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Abstract. Let d > 0 be a positive real number and n ≥ 1 a positive integer and
define the operator Sd and its associated global maximal operator S∗∗

d by

(Sdf)(x, t) =
1

(2π)n

\
Rn

eix·ξeit|ξ|d f̂(ξ) dξ, f ∈ S(Rn), x ∈ R
n, t ∈ R,

(S∗∗
d f)(x) = sup

t∈R

∣∣∣∣
1

(2π)n

\
Rn

eix·ξeit|ξ|d f̂(ξ) dξ

∣∣∣∣, f ∈ S(Rn), x ∈ R
n,

where f̂ is the Fourier transform of f and S(Rn) is the Schwartz class of rapidly decreasing
functions. If d = 2, Sdf is the solution to the initial value problem for the free Schrödinger
equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ S(Rn), if n ≥ 3,
0 < d ≤ 2, and p ≥ 2n/(n − 2), the maximal function estimate

( \
Rn

|(S∗∗
d f)(x)|p dx

)1/p

≤ C‖f‖Hs(Rn)

holds for s > n(1/2−1/p) and fails for s < n(1/2−1/p), where Hs(R
n) is the L2-Sobolev

space with norm

‖f‖Hs(Rn) =
( \

Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ
)1/2

.

We also prove that for radial functions f ∈ S(Rn), if n ≥ 3, n/(n− 1) < d < n2/2(n− 1),
then the estimate

( \
Rn

|(S∗∗
d f)(x)|2n/(n−d) dx

)(n−d)/2n

≤ C‖f‖Hs(Rn)

holds for s > d/2 and fails for s < d/2. These results complement other estimates obtained
by Heinig and Wang [7], Kenig, Ponce and Vega [8], Sjölin [9]–[13], Vega [19]–[20], Walther
[21]–[23] and Wang [24].
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1. Introduction. Let P be a real-valued smooth phase function and
SP the integral operator

(SP f)(x, t) = (2π)−n
\

Rn

eix·ξeitP (ξ)f̂(ξ) dξ, x ∈ R
n, t ∈ R,(1.1)

where f̂ is the Fourier transform of f defined by

f̂(ξ) =
\

Rn

e−iξ·xf(x) dx.

Then u(x, t) = (SP f)(x, t) is the formal solution of the dispersive initial
value problem

∂u

∂t
(x, t) = iP (D)u(x, t), x ∈ R

n, t ∈ R,(1.2)

u(x, 0) = f(x),

where D = −i(∂/∂x1, . . . , ∂/∂xn), and P (D) is defined by

P (D)u(x) = (2π)−n
\

Rn

eix·ξP (ξ)û(ξ) dξ.

If P (ξ) = |ξ|2, (1.2) reduces to the initial value problem for the free Schrödin-
ger equation

∂u

∂t
(x, t) = −i∆xu(x, t), u(x, 0) = f(x),(1.3)

while the case P (ξ) = ξ3, with n = 1, yields the linear version of the
Korteweg–de Vries equation. For other examples of phase functions, see
[7]–[8].

In this paper the phase function P is assumed to be radial and real-
valued, that is, P (ξ) = ϕ(|ξ|), ξ ∈ R

n, where ϕ ∈ C1(0,∞) is real-valued,
for example P (ξ) = |ξ|d, d > 0. In this latter case the corresponding integral
operator (1.1) is denoted by (Sdf)(x, t). If f ∈ S(Rn), the Schwartz class
of rapidly decreasing functions, an application of Parseval’s formula shows
that (Sdf)(x, t) = (2π)−n(Kd

t ∗ f)(x), where Kd
t (x) =

T
Rn e−ix·ξeit|ξ|ddξ.

In particular, u(x, t) = (2π)−n(K2
t ∗ f)(x) is the formal solution of the

Schrödinger equation (1.3).
In 1979, Carleson [3] posed the following problem: Find the smallest

s > 0 such that for any compactly supported f ∈ Hs(R
n), the limit

limt→0+(2π)−n(Kd
t ∗ f)(x) = f(x) exists a.e. Here Hs(R

n) are the L2-Sobo-
lev spaces with norm

‖f‖Hs =
( \

Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ
)1/2

.

In one dimension this problem is completely solved in the sense that
(2π)−1(Kd

t ∗ f)(x) → f(x) a.e., as t → 0+, if f ∈ Hs(R), s ≥ 1/4, with
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s = 1/4 best possible ([4]). However, if n ≥ 2, Carleson’s problem is still
open, although many partial results are known (cf. [7]–[13], [18]–[24]).

The almost everywhere convergence of the solution to initial data f is
closely related to regularity properties of the local and global maximal op-
erators

(S∗
df)(x) = sup

0<t<1
|(Sdf)(x, t)|, (S∗∗

d f)(x) = sup
t∈R

|(Sdf)(x, t)|.

