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On a Sobolev type inequality and its applications
by

WiToLD BEDNORZ (Warszawa)

Abstract. Assume |- || is a norm on R" and || - ||« its dual. Consider the closed ball
T := B)(0,r), r > 0. Suppose ¢ is an Orlicz function and 1 its conjugate. We prove that
for arbitrary A, B > 0 and for each Lipschitz function f on T,

s,teT

sup [£(s) — £(2)] §6AB(S¢($)8n71d€
0

; my(g Vsl ) da).

where || is the Lebesgue measure on R™. This is a strengthening of the Sobolev inequality
obtained by M. Talagrand. We use this inequality to state, for a given concave, strictly
increasing function n : Ry — R with 5(0) = 0, a necessary and sufficient condition on ¢
so that each separable process X (t), t € T', which satisfies

[X(s) = X®)lle <n(lls—tll) fors,teT

is a.s. sample bounded.

1. Introduction. Let [|-|| be a norm on R™ and By (z,7) := {y € R":
|z —yll <r}. In particular, we will consider the closed ball T":= By (0,7),
r > 0.

Let (-,-) be the canonical scalar product (that is, (u,v) := Y " | wv; for

u,v € R™) and || - ||« the dual norm, i.e.
|vll« :=  sup |{u,v)| foroveR™
”LLGBH,” (0,1)

We say that ¢ : Ry — R is an Orlicz function if it is convex, strictly
increasing, ¢(0) = 0 and lim,_.o p(z)/z = 0, lim,_,o ¢(z)/x = co. For each
Orlicz function ¢ we define its conjugate

Y(x) == sup(zy — ¢(y)) forz>0.
y=>0
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114 W. Bednorz

It is also an Orlicz function. Moreover, it is well known that ¢ is the conjugate
function for 1, that is, p(z) = sup,~q(zy — 1 (y)). The definition implies the
Young inequality

(1) ry < p(x) +(y) for z,y > 0.

From now on we assume that ¢, 1 are conjugate Orlicz functions.

We will prove the following Sobolev type inequality and give its applica-
tions to the theory of stochastic processes.

THEOREM 1. For any A, B > 0 and for each Lipschitz function f on T,

T

sup | £(s) ~ (0] < 6AB< | w(%) e

s,teT
o £ IV 5. )du>

where | - | is the Lebesque measure on R™.

Talagrand obtained this inequality in the proof of Theorem 5.1 of [9] for
the norm ||s|| = sup}"_, |sil.

Since for each s,z € R™ we have s € B (t, ||s — t[|), the above theorem
implies some regularity of f. Namely, for ¢(z) = 2P /p, p > n, we obtain the
following classical result (which can be deduced from Lemma 7.16 in [7] by
using the Hélder inequality).

COROLLARY 1. Suppose p > n. Then for each Lipschitz function f
on R™,

p—1\1-1/p
wp =101 6G=)
stern [|s — t|1=/P = (n| By (0,1)[)/P

(§ Ivrlzdn) "
3

Proof. The conjugate function for ¢(x) = xP/p is ¥(x) = 29/q, where
1/p+1/q =1. By Theorem 1 for any A, B > 0 we have

lls—2ll

()= F)] < 6AB< g q—1<A;1>qgn_1 o
| " p
) WBlw(t,Slls—tll)p (E HVﬂU)”*) du>'
We take
. <|| (SJ [ c(1=q)(n—1) dg)l/q7 B— <m3§n(‘|vf(u)||*)pdu>1/p,
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Consequently (T' = By (0,7)),

181 .
6(2=L) s — ¢/
(n|By. (0,1))/P

(V1w rlzan) ™.

T

|f(s) — f(t)]| <6AB =

Another immediate consequence of Theorem 1 is a sufficient condition
for embedding of the Sobolev space Wol’w(T) into Loo(T).

COROLLARY 2. If

0 1
S¢<A n_l)en_lde < oo for some A >0
5 £

then WOI’QP(T) embeds into Loo(T).

This can also be deduced from part II of Theorem 1.1 in the paper by
A. Cianchi [3].

To give applications to stochastic processes we need some definitions. Let
(K,d) be a compact metric space. Denote by B(K) the space of bounded
Borel functions on K, by C(K) the Banach space of continuous functions
on K with sup-norm, and by Lip(K) the space of Lipschitz functions on T’
with the norm

[f(s) = F(D)]
fllLip :=sup
[ fl|zip G 1)
where D(K) := sup{d(s,t) : s,t € K} (the diameter of K). Let P(K) be the
set of all Borel probability measures on K. For each v € P(K), f € B(K)
and A € B(K) (with v(A) > 0) we write

S f(u)v(du) :==

A

+ D(E) | flloos

1
m S f(u) v(du).
A
Suppose X is a random variable. We define the Luxemburg norm || X||, :=
inf{c > 0: Ep(|X|/c) < 1}. For a fixed probability space the Banach space
L, consists of all random variables for which || X||, < co.

In this paper we consider only separable processes (for the definition see
the introduction in the book by Ledoux-Talagrand [8]). For each separable
X(t), t € K, we have
(2) E sup |X(s) — X(t)| = sup E sup | X(s) — X(¢)],

siteK FCK siteF
where the first supremum on the right-hand side is taken over all finite
subsets of K. Let us impose the Lipschitz condition on increments of our
processes, that is, for each X (t), t € K, we assume that

(3) sup E¢<M> < 1.

siteK d(S, t)
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This condition can be rewritten in terms of Luxemburg norms as
| X (s) — X(t)||, < d(s,t) fors,teK.

