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Abstract. Let A,B be positive operators on a Hilbert space with 0<m≤A,B≤M .
Then for every unital positive linear map Φ,

Φ2((A+B)/2) ≤ K2(h)Φ2(A ] B),

and

Φ2((A+B)/2) ≤ K2(h)(Φ(A) ] Φ(B))2,

where A ] B is the geometric mean and K(h) = (h+ 1)2/(4h) with h =M/m.

1. Introduction. It is well known that for two general positive opera-
tors A,B,

A ≥ B ; A2 ≥ B2.

This simple observation already reveals the subtleties of operator inequal-
ities. It is thus interesting to know for what kind of operator inequalities,
when they are squared, the inequality relation is preserved. In [L], we have
shown that the operator Kantorovich inequality can be squared, more pre-
cisely:

Theorem 1.1 ([L]). Let 0 < m ≤ A ≤M . Then for every positive unital
linear map Φ,

(1.1) Φ2(A−1) ≤ K2(h)Φ(A)−2,

where K(h) = (h+ 1)2/(4h) with h = M/m.

As is customary, we reserve M,m for scalars. Other capital letters are
used to denote general elements of the C∗-algebra B(H) of all bounded linear
operators acting on a Hilbert space (H, 〈·, ·〉). Also, we identify a scalar with
the unit multiplied by this scalar. The quantity K(h) = (h+ 1)2/(4h) with
h = M/m is called the Kantorovich constant.
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In this article, the inequality between operators is in the sense of Loewner
partial order, that is, T ≥ S (the same as S ≤ T ) means T −S is positive. If
T ≥ 0, then T has a unique square root T 1/2 that is positive. The operator
norm is denoted by ‖ · ‖. Finally, if T, S ∈ B(H), we use T ⊕S to denote the
2× 2 operator matrix

[
T 0
0 S

]
, regarded as an operator on H⊕H.

For A,B > 0, the geometric mean A ] B is defined by

A ] B = A1/2(A−1/2BA−1/2)1/2A1/2.

It can be easily verified that the geometric mean is the unique positive
solution to the Riccati equation XA−1X = B, and so A ] B = B ] A. One
motivation for such a notion is of course the operator AM-GM inequality

(1.2)
A+B

2
≥ A ] B.

1.1. Preliminaries. Can the AM-GM inequality (1.2) be squared? The
answer is no and this is the content of the next proposition.

Proposition 1.2. There are examples that(
A+B

2

)2

≥ (A ] B)2

fails for some A,B > 0.

Proof. We can easily find examples where S ≥ T > 0, but S2 ≥ T 2 fails.
So we wish to find A,B > 0 such that

S =
A+B

2
,(1.3)

T = A ] B.(1.4)

From (1.4), we get B = TA−1T ; substituting it into (1.3), we have

(1.5) A+ TA−1T = 2S, with A unknown.

The positive solution to equation (1.5) is a much studied problem; we know
from [E, Theorem 11] that (1.5) has a solution A > 0 if and only if the
spectral radius ρ((2S)−1/2T (2S)−1/2) is at most 1/2, i.e., ρ(TS−1) ≤ 1,
which is exactly the condition S ≥ T > 0. Thus (1.5) is consistent, so the
desired A,B > 0 exist.

The main result of this article is the assertion that a reverse version of
the operator AM-GM inequality can be squared, which we will present in
the next section. In Section 3, we further make use of our idea to square
a recent result concerning a reverse inequality for the geometric mean of n
operators. In Section 4, we formulate some open problems for future inves-
tigation.
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2. Main results

Theorem 2.1. Let 0 < m ≤ A,B ≤ M . Then for every positive unital
linear map Φ,

(2.1) Φ2((A+B)/2) ≤ K2(h)Φ2(A ] B)

and

(2.2) Φ2((A+B)/2) ≤ K2(h)(Φ(A) ] Φ(B))2.

The line of proof is similar to the one presented in [L]. A key lemma is
the following norm inequality.

Lemma 2.2 ([BK]). Let A,B ≥ 0. Then

(2.3) ‖AB‖ ≤ 1
4‖A+B‖2.

Proof of Theorem 2.1. The inequality (2.1) is equivalent to

(2.4) ‖Φ((A+B)/2)Φ−1(A ] B)‖ ≤ K(h).

By Lemma 2.2, (2.1) is true if

(2.5) Φ((A+B)/2) +MmΦ−1(A ] B) ≤M +m.

The well known Choi inequality (see [B, p. 41]) says that

Φ(T−1) ≥ Φ−1(T ) for any T > 0,

so (2.1) would follow if

(2.6) Φ((A+B)/2) +MmΦ((A ] B)−1) ≤M +m.

