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Abstract. We study the complexity of Banach space valued integration in the ran-
domized setting. We are concerned with r times continuously differentiable functions
on the d-dimensional unit cube Q, with values in a Banach space X, and investigate
the relation of the optimal convergence rate to the geometry of X. It turns out that
the nth minimal errors are bounded by cn−r/d−1+1/p if and only if X is of equal norm
type p.

1. Introduction. Integration of scalar valued functions is an inten-
sively studied topic in the theory of information-based complexity (see [12],
[10], [11]). Motivated by applications to parametric integration, recently the
complexity of Banach space valued integration was considered in [2]. It was
shown that the behaviour of the nth minimal errors erann of randomized in-
tegration in Cr(Q,X) is related to the geometry of the Banach space X
in the following way: The infimum of the exponents of the rate is deter-
mined by the supremum of p such that X is of type p. In the present paper
we further investigate this relation. We establish a connection between nth
minimal errors and equal norm type p constants for n vectors. It follows
that erann is bounded by cn−r/d−1+1/p if and only if X is of equal norm
type p.

2. Preliminaries. Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. We intro-
duce some notation and concepts from Banach space theory needed in what
follows. For Banach spaces X and Y let BX be the closed unit ball of X and
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L (X,Y ) the space of bounded linear operators from X to Y , endowed with
the usual norm. If X = Y , we write L (X). The norm of X is denoted by
‖ · ‖, while other norms are distinguished by subscripts. We assume that all
the Banach spaces considered are defined over the same scalar field K = R
or K = C.

Let Q = [0, 1]d and let Cr(Q,X) be the space of all r times continuously
differentiable functions f : Q→ X equipped with the norm

‖f‖Cr(Q,X) = max
0≤|α|≤r, t∈Q

‖Dαf(t)‖,

where α = (α1, . . . , αd), |α| = |α1|+ · · ·+ |αd| and Dα denotes the respective
partial derivative. For r = 0 we write C0(Q,X) = C(Q,X), which is the
space of continuous X-valued functions on Q. If X = K, we write Cr(Q)
and C(Q).

Let 1 ≤ p ≤ 2. A Banach space X is said to be of (Rademacher) type p
if there is a constant c > 0 such that for all n ∈ N and x1, . . . , xn ∈ X,

(1)
(
E
∥∥∥ n∑
i=1

εixi

∥∥∥p)1/p ≤ c( n∑
k=1

‖xi‖p
)1/p

,

where (εi)
n
i=1 is a sequence of independent Bernoulli random variables with

P{εi = −1} = P{εi = +1} = 1/2 on some probability space (Ω,Σ,P)
(we refer to [9, 7] for this notion and related facts). The smallest con-
stant satisfying (1) is called the type p constant of X and is denoted by
τp(X). If there is no such c > 0, we put τp(X) = ∞. The space Lp1(N , ν)
with (N , ν) an arbitrary measure space and p1 < ∞ is of type p with
p = min(p1, 2).

Furthermore, given n ∈ N, let σp,n(X) be the smallest c > 0 for which
(1) holds for any x1, . . . , xn ∈ X with ‖x1‖ = · · · = ‖xn‖. The contraction
principle for Rademacher series (see [7, Th. 4.4]) implies that σp,n(X) is the
smallest constant c > 0 such that for x1, . . . , xn ∈ X,

(2)
(
E
∥∥∥ n∑
i=1

εixi

∥∥∥p)1/p ≤ cn1/p max
1≤i≤n

‖xi‖.

We say that X is of equal norm type p if there is a constant c > 0 such
that σp,n(X) ≤ c for all n ∈ N. Clearly, σp,n(X) ≤ τp(X) and type p implies
equal norm type p.

Let us comment a little more on the relation of the different notions of
type which are used here and in the literature. The concept of equal norm
type p was first introduced and used by R. C. James in the case p = 2 in [6].
There it is shown that X is of equal norm type 2 if and only if X is of type 2.
This result is attributed to G. Pisier. Later, it even turned out in [1] that
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the sequence σ2,n(X) and the corresponding sequence τ2,n(X) of type 2
constants computed with n vectors are uniformly equivalent. In contrast,
for 1 < p < 2, L. Tzafriri [13] constructed Tsirelson spaces without type p
but with equal norm type p. Finally, V. Mascioni introduced and studied
the notion of weak type p for 1 < p < 2 in [8] and showed that, again in
contrast to the situation for p = 2, a Banach space X is of weak type p if
and only if it is of equal norm type p.