In the theory of stochastic processes a lot of effort has been put into
finding criteria for boundedness or continuity of stochastic processes. In most
cases they are of the following Kolmogorov type: some assumptions on the
Orlicz function ¢ and the metric space (K, d) ensure that for each separable
process X on K the condition (3) implies that X is bounded a.s.

It is not difficult to prove that under the above assumptions on ¢ and K
the following two conditions are equivalent:

1. Each separable process X (t), t € K, which satisfies (3) is a.s. bounded.
2. There exists a universal constant S < oo such that for each process
X the condition (3) implies
@) E sup [X(s) - X(8)] < 8.
s,teK
The minimal constant S is denoted by S(K,d, ). For a proof of the above
statement we refer to M. Talagrand [9, Theorem 2.3].

REMARK 1. In terms of absolutely summing operators each of the above
conditions is equivalent to the fact that the injection operator J : Lip(K)
— C(K) is (p, 1) absolutely summing, in the sense of P. Assouad [1].

By far the strongest criteria for finiteness of S(K, d, ¢) were obtained us-
ing the concept of majorizing measures which was introduced by X. Fernique
in the early 70s. It served him and M. Talagrand to characterize bounded
Gaussian processes. To explain the concept briefly, we introduce the following
definitions.

For t € K and € > 0, we set

B(t,e) :=={s e K :d(s,t) <e}, S(t,e):={se€ K :d(s,t)=¢c}.
We say that m € P(K) is a majorizing measure (with respect to ¢ and d) if

M(m, p) = sup D(SK) ot _ de < 00
D= ) e nBee) |

X. Fernique [5], [6] proved that if ¢ has exponential growth then the exis-
tence of a majorizing measure is necessary and sufficient for S(K,d, ¢) to be
finite. Generalizing results of Fernique, Talagrand and others, the author 2]
succeeded in proving that for each Orlicz function ¢ the existence of a ma-
jorizing measure always implies S(K,d, p) < oco. However, as will be seen in
the next sections, the existence of such a measure is not always necessary for
finiteness of S(K,d, ). So it is still an open problem to characterize (K, d)
and ¢ for which all processes satisfying (3) are a.s. sample bounded.
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This problem was studied in depth by M. Talagrand [9]. He managed to
find such a characterization of ¢, (K,d) in two particular cases, important
for applications: when d is the Euclidean distance on R"™ and K is a ball
in R”, and when K = [—1, 1] and d(z,y) = n(|x — y|) where 7 is a concave,
strictly increasing function with 7(0) = 0. Generalizing his ideas and using
Theorem 1 we find a characterization in the case when K =T = B (0, )
and d(z,y) = n(||x — y|||) (1 is concave, strictly increasing, with 1(0) = 0).

By the definition B(t,e) = By (t,n *(¢)) N T. Let A be the normalized
Lebesgue measure on T, that is, A(4) = |A|/|T| for each A € B(T'), where
| - | is the standard Lebesgue measure on R™. Note that

MB(t,e)) <n~He)"/r"

with equality if B””(t, 77_1(6)) cT.
The function 7(y)/y is positive and decreasing. Assume that 7'(0) = oo
(the case of finite derivative will be considered later). Following M. Talagrand

[9, Theorem 5.2] we introduce a sequence (ry)r>0 by setting 7o = n(r), and
for £ > 0,

. 3 Tk
rk+1::1nf{520:rk§2€or — <2 — }
)~ o (re)
The sequence (ry)g>p decreases to 0, since ry1; < r,/2. The assumption
7' (0) = oo guarantees that r; > 0. There are two possibilities:

T = 27“k+1 or "kt1 = "'k .
nHres) 07
Denote by I the set of k > 0 for which the first possibility holds, and the
rest by J. Notice that necessarily

Tk Tk+1
nHrk) T 7N (re)
For k > 0 we define Si to be the infimum of ¢ > 0 such that

(5) 27‘k+1 S Tk, 2

EONB(0,¢)) €
S c w(c)\(B(O,e)))dg

_ tnlter (e
- | (G st

Tk41

Tk+1

Observe that if 1(0) < oo, then there exists m > 0 such that r,, > 0 and
rm+1 = 0. Consequently, in this case S = 0 for £ > m and S, can be either
finite or infinite.

Let us state the main result of the paper.
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THEOREM 2. The following inequality holds:
(6) K™Y S <S(T.dp) <KD Sk,
k>0 k>0
where the constant K depends only on n.
In fact, we show that >, -, Sk < 3(n + 2)S(T.d,») and S(T,d,¢) <
(a + bn?) > k>0 Sk for k > 0, where a, b are universal constants.

COROLLARY 3. Let p(x) =P /p,p > 1 andn(z) = 2%, 0 < a < 1. Then
S(T,d,p) < oo if and only if n < pa.

In the case of T'= B)(0,1) and d(s,t) = [|s — t|| (that is, n(z) = z) we
have m = 0 in the above construction. Thus S(T,d, ¢) is comparable with
So, where S is such that

‘ 1
n—1 —
Ss 1,!)(—806”1) de =1,

0

up to a constant which depends only on n. When d is the Euclidean distance
this corollary was proved by M. Talagrand ([9, Theorem 5.1|).

