Dc = {z ∈ C : |z| ≥ 1}.
From the homeomorphic property, ψ(∂D) is equal to ∂ψ(D), and moreover
is a Jordan curve. Therefore, ψ(∂D) divides C into two simply connected
open sets. One does not intersect D and the other includes D. We can easily
observe that limy→∞ Imφν(iy) = −∞, which implies that ψ(D) coincides
with the first one.

(1) The authors would like to thank Professor Franz Lehner for his assistance in
improving these numerical computations.
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Now, we prove that Imφν(x) ≤ 0 for any x ∈ R. Let c = b2 and suppose,
without loss of generality, that c = eiθ (0 ≤ θ ≤ π). Then

Imφν(x) =
sin θ

2
− 1√

2

[(
x2 +

cos θ

2
x+

1

16

)1/2

− x cos θ − cos 2θ

4

]1/2
.

Let us define

f(x) :=

(
x2 +

cos θ

2
x+

1

16

)1/2

− x cos θ − cos 2θ

4
.

It is easy to prove that f decreases in (−∞, 0) and increases in (0,∞) with its
minimum value f(0) = (sin2 θ)/2. Therefore, Imφν(x) takes the maximum
value Imφν(0) = 0, and hence Imφν(x) ≤ 0 for any x ∈ R desired. The fact
φ(ν) =∞ now follows from the discussion prior to Remark 3.14.

Corollary 3.16. Any free 1/2-stable distribution σ satisfies φ(σ) =∞.

Proof. A �-stable law σ of index 1/2 is just ΛB(ν) where ν is a ]-stable
law of index 1/2. Therefore, we see that φ(σ) = φ(ν) + 1 =∞+ 1 =∞.

4. Composition semigroups for multiplicative convolutions. In
this section, we prove that many results on additive convolutions have coun-
terparts for multiplicative convolutions. A transformation fµ(z)=log(ηµ(ez))
is useful to understand such results intuitively. Indeed, in terms of fµ, mul-
tiplicative convolutions can be characterized in a way analogous to additive
ones. For instance, the multiplicative free and Boolean convolutions can be
characterized by

f−1µ�ν(z) = f−1µ (z) + f−1ν (z)− z, fµ×∪ν(z) = fµ(z) + fν(z)− z.

Therefore, fµ(z), f−1µ (z)− z and fµ(z)− z play the same roles as the recip-
rocal Cauchy transform, the Voiculescu transform and the energy function,
respectively. From this observation, we can expect many results on multi-
plicative convolutions.

However, we cannot avoid the following problems.

(A) On the unit circle, µ
×∪t for t > 0 and µ�t for t > 1 can be defined

for any ×∪-infinitely divisible measure µ, but these powers are not
unique [7, 23].

(B) On the positive real line, Boolean powers of a generic probability
measure can be defined only for finite time [11].

We discuss the above problems in this section.

The essence of the problem (A) can be understood in terms of the uni-
versal covering of the Riemann surface D \ {0}. We do not, however, use
these concepts to avoid introducing much terminology.
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4.1. A composition semigroup on the unit circle. Let ID(×∪;T)
be the set of ×∪-infinitely divisible distributions on T. Results in this subsec-
tion are often trivial for the normalized Haar measure ω, so that we define
ID(×∪;T)0 := ID(×∪;T) \ {ω}. This set can be written [23] as

ID(×∪;T)0 = {µ ∈ P(T) : ηµ does not vanish in D and m1(µ) = η′µ(0) 6= 0},
on which a multiplicative free power can be defined [7]. Hence this set is
important for multiplicative free convolution as well as for Boolean one.

On the unit circle T, the multiplicative Bercovici–Pata bijection from ×∪
to � was considered in [35]. We denote that map by ΛMB; it satisfies

(4.1) kµ(z) = ΣΛMB(µ)(z).

The bijection ΛMB is a homeomorphism from ID(×∪;T) onto the set of
�-infinitely divisible distributions.

For µ ∈ ID(×∪;T)0, both µ�t for t > 1 and µ
×∪t for t > 0 can be defined,

but they are not unique. For the Boolean case, this ambiguity is due to
rotational freedom [23]. Because of this ambiguity, Boolean powers do not
work well in some situations [24]. However, we can overcome this difficulty

by introducing a countable family of free and Boolean powers. Let u
(0)
µ be

the function satisfying kµ(z) = eu
(0)
µ (z) with −π < Imu

(0)
µ (0) < π (see (2.5)).