In fact Sjölin [9] proved that if for any T > 0, there is a constant C > 0
such that

( \
|x|≤T

|(S∗
df)(x)|p dx

)1/p
≤ C‖f‖Hs , p ≥ 1, s > 0,(1.4)

for all f ∈ S(Rn), then limt→0+(2π)−n(Kd
t ∗ f)(x) = f(x) a.e. for all com-

pactly supported f ∈ Hs(R
n). Hence the study of estimates of the form

(1.4) and their various extensions is important. For example, Carbery [2]
obtained ( \

Rn

|(S∗
df)(x)|2 dx

)1/2
≤ C‖f‖Hs

for s > d/2, while it follows from a technique of Sjölin [9] that the weighted
inequality ( \

Rn

|(S∗
df)(x)|2 e−|x|2 dx

)1/2
≤ C‖f‖Hs

is satisfied for d > 1 and s > 1/2. The weighted estimate for the global
maximal operator

( \
Rn

|(S∗∗
d f)(x)|2

1

(1 + |x|)b
dx

)1/2

≤ C‖f‖Hs(1.5)

with b > 1, s > b/2, d > 0 was given by Vega [20], and the estimate
( \

Rn

|(S∗∗
d f)(x)|2

dx

|x|a

)1/2

≤ C‖f‖Hs ,

which holds for s > a/2, 0 < d ≤ a < n, a > 1, n ≥ 2, and fails for s < a/2,
was proved by Heinig and Wang in [7]. Recently, Tao [18] has proved that
(1.4) holds for p = 2, n = 2 and s > 2/5. This is the best result obtained so
far in dimensions greater than one.

The weight functions for the global maximal operator are essential, be-
cause (1.5) fails for b = 0 and any s ∈ R ([10]). However, if f is a radial
function, more can be said. Sjölin [11] proved that (1.4) holds for all radial f
with s = 1/4 if and only if p ≤ 4n/(2n − 1), which is in contrast with a
result of Wang [24], who showed that for non-radial f and p > 2, d > 1,
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(1.4) fails with s = 1/4. Note that (1.4) with s = 1/4, p = 4, and n = 1 is
sharp ([8]).

This leads to the following question: for what values of p and s is the
global maximal estimate

( \
Rn

|(S∗∗
d f)(x)|p dx

)1/p
≤ C‖f‖Hs(1.6)

satisfied for all radial functions f? This and related questions are discussed
in this paper. In fact in Theorem 3.2, it is shown that (1.6) holds for s >
n(1/2−1/p) and fails for s < n(1/2−1/p), where p ≥ 2n/(n−2), n ≥ 3 and
0 < d ≤ 2. Moreover, it is shown in Theorem 3.3 that, for radial functions
f ∈ S(Rn), n ≥ 3, n/(n − 1) < d < n2/2(n − 1), the estimate

( \
Rn

|(S∗∗
d f)(x)|2n/(n−d) dx

)(n−d)/2n
≤ C‖f‖Hs(Rn)

holds for s > d/2 and fails for s < d/2. These results are proved using
a general weighted inequality (Theorem 3.1), which in turn follows from a
number of mixed-norm estimates involving general real-valued radial phase
functions. The proofs of the mixed-norm estimates in this paper hinge on
certain uniform pointwise estimates of the Bessel functions obtained by Guo
[6], Stempak [16]–[17] and Vega [19]. These results, which may be of inde-
pendent interest, are given in the next section together with some other
preliminary estimates.

Throughout this paper, constants are denoted by C (sometimes with
subscripts) which may be different at different places. Inequalities given
here are interpreted in the sense that if the right side is finite, so is the left
side, and the inequality holds. For 0 6= x ∈ R

n we write x′ = x/|x|, where
x′ ∈ Sn−1, the unit sphere in R

n. The Lp-Sobolev spaces Hp
s (Rn), p ≥ 1,

s ∈ R, are defined by

Hp
s (Rn) = {f ∈ S ′(Rn) : ‖f‖Hp

s
< ∞},

where

‖f‖Hp
s

=
( \

Rn

|(1 − ∆)s/2f(x)|p dx
)1/p

and (1 − ∆)s/2 is the Bessel potential operator given by

(1 − ∆)s/2f(x) = (2π)−n
\

Rn

eix·ξ(1 + |ξ|2)s/2f̂(ξ) dξ, f ∈ S(Rn).

The Riesz potential operator is defined by

(Iαf)(x) = Cn

\
Rn

|y − x|α−nf(y) dy, f ∈ S(Rn), 0 < α < n,
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where Cn is a constant chosen so that the Fourier transform (denoted by F)
of Iαf satisfies

F(Iαf)(ξ) = |ξ|−αf̂(ξ).