In the case of T = [—1,1], #(0) = oo it can be observed that for some
universal C' > 0,

1 1
Clrpe? <7> <S8, < Crpp ! (7> for k> 0.

Consequently, S(T,d, ) is comparable with >, <, ree~1(1/n7(ry)). This
result was also obtained by M. Talagrand ([9, Theorem 5.2]).

2. Preliminary results. We recall that ¢, are conjugate Orlicz func-
tions.

LeEMMA 1. The following inequalities hold:

w<M> <Y(x) < <p<M> for x>0,

(7) w(@) < p(z) < 1/;(@) for x> 0.

In the symmetric version we have
<o Nay Nz) <22 forz>0.

Proof. Fix x > 0. By the Young inequality we obtain

2(2) = 220 4 < ) + w(M)

x T
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Hence ¢(z) < ¢(2¢(x)/x). To prove the right-hand inequality of (7) notice
that since ¢(z) = sup,>o(zy — ¥ (y)), we have, for some y > 0,

w(w(m)> =y wf) —¥(y).

X

It remains to prove that

(8) —(y) < Y(z).

If x < y, then the convexity of ¢ gives yy(z)/x < ¢(y). If z > y, then
yi(z)/z < (x). This yields (8), and consequently

w(@) <t(z) < w(%@))- J

LEMMA 2. The functions @, have the following properties:

e zp(1/z), xb(1/x) are conver and decreasing;
o zp Y(1/x), 21 (1/x) are concave and increasing.

Proof. 1t is enough to prove the result for ¢. By the definition ¢(z) =
sup,>o(yr — ¥(y)), so xp(1/x) = sup,>¢(y — ¥9(y)). The supremum of
convex functions is a convex function, the supremum of decreasing functions
is a decreasing function.

Similarly we observe that ¢ ~1(z)=inf,>o (z+%(y))/y. Hence z¢~1(1/z)
= infy> (1 + 2¢(y))/y. The infimum of concave functions is a concave func-
tion, the infimum of increasing functions is an increasing function. m

3. Proof of Theorem 1. Fix points ¢t = (¢;)1;,s = (s;)i.; € T. Let ¢
be a smooth function on R"™. We define F; : T' x [0,7] — T by the formula

Fy(u,e) = (1 - —>t+ u.

r
We have
9

9) " S g(u)du = 5

T

O e 3

( [ 9(Fu(u,2))e du) de.
T
It can be easily verified that

9(Fy(u,e)) =r7* Z (Ft(u £))

12 —t@

85

-9(Fi(u,€)).
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Hence

%(g(Ft(u,e))an) =ne" (Ft u,€)) + e 1 Z

9(Fi(u,¢)),

which yields

& (o(Fifu,2))e™) = Y o (g(Fis ) 1)

Applying the generalized Green—Gauss theorem (see Theorem 4.5.6 in [4])
which holds for Lipschitz boundaries, we get

32 (g 20— ) e = | g(Foa ) (1) oo (),

T i=1 ¢ oT

n(u) the normal
(n(u) is well
t,n(u)) > 0.

where o7 is the Lebesgue measure on the manifold 0T, and
vector to the boundary at u € 0T such that (n(u),n(u)) =
defined oyr-a.s.). Notice that the convexity of T yields (u —
Setting o4(u) := (u — t,n(u))ogr(du), we obtain, due to (9),
"\ g(u)du=\ | g(Fi(u,e))e"" oy(du) de.

T 00T

n(
1

By the standard approximation this equality can be easily generalized to any
bounded Borel function g on T'. We also verify that n|T| = 0,(9T) (consider
g = 1), and consequently for each g € B(T),

r

(10) n i §g(u)du =\ § g(Fi(u,2)e" ™ ov(du) de.

T 00T
We define 0F; : 0T x [0,1] — T by 0F; = F|0T x [0, 1]. Then (10) implies
(11) |A|/|T| = o1 @ d(e/r)"((0F;) "' (A)) for A € B(T).

Define a; : [0,7] — R by

a(e) = 4 F(Fi(u,)) oy(du) = §f<<1—;>t+ u> or(du).

orT oT
Clearly a; satisfies the Lipschitz condition (because f does) and
a(0) = f(t), au(r) = § f(u)ou(du).
oT

Since f is Lipschitz, it has bounded V f, | - |-a.s. on T'. We can check that if
f is differentiable at Fy(u,e) then

S F(Filu,)) = 7 VA (B, ) ),
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By the Fubini theorem and (11) we find that f(F}) is differentiable de-a.s.
for o4(du)-almost all u € 9T. Consequently, de-a.s. we have

aj(e) = Y(Vf(Fi(u,e)),u—t) oy(du).
oT
Then

(&) <= § llu = IV f (Ei(u, )]« oe(du).
orT

Clearly |lu — t|| < 2r. Observe that b; : [0,7] — R is de-a.s. well defined by
the formula

bi(e) = § [V F(Fu(u, )]« ov(du).
oT

Hence |aj(e)] < 2b(e) de-a.s. By the Jensen inequality and (10) for each
B > 0 we obtain

§<p<% bt(e))et"_lde < § i@(% HVf(Ft(u,a))H*>5"_1dsat(du)

0 oT o0

_ 1
—n | 9"(? HVf(u)H*) du.
T

The Young inequality (1) gives

i <o) +e( ) ).