If one needs to consider Imu
(0)
µ (0) = −π or π, one can approximate u

(0)
µ

using a sequence of probability measures µn satisfying Imu
(0)
µn (0) ↘ −π

or Imu
(0)
µn (0) ↗ π. We can define a family of convolution semigroups µ

×∪n t

(n ∈ Z) from the relation

kµx∪nt(z) = etu
(n)
µ (z),

where u
(n)
µ = −2πni+ u

(0)
µ .

Also in the free case, the ambiguity comes from rotational freedom.

We define free powers in terms of subordination functions. Let Φ
(n)
t (z) :=

ze(t−1)u
(n)
µ (z) for µ ∈ ID(×∪;T)0 and t > 1. For any t > 1 there exists an ana-

lytic map ω
(n)
t : D→ D with the following properties (see Theorem 3.5 of [7]):

(Ω1) Φ
(n)
t (ω

(n)
t (z)) = z for z ∈ D,

(Ω2) |ω(n)
t (z)| ≤ |z| in D,

(Ω3) ω
(n)
t is univalent.

The condition (Ω1) implies the uniqueness of ω
(n)
t . From (Ω2) and Proposi-

tion 2.2(2), there exists µ�nt ∈ P(T) (n ∈ Z) satisfying

ηµ�nt(z) = ηµ(ω
(n)
t (z)).

Because of this formula, we call ω
(n)
t an nth subordination function. From the

property (Ω3), ηµ�nt does not vanish in D \ {0}, and from (Ω3), η′µ(0) 6= 0.
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Therefore, µ�nt also belongs to ID(×∪;T)0. If µ is the normalized Haar mea-

sure ω, then ω
×∪n t and ω�nt are simply defined by ω itself.

We define an analogue of the semigroup Bt, paying attention to rotational
freedom.

Definition 4.1. For a real number ϕ, we define [ϕ] to be an integer
determined as follows:

(1) [ϕ] = 0 if ϕ ∈ I0 := (−π, π);
(2) [ϕ] = n if ϕ ∈ In := [nπ, (n+ 2)π) and n ≥ 1;
(3) [ϕ] = n if ϕ ∈ In := ((n− 2)π, nπ] and n ≤ −1.

In particular, [−ϕ] = −[ϕ].

Using this, we define continuous families of Boolean and free powers:

µ
×∪ϕ t := µ

×∪[ϕ] t, µ�ϕt := µ�[ϕ]t

for ϕ ∈ R.

Definition 4.2. A family {M(n)
t }t≥0 of maps from ID(×∪;T) into itself

is defined by

(4.2) M(n)
t (µ) = (µ�argm1(µ)

(t+1))
×∪(t+1) argm1(µ)

1
t+1 ,

where m1(µ) =
	
T ζ µ(dζ) and argm1(µ) is taken to satisfy n = [argm1(µ)].

If argm1(µ) = nπ, we can define M(n)
t (µ) to be limr↘0M

(n)
t (µ � δeirsign(n)).

Remark 4.3. The essence of the above definition is to make the function

m1(M
(n)
t (µ)) constant with respect to t ∈ R+. For this purpose, we allow the

argument of the first moment to take any value in R, not only in (−π, π).
This idea is also important in Proposition 4.4.

M(n)
t is injective on ID(×∪;T) for t ≥ 0, but not continuous on ID(×∪;T)

for t /∈ N. This discontinuity has the same origin as the function m1(µ)t. We

take a branch such that M(n)
t is continuous in the subset {µ ∈ ID(×∪;T) :

m1(µ) ∈ D\ [−1, 0]}. Then M(n)
1 coincides with the Bercovici–Pata bijection

ΛMB for any n, as in the additive case. Therefore, M(n)
k is also continuous

on ID(×∪;T) for any k ∈ N and does not depend on n, since M(n)
k is the

k-fold iteration of ΛMB (see Theorem 4.5).

The following is a key to the semigroup property of M(n)
t .

Proposition 4.4. Let µ ∈ ID(×∪;T)0 and let argm1(µ) ∈ R be an arbi-
trary argument of m1(µ).

(1) Let p, q be real numbers such that p ≥ 1 and 1− 1/p < q. Then

(4.3) (µ�argm1(µ)
p)
×∪p argm1(µ)

q = (µ
×∪argm1(µ)

q′)�q′ argm1(µ)
p′ ,

where p′, q′ are defined by p′ := pq/(1− p+ pq), q′ := 1− p+ pq.
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(2) (µ�argm1(µ)
t)�t argm1(µ)

s = µ�argm1(µ)
ts for t, s ≥ 1.

