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Sudakov-type minoration for log-concave vectors

by

Rafał Latała (Warszawa)

Abstract. We formulate and discuss a conjecture concerning lower bounds for norms
of log-concave vectors, which generalizes the classical Sudakov minoration principle for
Gaussian vectors. We show that the conjecture holds for some special classes of log-concave
measures and some weaker forms of it are satisfied in the general case. We also present
some applications based on chaining techniques.

1. Introduction and formulation of the problem. In numerous prob-
lems arising in high-dimensional probability one needs to estimate E ‖X‖,
where X is a random d-dimensional vector and ‖ ‖ is a norm on Rd. Ob-
viously ‖x‖ = sup‖t‖∗≤1〈t, x〉, so the question reduces to finding bounds for
E supt∈T 〈t,X〉 with T ⊂ Rd. For symmetric random vectors this quantity is
half of E supt,s∈T 〈t− s,X〉, but in the case of arbitrary (not necessarily cen-
tered) random vectors it is more convienient to work with the latter quantity.

There are numerous powerful methods to estimate suprema of stochastic
processes (cf. the monograph [22]); let us however present only a very easy
upper bound. Namely for any p ≥ 1,

E sup
t,s∈T
〈t− s,X〉 = E sup

t,s∈T
|〈t− s,X〉| ≤

(
E sup
t,s∈T

|〈t− s,X〉|p
)1/p

≤
(
E
∑
t,s∈T

|〈t− s,X〉|p
)1/p

≤ |T |2/p sup
t,s∈T

‖〈t− s,X〉‖p.

Here and below, ‖Y ‖p := (E |Y |p)1/p for a real random variable Y and p > 0.
In particular

E sup
t,s∈T
〈t− s,X〉 ≤ e2 sup

t,s∈T
‖〈t− s,X〉‖p if |T | ≤ ep.

It is natural to ask when the above estimate can be reversed. Namely,
when is it true that if the set T ⊂ Rd has large cardinality (say at least ep)
and variables (〈t,X〉)t∈T are A-separated with respect to the Lp-distance
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then E supt,s∈T 〈t,X〉 is at least of the order of A? The following definition
gives a more precise formulation of that property.

Definition 1.1. Let X be a random d-dimensional vector. We say that
X satisfies the Lp-Sudakov minoration principle with a constant κ > 0
(SMPp(κ) for short) if for any set T ⊂ Rd with |T | ≥ ep such that

(1) ‖〈t− s,X〉‖p =
(
E
( d∑
i=1

(ti − si)Xi

)p)1/p
≥ A for all s, t ∈ T, s 6= t,

we have

(2) E sup
t,s∈T
〈t− s,X〉 = E sup

t,s∈T

d∑
i=1

(ti − si)Xi ≥ κA.

A random vector X satisfies the Sudakov minoration principle with a con-
stant κ (SMP(κ) for short) if it satisfies SMPp(κ) for any p ≥ 1.

Remark 1.2. One cannot hope to improve the estimate (2) even if X
has a regular product distribution and |T | is very large with respect to p. To
see this take X uniformly distributed on the cube [−1, 1]d; then for p ≥ 1,

‖Xi −Xj‖p ≥ ‖Xi −Xj‖1 = 2/3 for all 1 ≤ i < j ≤ d

and E supi,j≤n(Xi −Xj) ≤ 2.

Example 1.3. If X has the canonical d-dimensional Gaussian distribu-
tion then ‖〈t,X〉‖p = γp|t|, where γp = ‖N (0, 1)‖p ∼

√
p for p ≥ 1. Hence

condition (1) is equivalent to |t− s| ≥ A/γp for distinct vectors t, s ∈ T , and
the classical Sudakov minoration principle for Gaussian processes (cf. [19]
and [16, Theorem 3.18]) then yields

E sup
t,s∈T
〈t− s,X〉 = 2E sup

t∈T
〈t,X〉 ≥ A

Cγp

√
log |T | ≥ A

C ′

provided that |T | ≥ ep (C and C ′ denote universal constants). Therefore
X satisfies the Sudakov minoration principle with a universal constant. In
fact it is not hard to see that for centered Gaussian vectors the Sudakov
minoration principle in the sense of Definition 1.1 is formally equivalent to
the minoration property established by Sudakov.

Example 1.4. If Xi’s are independent symmetric ±1 r.v.’s (equivalently
one may consider the vector X uniformly distributed on the cube [−1, 1]d)
then condition (1) means, by the result of Hitczenko [9], that

t− s /∈ A

C
(Bn

1 +
√
pBn

2 ),

and in this case SMP(κ) with universal κ was proven by Talagrand [20].
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Example 1.5. In the more general case when coordinates of X are inde-
pendent and symmetric with log-concave densities (or just log-concave tails)
the Sudakov minoration priciple with a universal constant was proven in [21]
(for random variables with density exp(−|x|p), p ≥ 1) and [12].

The Sudakov minoration principle for vectors X with independent co-
ordinates is investigated in [14], where it is shown that SMP is essentially
equivalent to the regular growth of moments of coordinates of X. In this
paper we will concentrate on the class of log-concave vectors.

A measure µ on Rn is called logarithmically concave (or log-concave for
short) if

µ(λK + (1− λ)L) ≥ µ(K)λµ(L)1−λ

for any nonempty compact sets K,L and λ ∈ [0, 1]. By the result of Borell [5]
a measure on Rn with full-dimensional support is log-concave if and only if
it has a log-concave density, i.e. a density of the form e−h(x), where h : Rn →
(−∞,∞] is convex. A random vector is called log-concave if its distribution
is logarithmically concave. A typical example of a log-concave vector is a
vector uniformly distributed on a convex body.

It is quite easy to reduce the investigation of the Sudakov minoration
principle to the case of symmetric vectors (see Lemma 2.1 below). Since SMP
is preserved under linear transformations (Lemma 2.2), we may additionally
assume that the vector X is isotropic, i.e. Cov(Xi, Xj) = δi,j for all i, j. In
many aspects isotropic log-concave probability measures behave like product
measures (cf. [6]). This motivates the following conjecture.

Conjecture 1.6. Every d-dimensional log-concave random vector sat-
isfies the Sudakov minoration principle with a universal constant.

The purpose of this paper is to discuss the above conjecture. In Section 2
we gather simple facts concerning log-concave vectors and the Sudakov mi-
noration principle. In particular we show how to reduce the problem to the
case of isotropic vectors. In Section 3 we establish several results concerning
arbitrary log-concave distributions. We show that (1) implies (2) provided
that |T | ≥ ee

p or |T | ≥ ep, but under the additional assumption that the
vectors (〈t,X〉)t∈T are uncorrelated. The proof is based on the concentra-
tion properties of isotropic log-concave distributions. As a byproduct we get
a comparison of weak and strong moments of `d∞-norms of isotropic log-
concave vectors. In Section 4 we consider unconditional log-concave vectors.
We show that in this case, (1) implies (2) provided that |T | ≥ ep

2 . In Sec-
tion 5 we show that Conjecture 1.6 holds for a class of invariant log-concave
vectors, which includes rotationally invariant log-concave vectors and vec-
tors uniformly distributed on ldp-balls. In the last section we use chaining
arguments to give some consequences of the Sudakov minoration principle.
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In particular, we show that it yields comparison of weak and strong moments
up to a logarithmic factor.