Since a; is Lipschitz we get

T

‘f(t) - S f(w) Ut(du)‘ = |a¢(0) — ay(r)| = ‘ga;(s) ds‘ < QSbt(e) de.

oT 0 0
Thus
(12) £ - § fwoilw)]
oT
< 2AB(§)¢<A;L1)5”—1 de + n—lr”:;go(% HVf(u)H*) du>.

Again due to the generalized Green—Gauss theorem (this version holds for
Lipschitz functions and Lipschitz boundaries) we obtain

| r@aian) = § fw) o)

oT oT

- Sf(u)<s—t,n(u)>08T(du)‘

oT

_ n_l‘ LV r),s—1) du‘ < 2rn  { |V £ ()]« du.
T T
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By the Young inequality and since y1)(1/y) is decreasing we obtain

V()| 1 1
=+ () el g1
< i 1 e 1d \Y
—”§¢<W> v E+<p<—H flu )H*)-
It follows that

13) | § r@oilau) - § f(w)ou(du)|

oT oT

< 2AB<81/1<A;_1>5"1 de +n~1r" S go(é HVf(u)H*> du>.
0 T

By the definition |T'| = [B(0,7)| = r"|B (0, 1)|. Inequalities (12), (13) yield

£(s) = FOI [ = § Flw) ou(aw)

oT

+| § Foudu) = § @) ostau)| +[£) = § Fw) os(au)]

orT oT oT

< 6AB<§¢(A;1>5"—%15 + m;w(% HVf(u)II*) du>. .

REMARK 2. In the above notation, for each ¢ € T" we have 04(0T) =
n|T| = m“”|BH.||(0, 1)].

COROLLARY 4. For eacht e T,

s §f(u) du| < 6AB(§¢<A51_1)5n—1d€

1 1
+ T ;w(gnwwm) ).

Proof. This observation is obvious. Theorem 1 yields

10— Fw)] < 6AB(§¢<A57111>8YL—1 .
! m o 519, ) ).

Integrating both sides and using |f(t) — §, f(u) du| < §. |f(t) — f(u)| du we
obtain the assertion. m
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4. Construction of the optimal process. We assume that 7'(0) = oc.
In this section we prove the left-hand inequality of (6) in Theorem 2.

We define a stochastic process on the probability space (T, B(T),\) by
the formula

X(t,w):= S g(e)de, fort,weT,
d(w,0)
where g(¢) is a positive function, integrable on each interval [d,7(r)], § > 0,

and such that g(e) = 0 for € > n(r). Notice that the process X is separable.
Suppose we have shown that

X(9) = X _ (X (5.0) = X(t,0)
s (e >‘§¢( e g ECRE

Then the process X (t), t € T, satisfies condition (3). Since

d(w,0) | = 7 n(r)
X(w,w)=— S g(e) de, X< w,w) = S g(e) de,
0 el do0)

we have supg o7 [X(s,w) — X(t,w)| = Sg(r) g(€) de. Due to the definition of
S(T,d, ) this proves that

n(r)
(14) | 9(c)de <E sup |X(s) = X ()] < S(T.d, ¢).
0 s,te

The convexity of ¢, ¢(0) = 0 and the Jensen inequality imply

| X (s,w) — X(t,w)]
;‘ﬁ”( o)A

d(t,w)

ld(s,w) — d(t,w)]
(¢)de ) A(dw)
CSF ( (s ) d(jw)gs 5)

IN

< (1) AN T g(e)) de| agaw)
T

The Fubini theorem yields
d(tw) n(r)

I § eloe)de| Aaw) = | wlgle)A(Bls.) & B(t,e)) de,
T d(sw) 0
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where A is the symmetric difference. Observe that if d(s,t) > &, then

AB(s,€) A B(t,)) < A(B(s,€)) + AB(t,e)) < 21"

T-n
On the other hand, if € > d(s,t), then

Y

By <S i tm_l(e?) - % s — tH) C Byy(s,n~ ' (€)) N By (t, 1" (¢)),

2
and thus
|B(s,e) A B(t,¢)| )" () = 5lls —t)"
BO0) 2( = = )
< n||s — t|| m

Hence, for & > d(s,t) we have \(B(s,e) A\ B(t,e)) < n||s — t||n~(e)"1/r".
Consequently, if d(s,t) > n(r) then

X (s,0) = X(t,0)] 2 " i)
(15) §9”< oy ) uae) < g 1 e

while if d(s,t) < n(r), then

|X(S7w)_X(tvw)’ W
1) () )

d(s,t) 1/ \n n(r) 1/ \n—1
2 () Is — ¢l n(g)
< w(g(e)) de + n p(g(e)) de
d(s,t) 5 rn (9(2)) d(s,t) d(§t) rn (9(2))

The construction of g is as follows:
1 Sen”t(e)" e
¢<skn1<s>n
where the constant K > 1 will be chosen later. From the convexity of ¢ and
Lemma 1 we deduce
re

(17) p(g(e)) < K_l?,/)(w

We now show that the process X satisfies condition (3) for such g.
First we assume that d(s,t) < n(r) = ro. Then there exists m such that
Tm+1 < d(s,t) < 7. Pick kK > m. The definition of Sy and (17) yield

©onten Gk r'e 1
| 0(g(e))de < K 'ry, | 0 — de < K~y
Th+1 " Th41 e Spn~He)"

g(e) = K~ ) for rpp1 < e <,

) for rp11 <e<rg, k>0.
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Similarly we obtain

