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Abstract. This paper deals with Besov spaces of logarithmic smoothness B0,b
p,r formed

by periodic functions. We study embeddings of B0,b
p,r into Lorentz–Zygmund spaces

Lp,q(logL)β . Our techniques rely on the approximation structure of B0,b
p,r, Nikol’skĭı type

inequalities, extrapolation properties of Lp,q(logL)β and interpolation.

1. Introduction. Besov spaces of generalized smoothness arise in the
solution of some natural questions. Among other things, they are useful in
fractal analysis and a related spectral theory (see the book by Triebel [32]
and the references given there), as well as in probability theory and in the
theory of stochastic processes (see the paper by Farkas and Leopold [18]).
Besov spaces of smoothness near zero are distinguished elements of the class
above.

Already in 1979, DeVore, Riemenschneider and Sharpley [14] introduced

spaces B0,b
p,r with zero classical smoothness and logarithmic smoothness with

exponent b. They defined them by means of the modulus of continuity.

Similar spaces B
(0,b)
p,r were considered later by Merucci [22] and Cobos and

Fernandez [10] but following the Fourier-analytical approach. The precise
relationship between these two kinds of spaces has not been established yet.
The first results in this direction can be found in the recent report of Triebel
[33, Section 3].

Triebel has also studied in [33] embeddings of those spaces into Lorentz–

Zygmund spaces Lp,q(logL)β. For spaces B0,b
p,r, this problem was already

considered by Caetano, Gogatishvili and Opic [6] who proved sharp em-
beddings for 1 ≤ p < ∞ and 1 ≤ r ≤ q ≤ ∞. Here b + 1/r > 0 and
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β = b + 1/r + 1/max{p, q} − 1/q. See also [7] where compact embeddings
are studied. Techniques of [6] are related to Kolyada’s inequality which es-
timates from below the modulus of continuity in terms of non-increasing
rearrangements of functions. The method used in [33] to establish embed-
dings relies on expansions in terms of the Haar basis and the description of
Lorentz–Zygmund spaces as extrapolation spaces.

In this paper we consider Besov spaces of logarithmic smoothness formed
by periodic functions and we prove similar embeddings to those of [6] which
cover the full range of indices if β > 0, that is, for 0 < p < ∞ and 0 <
r ≤ q ≤ ∞. Our methods are based on the description of Besov spaces as
approximation spaces and are simpler than those in [6].

As was shown by Pietsch [27, 28] (see also [5, 24, 26]) the theory of ap-
proximation spaces is very flexible and produces interesting results on spaces
of functions, sequences and operators. In particular, Pietsch established in
[27, p. 126] (see also [29, 6.7.8]) embeddings between classical Besov spaces
by means of the Nikol’skĭı inequality for trigonometric polynomials. In the
present paper, we use the description of Besov spaces of logarithmic smooth-
ness as limiting approximation spaces in the sense of Cobos and Milman [12]
and Fehér and Grässler [19] to derive embeddings into Lorentz–Zygmund
spaces Lp,q(logL)β. A key role in our arguments is played by the Nikol’skĭı
inequality and a variant of it. Extrapolation properties of spaces Lp,q(logL)β
are important in the case β > 0, while we use interpolation to deal with the
case β ≤ 0.

In the subsequent paper [8], the authors have given another approach to

study embeddings of spaces B0,b
p,r into Lorentz–Zygmund spaces.

2. Limiting approximation spaces and Besov spaces. Let (X, ‖·‖X)
be a quasi-Banach space and let (Gn)n∈N0 be a sequence of subsets of X
satisfying the following conditions:

G0 = {0},(2.1)

Gn ⊆ Gn+1 for any n ∈ N0 = N ∪ {0},(2.2)

Gn +Gm ⊆ Gn+m for any n,m ∈ N.(2.3)

For any f ∈ X, we put

En(f) = En(f ;X) = inf{‖f − g‖X : g ∈ Gn−1}, n ∈ N,

for the error of best approximation of f by the elements of Gn−1.