Throughout the paper c, c1, c2, . . . are constants, which depend only on
the problem parameters r, d, but depend neither on the algorithm param-
eters n, l etc. nor on the input f . The same symbol may denote different
constants, even in a sequence of relations.

For r, k ∈ N we let P r,Xk ∈ L (C(Q,X)) be X-valued composite tensor
product Lagrange interpolation of degree r with respect to the partition of
[0, 1]d into kd subcubes of sidelength k−1 with disjoint interiors (see [2]).
Given r ∈ N0 and d ∈ N, there are constants c1, c2 > 0 such that for all
Banach spaces X and all k ∈ N,

sup
f∈BCr(Q,X)

‖f − P r,Xk f‖C(Q,X) ≤ c2k−r(3)

(see [2]).

3. Banach space valued integration. Let X be a Banach space,
r ∈ N0, and let the integration operator SX : C(Q,X)→ X be given by

SXf =
�

Q

f(t) dt.

We will work in the setting of information-based complexity theory (see
[12, 10, 11]). Below, edetn (SX , BCr(Q,X)) and erann (SX , BCr(Q,X)) denote the

nth minimal error of SX on BCr(Q,X) in the deterministic, respectively ran-
domized, setting, that is, the minimal possible error among all deterministic,
respectively randomized, algorithms approximating SX onBCr(Q,X) that use
at most n values of the input function f . The precise notions are recalled in
the appendix. The following was shown in [2].

Theorem 1. Let r ∈ N0 and 1 ≤ p ≤ 2. Then there are constants
c1−4 > 0 such that for all Banach spaces X and n ∈ N, the deterministic
nth minimal error satisfies

c1n
−r/d ≤ edetn (SX , BCr(Q,X)) ≤ c2n−r/d.

Moreover, if X is of type p and pX is the supremum of all p1 such that X
is of type p1, then the randomized nth minimal error fulfills

c3n
−r/d−1+1/pX ≤ erann (SX , BCr(Q,X)) ≤ c4τp(X)n−r/d−1+1/p.
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As a consequence, we obtain

Corollary 1. Let r ∈ N0 and 1 ≤ p ≤ 2. Then the following are
equivalent:

(i) X is of type p1 for all p1 < p.
(ii) For each p1 < p there is a constant c > 0 such that for all n ∈ N,

erann (SX , BCr(Q,X)) ≤ cn−r/d−1+1/p1 .

The main result of the present paper is the following

Theorem 2. Let 1 ≤ p ≤ 2 and r ∈ N0. Then there are constants
c1, c2 > 0 such that for all Banach spaces X and all n ∈ N,

(4) c1n
r/d+1−1/perann (SX , BCr(Q,X))

≤ σp,n(X) ≤ c2 max
1≤k≤n

kr/d+1−1/perank (SX , BCr(Q,X)).

This allows us to sharpen Corollary 1:

Corollary 2. Let r ∈ N0 and 1 ≤ p ≤ 2. Then the following are
equivalent:

(i) X is of equal norm type p.
(ii) There is a constant c > 0 such that for all n ∈ N,

erann (SX , BCr(Q,X)) ≤ cn−r/d−1+1/p.

Recall from the preliminaries that the conditions in the corollary are also
equivalent to

(iii) X is of type 2 if p = 2 and of weak type p if 1 < p < 2.

For the proof of Theorem 2 we need a number of auxiliary results. The
following lemma is a slight modification of Prop. 9.11 of [7], with essentially
the same proof, which we include for the sake of completeness.