For properties of these operators we refer to [14].
The Bessel function Jm of order m > −1/2 is defined in integral form by

Jm(r) =
1

Γ (1/2)Γ (m + 1/2)
(r/2)m

1\
−1

eirs (1 − s2)(2m−1)/2 ds,

where r ≥ 0. The local and global maximal operators of SP are defined by

(S∗
P f)(x) = sup

0<t<1
|(SP f)(x, t)|,

respectively
(S∗∗

P f)(x) = sup
t∈R

|(SP f)(x, t)|.

Finally, the Fourier transform of (SP f)(x, t) in the t variable is denoted by
(SP f)∧(x, ·)(τ).

2. Mixed-norm estimates for S∗∗
P . Weight functions are assumed

to be non-negative locally integrable functions on (0,∞). Recall that the
standard duality principle for Lp-spaces with weight v is the following:

If 1 < p < ∞, g(x) ≥ 0, v(x) ≥ 0, x ∈ (0,∞), then

sup
f≥0

T∞
0 f(x)g(x) dx

(T∞
0 f(x)pv(x) dx

)1/p
=

(∞\
0

g(x)qv(x)1−q dx
)1/q

;(2.1)

here and throughout, the conjugate index q of p is defined by 1/p+1/q = 1.
The next lemma summarizes some known estimates of the Bessel func-

tions Jm(s).

Lemma 2.1.

(i) If v ≥ 0 is a non-negative real number , then

|Jv(t)| ≤ C,(2.2)

where C > 0 is independent of v and t > 0.
(ii) If n ≥ 2, v ≥ 0 and p > 4, then

(∞\
0

t|Jv(t)|
p dt

)1/p
≤ C,(2.3)

where C = C(p) > 0 is independent of v ≥ 0.
(iii) If n ≥ 2, v ≥ 0 and 0 < γ < n − 1, then

∞\
0

t−γ |Jv(t)|
2 dt ≤ C,(2.4)

where C = C(γ) > 0 is independent of v.



100 S. Wang

Proof. (2.2) follows from [16; Eq. (4)] and [15; Lemma 3.11, Ch. 4] (see
also [26; p. 176]). (2.3) follows from [6; Lemma 3.2] or [16; Eq. (3)] or [19;
Lemma 2.2]. (2.4) follows from [26; p. 403]. More information on uniform
pointwise and Lp estimates of the Bessel functions Jv(t) can be found in
[16]–[17].

The following lemma is an immediate consequence of (2.19) and Theorem
3.10 of [15; Ch.4].

Lemma 2.2. If n ≥ 2 and Y is a spherical harmonic of order k on Sn−1,
then \

Sn−1

e−is(x′·ξ′) Y (ξ′) dσ(ξ′) = (2π)n/2i−ks(2−n)/2 J(n+2k−2)/2(s)Y (x′).(2.5)

Here s > 0, x′, ξ′ ∈ Sn−1 and dσ denotes the surface measure on Sn−1.

From now on the phase function P will be assumed to be radial and
real-valued. The following lemma is instrumental in the proof of the main
results of this paper. Note that a similar result was proved by Heinig and
Wang [7; Lemma 2.4].

Lemma 2.3. Assume n ≥ 2, f ∈ S(Rn), w ≥ 0 is a radial weight function

and P (ξ) = ϕ(|ξ|), ξ ∈ R
n, where ϕ∈C1(0,∞) is real-valued with |ϕ′(t)|>0.

(i) If 1 < p < ∞, 0 < γ < n − 1, then for any s0 ∈ R,

(2.6)
\

Rn+1

(1 + τ2)s0 |(SP f)∧(x, ·)(τ)|2w(|x|) dx dτ

≤ C
(∞\

0

tq(1+γ/p)w(t)q dt
)1/q

( \
Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ|1/q+γ/p|f̂(ξ)|2 dξ

)
,

where C > 0 depends only on n, γ, and s0.

(ii) If p > 2, then (2.6) holds with γ = −1 for all s0 ∈ R, where C > 0
depends on n, p, and s0 only.

Proof. (i) We prove the case ϕ′(t) > 0; the proof for ϕ′(t) < 0 is iden-
tical. Let A = limt→0+ ϕ(t), B = limt→+∞ ϕ(t) and g ∈ S(R). Then an
interchange of the order of integration, a transformation to polar coordi-
nates and a final change of variable yield\
R

(SP f)(x, t)ĝ(t) dt = (2π)−n
\
R

( \
Rn

eix·ξeitP (ξ)f̂(ξ) dξ
)
ĝ(t) dt

= (2π)−n
\

Rn

eix·ξ f̂(ξ)
\
R

eitϕ(|ξ|)ĝ(t) dt dξ = (2π)1−n
\

Rn

eix·ξ f̂(ξ)g(ϕ(|ξ|)) dξ
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= (2π)1−n
∞\
0

rn−1g(ϕ(r))
\

Sn−1

eir|x|(x′·ξ′)f̂(rξ′) dσ(ξ′) dr

= (2π)1−n
B\
A

g(τ)
(ϕ−1(τ))n−1

ϕ′(ϕ−1(τ))