Let 0 < q ≤ ∞ and γ ∈ R. The (limiting) approximation space X
(0,γ)
q =

(X,Gn)
(0,γ)
q consists of all f ∈ X having a finite quasi-norm
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‖f‖
X

(0,γ)
q

=
( ∞∑
n=1

(
(1 + log n)γEn(f)

)q
n−1

)1/q
if 0 < q <∞,

‖f‖
X

(0,γ)
q

= sup
n≥1
{(1 + log n)γEn(f)} if q =∞.

See [13, 12, 19]. Note that if γ < −1/q then (
∑∞

n=1(1 + log n)γqn−1)1/q <∞
and so X

(0,γ)
q = X. Hence, the case of interest is γ ≥ −1/q.

Put µn = 22
n
, n = 0, 1, 2, . . . . It is shown in [13, 19] that X

(0,γ)
q is formed

by all those f ∈ X such that there is a representation f =
∑∞

n=0 gn with
gn ∈ Gµn and ( ∞∑

n=0

(2n(γ+1/q)‖gn‖X)q
)1/q

<∞.

Moreover

(2.4) ‖f‖(0,γ),q = inf
{( ∞∑

n=0

(2n(γ+1/q)‖gn‖X)q
)1/q

: f =
∞∑
n=0

gn, gn ∈ Gµn
}

is a quasi-norm equivalent to ‖ · ‖
X

(0,γ)
q

.

Let T = [0, 2π) be the unit circle. For 0 < p ≤ ∞, we write Lp for
the Lebesgue space of all (classes of) real-valued 2π-periodic measurable
functions f such that

‖f‖Lp =
(2π�

0

|f(eix)|p dx
)1/p

<∞

with the obvious modification if p =∞. Given 0 < r ≤ ∞ and b ≥ −1/r, the

Besov space B0,b
p,r consists of all functions f ∈ Lp having a finite quasi-norm

‖f‖
B0,b
p,r

= ‖f‖Lp +

(1�

0

(
(1 + |log t|)bω(f, t)p

)r dt
t

)1/r

where ω(f, t)p is the modulus of continuity

ω(f, t)p = sup
|h|≤t
‖∆hf‖Lp

and
∆hf(x) = f(x+ h)− f(x).

In order to describe B0,b
p,r as an approximation space, we take X = Lp

and Gn = Tn, the subset of all trigonometric polynomials of order n,

Tn =
{∑
|k|≤n

cke
ikx : c−k = ck

}
.

In what follows, if W,Z are non-negative quantities depending on certain
parameters, we write W . Z if there is a constant c > 0 independent of the
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parameters in W and Z such that W ≤ cZ. If W . Z and Z .W , we write
W ∼ Z.

Lemma 2.1. Let 0 < p, r ≤ ∞ and b ≥ −1/r. Then we have, with
equivalence of quasi-norms,

B0,b
p,r = (Lp, Tn)(0,b)r .

Proof. If 1 ≤ p, r ≤ ∞ this formula was established in [14, Corollary 7.1]
by using weak type interpolation ideas. Next we check the case of the other
values of parameters with the help of Jackson and Bernstein-type inequa-
lities.

Assume that 0 < p < 1. According to Ivanov [20] and Storozhenko,
Krotov and Osval’d [31], for any f ∈ Lp we have

En(f) ≤ cω
(
π

n
, f

)
p

where c = c(p).

Hence

‖f‖
(Lp)

(0,b)
r

=
( ∞∑
n=1

[(1 + log n)bEn(f)]rn−1
)1/r

.

( ∞∑
n=1

[
(1 + log n)bω

(
π

n
, f

)
p

]r
n−1

)1/r

.