Lemma 1. Let 1 ≤ p ≤ 2. Then there is a constant c > 0 such that
for each Banach space X, each n ∈ N and each sequence of independent,
essentially bounded, mean zero X-valued random variables (ηi)

n
i=1 on some

probability space (Ω,Σ,P),(
E
∥∥∥ n∑
i=1

ηi

∥∥∥p)1/p ≤ cσp,n(X)n1/p max
1≤i≤n

‖ηi‖L∞(Ω,P,X).

Proof. Let (εi)
n
i=1 be independent, symmetric Bernoulli random vari-

ables on some probability space (Ω′, Σ′,P′) different from (Ω,Σ,P). Con-
sidering (ηi)

n
i=1 and (εi)

n
i=1 as random variables on the product probability

space, we denote the expectation with respect to P′ by E′ (and the expec-
tation with respect to P, as before, by E). Using Lemma 6.3 of [7] and (2),



Randomized complexity of integration 209

we get (
E
∥∥∥ n∑
i=1

ηi

∥∥∥p)1/p ≤ 2
(
EE′

∥∥∥ n∑
i=1

εiηi

∥∥∥p)1/p
≤ 2σp,n(X)n1/p(E max

1≤i≤n
‖ηi‖p)1/p

≤ 2σp,n(X)n1/p max
1≤i≤n

‖ηi‖L∞(Ω,P,X).

Next we introduce an algorithm for the aproximation of SXf . Let n ∈ N
and let ξi : Ω → Q (i = 1, . . . , n) be independent random variables on some
probability space (Ω,Σ,P), uniformly distributed on Q. For f ∈ C(Q,X)
define

(5) A0,X
n,ω f =

1

n

n∑
i=1

f(ξi(ω))

and, if r ≥ 1, put k = dn1/de and

(6) Ar,Xn,ωf = SX(P r,Xk f) +A0,X
n,ω (f − P r,Xk f).

These are the Banach space valued versions of the standard Monte Carlo
method (r = 0) and the Monte Carlo method with separation of the main
part (r ≥ 1). The following extends the second part of Proposition 1 of [2].

Proposition 1. Let r ∈ N0 and 1 ≤ p ≤ 2. Then there is a constant
c > 0 such that for all Banach spaces X, n ∈ N, and f ∈ Cr(Q,X),

(E ‖SXf −Ar,Xn,ωf‖p)1/p ≤ cσp,n(X)n−r/d−1+1/p‖f‖Cr(Q,X).(7)

Proof. Let us first consider the case r = 0. Let f ∈ C(Q,X) and put

ηi(ω) =
�

Q

f(t) dt− f(ξi(ω)).

Clearly, E ηi(ω) = 0,

SXf −A0,X
n,ω f =

1

n

n∑
i=1

ηi(ω) and ‖ηi(ω)‖ ≤ 2‖f‖C(Q,X).

An application of Lemma 1 gives (7). If r ≥ 1, we have

SXf −Ar,Xn,ωf = SX(f − P r,Xk f)−A0,X
n,ω (f − P r,Xk f)

and the result follows from (3) and the case r = 0.

Lemma 2. Let 1 ≤ p ≤ 2. Then there are constants c > 0 and 0 < γ < 1
such that for each Banach space X, each n ∈ N, and (xi)

n
i=1 ⊂ X there is a

subset I ⊆ {1, . . . , n} with |I| ≥ γn and

E
∥∥∥∑
i∈I

εixi

∥∥∥ ≤ cn1/p‖(xi)‖`n∞(X) max
1≤k≤n

kr/d+1−1/perank (SX , BCr(Q,X)).
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Proof. Since for all n ∈ N,

max
1≤k≤n

kr/d+1−1/perank (SX , BCr(Q,X)) ≥ eran1 (SK, BCr(Q,K)) > 0,

the statement is trivial for n < 8d. Therefore we can assume n ≥ 8d. Clearly,
we can also assume ‖(xi)‖`n∞(X) > 0. Let m ∈ N be such that

(8) md ≤ n < (m+ 1)d,

hence

(9) m ≥ 8.

Let ψ be an infinitely differentiable function on Rd such that ψ(t) > 0 for

t ∈ (0, 1)d and suppψ ⊂ [0, 1]d. Let (Qi)
md

i=1 be the partition of Q into closed
cubes of side length m−1 with disjoint interiors, let ti be the point in Qi
with minimal coordinates and define ψi ∈ C(Q) by

ψi(t) = ψ(m(t− ti)) (i = 1, . . . ,md).