\
Sn−1

eiϕ−1(τ)|x|(x′·ξ′)f̂(ϕ−1(τ)ξ′) dσ(ξ′) dτ,

where the interchange of the order of integration is justified by Fubini’s
theorem. Hence (SP f)∧(x, ·)(τ) exists as a tempered distribution and is
given by

(SP f)∧(x, ·)(τ)

= (2π)1−nχ(A,B)(τ)
(ϕ−1(τ))n−1

ϕ′(ϕ−1(τ))

\
Sn−1

eiϕ−1(τ)|x|(x′·ξ′)f̂(ϕ−1(τ)ξ′) dσ(ξ′)

where χ(A,B) is the characteristic function of the interval (A, B).

Now, using polar coordinates, interchanging the order of integration and
then making a change of variable yields

(2.7)
\

Rn+1

(1 + τ2)s0
∣∣(SP f)∧(x, ·)(τ)

∣∣2 w(|x|) dx dτ

= C
\

Rn

w(|x|)

B\
A

(1 + τ2)s0
|ϕ−1(τ)|2(n−1)

|ϕ′(ϕ−1(τ))|2

×
∣∣∣
\

Sn−1

ei|x|ϕ−1(τ)(x′·ξ′)f̂(ϕ−1(τ)ξ′) dσ(ξ′)
∣∣∣
2
dτ dx

≤ C

∞\
0

rn−1w(r)

B\
A

(1 + τ2)s0
|ϕ−1(τ)|2(n−1)

|ϕ′(ϕ−1(τ))|2

×
\

Sn−1

∣∣∣
\

Sn−1

eirϕ−1(τ)(x′·ξ′)f̂(ϕ−1(τ)ξ′) dσ(ξ′)
∣∣∣
2
dτ dr dσ(x′)

≤ C

∞\
0

rn−1w(r)

∞\
0

(1 + |ϕ(t)|2)s0
t2(n−1)

|ϕ′(t)|

×
\

Sn−1

∣∣∣
\

Sn−1

eirt(x′·ξ′)f̂(tξ′) dσ(ξ′)
∣∣∣
2
dσ(x′) dt dr

≤ C

∞\
0

(1 + |ϕ(t)|2)s0

|ϕ′(t)|
t2(n−1)

∞\
0

rn−1w(r)

×
\

Sn−1

∣∣∣
\

Sn−1

eirt(x′·ξ′)f̂(tξ′) dσ(ξ′)
∣∣∣
2
dσ(x′) dr dt.
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Let H
(k)
n , n ≥ 2, be the finite-dimensional vector space of spherical har-

monics Y of order k on Sn−1 with dimension say dn,k and an orthonormal

basis {Yk,l}
dn,k

l=1 . It follows from the theory of spherical harmonics as formu-

lated in [15; Ch. 4] that
⋃∞

k=0{Yk,l}
dn,k

l=1 is a complete orthonormal basis of
L2(Sn−1). If

ak,l(t) =
\

Sn−1

f̂(tξ′)Yk,l(ξ
′) dσ(ξ′),

then (2.5) and the orthogonality of Yk,l yield\
Sn−1

∣∣∣
\

Sn−1

eitr(x′·ξ′)f̂(tξ′) dσ(ξ′)
∣∣∣
2
dσ(x′)

= C

∞∑

k=0

dn,k∑

l=1

|ak,l(t)|
2(rt)2−n|J(n+2k−2)/2(rt)|

2,

and substituting this into (2.7) shows that

(2.8)
\

Rn+1

(1 + τ2)s0 |(SP f)∧(x, ·)(τ)|2w(|x|) dx dτ

≤ C

∞\
0

(1 + |ϕ(t)|2)s0

|ϕ′(t)|
tn

( ∞∑

k=0

dn,k∑

l=1

|ak,l(t)|
2
∞\
0

rw(r)|J(n+2k−2)/2(tr)|
2 dr

)
dt.

By Hölder’s inequality and the estimates (2.2) and (2.4), we see that

∞\
0

rw(r)|J(n+2k−2)/2(tr)|
2 dr

=

∞\
0

w(r)r(1+γ/p)r−γ/p|J(n+2k−2)/2(tr)|
2 dr

≤
(∞\

0

r−γ |J(n+2k−2)/2(tr)|
2p dr

)1/p(∞\
0

w(r)qrq(1+γ/p) dr
)1/q

≤ C
(∞\

0

r−γ |J(n+2k−2)/2(rt)|
2 dr

)1/p(∞\
0

w(r)qrq(1+γ/p) dr
)1/q

≤ C
(
tγ−1

∞\
0

u−γ |J(n+2k−2)/2(u)|2 du
)1/p(∞\

0

w(r)qrq(1+γ/p) dr
)1/q

≤ Ct(γ−1)/p
(∞\

0

w(r)qrq(1+γ/p) dr
)1/q

,
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where the constant C > 0 is independent of p, k ≥ 0 and w. Substituting
this estimate into (2.8), we finally obtain\
Rn+1