It should be mentioned that the Sudakov minoration principle and Con-
jecture 1.6 were formulated independently and studied by Shahar Mendelson,
Emanuel Milman and Grigoris Paouris [17]. Their approach is however quite
different: it uses geometrical properties of an index set T , duality of en-
tropy numbers and the idea of dimension reduction, similar in spirit to the
Johnson–Lindenstrauss lemma.

Notation. By | · | and 〈·, ·〉 we denote the canonical Euclidean norm
and the canonical inner product on Rd. The canonical basis of Rd is denoted
by e1, . . . , ed. For 1 ≤ p ≤ ∞, ‖ · ‖p stands for the lp norm on Rd, and Bd

p is
the unit ball in this norm.

For two convex sets K,L in Rd, N(K,L) is the covering number, i.e.
the minimal number of translates of L that cover K. By |T | we denote the
cardinality of a set T and by N(T, d, ε) the minimal number of balls in metric
d of radius ε that cover T .

We use the letter C for universal constants; the value of a constant C may
differ at each occurrence. Whenever we want to fix the value of an absolute
constant we use C1, C2, . . . .

2. Basic facts. We start with a lemma showing how to reduce the
problem of proving the Sudakov minoration to the case of symmetric vectors.

Lemma 2.1. Let p ≥ 1, X be a random vector in Rd with finite pth
moment and X ′ be an independent copy of X. If X −X ′ satisfies SMPp(κ)
then X satisfies SMPp(min{1/2, κ/4}).

Proof. Let p ≥ 1 and T ⊂ Rd be such that |T | ≥ ep and (1) holds.
Jensen’s inequality yields

E sup
t,s∈T
〈t− s,X〉 ≥ sup

t,s∈T
〈t− s,EX〉 = sup

t,s∈T
|〈t− s,EX〉|.

Therefore we may assume that |〈t− s,EX〉| ≤ A/2 for all t, s ∈ T . But then
for t 6= s,

‖〈t−s,X−X ′〉‖p ≥ ‖〈t−s,X−EX〉‖p ≥ ‖〈t−s,X〉‖p−‖〈t−s,EX〉‖p ≥
A

2
.

Therefore the Lp-Sudakov minoration for X −X ′ implies

κ
A

2
≤ E sup

t,s∈T
〈t− s,X −X ′〉 ≤ E sup

t,s∈T
〈t− s,X〉+ E sup

t,s∈T
〈s− t,X ′〉

= 2E sup
t,s∈T
〈t− s,X〉.

The next observation states that the Sudakov minoration principle is
preserved under linear transformations.
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Lemma 2.2. If X is a d-dimensional random vector that satisfies
SMPp(κ) and U : Rd → Rd′ is linear then UX satisfies SMPp(κ).

Proof. It is enough to observe that 〈t, UX〉 = 〈U∗t,X〉.

Now we recall that moments of log-concave variables grow in a regular
way.

Lemma 2.3. Let Y be a symmetric real log-concave r.v. Then

‖Y ‖p ≤
Γ (p+ 1)1/p

Γ (q + 1)1/q
‖Y ‖q for p ≥ q > 0.

In particular ‖Y ‖2 ≤
√
2 ‖Y ‖1 and ‖Y ‖p ≤ p

q‖Y ‖q for p ≥ q ≥ 2.

Proof. The main inequality is the result of Barlow, Marshall and Pros-
chan [1] (it can also be extracted from the much earlier work of Berwald [3]).
To show the “in particular" part for p ≥ q ≥ 2 one needs to estimate Γ
functions as in [15, Proposition 3.8].

Remark 2.4. Suppose |T | ≥ 2 and (1) holds. Then if X is symmetric
log-concave, we may choose distinct t1, t2 ∈ T and get, by Lemma 2.3,

E sup
t,s∈T
〈t− s,X〉 ≥ E |〈t2 − t1, X〉| ≥

√
2

max{p, 2}
‖〈t2 − t1, X〉‖p

≥
√
2

max{p, 2}
A.

Hence every symmetric log-concave vector satisfies SMPp(
√
2/max{p, 2})

and every log-concave vector satisfies SMPp(
√
2/max{4p, 8}).

Remark 2.5. For p ≥ 1 let us define the distance on Rd by

dX,p(s, t) := ‖〈s− t,X〉‖p.

Suppose that (1) is satisfied, but |T | = eq with 1 ≤ q ≤ p. We know
that dX,q(s, t) ≥ q

CpdX,p(s, t), so the Sudakov minoration principle for a
log-concave vector X implies the following formally stronger statement: for
any nonempty T ⊂ Rd and A > 0,

E sup
t,s∈T
〈t− s,X〉 ≥ κ

C
sup
p≥1

min

{
A

p
logN(T, dX,p, A), A

}
.

The next result says that it is enough to verify the Sudakov minoration
property only for p ≤ d.

Lemma 2.6. Let X be a symmetric log-concave random vector in Rd that
satisfies SMPd(κ). Then X satisfies SMPp(κ/8) for p ≥ d.
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Proof. Fix p ≥ d and T ⊂ Rd such that |T | ≥ ep and ‖〈s− t,X〉‖p ≥ A
for any distinct points s, t ∈ T . Let

Mp(X) := {t ∈ Rd : E |〈t,X〉|p ≤ 1}.
If d ≤ p ≤ 8d then by Lemma 2.3, ‖〈s − t,X〉‖d ≥ 1

8A, hence SMPd(κ)
yields E supt,s∈T 〈t− s,X〉 ≥ (κ/8)A.

If p ≥ 8d then for u ≥ 1 we have

ep ≤ N
(
T,
A

2
Mp(X)

)
≤ N

(
T, u

A

2
Mp(X)

)
N

(
u
A

2
Mp(X),

A

2
Mp(X)

)
≤ N

(
T, u

A

2
Mp(X)

)
(2u+ 1)d,

where the last inequality follows by the standard volumetric argument. This
shows that N(T, uA2Mp(X)) ≥ ed if u ≤ ep/(4d), therefore we may find
T1 ⊂ T with |T1| ≥ ed such that for all distinct s, t ∈ T1,

‖〈s− t,X〉‖d ≥
d

p
‖〈s− t,X〉‖p ≥

d

p
ep/(4d)

A

2
≥ A

8
.

Thus again SMPd(κ) yields

E sup
t,s∈T
〈t− s,X〉 ≥ E sup

t,s∈T1
〈t− s,X〉 ≥ κA

8
.

Remark 2.7. Lemmas 2.1 and 2.6 together with Remark 2.4 show that
every log-concave vector satisfies SMP(1/(Cd)).

The following easy observation shows that Sudakov minoration holds
with a universal constant if p is large with respect to the dimension d.

Lemma 2.8. Every symmetric d-dimensional log-concave vector X sat-
isfies SMPp

(
1√
2p
(ep/d − 1)

)
for p ≥ 2. In particular X satisfies SMPp(1/3)

for p ≥ 2d log(d+ e).

Proof. By Lemma 2.2 we may assume that X is isotropic. Assume that
|T | ≥ ep, p ≥ 2 and (1) holds. Then by Lemma 2.3,

|t− s| = ‖〈t− s,X〉‖2 ≥
2

p
‖〈t− s,X〉‖p ≥

2

p
A.