It is easily verified that there is a constant c0 > 0 such that for all (αi)
md

i=1

in [−1, 1]m
d
, ∥∥∥ md∑

i=1

αixiψi

∥∥∥
Cr(Q,X)

≤ c0mr‖(xi)‖`n∞(X).

Set
fi = c−10 m−r‖(xi)‖−1`n∞(X)xiψi;

it follows that
md∑
i=1

αifi ∈ BCr(Q,X) for all (αi)
md

i=1 ∈ [−1, 1]m
d
.

Moreover, with σ =
	
Q ψ(t) dt we have∥∥∥ md∑

i=1

αiS
Xfi

∥∥∥ = c−10 m−r‖(xi)‖−1`n∞(X)

∥∥∥ md∑
i=1

αixi
�

Q

ψi(t) dt
∥∥∥

= c−10 σm−r−d‖(xi)‖−1`n∞(X)

∥∥∥ md∑
i=1

αixi

∥∥∥.
Next we use Lemmas 5 and 6 of [3] with K = X (although stated for K = R,
Lemma 6 is easily seen to hold for K = X as well) to obtain, for all l ∈ N
with l < md/4,

eranl (SX , BCr(Q,X)) ≥
1

4
min

I⊆{1,...,md}, |I|≥md−4l
E
∥∥∥∑
i∈I

εiS
Xfi

∥∥∥
≥ cm−r−d‖(xi)‖−1`n∞(X)E

∥∥∥∑
i∈I

εixi

∥∥∥.
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We put l = bmd/8c. Then

(10) md/16 < l ≤ md/8.

Indeed, by (9) the left-hand inequality clearly holds for md < 16, while for
md ≥ 16 we get bmd/8c > md/8− 1 ≥ md/16. We conclude that there is an
I ⊆ {1, . . . ,md} with |I| ≥ md − 4l ≥ md/2 and

E
∥∥∥∑
i∈I

εixi

∥∥∥ ≤ cmr+d‖(xi)‖`n∞(X)e
ran
l (SX , BCr(Q,X))

≤ cmr+dl−r/d+1/p−1‖(xi)‖`n∞(X) max
1≤k≤n

kr/d+1−1/perank (SX , BCr(Q,X))

≤ cn1/p‖(xi)‖`n∞(X) max
1≤k≤n

kr/d+1−1/perank (SX , BCr(Q,X)),

where we used (8) and (10). Finally, (8) and (9) give

|I| ≥ md/2 ≥ md

2(m+ 1)d
n ≥ 8d

2 · 9d
n.

Proof of Theorem 2. The left-hand inequality of (4) follows directly from

Proposition 1, since the number of function values involved in Ar,Xn,ω is
bounded by ckd + n ≤ cn; see also (16).

To prove the right-hand inequality of (4), let n ∈ N and x1, . . . , xn ∈ X.
We construct by induction a partition of K = {1, . . . , n} into a sequence of
disjoint subsets (Il)

l∗
l=1 such that for 1 ≤ l ≤ l∗,

(11) |Il| ≥ γ
∣∣∣K \⋃

j<l

Ij

∣∣∣
and

(12) E
∥∥∥∑
i∈Il

εixi

∥∥∥
≤ c
∣∣∣K \⋃

j<l

Ij

∣∣∣1/p‖(xi)‖`n∞(X) max
1≤k≤n

kr/d+1−1/perank (SX , BCr(Q,X)),

where c and γ are the constants from Lemma 2. For l = 1 the existence of an
I1 satisfying (11)–(12) follows directly from Lemma 2. Now assume that we
already have a sequence of disjoint subsets (Il)

m
l=1 of K satisfying (11)–(12).

If

J := K \
⋃
j≤m

Ij 6= ∅,

we apply Lemma 2 to (xi)i∈J to find Im+1 ⊆ J with

(13) |Im+1| ≥ γ|J |
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and

(14) E
∥∥∥ ∑
i∈Im+1

εixi

∥∥∥
≤ c|J |1/p‖(xi)i∈J‖`∞(J,X) max

1≤k≤|J |
kr/d+1−1/perank (SX , BCr(Q,X)).