(3) (µ
×∪argm1(µ)

t)
×∪t argm1(µ)

s = µ
×∪argm1(µ)

ts for t, s ≥ 0.

Proof. We use the notation ztarg z to distinguish branches. More precisely,

ztarg z is defined to be eit arg z+t log |z| for any argument of z 6= 0. We note that

(4.4) (zw)targ z+argw = ztarg zw
t
argw

for any z, w 6= 0.

We first prove that for the [argm1(µ)]th subordination function ωt asso-
ciated to µ ∈ ID(×∪;T)0,

ωt(z)

z
=

(η
µ
�argm1(µ)

t(z)

z

)1−1/t

t argm1(µ)

,(4.5)

η
µ
�argm1(µ)

t(z)

z
=

(
ωt(z)

z

) t
t−1

(t−1) argm1(µ)

.

This is proved as follows. For simplicity, let n := [argm1(µ)]. From the

relation Φ
(n)
t ◦ ω

(n)
t (z) = z and (4.4), we have

1 =
ω
(n)
t (z)

z

(
ω
(n)
t (z)

z

z

ηµ�nt(z)

)t−1
− argm1(µ)

=
ω
(n)
t (z)

z

(
ω
(n)
t (z)

z

)t−1
(t−1) argm1(µ)

(
z

ηµ�nt(z)

)t−1
−t argm1(µ)

=

(
ω
(n)
t (z)

z

)t
(t−1) argm1(µ)

(
z

ηµ�nt(z)

)t−1
−t argm1(µ)

,

from which the desired relations follow.

For simplicity, let us introduce the notations λ := (µ�argm1(µ)
p)
×∪p argm1(µ)

q

and ν := (µ
×∪argm1(µ)

q′)�q′ argm1(µ)
p′ . If the nth subordination function for µ

is denoted simply by ωt, one obtains

ηλ(z)

z
=

(η
µ
�argm1(µ)

p
(z)

z

)q
p argm1(µ)

=

(
ωp(z)

z

) pq
p−1

(p−1) argm1(µ)

,

where (4.5) was applied. On the other hand, if the [q′ argm1(µ)]th subor-

dination function for ρ := µ
×∪argm1(µ)

q′ is denoted by σt, then (Ω1) implies
that

ηρ(σp′(z))

z
=

(
σp′(z)

z

) 1
p′−1

q′(p′−1) argm1(µ)

.
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We note that q′(p′ − 1) = p− 1, and therefore,

ην(z)

z
=
ηρ(σp′(z))

z
=
ηρ(σp′(z))

σp′(z)

σp′(z)

z

=

(
σp′(z)

z

) p′
p′−1

(p−1) argm1(µ)

=

(
σp′(z)

z

) pq
p−1

(p−1) argm1(µ)

.

The above calculations have reduced the problem to proving ωp = σp′ . Let
us prove this. The second identity of (4.5), with µ and ωt replaced by ρ =

µ
×∪argm1(µ)

q′ and σt respectively, leads to

σp′(z)

z
=

(
ηµ(σp′(z))

σp′(z)

)p−1
argm1(µ)

.

This relation says that σp′ is exactly the right inverse of

Φp(z) := z

(
z

ηµ(z)

)p−1
argm1(µ)

.

Therefore, σp′ = ωp by uniqueness.
(2) and (3) follow easily from analogous and simpler arguments.

The semigroup property of M(n)
t is immediate from Proposition 4.4.

Theorem 4.5. M(n)
t+s = M(n)

t ◦ M(n)
s on ID(×∪;T) for all t, s ≥ 0 and

n ∈ Z.

Proof. Let n = [argm1(µ)], take

p =
t+ s+ 1

t+ 1
and q =

s+ 1

t+ s+ 1

in Proposition 4.4(1) and replace µ by µ�argm1(µ)
(t+1). Then Proposition

4.4(1),(2) yields

(4.6)
(
(µ�argm1(µ)

(t+1))
×∪(t+1) argm1(µ)

1
t+1
)�argm1(µ)

(s+1)

=
(
(µ�argm1(µ)

(t+1))�(t+1) argm1(µ)
t+s+1
t+1

)×∪(t+s+1) argm1(µ)
s+1
t+s+1

= (µ�argm1(µ)
(t+s+1))

×∪(t+s+1) argm1(µ)
s+1
t+s+1 .