This implies that the sets
(
t+ A

pB
d
2

)
t∈T have disjoint interiors. The standard

volumetric argument shows that there exist t, s ∈ T such that |t − s| ≥
(A/p)(|T |1/d − 1). We have

E sup
t,s∈T
〈t− s,X〉 = sup

t,s∈T
E |〈t− s,X〉| ≥ 1√

2
sup
t,s∈T

|t− s| ≥ A√
2 p

(ep/d − 1).

Finally if p = ad log(d + e) with a ≥ 2 then p ≥ 2 and ep/d − 1 ≥
d(d+ e)a−1 ≥ d(a− 1) log(d+ e) ≥ 1

2p.
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3. Estimates for general log-concave measures. We say that a
random vector X in Rd satisfies exponential concentration with a constant
α <∞ if for any Borel set B in Rd,

P(X ∈ B) ≥ 1

2
⇒ P(X ∈ B + αuBd

2) ≥ 1− e−u for u > 0.

It is an important open problem [10] whether isotropic log-concave vec-
tors satisfy exponential concentration with a universal constant. E. Mil-
man [18] showed that this problem has numerous equivalent functional
and isoperimetrical formulations. Klartag [11] proved that every isotropic
d-dimensional log-concave vector satisfies exponential concentration with a
constant α ≤ Cd1/2−ε with ε ≥ 1/30. This bound was improved by Eldan
[7] to α ≤ Cd1/3 log1/2(d+ 1).

We start this section by deriving a simple consequence of exponential
concentration, which will be used to estimate `∞-norms of log-concave vec-
tors.

Proposition 3.1. Suppose that a random vector X satisfies exponential
concentration with a constant α. Then for any V > 0, p ≥ 2 and T ⊂ Rd we
have (

E
∑
t∈T

(|〈t,X〉| ∧ V )p
)1/p

≤ 2E
(∑
t∈T

(|〈t,X〉| ∧ V )p
)1/p

+ 21/pV (p−2)/p(αβ(T ))2/p,

where
β(T ) := sup

|x|=1

(∑
t∈T
|〈t, x〉|2

)1/2
.

Proof. Let

S :=
(∑
t∈T

(|〈t,X〉| ∧ V )p
)1/p

and M := ES.

Define also

B :=
{
x ∈ Rn :

(∑
t∈T

(|〈t, x〉| ∧ V )p
)1/p

≤ 2M
}
.

Then P(X ∈ B) ≥ 1/2. Notice that for x = y + z ∈ B + uBn
2 with u > 0 we

have(∑
t∈T

(|〈t, x〉| ∧ V )p
)1/p

≤
(∑
t∈T

(|〈t, y〉| ∧ V )p
)1/p

+
(∑
t∈T

(|〈t, z〉| ∧ V )p
)1/p

≤ 2M + V (p−2)/p
(∑
t∈T
|〈t, z〉|2

)1/p
≤ 2M + V (p−2)/p(uβ(T ))2/p.
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Hence exponential concentration yields

P
(
S ≥ 2M + V (p−2)/p(αβ(T )u)2/p

)
≤ e−u for u > 0.

Integrating by parts this gives

(E (S − 2M)p+)
1/p

≤ V (p−2)/p(αβ(T ))2/p
(
p

∞�

0

up−1 P
(
S ≥ 2M + V (p−2)/p(αβ(T ))2/pu

)
du
)1/p

≤ V (p−2)/p(αβ(T ))2/p
(
p

∞�

0

up−1e−u
p/2
du
)1/p

= 21/pV (p−2)/p(αβ(T ))2/p.

We also need a simple technical lemma.

Lemma 3.2. Suppose that Y is a real symmetric log-concave r.v., p ≥ 2
and ‖Y ‖p ≥ V > 0. Then E (|Y | ∧ V )p ≥ (V/12)p.

Proof. By Lemma 2.3, ‖Y ‖2p ≤ 2‖Y ‖p, hence the Paley–Zygmund in-
equality yields

P(|Y | ≥ 2−1/pV ) ≥ P
(
|Y |p ≥ 1

2
E |Y |p

)
≥ (E |Y |p)2

4E |Y |2p
≥ 1

4 · 22p

and

E (|Y | ∧ V )p ≥ 1

2
V p P(|Y | ≥ 2−1/pV ) ≥ 1

8 · 4p
V p ≥

(
V

12

)p
.

We are now ready to state a lower bound for suprema of coordinates of
isotropic log-concave vectors.

Proposition 3.3. Let X be an isotropic log-concave random vector
in Rd. Suppose that p ≥ 2, d ≥ ep − 1 and ‖aiXi‖p ≥ V for 1 ≤ i ≤ d.
Then

Emax{|a1X1|, . . . , |adXd|} ≥
1

C1
V.

Proof. A symmetrization argument as in Lemma 2.1 shows that we may
additionally assume that X is symmetric. By Lemma 2.3,

Emax
i
|aiXi| ≥ max

i
‖aiXi‖1 ≥

√
2

p
max
i
‖aiXi‖p ≥

√
2

p
V,

so we may assume that p (and therefore also d) is sufficiently large. Since
ep − 1 ≥ ep/2 and by Lemma 2.3, ‖aiXi‖λp ≥ λ‖aiXi‖p ≥ λV for λ ∈
(0, 1] and p ≥ 2/λ, we may assume (changing p to p/(8 ln(24)) and V to
V/(8 ln(24))) that d ≥ 244p.

Since it is only a matter of normalization of the coefficients ai and
the number V we may and will assume that maxi |ai| = 1. But then by
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Lemma 2.3,

Emax{|a1X1|, . . . , |adXd|} ≥ max
i

E |aiXi| ≥ min
i

E |Xi| ≥
1√
2
,

so it is enough to consider the case V ≥ 2.
By the result of Eldan [7], X satisfies exponential concentration with

constant at most d1/2−1/8 (recall that we assume that d is sufficiently large).
Let T := {aiei : i ≤ d} ⊂ Rd. Then

β(T )2 = sup
|x|=1

d∑
i=1

|aixi|2 = max
i
a2i = 1,

hence Proposition 3.1 yields (recall that V ≥ 2)(
E

d∑
i=1

(|aiXi| ∧ V )p
)1/p

≤ 2E
( d∑
i=1

(|aiXi| ∧ V )p
)1/p

+ V d1/p−1/(4p).

We have

E
( d∑
i=1

(|aiXi| ∧ V )p
)1/p

≤ d1/p E max
1≤i≤d

|aiXi|.

By Lemma 3.2 we know that E (|aiXi| ∧ V )p ≥ (V/12)p, therefore(
E

d∑
i=1

(|aiXi| ∧ V )p
)1/p

≥ 1

12
V d1/p.

Thus
1

12
V d1/p ≤ 2d1/p E max

1≤i≤d
|aiXi|+ V d1/p−1/(4p).

However d1/(4p) ≥ 24 and we get

E max
1≤i≤d

|aiXi| ≥
1

48
V.

As a corollary we show that Conjecture 1.6 holds for sets T such that
r.v.’s (〈t,X〉)t∈T are uncorrelated.

Corollary 3.4. Suppose that X is a d-dimensional log-concave random
vector, p ≥ 2, T ⊂ Rd satisfies (1) and Cov(〈t,X〉, 〈s,X〉) = 0 for s, t ∈ T
with s 6= t. Then (2) holds with a universal constant κ provided that |T | ≥ ep.

Proof. Using a symmetrization argument as in the proof of Lemma 2.1
we may assume that X is symmetric.