Observe that for l = m+ 1, (13) is just (11) and (14) implies (12). Further-
more, (11) implies ∣∣∣K \⋃

j≤l
Ij

∣∣∣ ≤ (1− γ)
∣∣∣K \ ⋃

j≤l−1
Ij

∣∣∣
and therefore

(15)
∣∣∣K \⋃

j≤l
Ij

∣∣∣ ≤ (1− γ)ln.

It follows that the process stops with K =
⋃
j≤l Ij for a certain l = l∗ ∈ N.

This completes the construction.

Using the equivalence of moments (Theorem 4.7 of [7]), we find from (12)
and (15) that

(
E
∥∥∥ n∑
i=1

εixi

∥∥∥p)1/p ≤ cE∥∥∥ n∑
i=1

εixi

∥∥∥ ≤ c l∗∑
l=1

E
∥∥∥∑
i∈Il

εixi

∥∥∥
≤ cn1/p‖(xi)‖`n∞(X) max

1≤k≤n
kr/d+1−1/perank (SX , BCr(Q,X))

l∗∑
l=1

(1− γ)(l−1)/p.

This gives the upper bound of (4).

Let us mention that results analogous to Theorem 2 and Corollary 2
above also hold for Banach space valued indefinite integration (see [2] for
the definition) and for the solution of initial value problems for Banach
space valued ordinary differential equations [5]. Indeed, an inspection of the
respective proofs together with Lemma 1 of the present paper shows that
Proposition 2 of [2] also holds with τp(X) replaced by σp,n(X), and similarly
Proposition 3.4 of [5]. Moreover, in both papers the lower bounds on erann
are obtained by reduction to (definite) integration and thus the right-hand
side inequality of (4) carries over directly.

4. Appendix. In this appendix we recall some basic notions of in-
formation-based complexity—the framework we used above. We refer to
[10, 12] for more on this subject and to [3, 4] for the particular nota-
tion applied here. First we introduce the class of deterministic adaptive
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algorithms of varying cardinality, Adet(C(Q,X), X). It consists of tuples
A = ((Li)

∞
i=1, (%i)

∞
i=0, (ϕi)

∞
i=0), with L1 ∈ Q, %0 ∈ {0, 1}, ϕ0 ∈ X,

Li : Xi−1 → Q (i = 2, 3, . . . )

and

%i : Xi → {0, 1}, ϕi : Xi → X (i = 1, 2, . . . )

being arbitrary mappings. To each f ∈ C(Q,X), we associate a sequence
(ti)
∞
i=1 with ti ∈ Q as follows:

t1 = L1, ti = Li(f(t1), . . . , f(ti−1)) (i ≥ 2).

Define card(A, f), the cardinality of A at input f , to be 0 if %0 = 1. If
%0 = 0, let card(A, f) be the first integer n ≥ 1 with %n(f(t1), . . . , f(tn)) = 1
if there is such an n, and card(A, f) =∞ otherwise. For f ∈ C(Q,X) with
card(A, f) <∞ we define the output Af of algorithm A at input f as

Af =

{
ϕ0 if n = 0,

ϕn(f(t1), . . . , f(tn)) if n ≥ 1.

Let r ∈ N0. Given n ∈ N0, we let Adet
n (BCr(Q,X), X) be the set of those

A ∈ Adet(C(Q,X), X) for which

max
f∈BCr(Q,X)

card(A, f) ≤ n.

The error of A ∈ Adet
n (BCr(Q,X), X) as an approximation of SX is defined

as

e(SX , A,BCr(Q,X)) = sup
f∈BCr(Q,X)

‖SXf −Af‖.

The deterministic nth minimal error of SX is defined for n ∈ N0 as

edetn (SX , BCr(Q,X)) = inf
A∈Adet

n (BCr(Q,X))
e(SX , A,BCr(Q,X)).

It follows that no deterministic algorithm that uses at most n function values
can have an error smaller than edetn (SX , BCr(Q,X)).