Therefore M(n)
s ◦M(n)

t can be calculated as

M(n)
s ◦M

(n)
t (µ)

=
((

(µ�argm1(µ)
(t+1))

×∪(t+1) argm1(µ)
1
t+1
)�argm1(µ)

(s+1))×∪(s+1) argm1(µ)
1
s+1

= (µ�argm1(µ)
(t+s+1))

×∪(t+s+1) argm1(µ)
1

t+s+1 = M(n)
t+s(µ),

where Proposition 4.4(3) and (4.6) were applied in the second line.
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An analogue of the free additive divisibility indicator can be defined for
the multiplicative case as follows.

Definition 4.6. We define the multiplicative free divisibility indicator
θ(n)(µ) to be

θ(n)(µ) = sup{t ≥ 0 : µ ∈M(n)
t (ID(×∪;T))}

for µ ∈ ID(×∪;T) and write θ(µ) := θ(0)(µ).

M(n)
t (µ) is well defined for t ≥ −θ(n)(µ) for the same reason as in the

additive case. The quantity θ(n) is in fact independent of n as we state in
the following proposition for further reference.

Proposition 4.7. For all n ∈ Z and µ ∈ ID(×∪;T), we have θ(n)(µ)
= θ(µ).

The proof is postponed to the Appendix due to complicated notation.

The free convolution power µ�n t was introduced for µ ∈ ID(×∪;T) and
t ≥ 1 in terms of subordination functions. As it is called a free power, it is
also characterized by

(4.7) Σµ�nt(z) = Σµ(z)t.

The branch of Σµ(z)t depends on n. Using the expansion Σµ(z) = 1
m1(µ)

(1+

O(z)), we define Σµ(z)t to be

e−it argm1(µ)−t log |m1(µ)|(1 +O(z))t,

where argm1(µ) ∈ In (see Definition 4.1). We do not indicate a specific n
in Σµ(z)t, but that will always be clear from the context. Even for t < 1, if
there exists a measure µ�nt ∈ ID(×∪;T) satisfying (4.7), we call it a tth free
power.

Now we prove counterparts of Theorems 3.1 and 3.3.

Theorem 4.8. Let µ ∈ ID(×∪;T):

(1) µ�n t exists for any n ∈ Z and t ≥ max{1− θ(µ), 0}.
(2) µ is �-infinitely divisible if and only if θ(µ) ≥ 1.

(3) θ(M(n)
t (µ)) = θ(µ) + t for any n ∈ Z and t ≥ −θ(µ).

(4) θ(µ
×∪n t) = (1/t)θ(µ) for any n ∈ Z and t > 0.

(5) θ(µ�n t)−1 = (1/t)(θ(µ)−1) for any n ∈ Z and t > max{1−θ(µ), 0}.

Proof. The proofs are similar to those in the additive case with slight
modifications. The reader is referred to Section 5 of [9] and Theorem 3.3 of
this paper.

For instance, (4) can be proved as follows. Take argm1(µ) such that
n = [argm1(µ)] and suppose θ(n)(µ) = t. By definition, there exists ν such
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that M(n)
t (ν) = µ. We note that argm1(µ) = argm1(ν). Then

µ
×∪argm1(µ)

s =
(
(ν�argm1(µ)

(1+t))
×∪(t+1) argm1(µ)

s+t
1+t
)×∪(t+s) argm1(µ)

s
s+t

=
(
(ν
×∪argm1(µ)

s)�s argm1(µ)
s+t
s
)×∪(t+s) argm1(µ)

s
s+t

=
(
(ν
×∪argm1(µ)

s)�s argm1(µ)
(1+t/s)

)×∪(t+s) argm1(µ)
1

1+t/s

= M([s argm1(µ)])
t/s (ν

×∪argm1(µ)
s),

where we used Proposition 4.4(1) with p = 1 + t, q = s+t
1+t . Therefore,

θ([s argm1(µ)])(µ
×∪n s) ≥ t/s = θ(n)(µ)/s. As in Theorem 3.1, let us replace

s by 1/s and µ by µ
×∪argm1(µ)

s. Using Proposition 4.4(2), we obtain the con-
verse inequality.

We can immediately characterize the free divisibility indicator in terms
of Boolean multiplicative powers on the unit circle.

Corollary 4.9. θ(µ) = sup{t ≥ 0 : µ
×∪n t is �-infinitely divisible} for

µ ∈ ID(×∪;T).

An analogue of Bożejko’s conjecture for multiplicative convolutions is
also true on the unit circle.