—1 n
n_(e) _
| g de < K.t
Tm+1
Since (5) gives 2741 < 7, it is clear that r, < 27*+m+l4(s ¢) for k > m.
Applying the above inequalities, we get
d(s,t)

(18) d(i t) S n_iis)” w(g(e))de < 2Kt (1 + Z 2—k+m+1) — 6K~

k>m

It remains to estimate the second integral in (16). Let 0 < k& < m. By (17),
the definition of Sj, and since 7!(y)/y is increasing, we have

Tk -1 n—1
19) | 0T (o)) e
Tk -1 n—1 rn
<ot (T e

Tk+1

1 Tk41 ¢ n(e)" re 1 Tk+1
<nK ' — |\ | ey | de=nE .
N1 (rgs1) o TTE Sk
In the same way, we prove
T™m — —
S nn 1(E)n 1
T‘TL

d(s,t)

(20) Il

©(g(e))de <nK™*
d(s,t)

Notice that (5) gives

s =t  7rry1 <ol (0 < k< m.
d(s,t) =N rgy1) — B

Inequalities (19) and (20) imply

TR0 B D |
s=t1 " 9

(21) i05.0) o v(g(e)) de
d(s,t) .
<nK! (1 + Z 2m+’f+1> < 3nK 1.
k=0

If we plug estimates (18), (21) into (16), we obtain

E%%%S(W) < 3K Y2 4n).



126 W. Bednorz

The second case is when d(s,t) > n(r). We use (18) to get

2 ")
—— o(g(e)) de < 6K
n(r) (S) g PN

The above inequality and (15) imply

[X(s) = X(t)] -1 1
Epl ————— )| <6K " <3K (2 .
oy ) S0 <o

Therefore for (3) to hold we need that K := 3(2 + n).
By the definition of g and the numbers Sj it is clear that for all k¥ > 0
we have S;ZH g(e)de = K~18;. Consequently, (14) shows that > o Sk <

KS(T,d, ). The theorem is proved with the constant K =3(2+n). =

5. Some basic tools. Before we prove the right-hand inequality of (6)
we establish some helpful results. We start by proving a fact which allows
us to consider processes with a finite number of different Lipschitz paths.

LEMMA 3. Fiz any point tg € T. Let F C T be a finite set. For each pro-
cess X (t), t € T, which satisfies condition (3) there exists a sequence (Yy)r>1
of processes which satisfy (3), have a finite number of different Lipschitz tra-
jectories each and

(22) klim Yi(t) = X(t) — X(to), a.s. and in Ly, fort e F.
—00

In particular (22) implies

lim E sup |Yi(s) — Yi(t)| = E sup |X(s) — X (¢)|.
k—oo  steF steF
Proof. The process X(t), t € T, is defined on a probability space
(Q,F,P). Weset Y(t) := X(t) — X(to). It is clear that Y (¢), t € T, satisfies
condition (3) and moreover ||Y (t)|, < d(t,t), which implies E|Y (t)| < oo
forteT.
First we assume that F is a finite o-algebra. Due to (3) we have

[V (s,w) = Y(t,w)| <d(s,t)p Y(1/P(A)) fors,t €T, we A,

where A is any atom in F. Hence the process Y has P-a.s. a finite number
of different Lipschitz trajectories.

In the general case we use the fact that F' is a finite set. There exists
an increasing sequence (Fj)r>1 of finite o-algebras whose union generates
o(Y(t) : t € F). Notice that E|Y ()| < oo for t € T (since ||Y (t)|, < 00),
thus we can define Yy (t) := E(Y (¢) | %), t € T. By the Jensen inequality we

get
E¢<W) < E@(%) <1 fors,teT.
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The process Y}, satisfies (3), hence P-a.s. it has a finite number of different
Lipschitz trajectories. Modifying Y3 on a set of measure 0 we may assume
that Y} has a finite number of different Lipschitz trajectories. Clearly Yy (t) —
Y (t) P-as. for t € F. Since E|Y (t)| < oo, the convergence is also in L. m

The next step is to prove an approximation of the numbers Sj.

LEMMA 4. We have

1 1 2r™
S — ) <s k>0,
a4 <771(7"k)") < Sk for k>
Sk < Tk+1901(

,,,.’VL

N (rpe)"

) for kel

1

Proof. From (5) we know that 7, — 7441 > 57. Lemma 2 says that

y(1/y) is decreasing. Thus, for k£ > 0 we have

_ e r'e
1= S rie Q’Z)<Sk?71(»3)”>al€

Th+1

n” ()" T ()" Tk
> (rk — T'k+1) o, Qp(Sk;'r]_l(’rk)n) > o w(skn—l(rk)n)

That means

_ 2r™ '
¢ 1< -1 n> = -1 n’
n(rk) Sen 1 (rx)
By Lemma 1 (that is, by the inequality ¢~ 1(y)¥~1(y) < 2y) we obtain
1 2r™
Sy > ~rpe | ——— ).
k= 47°k<P (77_1(7%)">

We prove the second inequality. Since y(1/y) is decreasing and 7y, — rg41
= rgy1 for k € I, we have

e [ e
=) Q’”(skn—l(s)n)dg

Tk+1
771(7”k+1)”¢< T4 ) 771(7"k+1)"¢( "4 >

Tgg1T" S~ (rg1)? " Sin~Hrpg)

< Tkt =

Hence

n n
w—l( . r > S r 17’k+1 ‘
N~ (rpg1)” Spn L (rrs)?