Indeed, we shall show a stronger inequality than (2.6). As (see [L, (2.3)])

Φ(A) +MmΦ(A−1) ≤M +m,

Φ(B) +MmΦ(B−1) ≤M +m,

summing up, we get

(2.7) Φ((A+B)/2) +MmΦ((A−1 +B−1)/2) ≤M +m.

Note that (2.7) is tighter than (2.6), since (A−1 + B−1)/2 ≥ A−1 ] B−1 ≥
(A ] B)−1 and Φ is order preserving (Φ is linear!). This proves (2.1). The
proof of (2.2) is similar; we omit the details.

It seems a direct proof of (2.6) is not apparent. My original attempt
started with the scalar case, as in the proof of other operator inequalities
(see for example [F, KM, T]): Suppose 0 < m ≤ a, b ≤M ; we want to show

(2.8)
a+ b

2
+
Mm√
ab
≤M +m.

Without loss of generality, assume m = 1, 1 ≤ a ≤ b ≤ h; then (2.8) becomes

(2.9)
a+ b

2
+

h√
ab
≤ h+ 1.
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Observe that (h − b)(1 − (ab)−1/2) and the integral from t = a to t = b of
(1− (at)−1/2) are both non-negative. Then (2.9) follows from

(h− b)(1− (ab)−1/2) +
1

2

b�

a

(1− (at)−1/2) dt ≥ 0.

The main obstacle is that (2.6) does not reduce to (2.8) via a usual approach.
For A,B > 0, we know [B, p. 107] that for every positive unital linear

map Φ,

(2.10) Φ(A) ] Φ(B) ≥ Φ(A ] B).

It is tempting to consider whether (2.10) can be squared. If this were the
case, then (2.1) would be stronger than (2.2). However, the following exam-
ple refutes the conjecture.

Example 2.3. Consider Â = A⊕B, B̂ = B⊕A with A,B > 0. Let the
map Ψ be defined by

Ψ(A1 ⊕A2) =

(
A1 +A2

2

)
⊕
(
A1 +A2

2

)
.

Clearly, Ψ is a positive unital linear map. Then

(Ψ(Â) ] Ψ(B̂))2 ≥ Ψ2(Â ] B̂)

would imply
(
A+B
2

)2 ≥ (A ] B)2, which leads to a contradiction in view of
Proposition 1.2.

To end this section, we remark that the Choi inequality cannot be
squared either (1). This is the content of the next example.

Example 2.4. Consider the positive unital linear map Ψ defined by

Ψ

([
A1 A2

A3 A4

])
= A1.

We can easily find examples where S > T > 0, but S2 ≥ T 2 (and hence
S−2 ≤ T−2) fails. Let C = S − T (so C > 0). Given any B > 0, it is easy to

check
[ S B]C
B]C B

]
> 0. Now note that

Ψ−1
([

S B ] C

B ] C B

])
= S−1

and

Ψ

([
S B ] C

B ] C B
−1
])

=
(
S − (B ] C)B−1(B ] C)

)−1
= (S − C)−1 = T−1.

(1) This fact has already been observed by J. Bourin.
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3. An application. In [FFNPS], J. I. Fujii et al. showed a reverse
weighted AM-GM inequality for n operators. The weighted geometric mean
therein is due to Lawson and Lim [LL]. When the weights are equal, Lawson–
Lim’s geometric mean reduces to the so called Ando–Li–Mathias geometric
mean [ALM]. For notational simplicity, we consider the latter. We denote
the Ando–Li–Mathias geometric mean for A1, . . . , An > 0 by G(A1, . . . , An).
Unfortunately, there is no explicit formula for G(A1, . . . , An) in terms of
A1, . . . , An when n ≥ 3. However, for our purpose, we only need two basic
properties of such a mean:

G(A−11 , . . . , A−1n ) = G−1(A1, . . . , An), G(A1, . . . , An) ≤ A1 + · · ·+An

n
.

For more details, we refer to [ALM, LL].

We start by quoting J. I. Fujii et al.’s result.

Theorem 3.1 ([FFNPS]). Let 0 < m ≤ Ai ≤M for i = 1, . . . , n. Then

(3.1)
A1 + · · ·+An

n
≤ K(h)G(A1, . . . , An)

and

(3.2)
A1 + · · ·+An

n
≤ S2(h)G(A1, . . . , An),

where

S(h) =
h1/(h−1)

e log h1/(h−1)

(with the understanding S(1) = limh→1 S(h) = 1) is the so called Specht
ratio and h = M/m.