Proposition 4.10. If µ ∈ ID(×∪;T) is �-infinitely divisible, then so is

µ
×∪n t for 0 ≤ t ≤ 1 and n ∈ Z. Moreover,

µ
×∪n t = ΛMB((µ�n(1−t))

×∪(1−t) argm1(µ)
t/(1−t)) for 0 < t < 1,

where n = [argm1(µ)].

Proof. The proof is similar to that of Proposition 3.5.

Example 4.11. In the literature, there are not many examples of mea-
sures whose free power and Boolean power can be explicitly computed. Find-
ing more examples would be of interest. Here we give one simple example.
For a ≥ 0 and b ∈ R, let µ be the probability measure on T defined by

µ(dθ) =
1

2π

1− e−2a

1 + e−2a − 2e−a cos(θ − b)
dθ, 0 ≤ θ < 2π.

This is an analogue of the Cauchy distribution on R since µ is identical to
the density of the Poisson kernel. Let c := e−a+ib. Then ηµ(z) = cz and

Σµ(z) = kµ(z) = c−1 = e−ib exp

(
a
�

T

1 + ζz

1− ζz
ω(dζ)

)
,

where ω(dθ) is the normalized Haar measure. Therefore, M(n)
t (µ) = µ for

any n ∈ Z and any t ≥ 0. The free divisibility indicator θ(µ) is equal to ∞.
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4.2. A composition semigroup on the positive real line. From
Proposition 2.2(i), a logarithm log kµ(z) = log(z/ηµ(z)) can be defined in
C \R+ with values in C for µ ∈ P(R+) \ {δ0}. The function log kµ(z) maps
C+ to C− ∪ R, and therefore it has the Pick–Nevanlinna representation

(4.8) log kµ(z) = −aµz + bµ +

∞�

0

1 + xz

z − x
τµ(dx)

for aµ ≥ 0, bµ ∈ R and a non-negative finite measure τµ on R+. This is, in a
sense, a Lévy–Khintchine formula for the multiplicative Boolean convolution
on R+. To understand the Bercovici–Pata bijection, we have to know when
a function K(z) = −az + b +

	∞
0

1+xz
z−x τ(dx) can be written as log kµ(z) for

a probability measure µ on R+. For instance, Proposition 2.2 implies that
Im(log kµ(z)) ∈ (−π + arg z, 0] in C+. In particular, −π ≤ Im(log kµ) ≤ 0.
Therefore, a = 0. Moreover, τ cannot contain the singular part: if the
singular part were non-zero, there would exist a point x0 ≥ 0 such that
ImK(x0 + i0) = ∞. These conditions, however, are far from a complete
characterization.

In spite of the above, we can still construct an injective mapping ΛMB

from P(R+) to the set of �-infinitely divisible distributions such that

(4.9) kµ(z) = ΣΛMB(µ)(z).

Let us call this map ΛMB a Bercovici–Pata map from ×∪ to � for proba-
bility measures on the positive real line. As explained above, aΛMB(µ) = 0
and τΛMB(µ) is absolutely continuous with respect to the Lebesgue measure,
where aν and τν have been defined in (2.2). Therefore, ΛMB is not surjective.

Now we define an analogue of the semigroup Bt for the multiplicative
convolutions.

Definition 4.12. A family {Mt}t≥0 of maps from P(R+) into itself is
defined by

(4.10) Mt(µ) = (µ�(t+1))
×∪ 1
t+1 .

For δ0, Mt(δ0) is defined to be just δ0.

As proved in [11], µ
×∪t ∈ P(R+) is defined for any probability measure

µ ∈ P(R+) and 0 ≤ t ≤ 1. Therefore, Mt is well defined. The map Mt on the
positive real line is simpler than on the unit circle, since a Boolean power is
unique if exists.

The following result is essentially the same as in the additive case, except
for the restriction q ≤ 1.

Proposition 4.13. Let p, q be real numbers such that p ≥ 1 and 1−1/p
< q ≤ 1. Then

(4.11) (µ�p)
×∪q = (µ

×∪q′)�p
′
,
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where µ ∈ P(R+) and p′, q′ are defined by p′ := pq/(1−p+pq), q′ := 1−p+pq.
All the convolution powers are well defined under the above assumptions.

The proof is easier than that of Proposition 4.4; we do not have to pay
attention to branches of analytic mappings. The semigroup property also
holds in this case.

Theorem 4.14. Mt+s = Mt ◦Ms on P(R+) for all t, s ≥ 0.