Since ‖〈t−s,X〉‖p ≤ ‖〈t,X〉‖p+‖〈s,X〉‖p, there exist t1, . . . , tn ⊂ T with
n ≥ |T | − 1 ≥ ep − 1 such that ‖〈ti, X〉‖p ≥ A/2 for all i. Proposition 3.3
applied with V = A/2, ai := ‖〈ti, X〉‖2 and n-dimensional isotropic vector
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Y = (〈ti, X〉/ai)i≤n gives

Emax
t∈T
|〈t,X〉| ≥ Emax

i
|〈ti, X〉| = Emax

i
|aiYi| ≥

1

2C1
A.

Notice that for any t0 ∈ T we have

Emax
t,s∈T
〈t− s,X〉 ≥ Emax

t∈T
|〈t− t0, X〉| ≥ Emax

t∈T
|〈t,X〉| − E |〈t0, X〉|.

If E |〈t0, X〉| ≤ A/(4C1) then we are done, otherwise we may assume that
T 3 t1 6= t0 and get, by Lemma 2.3,

Emax
t,s∈T
〈t− s,X〉 ≥ E |〈t1 − t0, X〉| ≥

1√
2
‖〈t1 − t0, X〉‖2 ≥

1√
2
‖〈t0, X〉‖2

≥ 1√
2
E |〈t0, X〉| ≥

1

4
√
2C1

A,

where the third inequality follows since Cov(〈t0, X〉, 〈t1, X〉) = 0.

Before we formulate the next consequence of Proposition 3.3, we show a
simple decomposition lemma.

Lemma 3.5. Let r > 0, ε ∈ [0, 1) and T ⊂ rBd
2 satisfy |T | ≥ (2/ε+ 1)n.

Then we can find vectors tk, sk ∈ T and vk, uk ∈ Rd, k = 1, . . . , n, such that
0 6= tk − sk = uk + vk, |vk| ≤ εr for all k and the vectors u1, . . . , un are
orthogonal.

Proof. We proceed by induction. We choose for t1, s1 any two distinct
vectors in T and set u1 := t1 − s1 and v1 := 0. Suppose that 1 ≤ l ≤
n− 1 and vectors tk, sk, uk, vk have been chosen for 1 ≤ k ≤ l. Define E :=
Lin(u1, . . . , ul), so dimE ≤ l ≤ n−1. Since in the ball in E of radius r there
are at most (2/ε + 1)dimE < |T | points with mutual distances at least εr,
there exist distinct vectors tl+1, sl+1 in T such that |PE(tl+1 − sl+1)| ≤ εr,
where PE denotes the orthogonal projection onto E. We set

vl+1 := PE(tl+1 − sl+1) and ul+1 := tl+1 − sl+1 − vl+1.

The next theorem is a weaker form of Conjecture 1.6.

Theorem 3.6. Let X be a log-concave vector, p ≥ 1 and T ⊂ Rd be such
that |T | ≥ eep and ‖〈t− s,X〉‖p ≥ A for all distinct t, s ∈ T . Then

E sup
t,s∈T
〈t− s,X〉 ≥ 1

C
A.

Proof. Arguments as in the proofs of Lemmas 2.1 and 2.2 show that it
is enough to consider only symmetric and isotropic vectors X. Since the
statement is translation invariant, we can assume that 0 ∈ T .

Let C1 be as in Proposition 3.3; we may obviously assume that C1 ≥ 1. By
Remark 2.4 it is enough to consider the case p ≥ 16eC1. Set p′ := p/(8eC1)
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and A′ := A/(8eC1). Lemma 2.3 yields ‖〈t − s,X〉‖p′ ≥ A′ for any distinct
vectors s, t ∈ T . Moreover

(1 + 4eC1p
′)e

p′ ≤ (ep/2)e
p/2 ≤ eep ≤ |T |.

Since 0 ∈ T , we have (using again Lemma 2.3)

E sup
t,s∈T
〈t− s,X〉 ≥ sup

t∈T
E |〈t,X〉| ≥ 1√

2
sup
t∈T
‖〈t,X〉‖2 =

1√
2
sup
t∈T
|t|.

Thus we may assume that T ⊂ A′Bd
2 . Let n := ep

′ and ε := 1/(2eC1p
′).

Then |T | ≥ (2/ε + 1)n. Therefore we may apply Lemma 3.5 to the set T
with r = A′ and ε, n as above and get points tk, sk, uk and vk. We have

E sup
t,s∈T
〈t− s,X〉 ≥ Emax

k≤n
|〈tk − sk, X〉| = Emax

k≤n
|〈uk + vk, X〉|

≥ Emax
k≤n
|〈uk, X〉| − Emax

k≤n
|〈vk, X〉|.

Notice that

Emax
k≤n
|〈vk, X〉| ≤

(
E
∑
k≤n
|〈vk, X〉|p

′
)1/p′

≤ n1/p′ max
k
‖〈vk, X〉‖p′

≤ ep
′

2
max
k
‖〈vk, X〉‖2 =

ep′

2
max
k≤n
|vk| ≤

ep′

2
εA′ =

1

4C1
A′,

where the third inequality follows by Lemma 2.3. Moreover for any k,

‖〈uk, X〉‖p′ ≥ ‖〈tk − sk, X〉‖p′ − ‖〈vk, X〉‖p′ ≥ A′ −
p′

2
εA′ ≥ A′

2
.

Since uk are orthogonal and X is isotropic, Proposition 3.3 (applied with
p = p′, V = A′/2, ak := |uk| and the n-dimensional isotropic vector Y =
(〈uk, X〉/ak)k≤n) yields

E sup
k≤n
|〈uk, X〉| ≥

1

2C1
A′.

Hence
E sup
t,s∈T
〈t− s,X〉 ≥ 1

2C1
A′ − 1

4C1
A′ =

1

4C1
A′.

Remark 3.7. As in Remark 2.5, we can reformulate the above result
in terms of covering numbers: for any log-concave vector X, any nonempty
T ⊂ Rd and A > 0, we have

E sup
t,s∈T
〈t− s,X〉 ≥ 1

C
sup
p≥1

min

{
A

p
log
(
1 + logN(T, dX,p, A)

)
, A

}
.

It is an open problem (cf. [13]) whether weak and strong moments of
log-concave vectors are comparable, i.e. whether for p ≥ 1, log-concave
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d-dimensional vectors X and any norm ‖ ‖ on Rd,

(E ‖X‖p)1/p ≤ C
(
E ‖X‖+ sup

‖t‖∗≤1
(E |〈t,X〉|p)1/p

)
.

The next result shows that this is the case for weighted ld∞-norms of isotropic
vectors.

Corollary 3.8. Let X be an isotropic d-dimensional random vector.
Then for any numbers a1, . . . , ad and any p ≥ 1,(

Emax
i≤d
|aiXi|p

)1/p
≤ C

(
Emax

i≤d
|aiXi|+max

i≤d
(E |aiXi|p)1/p

)
.

Proof. Let M := Emaxi≤d |aiXi|. Define

Iq := {i ≤ d : ‖aiXi‖q > C1M}, q ≥ 1,

and
I∞ :=

⋃
q≥1

Iq = {i ≤ d : ‖aiXi‖∞ > C1M}.