Indeed, it can be shown that

(3.3) S(h) ≤ K(h) ≤ S2(h), h ≥ 1.

We will give a heuristic proof to (3.3) in Section 4. From (3.3), we find that
(3.1) is stronger than (3.2).

In this section, using the idea we presented in the previous section, we
show that (3.1) can be squared as well. The reader should note that an
analogous result can also be stated for Lawson–Lim’s geometric mean.

Theorem 3.2. Let 0 < m ≤ Ai ≤M for i = 1, . . . , n. Then

(3.4)

(
A1 + · · ·+An

n

)2

≤ K2(h)G2(A1, . . . , An).

Proof. Similar to the proof of Theorem 2.1, it suffices to show

A1 + · · ·+An

n
+MmG−1(A1, . . . , An) ≤M +m.
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As

Ai +MmA−1i ≤M +m, i = 1, . . . , n,

we have
A1 + · · ·+An

n
+Mm

A−11 + · · ·+A−1n

n
≤M +m.

Thus

A1 + · · ·+An

n
+MmG−1(A1, . . . , An)

=
A1 + · · ·+An

n
+MmG(A−11 , . . . , A−1n ) ≤M +m.

The desired inequality follows.

4. Open problems

4.1. Optimal coefficient. The reverse AM-GM inequality for scalars
was first established by Specht [S]: For 0 < m ≤ ai ≤M , i = 1, . . . , n,

(4.1)
a1 + · · ·+ an

n
≤ S(h)(a1 · · · an)1/n,

and the Specht ratio S(h) in (4.1) is the optimal constant.

Comparing (3.1) and (4.1), we infer that S(h) ≤ K(h). This proves the
first inequality of (3.3).

Tominaga [T] showed that in the case n = 2, (4.1) can be extended to
the operator version.

Proposition 4.1 ([T]). Let 0 < m ≤ A,B ≤M . Then

(4.2)
A+B

2
≤ S(h)(A ] B).

Thus, under the condition of Proposition 4.1 and for any x ∈ H,

S(h)〈(A ] B)x, x〉 ≥
〈
A+B

2
x, x

〉
=

1

2
(〈Ax, x〉+ 〈Bx, x〉)

≥
√
〈Ax, x〉〈Bx, x〉,

i.e.,

(4.3) 〈Ax, x〉〈Bx, x〉 ≤ S2(h)(〈(A ] B)x, x〉)2.

The classical Kantorovich inequality says that for 0 < m ≤ A ≤ M and
any x ∈ H,

(4.4) 〈Ax, x〉〈A−1x, x〉 ≤ K(h).

As we know from [FINS], the following inequality is equivalent to (4.4):

(4.5) 〈Ax, x〉〈Bx, x〉 ≤ K(h)(〈(A ] B)x, x〉)2,
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where 0 < m ≤ A,B ≤ M and x ∈ H. The Kantorovich constant K(h) in
(4.5) is the optimal constant.

Comparing (4.3) and (4.5), we infer that K(h) ≤ S2(h). This proves
the second inequality of (3.3). An analytical proof of (3.3) is quite tedious,
though not impossible.

Considering optimality of the coefficient in these inequalities, we make
the following conjecture.

Conjecture 4.2. The Kantorovich constant K(h) can be replaced by
the Specht ratio S(h) in (2.1), (2.2) and (3.4).

Our study reveals an interesting phenomenon: the reverse versions of
some classical operator inequalities can be squared. We are not sure whether
this is a universal phenomenon.

4.2. Higher power. And what about higher powers? This is what we
consider in this subsection.

Note that for 0 < m ≤ A ≤M , we have

M2m2A−2 +A2 ≤M2 +m2,

and hence

(4.6) M2m2Φ(A−2) + Φ(A2) ≤M2 +m2.

Kadison’s inequality (see [B, p. 39]) says

Φ2(T ) ≤ Φ(T 2)

for every unital positive linear map Φ and T > 0. So it follows from (4.6)
that

(4.7) M2m2Φ2(A−1) + Φ2(A) ≤M2 +m2.

Following the line of proof of Theorem 2.1 and noting that

K(h2) =
(M2 +m2)2

4M2m2
,

we are led to the next result.

Theorem 4.3. Let 0 < m ≤ A ≤M . Then

(4.8) Φ4(A−1) ≤ K2(h2)Φ(A)−4.

It is clear that

K(h2) ≥ K2(h).

Thus, it is natural to ask whether (4.8) can be strengthened, in other words,
whether (1.1) can be further squared. The same question can also be raised
for (2.1), (2.2) and (3.4). As I do not have a satisfactory answer to these
questions for the time being, I leave them as a topic for further research.
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