Again, using Lemma 1 (the inequality y < o~ (y)1"1(y)), we get

1 '
ez ()
* N (rgs)"
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Recall that A is the normalized Lebesgue measure on T'. For 0 < ¢ < n(r),
we set

Be(t):= B((1—=n~'(e)/r)t,e),  Se(t) :=S((1 =" (e)/r)t,e).
Observe that B.(t) = BH (L =n71(e) /), 77_1( )) C T, hence A(B:(t)) =
n~1(e)"/r". For each f € C(T) we define f.(t) := =5 ) /() Aduw).

Assume that 0 < ¢ < 7(r). We denote by o, the Lebesgue measure on
the manifold S.(t). For each e € R" we define

Af. = {u € S:(t) : (e,n(u)) > 0},
where n(u) is the normal vector at u € S.(¢) such that (n(u),n(u)) =1
(n(u) is well defined oy .-a.s.). Observe that for e € R" and f € C(T),

1
(23)  lim - | f(u) du
Be (t+he)\ B (t)

= lim — S f(u)du
Be(t)\Be(t—he)

-1
:(1_”7(5)) | rw)ie,n(w) one(du).
A%,

Let of . denote the positive measure on Af_ given by the formula of _(du) :=
(e,n(u))ot(du). Notice that if f € Lip(T'), then Vf exists | - |-a.s.

LEMMA 5. Fiz 0 < € < n(r). For each e € R™ with |le|| = 1 and f €
Lip(T) the following equality holds | - |-a.s. on T

-1 _ flo
@ = (1-"D)ae) § § TP L oo z(a)
Dl DS
for some B(e) < n.
Proof. First we assume h > 0. Observe that
(24) fe(t + he) - fe(t)
= § f@Adu) = § f(u) Mdu)

Be(t+he) B.(t)
1
= ( S f(u) du — S f(u) du) .
B\
< (t+he)\Be(t) Be (t)\Be (t+he)

By (23) we obtain

~1
(25)  lim % | fwdu= <1—’7T(5)) [ £(u) of.(du).

Be(t+he)\B: (1) Af.
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Define

2 (e)ot (Dg) 207 (€) [ap (e n(w)) ore(du)
| Be(t)] - | B(t)] '

The homogeneity and symmetry imply

Ble) :=

SAE <7“6, n(“)) 0o n(r)(du) SA—e
0,n(r) + 0,n(r)
‘Bn(r ( ’ ’Bn(r)(o)’

By Remark 2, for each t € B, ;)(0) = B(0,7(r)) we have
| (= t.n(w)) 0050 (du) = 1| By (0.1)] = 1| By (O)]
Sn('r)(o)

Applying this equality for t = —re, t = re and t = 0, we get
SASW(T) <u +re, n(u)> JO,n(r)(du)

Ble) =

Ble) =
) By O)
N SA(;,Z(T) <u —Te, TL(’LL)) JO,n(r)(du) SAS () <’U,, n(u)> UD,n(r) (du)
|Bn(r)(0)| |Bn(r)(0)|
SAEE <u7 n(u)> ) n(r)(du)
— () <n4+n-—-n=n.
|B77(7‘ ( )’
We have used the fact that o () (S, ) (0)\(A§ Y A&Z(T))) = 0. Observe
that by (23),
(26) lim ~ { Fu) Mdu) = (1 - n () WIOECD.
h—+0 h r te :
B (t)\Be(t+he) A;:

Moreover 3(e) = [3(—e), hence applying (24)-(26) we obtain
. 1
hlig-lo E (fs(t + he) - f:—:(t))
-1
n__(e) fu) = f(v) -
~(1- st § § 1) —J0) e (qu) o2(av).
Ae A e
The case of h < 0 can be treated in a similar way. =
6. Estimation from above. We assume that 7/(0) = oco. In this section

we prove the right-hand inequality of (6) in Theorem 2.
Write By (z) := By, (z) for x € T. Notice that

(27) A By(z)) =0 (rp)"/r™  forzeT.
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For each k > 0 we define a linear operator Si, : C(T') — C(T) by the formula
Spf(@) = fr (@)= § flu)Adu) forzeT.
By()
If f,g € C(T), k > 0, then the following properties can be easily derived:
1. Spl =1;
2. if f < g, then S f < Skg and so | Sk f| < Sk|fl;
3. Sof =\, f(u) M(du), hence Si.Sof = Sof;
4. limy 0o Sk f () = f(2).
Observe that if f € Lip(T'), then Si f is also Lipschitz and thus differentiable
| - |-a.s. Fix m > 0. For 0 < k < m, we define operators Ly, Ry, T}, : C(T) —
C(T). We put L, =1d, R, =1d, and for k < m,
Ly := Lgy1Sky1,  Ri = Ryya, if kel
Ly = Ly, Ry = Spy1Rpy1, ifked
Set also Ty := LiSiRy for 0 < k < m. The properties of S, imply cor-

responding properties of the operators Ly, Rp,Ti. For 0 < k < m and
f,g € C(T), we have:

1. Lyl =1, and if f < g, then Ly f < Lig;
2. if f € Lip(T'), then Ry f is | - |-a.s. differentiable on T’
3. the function Ty f is constant;

4 T f () = Tof (O] < 345 Tef (6) = T £ ().
Fix f € Lip(T') and s,t € T. We will analyse |41 f(t) — Tif(t)|. There are
two cases: either k € I or k € J. In fact, we use two different methods.