Then by Proposition 3.3, |Iq| ≤ eq − 1 for 2 ≤ q <∞.
We have(

Emax
i∈I2p

|aiXi|p
)1/p

≤
(
E
∑
i∈I2p

|aiXi|p
)1/p

≤ |I2p|1/pmax
i∈I2p

‖aiXi‖p

≤ e2max
i≤d
‖aiXi‖p.

Chebyshev’s inequality implies, for u > 0,

P(|aiXi| ≥ u) ≤ u−q‖aiXi‖qq ≤ (C1M/u)q for i /∈ Iq.

Hence for u ≥ 2,

P
(
max
i/∈I2p

|aiXi| ≥ ue2C1M
)
≤

∑
i∈I∞\I2p

P(|aiXi| ≥ ue2C1M)

≤
∞∑
k=1

∑
i∈I

2k+1p
\I

2kp

P(|aiXi| ≥ ue2C1M)

≤ |I2k+1p|
(

C1M

ue2C1M

)2kp

≤
∞∑
k=1

u−2
kp ≤ 2u−2p.

Integration by parts yields(
Emax
i/∈I2p

|aiXi|p
)1/p

≤ CM = C Emax
i≤d
|aiXi|.
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4.Unconditional case. In this section we study the Sudakovminoration
principle for unconditional log-concave vectors X. A random d-dimensional
vectorX = (X1, . . . , Xd) is called unconditional if the vector (η1X1, . . . , ηdXd)
has the same distribution as X for any choice of signs η1, . . . , ηd ∈ {−1, 1}.

Since this is only a matter of normalization, we will also assume that X
is isotropic, which in this case means that EX2

i = 1 for i = 1, . . . , d.
We will denote by εi a Bernoulli sequence, i.e. a sequence of i.i.d. sym-

metric ±1 r.v.’s; we will also assume that the variables (εi)i are independent
of X. Let (Ei) denote a sequence of independent symmetric exponential r.v.’s
with variance 1 (i.e. with density 1√

2
exp(−

√
2 |x|)).

The next lemma shows that the vectors (εi)i≤d and (Ei)i≤d are in a sense
extremal in the class of d-dimensional unconditional isotropic log-concave
vectors.

Lemma 4.1. Let X be an isotropic unconditional log-concave vector.

(i) For any t ∈ Rd and p ≥ 1,

(3)
1√
2

∥∥∥ d∑
i=1

tiεi

∥∥∥
p
≤
∥∥∥ d∑
i=1

tiXi

∥∥∥
p
≤ 2
√
6
∥∥∥ d∑
i=1

tiEi
∥∥∥
p
.

(ii) For any nonempty bounded set T ⊂ Rd we have

(4) E sup
t∈T

d∑
i=1

tiεi ≤
√
2E sup

t∈T

d∑
i=1

tiXi.

Moreover for any ∅ 6= I ⊂ {1, . . . , d},

(5) E sup
t∈T

∑
i∈I

tiEi ≤ C2 log(|I|+ 1)E sup
t∈T

∑
i∈I

tiXi.

Proof. (i) By Lemma 2.3, Jensen’s inequality and unconditionality of X,

1√
2

∥∥∥ d∑
i=1

tiεi

∥∥∥
p
≤
∥∥∥ d∑
i=1

tiεi E |Xi|
∥∥∥
p
≤
∥∥∥ d∑
i=1

tiεi|Xi|
∥∥∥
p
=
∥∥∥ d∑
i=1

tiXi

∥∥∥
p
.

On the other hand, the result of Bobkov–Nazarov [4] and integration by
parts give ∥∥∥ d∑

i=1

tiXi

∥∥∥
2k
≤
√
6
∥∥∥ d∑
i=1

tiEi
∥∥∥
2k

for k = 1, 2, . . . ,

and the upper bound in (3) follows by Lemma 2.3.
(ii) Inequality (4) can be proven in a similar way to the lower bound

in (3). To finish the proof observe that
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E sup
t∈T

∑
i∈I

tiEi = E sup
t∈T

∑
i∈I

tiεi|Ei| ≤ Emax
i∈I
|Ei|E sup

t∈T

∑
i∈I

tiεi

≤ C log(|I|+ 1)E sup
t∈T

∑
i∈I

tiεi,

thus (5) follows by (4).

The next result easily follows by comparing unconditional vectors with
the exponential random vector E = (Ei)i≤d.

Proposition 4.2. Suppose that X is a d-dimensional log-concave un-
conditional vector. Then X satisfies SMP(1/(C log(d+ 1))).

Proof. Recall that we may assume that X is isotropic. Let p ≥ 1 and T
be a set in Rd with cardinality at least ep such that (1) holds. Then by (3),
for distinct t, s ∈ T , we have ‖〈t−s, E〉‖p ≥ A/(2

√
6), where E = (Ei)i≤d. We

know (see Example 1.5) that E satisfies the Sudakov minoration principle
with a universal constant, thus by (5) we have

A

C
≤ E sup

t,s∈T
〈t− s, E〉 ≤ C2 log(d+ 1)E sup

t,s∈T
〈t− s,X〉.

We are now ready to present the main result of this section. Its proof is
also based on comparison ideas, but in a less straightforward way.

Theorem 4.3. Let X be a log-concave unconditional vector in Rd, p ≥ 1
and T ⊂ Rd be such that |T | ≥ ep2 and ‖〈t− s,X〉‖p ≥ A for distinct points
t, s ∈ T . Then

E sup
t,s∈T
〈t− s,X〉 = 2E sup

t∈T
〈t,X〉 ≥ 1

C
A.

Proof. Again we assume that X is isotropic. By Remark 2.4 we may
assume that p ≥ 2. Observe also that if 0 ∈ T then E supt,s∈T 〈t − s,X〉 ≥
E supt∈T |〈t,X〉|, so for such T it is enough to show that

(6) E sup
t∈T
|〈t,X〉| ≥ 1

C
A.

We divide the proof into three steps. In the first two steps we show that
we may add additional assumptions on the set T (slightly decreasing its
cardinality and rescaling A by a universal constant).

Step 1. We may assume that 0 ∈ T , |T | ≥ ep2−p and

(7)
∥∥∥ d∑
i=1

tiεi

∥∥∥
p
≤ δA for all t ∈ T,

where δ > 0 is a positive universal constant (to be chosen later).
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Let dp(t, s) = ‖
∑d

i=1(ti−si)εi‖p. By the result of Talagrand (see Example
1.4) we know that if N(T, dp, α) ≥ ep then E supt,s∈T

∑d
i=1(ti − si)εi ≥

(1/C)α. Thus using (4) we may assume that N(T, dp, δA/2) ≤ ep; this means
that there exists t0 ∈ T such that

|{t ∈ T : dp(t, t
0) ≤ δA}| ≥ |T |/ep.

So we may consider the new set T ′ = {t− t0 : dp(t, t0) ≤ δA}.

Step 2. We may assume (changing A to A/2) that 0 ∈ T , |T | ≥ ep
2−p,

(7) holds and

(8) |supp(t)| ≤ p for all t ∈ T.