(1 + τ2)s0 |(SP f)∧(x, ·)(τ)|2w(|x|) dx dτ

≤ C
(∞\

0

w(r)qr(1+γ/p)q dr
)1/q

∞\
0

(1 + |ϕ(t)|2)s0

|ϕ′(t)|
tn+(γ−1)/p

×
( ∞∑

k=0

dn,k∑

l=1

|ak,l(t)|
2
)

dt

= C
(∞\

0

w(r)qr(1+γ/p)q dr
)1/q \

Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ|1+(γ−1)/p|f̂(ξ)|2 dξ,

where C > 0 depends only on n, s0, and γ.

(ii) The proof of this part is very similar, the only difference lies in the
estimation of the integral

∞\
0

rw(r)|J(n+2k−2)/2(rt)|
2 dr.

Since 2p > 4, Hölder’s inequality and the estimate (2.3) yield

(2.9)

∞\
0

w(r)r|J(n+2k−2)/2(rt)|
2 dr

≤
(∞\

0

r|J(n+2k−2)/2(rt)|
2p dr

)1/p(∞\
0

rw(r)q dr
)1/q

≤ t−2/p
(∞\

0

u|J(n+2k−2)/2(u)|2p du
)1/p(∞\

0

rw(r)q dr
)1/q

≤ Ct−2/p
(∞\

0

rw(r)q dr
)1/q

,

where C > 0 is independent of k ≥ 0 and w. Proceeding as in the proof
of (i), we deduce the result from (2.8) and (2.9).

Lemma 2.4. Let n ≥ 2, s0 > 1/2, f ∈ S(Rn), w a non-negative measur-

able function defined on (0,∞), and P (ξ) = ϕ(|ξ|), where ϕ ∈ C1(0,∞) is

real-valued with |ϕ′(t)| > 0.

(i) If p > 1, 0 < γ < n−1, then there is a constant C = C(n, γ, s0) > 0
such that



104 S. Wang

(2.10)
\

Rn

|(S∗∗
P f)(x)|2w(|x|) dx

≤ C
(∞\

0

tq(1+γ/p)w(t)q dt
)1/q

( \
Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ|1/q+γ/p|f̂(ξ)|2 dξ

)
.

(ii) If p > 2, then (2.10) holds with γ = −1 and C = C(n, p, s0).

Proof. Since

(SP f)(x, t) = (2π)−1
\
R

eitτ (SP f)∧(x, ·)(τ)dτ,

Schwarz’s inequality yields

(S∗∗
P f)(x)≤ (2π)−1

(\
R

(1+τ2)−s0 dτ
)1/2(\

R

(1+τ2)s0 |(SP f)∧(x, ·)(τ)|2 dτ
)1/2

and hence this lemma is an immediate consequence of Lemma 2.3.

We are now in a position to prove the following mixed-norm inequality
for the global maximal function (S∗∗

P f):

Theorem 2.1. Let n ≥ 2, s0 > 1/2, f ∈ S(Rn), and P (ξ) = ϕ(|ξ|),
where ϕ ∈ C1(0,∞) is real-valued with |ϕ′(t)| > 0.

(i) If p ≥ 2, 0 < γ < n − 1, then there exists a constant C = C(n, γ, s0)
such that

(2.11)
(∞\

0

( \
Sn−1

|(S∗∗
P f)(rx′)|2 dσ(x′)

)p/2
r(n−2)p/2−γ dr

)1/p

≤ C

( \
Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ|1+2(γ−1)/p|f̂(ξ)|2 dξ

)1/2

.

(ii) If p > 4, then (2.11) holds with γ = −1 and C = C(n, p, s0).

Proof. (i) A transformation to polar coordinates in (2.10) yields

(∞\
0

w(t)tn−1
( \

Sn−1

|(S∗∗
P f)(tx′)|2 dσ(x′)

)
dt

)/(∞\
0

w(t)qtq(1+γ/p) dt
)1/q

≤ C

( \
Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ|1/q+γ/p|f̂(ξ)|2 dξ

)
.

Now using the duality principle (2.1) with f equal to w, v(t) = tq(1+γ/p),
g defined by

g(t) = tn−1
( \

Sn−1

|(S∗∗
P f)(tx′)|2 dσ(x′)

)
,
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and the roles of p and q interchanged, we obtain

sup
w≥0

T∞
0 w(t)tn−1(

T
Sn−1 |(S

∗∗
P f)(tx′)|2 dσ(x′)) dt

(
T∞
0 w(t)qtq(1+γ/p) dt)1/q

=
(∞\

0

(
tn−1

\
Sn−1

|S∗∗
P f(tx′)|2 dσ(x′)

)p
t(1+γ/p)q(1−p) dt

)1/p

=
(∞\

0

[ \
Sn−1

|S∗∗
P f(tx′)|2 dσ(x′)

]p
tp(n−2)−γ dt

)1/p

≤ C
\

Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ|1/q+γ/p|f̂(ξ)|2 dξ,

where C = C(n, γ, s0). The last inequality is equivalent to (2.11) by replacing
p by p/2.