CASE 1. Fix k € I, k < m. By the definition, we have
Tiot1f(t) = T f(t) = L1 Sp+1(Id — Sg) Ry1 £ (2).
Clearly Ry, = Ry for k € I. For g := Ry f, it can be easily checked that
1Sk dd = Spgw) < § b lg(w) — g(v)| Mdv) A(du).
Biet1(w) B (u)

For each Orlicz function ¢ we have

o(ry)

r<1+—= forx>0,y>0.
©(y)
Thus
Ig(ftl) —g(?)l <14 A(Bkﬂ(w))@(Ig(u)lo— g(v)!>'
1070 (3 ) T

Consequently, for u € Byy1(w),

(=301 < 105! (55 ) (1A B (L) ),
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Hence

|Sk1(Id = Sk)g(w)]
. r lg(u) — g(v)] o) \(du
< 107y (717—1 (mﬁ”) (1 +;Bk§(u)w<4mrk ) A(dv) \(d )>_

Notice that Lemma 4 and the equality ry = 2r1 yield

1 1 rh < 1 1 2r™ <5
-7 _ —r _— .
8\ ) 2™ ) <M
Take K; := 80. Using property 1 of Ly,1, we obtain
(28) [T f(1) — Thf(1)]
< K18kt (1 + S
CASE 2. Fix k € J, k < m. It is clear that
Tiq1f(t) = T f(t) = L1 (Id — Sk) Sky1 Rk 1 f ().
For k € J, we have Ry, = Si+1Ri+1. For g := Ry f, by the definition we get

(1 = Spgw)| = |g(w) — § g(w)du
By (w)

S go('ka(u) — Ry f(v)]

o ) Adv) )\(du)).

Property 2 of Ry implies that g is Lipschitz. Moreover w € By (w), thus from
Corollary 4, we obtain the crucial inequality: for any A, B > 0,

7 (re)
(29) ‘g(w)— S g(u) du‘ §6AB( S ¢<A;_l)€n—1d€
By (w) 0

o ) e(FI9sl) )

By, (w)

We have used the fact that By(w) = By (1 — = (ry)/r)w,n " (ry)). Tt
remains to choose the constants A and B. For k € J, we have 2r;, /n~!(r;) =
Tht1/n (Pry1), SO we can take
Tk Tk+1
R CERTR T
where 3 > 0 will be chosen later. Finding a suitable A is more difficult. First
we observe that

nt(ry) 1
n—1
(30) (S) P (Ag”_l > " de

n~(re) 2071 (rgp41) 1
n—1
— < P+ >¢(A5"1>5 de.

20~ (Ppy1) 0




132 W. Bednorz

7~ (re)
Th

/ . T _ Thtl
e’ and applying 277_1(7"k) oo N ret)?

n=(ry) Tk n—1 -1
1 n—1 y. Tk n(rE)" n—1
S w(AEn—l)E de= S w(An—l(rk)n—len—1> = e de.

20~ (rg41) Th+1

Setting ¢ = we get

Since n~1(y)/y is increasing n~1(e)" < 77_175#5” for rp11 < € < rg. By
k

Lemma 2 the function y(1/y) is decreasing, so

= (rk) 1
n—1
(31) S ¢<Ag”—1>€ de

207~ (rp41)
(i) e yoter,
ry  An~l(e)n £ .

Tk+1

For the other integral in (30) we proceed differently. Put ¢ = 2p~!(¢’). Then

20~ H(rg41) 1
n—1
§ ¢<A€n_1>s de

nTk+1 1 - ol .
=2 § o g e

We can assume that 77 1(g)’ is right continuous with left limits. Since n71(¢)
is a convex function, we have n71(g)/e < n~!(¢)". By the convexity of 1 we

get
1 ) (e
() < e ()

() o (o) )

<
SR OV TRIET
Consequently,
20~ (req1) Tkt1 —1/ v/ 1
1 - n_(e)'e \n ()"
2 e <2 de.
Gy () e < § (A ) e

The derivative 7! (¢)’ can be controlled on the interval [0, 74 ]. Indeed, the

convexity of =1 implies

n'(2e) —n'(e) < ' (2e)

Using (5), we obtain n~1(g)’ < 28 2=in=1(r) /ry for ripq < e <rjandi > k.

ne) <
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Plugging this estimate into (32), we obtain

20~ (rk41) 1
(33) S Y ( ) e" 1 de

n—1
5 Ae
o T 1 4 —1/-\n
i=k+17it1 Tk N (8) <

We define the constant A by the formula
-1 '
A= L(Tk) (Sk +4Zak718i)7

riy
k ik

where o« must satisfy the condition 1 < o < 2. The definition of S; and the
convexity of 1 give

s | o) __e Yo,

r,  An~1 €
Tk+1
Tk n —1 n
< S " 7"_5 n " (e) de < n~ .
nSgn~(e)" €
Tk+1
In the same way, for ¢ > k we prove
T -1 -1 n
im (k) de n_(g)
35 ok~ d
@ § (ot ) e
Ti+1
T i—k n —1 n
a r'e n~'(e)
< — d
< 1u((5) wsmmn) e
Tit1
i—k Ti n 1 n i—k
L« r'e n~'(e) 1 o
<n M= de = =)
<(5) Vel e (3)