By Step 1 we may assume that 0 ∈ T and (7) holds. The result of
Hitczenko [9] gives

(9)
∥∥∥ d∑
i=1

tiεi

∥∥∥
p
≥ 1

C3

(∑
i≤p

t∗i +
√
p
(∑
i>p

|t∗i |2
)1/2)

,

where t∗i denotes the nonincreasing rearrangement of (|ti|).
Let us define ϕ(x) := sgn(x)(|x| − C3δA/p)+ for x ∈ R and let ϕ(t) :=

(ϕ(ti)) for t ∈ Rd. Then (7) and (9) imply that |supp(ϕ(t))| ≤ p for t ∈ T .
The upper bound in (3) and the Gluskin–Kwapień estimate [8] yield

(10) ‖〈t,X〉‖p ≤ 2
√
6 ‖〈t, E〉‖p ≤ C4(p‖t‖∞ +

√
p ‖t‖2).

Thus if δ ≤ 1/(12C3C4) we get, for t ∈ T ,

‖〈t− ϕ(t), X〉‖p ≤ C4

(
p‖t− ϕ(t)‖∞ +

√
p ‖t− ϕ(t)‖2

)
≤ C4

(
2p‖t− ϕ(t)‖∞ +

√
p
(∑
i>p

|t∗i |2
)1/2)

≤ C3C4

(
2δA+

∥∥∥ d∑
i=1

tiεi

∥∥∥
p

)
≤ 3C3C4δA ≤

A

4
.

Hence for any t, s ∈ T , t 6= s, we have

‖〈ϕ(t)− ϕ(s), X〉‖p ≥ ‖〈t− s,X〉‖p − 2
A

4
≥ A

2
.

Moreover the contraction principle for Rademacher processes (see [16, The-
orem 4.12]) and the unconditionality of X yield

E sup
t∈T
|〈t,X〉| ≥ 1

2
E sup
t∈T
|〈ϕ(t), X〉|,

so it is enough to prove estimate (6) for the set ϕ(T ) = (ϕ(t))t∈T . Note that
condition (7) holds for ϕ(T ) since it holds for T and |ϕ(ti)| ≤ |ti| for all i.
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Step 3. We consider a finite set T such that 0 ∈ T , |T | ≥ ep2−p ≥ ep2/2,
‖〈t− s,X〉‖p ≥ A for distinct t, s ∈ T , and conditions (7)–(8) hold. To finish
the proof it is enough to show (6).

To this end we construct inductively points t1, . . . , tN . For t1 we take any
point in T . Suppose that t1, . . . , tn have been constructed. We set

In :=
⋃
k≤n

supp(tk), Jn := {1, . . . , d} \ In

and
Tn := {t ∈ T : ‖〈tJn , X〉‖p ≥ A/4},

where for I ⊂ {1, . . . , d} we write tI := (ti1{i∈I}). If Tn is nonempty, we pick
for tn+1 any point in this set, otherwise we finish the construction and set
n = N , I = IN , J = JN .

We distinguish two possibilities.

Case I: N ≤ ep. Then |I| ≤
∑N

i=1 |supp(tk)| ≤ Np ≤ e2p. Observe that
then for any distinct t, s ∈ T ,

‖〈tI − sI , X〉‖p ≥ ‖〈t− s,X〉‖p − ‖〈tJ , X〉‖p − ‖〈sJ , X〉‖p ≥
A

2
.

Thus by (10), (9) and (7),
A

2
≤ ‖〈tI − sI , X〉‖p ≤ C4

(
p‖tI − sI‖∞ +

√
p ‖tI − sI‖2

)
≤ C4

(
2p‖tI − sI‖∞ + C3

∥∥∥∑
i∈I

tiεi

∥∥∥
p

)
≤ C3C4(2p‖tI − sI‖∞ + δA),

therefore if δ ≤ 1/(4C3C4) then ‖tI − sI‖∞ ≥ A/(8C3C4p). By the Gluskin–
Kwapień estimate [8] we get

‖〈tI − sI , E〉‖p2/2 ≥
p2

C
‖tI − sI‖∞ ≥

pA

C
,

where E = (Ei)i≤d. Since E satisfies the Sudakov minoration principle with
a uniform constant (see Example 1.5) and |T | ≥ ep2/2, we obtain

2E sup
t∈T
|〈tI , E〉| ≥ E sup

t∈T
〈tI − sI , E〉 ≥

pA

C
.

Thus by (5) we have
pA

C
≤ E sup

t∈T
|〈tI , E〉| ≤ C2 log(|I|+ 1)E sup

t∈T
|〈tI , X〉| ≤ CpE sup

t∈T
|〈t,X〉|.

Case II: N ≥ ep. Let I0 = ∅, ∆k := Ik \ Ik−1 and sk := tk,∆k
for

k = 1, . . . , N . Then by our construction the vectors sk have disjoint supports
and ‖〈sk, X〉‖p ≥ A/4 for k = 1, . . . , N . Thus by Proposition 3.3 (applied



Sudakov-type minoration 267

with V = A/4, ai = |si| and isotropic vector (〈si, X〉/|si|)i≤N ) we get

Emax
k≤N
|〈sk, X〉| ≥

A

4C1
.

Since the sets ∆k are disjoint and the vector X is unconditional, we get

Emax
t∈T
|〈t,X〉| ≥ 1

2
Emax

t∈T
max
k
|〈t∆k

, X〉| ≥ 1

2
Emax
k≤N
|〈sk, X〉| ≥

A

8C1
.

Remark 4.4. Following Remark 2.5 we may restate Theorem 4.3 in
terms of covering numbers—for any log-concave unconditional vector X,
any nonempty T ⊂ Rd and A > 0,

E sup
t,s∈T
〈t− s,X〉 = 2E sup

t∈T
〈t,X〉 ≥ 1

C
sup
p≥1

min

{
A

p

√
logN(T, dX,p, A), A

}
.

5. Invariant log-concave vectors. In this section we investigate the
class of invariant log-concave vectors. The first result shows that pth mo-
ments of norms of such vectors are almost constant for p ≤ d.

Proposition 5.1. Let K be a symmetric convex body in Rd and X be
a random d-dimensional vector with a density of the form e−ϕ(‖x‖K), where
ϕ : [0,∞)→ (−∞,∞] is a nondecreasing convex function. Then

(E ‖X‖dK)1/d ≤ C5Med(‖X‖K).

Proof. Let µ denote the law of X and m := Med(‖X‖K). Then
1

2
= µ(mK) =

�

mK

e−ϕ(‖x‖K) dx ≤
�

mK

e−ϕ(0) dx = e−ϕ(0)md vol(K)

and

1 ≥ µ(2emK) =
�

2emK

e−ϕ(‖x‖K) dx ≥
�

2emK

e−ϕ(2em) dx

= e−ϕ(2em)(2em)d vol(K).

Therefore
eϕ(2em)−ϕ(0) ≥ 1

2
(2e)d ≥ ed.

Convexity of ϕ implies that

(11) ϕ(r)− ϕ(m) ≥ d

2em
(r −m) for r ≥ 2em.

Integrating in polar-type coordinates we get

1

2
= µ(mK) = cK

m�

0

e−ϕ(r)rd−1 dr ≥ cK
m�

0

e−ϕ(m)rd−1 dr

=
cK
d
mde−ϕ(m),
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where cK := d vol(K). Hence for s ≥ 0,

P(‖X‖K ≥ sm) = µ(Rd \ smK) = cK

∞�

sm

e−ϕ(r)rd−1 dr

≤ d

2
m−d

∞�

sm

eϕ(m)−ϕ(r)rd−1 dr.

Using (11) we get

P(‖X‖K ≥ sm) ≤ d

2
m−de

d
2e

∞�

sm

e−
dr

2em rd−1 dr for s ≥ 2e.