We can also define a free divisibility indicator:

θ(µ) = sup{t ≥ 0 : µ ∈Mt(P(R+))}

for µ ∈ P(R+). Some results of Theorem 4.8 have no counterparts for prob-
ability measures on the positive real line. This is because the Bercovici–Pata
map is not surjective and a Boolean power cannot be defined for large times.
We can, however, still prove the following.

Proposition 4.15. Let µ ∈ P(R+). Then

(1) µ�t exists for t ≥ max{1− θ(µ), 0},
(2) µ is �-infinitely divisible if θ(µ) ≥ 1,

(3) θ(Mt(µ)) = θ(µ) + t for t ≥ −θ(µ).

Proof. The proofs are similar to those in the previous cases (see The-
orem 4.8 of this paper and Section 5 of [9]). Concerning (2), note that
the �-infinite divisibility of µ ∈ P(R+) does not imply θ(µ) ≥ 1 since the
Bercovici–Pata map is not surjective (see Example 4.16).

Example 4.16. Let bα be the positive ]-strictly stable law with index
0 < α ≤ 1 which is characterized by ηbα(z) = −(−z)α. We also have

Σbα = (−z)(1−α)/α. So Σ(bα)�t = (−z)
1−α
α
t and

η(bα)�t = −(−z)
α

(1−α)t+α .

This means, on one hand, that (bα)�t = b α
(1−α)t+α

and hence bα is �-

infinitely divisible. On the other hand,

η((bα)�t)x∪1/t = −(−z)
2α−1+(1−α)t

(1−α)t+α .

So, for β = 2α−1+(1−α)t
(1−α)t+α or equivalently α = β−(1−β)t

1−(1−β)t , we have Mt(bα) = bβ.

This means, given β ∈ (0, 1], bβ ∈ Mt(P(R+)) if and only if 0 < t < β
1−β

and so

θ(bα) =
α

1− α
.

To summarize, if α < 1/2, then θ(bα) < 1 but bα is �-infinitely divisible,
showing that �-infinite divisibility of µ does not imply that θ(µ) ≥ 1.



180 O. Arizmendi and T. Hasebe

5. Commutation relations between Boolean and free convolu-
tion powers. We have seen that convolution powers for � and ×∪ on R+

satisfy the same commutation relation as in the additive case (see Proposi-
tions 3.2 and 4.13). Moreover, there are other commutation relations involv-
ing free and Boolean powers. We will prove such relations in this section.
These are useful to construct new examples of �-infinitely divisible distri-
butions.

Proposition 5.1. The following commutation relations hold for µ ∈
P(R+):

(1) (µ�t)�s = Dts−1(µ�s)�t for t ≥ 1 and s ≥ 1.
(2) (µ]t)�s = Dts−1(µ�s)]t for t ≥ 0 and s ≥ 1.

(3) (µ]t)
×∪s = (µ

×∪s)]t
s

for t ≥ 0 and s ≤ 1.

Proof. We note that µ�t is supported on R+ for t ≥ 1 (see discussion in
Subsection 2.4 of [9]). (1) and (2) were essentially proved in Proposition 3.5
of [9].

(3) We recall the relations ηµ]t(z) = tηµ(z) and η
µ×∪s

(z)/z = (ηµ(z)/z)s.

For the left hand side, we have

η(µ]t)x∪s(z)

z
=

(
ηµ]t(z)

z

)s
= ts

(
ηµ(z)

z

)s
,

and for the right hand side,

η(µx∪s)]ts (z)

z
= ts

ηµx∪s(z)

z
= ts

(
ηµ(z)

z

)s
.

Therefore, they coincide.

Remark 5.2. (i) The parameter t in (1) cannot be extended to t ≥ 0
even if µ is �-infinitely divisible. This is because suppµ ⊂ [0,∞) does not
imply suppµ�t ⊂ [0,∞) for every t ≥ 0. We will discuss this problem in
another paper [4].

(ii) In Propositions 3.2, 4.13 and 5.1, we have derived five commutation
relations among �,�,] and ×∪. The only missing relation is for the pair �

and ×∪. The question of whether there is an algebraic relation between these
two convolutions is an open problem.

The following result is immediate.

Corollary 5.3. If µ ∈ P(R+) is �-infinitely divisible, then so are µ�t

for t ≥ 1 and µ]s for s ≥ 0.

Moreover, from (2) and (3) of Proposition 5.1 we see that the multi-
plicative divisibility indicator does not change under the action of Boolean
additive powers.