(
ω(π, f)rp +

∞�

1

[
(1 + log t)bω

(
π

t
, f

)
p

]r dt
t

)1/r

. ‖f‖Lp +

(1�

0

[(
1 + log

π

t

)b
ω(t, f)p

]r dt
t

)1/r

∼ ‖f‖
B0,b
p,r
.

To establish the converse inequality, we first recall that it was also shown
by Ivanov [20] and Storozhenko, Krotov and Osval’d [31] that

ω

(
π

n
, f

)
p

≤ c

n

( n∑
k=1

kp−1Ek(f)p
)1/p

.

Therefore

‖f‖
B0,b
p,r

. ‖f‖Lp +
( ∞∑
n=0

[(1 + n)bω(2−n, f)p]
r
)1/r

. ‖f‖Lp +
( ∞∑
n=0

[
(1 + n)b2−n

( 2n∑
k=1

kp−1Ek(f)p
)1/p]r)1/r



Besov spaces of logarithmic smoothness 197

∼ ‖f‖Lp +
( ∞∑
n=0

[
(1 + n)b2−n

( n∑
ν=0

2νpE2ν (f)p
)1/p]r)1/r

= ‖f‖Lp +
( ∞∑
n=0

[
(1 + n)bp2−np

n∑
ν=0

2νpE2ν (f)p
]r/p)1/r

. ‖f‖Lp +
( ∞∑
n=0

((1 + n)bE2n(f))r
)1/r

where we have used in the last inequality a variant of Hardy’s inequality
(see [26, Lemma 3.10, p. 70]). Consequently,

‖f‖
B0,b
p,r

.
( ∞∑
n=0

[(1 + n)bE2n(f)]r
)1/r

∼
( ∞∑
n=1

[(1 + log n)bEn(f)]rn−1
)1/r

= ‖f‖
(Lp)

(0,b)
r

.

3. Lorentz–Zygmund spaces and Nikol’skĭı inequality. Let 0 <
p < ∞, 0 < q ≤ ∞ and −∞ < β < ∞. The Lorentz–Zygmund space
Lp,q(logL)β on T is formed by all (classes of) measurable functions f on T
having a finite quasi-norm

‖f‖Lp,q(logL)β =

(2π�

0

[t1/p(1 + |log t|)βf∗(t)]q dt
t

)1/q

.

Here f∗ is the non-increasing rearrangement of f given by

f∗(t) = inf
{
s > 0 : m({x ∈ T : |f(eix)| > s}) ≤ t

}
.

See [2, 16]. Observe that if p = q, then Lp,q(logL)β is just the Zygmund
space Lp(logL)β. In particular, for β = 0 we obtain the Lebesgue space Lp.
If β = 0 but p 6= q, we get the Lorentz function space Lp,q.

The Nikol’skĭı inequality for trigonometric polynomials (see [23, 3.4.3]
and [1]) says that there is a universal constant c > 1 such that

(3.1) ‖g‖Lq ≤ cn1/p−1/q‖g‖Lp for all 0 < p ≤ q ≤ ∞, g ∈ Tn and n ∈ N.
This inequality has been extended to Lorentz spaces by Sherstneva [30] (see
also [15]).

Next we establish a result in this direction but involving Lorentz–Zyg-
mund spaces.

Lemma 3.1. Let 0 < q < p <∞, d > 1/p− 1/q and let µn = 22
n

. There
is a constant c > 0 such that

‖g‖Lp,q(logL)d ≤ c2
n(1/q−1/p+d)‖g‖Lp for all g ∈ Tµn and n ∈ N0.
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Proof. It is not hard to check that

(3.2) ‖f‖Lp,∞ ≤ (q/p)1/q‖f‖Lp,q , f ∈ Lp,q.
Moreover, by [4, Theorem 5.1.2], we have

‖h‖L∞ ≤ e4nsh∗(s) for all s ∈ (0, π/2] and h ∈ Tn.
This inequality yields

(3.3) ‖h‖Lp,∞ ≥ s1/pe−4ns‖h‖L∞ for all s ∈ (0, π/2] and h ∈ Tn.
Indeed,

‖h‖Lp,∞ = sup
0<t<2π

t1/ph∗(t) ≥ s1/ph∗(s) ≥ s1/pe−4ns‖h‖L∞ .