The function r 7→ e−
dr

4em rd−1 is decreasing for r ≥ 4d−1d em, thus

e−
dr

2em rd−1 ≤ e−d(4em)d−1e−
dr

4em for r ≥ 4em.

Hence for s ≥ 4e,

P(‖X‖K ≥ sm) ≤ d

2
(em)−d(4em)d−1e

d
2e

∞�

sm

e−
dr

4em dr =
1

2
e

d
2e 4de−

sd
4e .

Integrating by parts we get

E ‖X‖dK ≤ (4em)d + dmd
∞�

4e

sd−1 P(‖X‖K ≥ sm) ds

≤ (4em)d +
d

2
e

d
2e (4m)d

∞�

0

sd−1e−
sd
4e ds

and it easily follows that (E ‖X‖dK)1/d ≤ C5m.
It turns out that the Sudakov minoration property holds with almost

the same constant for all vectors in the same class of invariant log-concave
vectors.

Theorem 5.2. Let Xi, i = 1, 2, be d-dimensional random vectors with
densities of the form e−ϕi(‖x‖K), where K is a symmetric convex body in
Rd and ϕi : [0,∞) → (−∞,∞] are nondecreasing convex functions. If X1

satisfies SMP(κ) then X2 satisfies SMP(κ/C6).

Proof. Observe that Xi has the same distribution as RiY , where Y is
uniformly distributed on K and Ri are nonnegative r.v’s independent of Y .
We have ‖Xi‖K ≤ Ri, in particular ERi ≥ 1

2 Med(Ri) ≥ 1
2 Med(‖Xi‖K).

Moreover

(E ‖Xi‖dK)1/d = (ERdi )1/d(E ‖Y ‖dK)1/d ≥
1

2
(ERdi )1/d.

Therefore Proposition 5.1 implies
ERi ≤ ‖Ri‖p ≤ ‖Ri‖d ≤ 4C5 ERi for 1 ≤ p ≤ d.
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We need to show that X2 satisfies SMPp(κ/C) for p ≥ 1. By Lemma 2.6
it is enough to consider only p ≤ d. Since it is a matter of scaling, we may
assume that ERi = 1 for i = 1, 2. For any T ⊂ Rd we then have

E sup
t,s∈T
〈t− s,Xi〉 = ERi E sup

t,s∈T
〈t− s, Y 〉 = E sup

t,s∈T
〈t− s, Y 〉.

Moreover for p ≥ 1,

‖〈u,Xi〉‖p = ‖Ri‖p‖〈u, Y 〉‖p for any u ∈ Rn.
Fix 1 ≤ p ≤ d and take T ⊂ Rd with |T | ≥ ep such that ‖〈t−s,X2〉‖p ≥ A

for all t, s ∈ T , t 6= s. Then ‖〈t−s,X1〉‖p ≥ 1
4C5

A for distinct points t, s ∈ T ,
and SMP for X1 yields

E sup
t,s∈T
〈t− s,X2〉 = E sup

t∈T
〈t− s,X1〉 ≥ κ

4C5
A.

As a corollary we show that a large class of invariant log-concave vectors
satisfy SMP with a universal constant.

Corollary 5.3. All d-dimensional random vectors with densities of the
form exp(−ϕ(‖x‖p)), where 1 ≤ p ≤ ∞ and ϕ : [0,∞)→ (−∞,∞] is nonde-
creasing and convex, satisfy the Sudakov minoration principle with a univer-
sal constant. In particular all rotation invariant log-concave random vectors
satisfy the Sudakov minoration principle with a universal constant.

Proof. We apply Theorem 5.2 with X2 = X and X1 having a density
of the form cdp exp(−ϕp(‖x‖p)), where ϕp(r) = rp for p < ∞ and ϕ∞ =

∞1[1,∞). Note that X1 is log-concave with a product density so it satisfies
SMP with a universal constant (see Example 1.5).

6. Applications. In the last section we apply chaining techniques to es-
tablish properties of vectors satisfying SMP. Before we formulate our results
we state a simple general estimate for moments of suprema of stochastic
processes based on chaining.

Proposition 6.1. Let (Xt)t∈T be a stochastic process and (Tk)0≤k≤k1
be a sequence of subsets of T such that |Tk| ≤ e2

k+1 for 0 ≤ k ≤ k1 and
Tk1 = T . Moreover suppose that πk : T → Tk for 0 ≤ k ≤ k1 and πk1(t) = t
for all t ∈ T . Then for any 1 ≤ k0 ≤ k1 − 1 and 2k0−1 ≤ p ≤ 2k0,∥∥∥sup

t∈Tk
|Xt|

∥∥∥
p
≤ 3e3

(
sup
t∈T

k1∑
k=k0+1

‖Xπk(t) −Xπk−1(t)‖2k + sup
t∈Tk0

‖Xt‖p
)
.

Proof. Define

m(l) := sup
t∈T

k1∑
k=l+1

‖Xπk(t) −Xπk−1(t)‖2k .



270 R. Latała

Then for u ≥ 2e3,

(12) P
(
sup
t∈T
|Xt −Xπk0 (t)

| ≥ um(k0)
)

≤ P
(
sup
t∈T

k1∑
k=k0+1

|Xπk(t) −Xπk−1(t)| ≥ um(k0)
)

≤ P
(
∃k0+1≤k≤k1 ∃t∈T |Xπk(t) −Xπk−1(t)| ≥ u‖Xπk(t) −Xπk−1(t)‖2k

)
≤

k1∑
k=k0+1

∑
s∈Tk

∑
s′∈Tk−1

P(|Xs −Xs′ | ≥ u‖Xs −Xs′‖2k)

≤
k1∑

k=k0+1

|Tk| |Tk−1|u−2
k ≤

k1∑
k=k0+1

(
e3

u

)2k

≤ 2

(
e3

u

)2k0+1

≤ 2

(
e3

u

)2p

.

Hence integrating by parts we get

E sup
t∈T
|Xt −Xπk0 (t)

|p ≤ (e3m(k0))
p
(
2p + p

∞�

2

up−12u−2p du
)

= (2e3)p(1 + 21−2p)m(k0)
p ≤ (3e3m(k0))

p.

Moreover

E sup
t∈T
|Xπk0 (t)

|p ≤
∑
t∈Tk0

E |Xt|p ≤ |Tk0 | sup
t∈Tk0

‖Xt‖pp ≤ e4p sup
t∈Tk0

‖Xt‖pp.

Hence ∥∥∥sup
t∈T
|Xt|

∥∥∥
p
≤
∥∥∥sup
t∈T
|Xt −Xπk0 (t)

|
∥∥∥
p
+
∥∥∥sup
t∈T
|Xπk0 (t)

|
∥∥∥
p

≤ 3e3
(
m(k0) + sup

t∈Tk0
‖Xt‖p

)
.

Remark 6.2. If 2k0−1 ≤ p ≤ 2k0 but k0 ≥ k1, then p ≥ 2k1−1 and∥∥∥sup
t∈T
|Xt|

∥∥∥
p
≤ |T |1/p sup

t∈T
‖Xt‖p ≤ e4 sup

t∈T
‖Xt‖p.

Now we show that if weak moments of a random vector X with the SMP
property dominate weak moments of another random vector Y then strong
moments of X dominate strong moments of Y up to a logarithmic factor.