(ii) The proof is the same as that of (i), only now Lemma 2.4(ii) is
applied.

If f ∈ S(Rn) is radial, we immediately obtain

Corollary 2.1. Let P (ξ) = ϕ(|ξ|), ξ ∈ R
n, n ≥ 2, where ϕ ∈ C1(0,∞)

is real-valued with |ϕ′(t)| > 0 and s0 > 1/2. Assume f ∈ S(Rn) is radial.

(i) If 0 < γ < n − 1, p ≥ 2, then there exists a constant C > 0,
independent of f and p, such that ,

(2.12)
( \

Rn

|(S∗∗
P f)(x)|p|x|(n−2)(p−2)/2−(1+γ) dx

)1/p

≤ C

( \
Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ|1+2(γ−1)/p|f̂(ξ)|2 dξ

)1/2

.

(ii) If p > 4, then (2.12) holds with γ = −1.

(iii) The limiting case of (2.12) also holds

sup
x∈Rn

|(S∗∗
P f)(x)|x|(n−2)/2| ≤ C

( \
Rn

(1 + |ϕ(|ξ|)|2)s0

|ϕ′(|ξ|)|
|ξ||f̂(ξ)|2 dξ

)1/2

.(2.13)

Observe that (i) and (ii) follow from Theorem 2.1 since f radial implies

that f̂ and S∗∗
P f are radial. (iii) is obtained on taking the limit on both

sides of the inequality (2.12) as p → ∞ and using the fact that the constant
C > 0 in (2.11) is independent of p.

Since

S∗∗
P (F−1f)(x) ≥ (2π)n|f̂(−x)|,
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(2.11) with ϕ(t) = t and f replaced by f̂ yields the Fourier inequality for
radial functions,

(2.14)
( \

Rn

|f̂(x)|p|x|(n−2)(p−2)/2−(1+γ) dx
)1/p

≤ C
( \

Rn

(1 + |ξ|2)s0 |ξ|1+2(γ−1)/p|f(ξ)|2 dξ
)1/2

.

This result is of some interest since theweight function |x|(n−2)(p−2)/2−(1+γ)

may be increasing.

3. Integral estimates of S∗∗
d for radial f . The main results for

S∗∗
d , d > 0, valid for radial functions, are given next.

Theorem 3.1. Let n ≥ 2.

(i) If 0 < γ < n − 1, p ≥ 2, and 0 < d/2 ≤ 1 + (γ − 1)/p, then
( \

Rn

|(S∗∗
d f)(x)|p|x|(n−2)(p−2)/2−(1+γ) dx

)1/p
≤ C‖f‖Hs(3.1)

holds for all radial functions f ∈ S(Rn) if s > 1 + (γ − 1)/p, and

fails for s < 1 + (γ − 1)/p.

(ii) If p > 4 and 0 < d < n, then
( \

Rn

|(S∗∗
d f)(x)|p|x|(n−2)(p−2)/2 dx

)1/p
≤ C‖f‖Hr

s
(3.2)

for all radial f ∈ S(Rn), all s > d/2+(1−2/p) and r = 2n/(n+d).

Proof. (i) Choose s0 = 1/2 + ε and ϕ(t) = td in Corollary 2.1(i). Since
2 + 2(γ − 1)/p ≥ d, it follows that

( \
Rn

|(S∗∗
d f)(x)|p|x|(n−2)(p−2)/2−(1+γ) dx

)1/p

≤ C
( \

Rn

(1 + |ξ|2)(1/2+ε)d|ξ|2+2(γ−1)/p−d|f̂(ξ)|2
)1/2

≤ C‖f‖H(1/2+ε)d+1+(γ−1)/p−d/2
≤ C‖f‖H1+(γ−1)/p+dε

,

from which the positive result of (i) follows. To complete the proof of (i),
we require a lemma on weighted Fourier inequalities for radial functions.

Lemma 3.1. Assume n ≥ 1, a, s0 are real numbers and p ≥ 2. If
( \

Rn

|f̂(x)|p
dx

|x|a

)1/p

≤ C
( \

Rn

|f(x)|2(1 + |x|2)s0 dx

)1/2

(3.3)
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holds for all radial functions f ∈ S(Rn), then s0 ≥ n(1/2 − 1/p) + a/p and

a < n.

Proof. Let f be radial, so f(x) = g(t), t = |x|. Then

( \
Rn

(1 + |x|2)s0 |f(x)|2 dx
)1/2

= C
(∞\

0

|(1 + r2)s0/2r(n−1)/2g(r)|2 dr
)1/2

.