We proceed now with the inequality of the statement. Take any n ∈ N0

and g ∈ Tµn . Let s = 2−2
n

and ρ(t) = (1 + |log t|)d. We have

‖g‖qLp,q(logL)d =

s�

0

tq/p−1ρ(t)qg∗(t)q dt+

2π�

s

tq/p−1ρ(t)qg∗(t)q dt

= I1 + I2.

Using [16, Proposition 3.4.33/(v)] and (3.3), (3.2), we derive

I1 ≤ ‖g‖qL∞
s�

0

tq/p−1ρ(t)q dt

∼ ‖g‖qL∞s
q/pρ(s)q ≤ e4µnsqρ(s)q‖g‖qLp

= e4q(1 + |log 2−2
n |)dq‖g‖qLp

∼ 2ndq‖g‖qLp .
As for I2, we write

I2 =

2π�

s

(g∗(t)p)q/p(ρ(t)λt−1)1−q/p dt

where λ = q(1− q/p)−1 = (1/q − 1/p)−1. By the Hölder inequality, we get

I2 ≤ ‖g‖qLp
(2π�
s

ρ(t)λt−1 dt
)1−q/p

.

We estimate the integral by splitting it into two sets. Clearly,
2π�

1

ρ(t)λt−1 dt = c1 <∞.

Furthermore, since dλ > −1, we have
1�

s

(1− log t)dλt−1 dt . (1− log s)1+dλ.
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Taking into account that s = 2−2
n
, we obtain

I2 . ‖g‖qLp(1− log s)(1+dλ)(1−q/p)

∼ 2n(1/q−1/p+d)q‖g‖qLp .

Consequently,

‖g‖Lp,q(logL)d . 2n(1/q−1/p+d)‖g‖Lp .

4. Embeddings. By the construction of Besov spaces B0,b
p,r, we have

B0,b
p,r ↪→ Lp. Next we will improve this embedding with the help of Lorentz–

Zygmund spaces. Note that

Lp,q(logL)β ↪→ Lp

if either q ≤ p and β ≥ 0, or p < q and β > 1/p − 1/q (see [16, Theorem
3.4.45]).

It was shown by Edmunds and Triebel [17, 2.6.2, pp. 69–73] that Zyg-
mund spaces Lp(logL)β can be described in terms of simple Lebesgue spaces.
For Lorentz–Zygmund spaces a similar result holds but now in terms of
Lorentz spaces. In particular, for β > 0 the result reads as follows (see
Karadzhov and Milman [21, Theorems 4.4 and 4.7] or Cobos, Fernández-
Cabrera, Manzano and Mart́ınez [11, Corollary 3.3]).

Let 0 < p <∞, 0 < q ≤ ∞, β > 0 and j0 ∈ N be such that for all j ∈ N
with j ≥ j0 we have 1/pνj = 1/p − 1/2j > 0. Then Lp,q(logL)β consists of
all measurable functions f on T which can be represented as

(4.1) f =

∞∑
j=j0

fj , fj ∈ Lpνj ,q,

such that

(4.2)
( ∞∑
j=j0

2jβq‖fj‖qL
p
νj ,q

)1/q
<∞.

Moreover, the infimum of the expression in (4.2) taken over all admissible
representations (4.1) is a quasi-norm equivalent to ‖ · ‖Lp,q(logL)β .

Next we establish the embedding results.

Theorem 4.1. Let 0 < p < ∞, 0 < r ≤ q ≤ ∞, b + 1/r > 0 and let
β = b+ 1/r + 1/max{p, q} − 1/q > 0. Then

B0,b
p,r ↪→ Lp,q(logL)β.