Corollary 5.4. If µ ∈ P(R+) then θ(µ]s) = θ(µ) for any s > 0.
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It is well known that the free Poisson distribution π, characterized by
φπ(z) = z/(z − 1), is both �- and �-infinitely divisible. The following ex-
ample generalizes this fact to different powers of π.

Example 5.5. Let πt,s,r := ((π�t)�s)]r for r, s, t ≥ 0. It is clear from
Corollary 5.3 that πt,s,r is �-infinitely divisible for r, s ≥ 0 and t ≥ 1.
Moreover, since π�t is supported on R+ for every t > 0, combining Propo-
sitions 3.5 and 5.1, we see that πt,s,r is �-infinitely divisible for r ≤ 1, s ≥ 1
and t ≥ 0. In particular, if r ≤ 1 and s, t ≥ 1, then πt,s,r is infinitely divisible
with respect to both � and �.

On the other hand, π�t is not �-infinitely divisible for t < 1 as shown by
Pérez-Abreu and Sakuma [29, Proposition 10]. This shows that we cannot
extend Corollary 5.3 to t < 1, even if µ�t exists.

A. Appendix

A.1. Fixed points of Bt. As we have shown, some measures have free
divisibility indicators infinity as well as Cauchy distributions. So one may ask
if this is because of some fixed point property. In this section we determine
all the fixed points of the Boolean-to-free Bercovici–Pata bijection and more
generally of Bt for each t > 0. The key is the following functional equation
for analytic maps.

Lemma A.1. Let F : C+ → C+ be an analytic map such that

(A.1) F (z)− z = F (F (z))− F (z), z ∈ C+.

Then F (z) = z + c for some c ∈ C+ ∪ R.

Proof. If F is identity, (A.1) is trivially satisfied. So we may assume
that F is non-identical. Note that F is injective. Indeed, if F (z) = F (w)
then F (F (z)) = F (F (w)) and then from (A.1), z = 2F (z) − F (F (z)) =
2F (w)− F (F (w)) = w.

Now take z0 ∈ C+ so that F (z0) 6= z0 and define c := F (z0) − z0.
Moreover, suppose that F is not identically equal to z + c. Let D be a
bounded domain such that D ⊂ C+. Then, by the Identity Theorem, F (z) =
z + c for at most a finite number of points inside D. Hence, there exists a
radius r such that F (z) − z 6= c for all z ∈ Br(z0) \ {z0}. Moreover we
may assume that F (z0) /∈ Br(z0) since F (z0) 6= z0. Since F is injective,

F ◦n+1(z0) /∈ F ◦n(Br(z0)) for any n ≥ 1. Let C = ∂Br(z0). Since C is
compact, there exists t > 0 such that |F (z)− z − c| > t for all z ∈ C.

Take an arbitrary z ∈ C. If we write F (z)−z = d, then |d− c| > t. From
the iterative use of (A.1), we have F ◦n(z) = z + nd and F ◦n(z0) = z0 + nc
and then we see that |F ◦n(z) − F ◦n(z0)| > tn − |z0| − |z| > tn − 2|z0| − r,
which tends to ∞ as n → ∞. Thus for all R > 0, there is N large enough
such |F ◦n(z)− F ◦n(z0)| > R for all n > N and all z ∈ C.
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Finally, for each n > 0, F ◦n(C) is a simple curve surrounding F ◦n(z0).
Hence, by the considerations above, for n large enough F ◦n(C) encloses
B2|c|(F

◦n(z0)). In particular, since F ◦n+1(z0) − F ◦n(z0) = c, the curve

F ◦n(C) must surround F ◦n+1(z0), contradicting the fact that F ◦n+1(z0) /∈
F ◦n(Br(z0)).

Theorem A.2. Let t > 0 be real and µ be a fixed point of Bt, i.e.
Bt(µ) = µ. Then µ is either a point measure or a Cauchy distribution γa,b
with density

γa,b(x) =
b

π[(x− a)2 + b2]
, x ∈ R,

for some a ∈ R, b > 0.

Proof. From the basic properties of free and boolean convolutions,

F−1
µ�(t+1)(z) = (t+ 1)F−1µ (z)− tz,(A.2)

Fµ](t+1)(z) = (t+ 1)Fµ(z)− tz.(A.3)

Recall that Bt(µ) = µ is equivalent to µ�(t+1) = µ](t+1). Plugging (A.3) into
(A.2) we have

z = F−1
µ�(t+1)(Fµ](t+1)(z)) = (t+1)F−1µ ((t+1)Fµ(z)−tz)−t((t+1)Fµ(z)−tz),

from which

F−1µ ((t+ 1)Fµ(z)− tz) = tFµ(z)− (t− 1)z.