Moreover since f is radial, so is f̂ , and by [5],

f̂(ξ) = (2π)n/2|ξ|1−n/2
∞\
0

rn/2g(r)J(n/2−1)(r|ξ|) dr

= (2π)n/2|ξ|(1−n)/2(Hn/2−1F )(|ξ|),

where F (r) = r(n−1)/2g(r) and (Hn/2−1F )(s) =
T∞
0 (rs)1/2F (r)Jn/2−1(rs)dr

is the Hankel transform of F of order n/2 − 1. Therefore, using polar coor-
dinates we get

( \
Rn

|f̂(x)|p
dx

|x|a

)1/p

= C
(∞\

0

sn−1s−a|s(1−n)/2(Hn/2−1F )(s)|p ds
)1/p

= C
(∞\

0

|s(n−1)(1/p−1/2)−a/p(Hn/2−1F )(s)|p ds
)1/p

,

and hence inequality (3.3) has the form

(∞\
0

|U(s)(Hn/2−1F )(s)|p ds
)1/p

≤ C
(∞\

0

|V (s)F (s)|2 ds
)1/2

,

where F (r) = r(n−1)/2g(r), U(s) = s(1/p−1/2)(n−1)−a/p and V (s)=(1+s2)s0/2.

By [5; Thm. 3, Remark 1], this estimate implies

sup
s>0

( 1/s\
0

U(t)pt(n−1)p/2 dt
)1/p( s\

0

tn−1V (t)−2 dt
)1/2

< ∞,

or equivalently

sup
s>0

[ 1/s\
0

tn−1−a dt
]1/p[ s\

0

(1 + t2)−s0tn−1 dt
]1/2

< ∞.(3.4)

Since the integral on the left will not be finite if a ≥ n, it follows that a < n.

If s > 0 is large, then

[ 1/s\
0

tn−1−a dt
]1/p

≥ C(1/s)(n−a)/p,
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and

[ s\
0

(1 + t2)−s0tn−1 dt
]1/2

≥ C
[ s\

0

t−2s0+n−1 dt
]1/2

≥ Cs(n−2s0)/2.

Substituting these estimates into (3.4) yields

∞ > sup
s>0

[ 1/s\
0

tn−1−a dt
]1/p[ s\

0

(1 + t2)−s0tn−1 dt
]1/2

≥ lim sup
s→∞

[ 1/s\
0

tn−1−a dt
]1/p[ s\

0

(1 + t2)−s0tn−1 dt
]1/2

≥ lim sup
s→∞

C(1/s)(n−a)/ps(n−2s0)/2.

Hence −(n − a)/p + (n − 2s0)/2 ≤ 0. This proves the lemma.

Now we complete the proof of Theorem 3.1(i).

If (3.1) holds for all radial f ∈ S(Rn), then in particular it holds with
f replaced by F−1f , where F−1 denotes the inverse Fourier transform. But
since S∗∗

d (F−1f)(x) ≥ (2π)n|f̂(−x)|, one obtains

( \
Rn

|f̂(x)|p|x|(n−2)(p−2)/2−(1+γ) dx
)1/p

≤ C
( \

Rn

(1 + |x|2)s|f(x)|2 dx
)1/2

.

Hence by Lemma 3.1 with s0 = s and

a = −[(n − 2)(p − 2)/2 − (1 + γ)],

it follows that

s ≥ n(1/2 − 1/p) + a/p

= n(1/2 − 1/p) − (n − 2)(1/2 − 1/p) + (1 + γ)/p

= n(1/2 − 1/p) − n(1/2 − 1/p) + 2(1/2 − 1/p) + (1 + γ)/p

= 1 + (γ − 1)/p.

Therefore, if s < 1 + (γ − 1)/p, then (3.1) fails for radial functions.

To prove (ii), choose s0 = 1/2 + ε and ϕ(t) = td in Corollary 2.1(ii).
Then by (2.11) with γ = −1,

( \
Rn

|(S∗∗
d f)(x)|p|x|(n−2)(p−2)/2 dx

)1/p

≤ C
( \

Rn

(1 + |ξ|2)(1/2+ε)d|ξ|2−4/p−d|f̂(ξ)|2 dξ
)1/2
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≤ C
( \

Rn

(1 + |ξ|2)(1/2+ε)d+1−2/p|ξ|−d|f̂(ξ)|2 dξ
)1/2

= C
( \

Rn

|F(Id/2(1 − ∆)[(1/2+ε)d+1−2/p]/2f)(x)|2 dx
)1/2

= C
( \

Rn

|(Id/2(1 − ∆)[(1/2+ε)d+1−2/p]/2f)(x)|2 dx
)1/2

≤ C
( \

Rn

|(1 − ∆)[(1/2+ε)d+1−2/p]/2f(x)|r dx
)1/r

= C‖f‖Hr
(1/2+ε)d+1−2/p

,

where F , Id/2, and (1 − ∆)[(1/2+ε)d+1−2/p]/2 denote the Fourier transform,
the Riesz potential operator of order d/2 and the Bessel potential operator
of order −[(1/2 + ε)d + 1 − 2/p], respectively. Here, Plancherel’s theorem
and the Hardy–Littlewood–Sobolev inequality were applied with

1 −
d

2n
= 1 −

(
1

r
−

1

2

)
,

that is, r = 2n/(n + d) (cf. [14]). This completes the proof of Theorem 3.1.