Proof. By Lemma 2.1 we know that B0,b
p,r = (Lp, Tn)

(0,b)
r , so we can work

with the quasi-norm ‖ · ‖(0,b),r defined in (2.4). We distinguish two cases.
If q ≤ p, then β = b + 1/r + 1/p − 1/q and β > 0 by assumption. Let

j0 ∈ N be such that 1/pνj > 0 for all j ≥ j0. If j ≥ j0 + 1, it follows from
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[16, Proposition 3.4.4] that

(4.3) ‖h‖L
p
νj ,q
≤ cj‖h‖L

p
νj−1

for all h ∈ Lpνj−1

where

cj = (2π)1/p
νj−1/pνj−1

[
pνj (pνj−1 − q)
q(pνj−1 − pνj )

]1/q−1/pνj−1

= (2π)1/2
j

[
p− q
pq

2j + 2

]1/q−1/p+1/2j−1

∼ 2j(1/q−1/p).

By (2.4) there is a constant c > 0 such that given any f ∈ B0,b
p,r we can find

a representation f =
∑∞

j=0 gj with gj ∈ Tµj and( ∞∑
j=0

(2j(b+1/r)‖gj‖Lp)r
)1/r

≤ c‖f‖
B0,b
p,r
.

Using (4.3) and the Nikol’skĭı inequality (3.1), we derive

‖gj−j0−1‖Lpνj ,q . 2j(1/q−1/p)22
j−j0−12−j+1‖gj−j0−1‖Lp

∼ 2j(1/q−1/p)‖gj−j0−1‖Lp .
Therefore, since r ≤ q, we obtain

‖f‖Lp,q(logL)β .
( ∞∑
j=j0+1

2jβq‖gj−j0−1‖
q
L
p
νj ,q

)1/q
.
( ∞∑
j=j0+1

2jβq2j(1/q−1/p)q‖gj−j0−1‖
q
Lp

)1/q
.
( ∞∑
j=0

2j(b+1/r)r‖gj‖rLp
)1/r

. ‖f‖
B0,b
p,r
.

Suppose now p < q, so β = b+ 1/r. Let j0 ∈ N be such that p < pνj < q
for all j ≥ j0. According to [16, Proposition 3.4.4],

(4.4) ‖h‖L
p
νj ,q
≤ C‖h‖L

p
νj−1

for all h ∈ Lpνj−1

where now C is independent of j ∈ N with j ≥ j0 + 1. Take any f ∈ B0,b
p,r

and choose a representation f =
∑∞

j=0 gj with gj ∈ Tµj and( ∞∑
j=0

(2j(b+1/r)‖gj‖Lp)r
)1/r

≤ c‖f‖
B0,b
p,r
.
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By (4.4) and the Nikol’skĭı inequality (3.1), we get

‖gj−j0−1‖Lpνj ,q . ‖gj−j0−1‖Lpνj−1
. ‖gj−j0−1‖Lp .

Consequently,

‖f‖Lp,q(logL)β .
( ∞∑
j=j0+1

2j(b+1/r)q‖gj−j0−1‖
q
L
p
νj ,q

)1/q
.
( ∞∑
j=j0+1

2j(b+1/r)q‖gj−j0−1‖
q
Lp

)1/q
.
( ∞∑
j=0

2j(b+1/r)r‖gj‖rLp
)1/r

. ‖f‖
B0,b
p,r
.

This completes the proof.

If β ≤ 0 then the description of Lp,q(logL)β in terms of Lorentz spaces
is of a different type (see [11, Corollary 3.3]). For this reason we have to use
another approach. We start with the case 0 < r ≤ 1.

Theorem 4.2. Let 1 ≤ q < p < ∞, 0 < r ≤ 1, b + 1/r > 0 and
β = b+ 1/r + 1/p− 1/q. Then

B0,b
p,r ↪→ Lp,q(logL)β.