Proposition 6.3. Suppose a random vector X in Rd satisfies SMP(κ).
Let Y be a random d-dimensional vector such that ‖〈t, Y 〉‖p ≤ ‖〈t,X〉‖p for
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all p ≥ 1 and t ∈ Rd. Then for any norm ‖ ‖ on Rd and p ≥ 1,

(E ‖Y ‖p)1/p ≤ C
(
1

κ
log+

(
ed

p

)
E ‖X‖+ sup

‖t‖∗≤1
(E |〈t, Y 〉|p)1/p

)
(13)

≤ C
(
1

κ
log+

(
ed

p

)
+ 1

)
(E ‖X‖p)1/p.

Proof. Let T be a 1/2-net in B‖ ‖∗ := {t ∈ Rd : ‖t‖∗ ≤ 1} of cardinality
at most 5d. Then ‖x‖ ≤ 2maxt∈T 〈t, x〉 for any x ∈ Rd. For q ≥ 1 choose
a maximal set Sq ⊂ T such that ‖〈t − s,X〉‖q > 2

κ E ‖X‖ for all distinct
t, s ∈ Sq. Since X satisfies SMP(κ) and

E max
t,s∈Sq

〈t− s,X〉 ≤ E sup
‖u‖∗≤2

〈u,X〉 = 2E ‖X‖,

we get |Sq| < eq.
Let k1 be the smallest integer such that 2k1+1 ≥ d log 5. Set Tk1 := T and

Tk := S2k+1 for 0 ≤ k ≤ k1. Let π̃k : T → S2k+1 be such that for any t ∈ T ,

‖〈t− π̃k(t), X〉‖2k+1 ≤
2

κ
E ‖X‖.

Define maps πk : T → Tk by πk1(t) = t and for 0 ≤ k < k1 by πk :=
π̃k ◦ π̃k+1 ◦ · · · ◦ π̃k1−1. Let k0 be the smallest positive integer such that
2k0 ≥ p.

If k0 ≤ k1 − 1, we may apply Proposition 6.1 to Xt := 〈t, Y 〉. Hence

(E ‖Y ‖p)1/p ≤ 2
∥∥∥max
t∈T
|〈t, Y 〉|

∥∥∥
p

≤ 6e3
(
sup
t∈T

k1∑
k=k0+1

‖〈πk(t)− πk−1(t), Y 〉‖2k + sup
t∈Tk0

‖〈t, Y 〉‖p
)
.

To show the first inequality in (13) it is enough to notice that k1 − k0 ≤
C log(ed/p) and for any 1 ≤ k ≤ k1 we have

sup
t∈T
‖〈πk(t)− πk−1(t), Y 〉‖2k ≤ sup

t∈T
‖〈πk(t)− πk−1(t), X〉‖2k

≤ sup
t∈T
‖〈t− π̃k−1(t), X〉‖2k ≤

2

κ
E ‖X‖.

If k0 ≥ k1, we use Remark 6.2 instead of Proposition 6.1.
The second inequality in (13) follows since

sup
t∈Tk0

‖〈t, Y 〉‖p ≤ sup
‖t‖∗≤1

‖〈t,X〉‖p ≤ (E ‖X‖p)1/p.

The next corollary states that weak and strong moments of random vec-
tors with the SMP property are comparable up to a logarithmic factor.
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Corollary 6.4. Suppose that X is a d-dimensional random vector which
satisfies SMP(κ). Then for any norm ‖ ‖ on Rd and any p ≥ 1,

(E ‖X‖p)1/p ≤ C
(
1

κ
log+

(
ed

p

)
E ‖X‖+ sup

‖t‖∗≤1
(E |〈t,X〉|p)1/p

)
.

Proof. We apply Proposition 6.3 with Y = X.

The last result shows that for a class of invariant vectors we may eliminate
logarithmic factors.

Proposition 6.5. Let X be a d-dimensional random vector with a den-
sity of the form e−ϕ(‖x‖r), where 1 ≤ r < ∞ and ϕ : [0,∞) → (−∞,∞]
is nondecreasing and convex. Let Y be a random vector in Rd such that
‖〈t, Y 〉‖p ≤ ‖〈t,X〉‖p for p ≥ 1. Then for any norm ‖ ‖ on Rd and p ≥ 1,

(E ‖Y ‖p)1/p ≤ C(r)E ‖X‖+ C sup
‖t‖∗≤1

(E |〈t, Y 〉|p)1/p ≤ C ′(r)(E ‖X‖p)1/p,

where C(r) and C ′(r) depend only on r. In particular for any norm ‖ ‖ on
Rd and any p ≥ 1,

(E ‖X‖p)1/p ≤ C(r)E ‖X‖+ C sup
‖t‖∗≤1

(E |〈t,X〉|p)1/p.

Proof. Let X̃ have a density of the form cdp exp(−‖x‖
p
p). Then X̃ has inde-

pendent coordinates. We have X = RZ and X̃ = R̃Z, where Z is uniformly
distributed on Bd

p and R, R̃ are nonnegative random variables independent of
Z. Since it is only a matter of normalization, we may assume that ER = E R̃.
Then E ‖X‖ = ERE ‖Z‖ = E R̃E ‖Z‖ = E ‖X̃‖. Moreover, Proposition 5.1
easily implies (see the proof of Theorem 5.2) that for 1 ≤ p ≤ d, we have
‖R‖p ≤ ‖R‖d ≤ 4C5‖R‖1 = 4C5‖R̃‖1 ≤ 4C5‖R̃‖p. Thus for any t ∈ Rd and
1 ≤ p ≤ d,

‖〈t,X〉‖p = ‖R‖p‖〈t, Z〉‖p ≤ 4C5‖R̃‖p‖〈t, Z〉‖p = 4C5‖〈t, X̃〉‖p.

For t ∈ Rd and d ≤ p ≤ d log 5, by Lemma 2.3 we get

‖〈t,X〉‖p ≤ (log 5)‖〈t,X〉‖d ≤ 2C5(log 5)‖〈t, X̃〉‖d ≤ 2C5(log 5)‖〈t, X̃〉‖p.

Therefore we have

(14) ‖〈t, Y 〉‖p ≤ ‖〈t,X〉‖p ≤ 2C5(log 5)‖〈t, X̃〉‖p
for 1 ≤ p ≤ d log 5, t ∈ Rd.

Let T be a 1/2-net in B‖ ‖∗ of cardinality at most 5d. Let k1 be the
smallest integer such that e2k1+1 ≥ 5d. By the result of Talagrand [21] we
may find sets Tk ⊂ T , 0 ≤ k ≤ k1, and maps πk : T → Tk such that Tk1 = T ,
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|Tk| ≤ e2
k+1 , πk1(t) = t for t ∈ T and
k1∑
k=1

‖〈πk(t)− πk−1(t), X̃〉‖2k ≤
1

2
C(r)E sup

t∈T
〈t, X̃〉

≤ C(r)E ‖X̃‖ = C(r)E ‖X‖.

We may now proceed as in the proof of Proposition 6.3 observing that
by (14) we have

‖〈πk(t)− πk−1(t), Y 〉‖2k ≤ 2C5(log 5)‖〈πk(t)− πk−1(t), X̃〉‖2k
for 0 ≤ k ≤ k1.

Remark 6.6. Using the two-sided bound for the expected value of
suprema of Bernoulli processes [2] one may show that Proposition 6.5 is
also satisfied in the case r =∞.
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