An interpolation argument and Theorem 3.1(i) yield the following sharp
non-weighted result:

Theorem 3.2. Assume n ≥ 3, 0 < d ≤ 2, and p ≥ 2n/(n − 2). Then
( \

Rn

|(S∗∗
d f)(x)|p dx

)1/p
≤ C‖f‖Hs(3.5)

holds for all radial f ∈ S(Rn) if s > n(1/2 − 1/p), and fails for s <
n(1/2 − 1/p).

Proof. Let γ = 1, s1 = 1 + ε, ε > 0 and choose p = p1 = 2n/(n − 2) in
Theorem 3.1(i). Then (3.1) takes the form

( \
Rn

|(S∗∗
d f)(x)|p1 dx

)1/p1

≤ C‖f‖Hs1
.(3.6)

Also, by Schwarz’s inequality,

‖S∗∗
d f‖∞ = sup

x∈Rn
|(S∗∗

d f)(x)| ≤ (2π)−n
\

Rn

|f̂(ξ)| dξ

≤ (2π)−n
( \

Rn

(1+|ξ|2)−n/2−ε dξ
)1/2( \

Rn

(1+|ξ|2)n/2+ε|f̂(ξ)|2 dξ
)1/2

≤ C‖f‖Hn/2+ε
.
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Interpolating between this and (3.6) yields
( \

Rn

|(S∗∗
d f)(x)|p dx

)1/p
≤ C‖f‖Hs ,

where 1/p = θ/p1, 0 < θ < 1, and

s = s1θ + (n/2 + ε)(1 − θ) = (1 + ε)θ + (n/2 + ε)(1 − θ)

= θ + (n/2)(1 − θ) + ε = p1/p + (n/2) − (n/2)p1/p + ε

= ((1 − n/2)/p)(2n/(n − 2)) + n/2 + ε = n(1/2 − 1/p) + ε.

Hence (3.5) holds for s > n(1/2 − 1/p).
The fact that (3.5) fails if s < n(1/2 − 1/p) is a direct consequence of

Lemma 3.1.

Theorem 3.3. Assume n ≥ 3 and

n

n − 1
< d <

n2

2(n − 1)
.

Then
( \

Rn

|(S∗∗
d f)(x)|2n/(n−d) dx

)(n−d)/2n
≤ C‖f‖Hs(3.7)

holds for all radial f ∈ S(Rn) if s > d/2, and fails for s < d/2.

Proof. In (3.1), by setting a = 1 + γ and (n− 2)(p− 2)/2− (1 + γ) = 0,
one obtains 1 < a < n, p = 2 + 2a/(n − 2), 1 + (γ − 1)/p = n(1/2 − 1/p) =
na/2(n − 2 + a), 0 < d ≤ 2(1 + (γ − 1)/p) = na/(n − 2 + a) and

( \
Rn

|(S∗∗
d f)(x)|p dx

)1/p
≤ C‖f‖Hs , n ≥ 3,(3.8)

holds for all radial functions f ∈ S(Rn) if s > n(1/2 − 1/p), and fails for
s < n(1/2 − 1/p). Since

d

da

(
na

n − 2 + a

)
=

n(n − 2)

(n − 2 + a)2
> 0, a > 0, n ≥ 3,

it follows that

n

n − 1
<

na

n − 2 + a
<

n2

2(n − 1)
< n, 1 < a < n, n ≥ 3.

Hence for any n ≥ 3 and n/(n − 1) < d < n2/2(n − 1), the equation d =
na/(n − 2 + a) has a unique solution a in the interval 1 < a < n. In fact,
one obtains

a =
d(n − 2)

n − d
, p = 2 +

2a

n − 2
=

2n

n − d

and
n(1/2 − 1/p) = n(1/2 − (n − d)/2n) = d/2.



Maximal operator for free Schrödinger equation 111

It follows that for n ≥ 3, n/(n − 1) < d < n2/2(n − 1) and p = 2n/(n − d),
(3.8) holds for s > d/2 and fails for s < d/2. This completes the proof of
Theorem 3.3.

An interpolation argument almost identical to that in the proof of The-
orem 3.2 shows that for n ≥ 3, n/(n − 1) < d < n2/2(n − 1) and p ≥
2n/(n − d), (3.8) holds for s > n(1/2 − 1/p) and fails for s < n(1/2 − 1/p).
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