Proof. First note that under the present assumptions, the quasi-norm
of Lp,q(logL)β is equivalent to a norm (see [16, Lemma 3.4.39]). Take any

f ∈ B0,b
p,r and choose a representation f =

∑∞
j=0 gj with gj ∈ Tµj and( ∞∑

j=0

(2j(b+1/r)‖gj‖Lp)r
)1/r

≤ c‖f‖
B0,b
p,r
.

Using Lemma 3.1, we derive

‖f‖Lp,q(logL)β .
∞∑
j=0

‖gj‖Lp,q(logL)β

.
∞∑
j=0

2j(b+1/r)‖gj‖Lp

.
( ∞∑
j=0

(2j(b+1/r)‖gj‖Lp)r
)1/r

. ‖f‖
B0,b
p,r
.
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Next we deal with the case 1 < r ≤ q. For this, we will use the real
interpolation method (see [3]).

Theorem 4.3. Let 1 < r ≤ q < p <∞, b+ 1/r > 0 and β = b+ 1/r +
1/p− 1/q. Then

B0,b
p,r ↪→ Lp,q(logL)β.

Proof. Take b0, b1 such that

0 < b0 + 1 < b+ 1/r < b1 + 1

and let 0 < θ < 1 with

b+ 1/r = (1− θ)(b0 + 1) + θ(b1 + 1) = (1− θ)b0 + θb1 + 1.

According to Theorem 4.2, we have the continuous embeddings

B0,bi
p,1 ↪→ Lp,q(logL)bi+1+1/p−1/q, i = 0, 1.

Moreover, by [19, Theorem 5], we have

(B0,b0
p,1 , B

0,b1
p,1 )θ,r = B0,γ

p,r

where γ = (1− θ)b0 + θb1 + 1− 1/r = b, and according to [25, Example 6.1],
if τi = bi + 1 + 1/p− 1/q, i = 0, 1, then

(Lp,q(logL)τ0 , Lp,q(logL)τ1)θ,r ↪→ (Lp,q(logL)τ0 , Lp,q(logL)τ1)θ,q

= Lp,q(logL)τ

where τ = (1− θ)τ0 + θτ1 = b+ 1/r + 1/p− 1/q = β. Consequently,

B0,γ
p,r ↪→ Lp,q(logL)β.

Note that if β = 0 then Theorems 4.2 and 4.3 give the following embed-
ding into Lorentz spaces.

Corollary 4.4. Let 1 < p < ∞, 0 < r < ∞ and −1/r < b ≤
min{−1/p, 1− 1/r − 1/p}. Set 1/q = b+ 1/r + 1/p. Then

B0,b
p,r ↪→ Lp,q.

We close the paper with a direct consequence of the previous embeddings
and [9, Corollary 3.6].

Corollary 4.5. Assume that either

0 < p <∞, 0 < r ≤ q ≤ ∞, b+ 1/r > 0, β = b+
1

r
+

1

max{p, q}
− 1

q
> 0,

or

1 ≤ q < p <∞, 0 < r <∞, r ≤ q, b+ 1/r > 0, β = b+
1

r
+

1

p
− 1

q
.

If δ < β then the embedding

B0,b
p,r ↪→ Lp,q(logL)δ

is compact.
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[19] F. Fehér and G. Grässler, On an extremal scale of approximation spaces, J. Comput.
Anal. Appl. 3 (2001), 95–108.

[20] V. I. Ivanov, Direct and inverse theorems of the theory of approximation in Lp
spaces, 0 < p < 1, Mat. Zametki 18 (1975), 641–658 (in Russian).

[21] G. E. Karadzhov and M. Milman, Extrapolation theory: new results and applications,
J. Approx. Theory 133 (2005), 38–99.

[22] C. Merucci, Applications of interpolation with a function parameter to Lorentz,
Sobolev and Besov spaces, in: Interpolation Spaces and Allied Topics in Analysis,
Lecture Notes in Math. 1070, Springer, Berlin, 1984, 183–201.
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