Applying Fµ to both sides we get

(t+ 1)Fµ(z)− tz = Fµ(tFµ(z)− (t− 1)z),

or

Fµ(z)− z = Fµ(tFµ(z)− (t− 1)z)− tFµ(z) + (t− 1)z.

Now, let Wµ(z) = Fµ]t(z) = tFµ(z)− (t− 1)z. Then

Fµ(z)− z = Fµ(Wµ(z))−Wµ(z).

Multiplied by t, this equation becomes

Wµ(z)− z = Wµ(Wµ(z))−Wµ(z).

This is exactly (A.1) for F = Wµ which satisfies the assumptions of Lem-
ma A.1. So, Fµ]t is of the form z − a0 + ib0 for some a0 ∈ R and b0 ≥ 0.
This, in turn, implies that Fµ(z) = z − a+ ib, where a = a0/t and b = b0/t.
If b = 0, then µ = δa and if b > 0, µ = γa,b.

Corollary A.3. The Boolean-to-free Bercovici–Pata bijection ΛB has
no periodic points of order greater than one.
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A.2. Proof of Proposition 4.7

Lemma A.4. For any m,n ∈ Z, c ∈ T, t > 0 and µ ∈ ID(×∪;T)0, the
following are equivalent:

(1) µ�mt exists in ID(×∪;T)0;
(2) (µ ×∪ δc)�nt exists in ID(×∪;T)0.

Proof. Note that Σµ×∪δc(z) = (1/c)Σµ(z/c) and Σµ�δc(z) = (1/c)Σµ(z).
Hence there exists u = u(µ, c,m, n) such that

Σ(µ×∪δc)�nt(z) = Σµ×∪δc(z)
t = uΣµ�mt(z/c) = cuΣµ�mt ×∪δc(z)

= Σ(µ�mt ×∪δc)�δ(cu)−1
(z).

Thus (µ ×∪ δc)�nt = (µ�mt ×∪ δc) � δ(cu)−1 , which implies the equivalence be-
tween (1) and (2).

Also the following properties are useful:

(1) For any µ ∈ ID(×∪;T)0,m, n ∈ Z, t ≥ 1, the measure (µ�mt)�n1/t ∈
ID(×∪;T)0 exists and equals µ � δc for some c ∈ T.

(2) For any µ ∈ ID(×∪;T)0,m, n ∈ Z, t > 0, the measure (µ
×∪m t)

×∪n 1/t ∈
ID(×∪;T)0 exists and equals µ ×∪ δc for some c ∈ T.

Let us turn to the following, which clearly implies Proposition 4.7.

Proposition A.5. M(n)
t (ID(×∪;T)) = M(0)

t (ID(×∪;T)) for any n and
t > 0.

Proof. Suppose n ∈ Z, t > 0 and µ ∈ ID(×∪;T)0 and define n′ :=
(t+ 1) arg(n)m1(µ) with arg(n)m1(µ) denoting the argument in In. Let ν ∈
ID(×∪;T)0 and c ∈ T be defined by

ν := M(n)
t (µ)

×∪0(t+1) =
(
(µ�n(t+1))

×∪n′ 1/(t+1)
)×∪0(t+1)

= µ�n(t+1) ×∪ δc.

From Lemma A.4, the measure ν�m1/(t+1) = (µ�n(t+1) ×∪ δc)�m1/(t+1) exists
in ID(×∪;T)0, where m := [(t+1) arg(0)m1(µ)]. Note that arg(m)m1(µ) ∈ Im
and 1

t+1 arg(m)m1(ν) ∈ I0. Therefore

M(0)
t (ν�m1/(t+1)) = ν

×∪m 1/(t+1) = M(n)
t (µ),

implying that M(0)
t (ID(×∪;T)0) ⊃ M(n)

t (ID(×∪;T)0). The converse inclusion
is similar.
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improve the organization of this paper.

O. Arizmendi was supported by funds of R. Speicher from the Alfried
Krupp von Bohlen und Halbach Stiftung.

T. Hasebe was supported by Global COE Program at Kyoto University.

References

[1] M. Anshelevich, Free martingale polynomials, J. Funct. Anal. 201 (2003), 228–261.
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