Next we introduce the class of randomized adaptive algorithms of varying
cardinality,Aran

n (BCr(Q,X), X), consisting of tuples A= ((Ω,Σ,P), (Aω)ω∈Ω),

where (Ω,Σ,P) is a probability space, Aω ∈ Adet(C(Q,X), X) for all ω ∈ Ω,
and for each f ∈ BCr(Q,X) the mapping Ω 3 ω 7→ card(Aω, f) is Σ-measur-
able and satisfies E card(Aω, f) ≤ n. Moreover, the mapping Ω 3 ω 7→
Aωf ∈ X is Σ-to-Borel measurable and essentially separably valued, i.e.,
there is a separable subspace X0 ⊆ X such that Aωf ∈ X0 for P-almost
all ω ∈ Ω. The error of A ∈ Aran

n (C(Q,X), X) in approximating SX on
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BCr(Q,X) is defined as

e(SX , A,BCr(Q,X)) = sup
f∈BCr(Q,X)

E ‖SXf −Aωf‖,

and the randomized nth minimal error of SX as

erann (SX , BCr(Q,X)) = inf
A∈Aran

n (BCr(Q,X))
e(SX , A,BCr(Q,X)).

Consequently, no randomized algorithm that uses (on the average) at most
n function values has an error smaller than erann (SX , BCr(Q,X), X).

Define for ε > 0 the information complexity as

nranε (S,BCr(Q,X)) = min{n ∈ N0 : erann (S,BCr(Q,X)) ≤ ε}

if there is such an n, and nranε (S,BCr(Q,X)) =∞ if there is no such n. Thus,
if nranε (S,BCr(Q,X)) <∞, it follows that any algorithm with error ≤ ε needs
at least nranε (S,BCr(Q,X)) function values, while nranε (S,BCr(Q,X)) = ∞
means that no algorithm at all has error ≤ ε. The information complexity
is essentially the inverse function of the nth minimal error. So determin-
ing the latter means determining the information complexity of the prob-
lem.

Let us also mention the subclasses consisting of quadrature formulas. Let
n ≥ 1. A mapping A : C(Q,X) → X is called a deterministic quadrature
formula with n nodes if there are ti ∈ Q and ai ∈ K (1 ≤ i ≤ n) such
that

Af =
n∑
i=1

aif(ti) (f ∈ C(Q,X)).

In terms of the definition of Adet(C(Q,X), X) this means that the functions
Li and %i are constant, %0 = %1 = · · · = %n−1 = 0, %n = 1, and ϕn has the
form ϕn(x1, . . . , xn) =

∑n
i=1 aixi. Clearly, A ∈ Adet

n (BCr(Q,X), X).

A tuple A = ((Ω,Σ,P), (Aω)ω∈Ω) is called a randomized quadrature with
n nodes if there exist random variables ti : Ω → Q and ai : Ω → K
(1 ≤ i ≤ n) with

Aωf =

n∑
i=1

ai(ω)f(ti(ω)) (f ∈ C(Q,X), ω ∈ Ω).

For each such A we have A ∈ Aran
n (BCr(Q,X), X). Finally we note that the

algorithms Ar,Xn,ω defined in (5) and (6) are quadratures. Indeed, for A0,X
n,ω

given by (5) this is obvious. For r ≥ 1 we represent P r,Xk ∈ L (C(Q,X)) as

P r,Xk f =
M∑
j=1

f(uj)ψj(t)
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with M ≤ ckd, uj ∈ Q, ψj ∈ C(Q) (1 ≤ i ≤ M), and obtain, setting
bj =

	
Q ψj(t) dt,

Ar,Xn,ωf = SX(P r,Xk f) +A0,X
n,ω (f − P r,Xk f)(16)

=
M∑
j=1

bjf(uj) +
1

n

n∑
i=1

(f(ξi(ω))− (P r,Xk f)(ξi(ω)))

=

M∑
j=1

bjf(uj) +
1

n

n∑
i=1

f(ξi(ω))−
M∑
j=1

(
1

n

n∑
i=1

ψj(ξi(ω))

)
f(uj).
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