Ti+1

Inequalities (30), (31) and (33)-(35) yield

Y

W_I(Tk) 1 « i—k 2+a
n—1 < —-1,.n e — n—1l.n .
(S) 1/1<A5n_1>€ de <n~r <1+2Z<2> > A —

>k

Define S;, := S +4> 75,14 aF~iS; and K5 := 603. By (29) we obtain
|(Id = Sk)g(w)]

2+« nr—" n_l(rk_H)
gKS’( + 90(7 Vg(u)||« | du
*F\2-a n|B||-||(071)!BkS(w) Soreen 1l

< Kt (32 + §o (L2 9. ) A
T

2-« 50741
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where we have used the fact that | B (0,1)] = r~"|T|. Property 1 of Ly,
implies

TS0~ T 0] = Ko (52 + (T2 |9 R ). ) M) ).

507k41

The last part. The estimates in the cases k € I and k € J give

T f (t) — Tof () Z\Tkﬂf — Ty f(t)|
k=0

LY Sk+1< 4 ¢<‘ka(u)1(;ﬂf’“f(v)‘>>\(dv)A(du))

kel, k<m T By (u)
24« -
v Y S (50 fe( ) vl ) M ).
keJ, k<m T

Property 3 of the operators Tj implies that Ty f is a constant function.
Hence

(36) |Smf(5) - Smf(t)’ = ’Tmf(s) - Tmf(t)’
<omy 3 sen(14] § (P ELON s aqau)

10Tk
kel, k<m T By (u)

w2 3 s3T5 Se(Mre IRl ) )

ked, k<m

Notice that By(u) C B(u,2r;). We use the above inequality to prove that
for each process X (), t € T, which satisfies (3) we have

E sup |X(s) — X(¥)| < KZSk,
s,teT k>0

where the constant K depends only on n. By (2) and Lemma 3 we can as-
sume that the process X (¢), t € T, has a finite number of different Lipschitz
trajectories.

LEMMA 6. Let 0 < k <m. For any u,v € T with d(u,v) < 2ry, we have

E@(‘RkX(u) - RkX(U)\) <1.

10Tk

Proof. We set Xy := RipX. If R, = Id, then condition (3) implies the
lemma. Otherwise there exists N > 0 and a sequence k = kg < k1 < -+ <
En < m such that X = R X = Si, --- S, X. For simplicity we write



Sobolev type inequality 135

Uk, := U, Vk, := v. We obtain the following equalities:

Xp(u) = | b b X)) Mdury) - Mdug,),
Bkl (uko) Bkg (ukl) BkN (ukN—l)
Xp(v) = o b X(uey) Mdugy) -+ Mdug,).

1
€ By, (ug,) C B(ug,,2ry,;). By the triangle inequality and (5) we

Take ug,
have
N-1 N-1
AUk, Upy) < Z d(up;, upy,) <2 Z Ty < ATy, d(Vkg, Uky) < ATk
i=0 i=0

This means that for some probability measures v, v, with supports respec-
tively in B(u,4ry), B(v,4ry),
Xpw) = | X w(dw), Xw)= | X(2)v(dz).
B(u,4rg) B(v,4ry)

By the assumption d(u,v) < 27y, hence d(w, z) < 10r;. The Jensen inequal-
ity, the Fubini theorem and (3) yield

E¢<|Xk(u) —Xk(v)!>

107

[ X (w) — X(2)|
: Ep| ————— | vu(dw)vy(dz) < 1. =
B(u7§4Tk) B(v,§4rk) ( d(w7 Z) )

The Auerbach lemma (for the proof see [10, Lemma 11, I1.E|) states that
there exists a biorthogonal system (b;, b)) in the space R™ x R™ such that
lbi]| = 1, [|bf ||« = 1. Consequently, for each v € R",

(37) [oll« = sup  |(v,u)]
UGBH.H(O,I)

n

< s | b)|0; r<2|vb

uEB‘H‘ (0,1) i=1

LEMMA 7. For |- |-almost all t € T,
50

where 5 := %" | B(b;) (B(b;) was defined in Lemma 5). Since 3(b;) < n, we
have B < n?.

n 1(7"k+1)
E¢<7||VR X (1)« > <1, 0<k<m,kel,

Proof. We put X := RiX. The definition gives Xj = Spr1Rp1 X =
(Xk41)rys, for k € J. Applying (37) and Lemma 5 we find that for |-|-almost
allteT,
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1 1
n-\r E (r
M IVXe(@)|l < k+1 (v(Xk—i-l)?"kﬂ(t)’ bi)|

50741 57’k+1
n
b;) X - X - :
< Zﬁ( i S S | k—l—l(u) k+1(v)| O'i(du) O'é(d’l)),
i—1 /B b; ny 107"k+1
AthkJrl Atv’“kﬂ
where of(du) = oi’j}kﬂ(du), ob(dv) = atfjfljﬂ(dv). The Jensen inequality
yields
-1
n (Tkt1) >
—— |[VXi(t)||«
o( Lt o)
n
B(bi) <\Xk+1(u) - Xk+1(v)\> : '
< o1 (du) o4 (dv).
; 3 bs j. ' 10711 1(du) o3(dv)
- Atlrk tr1
+1 k+1
Notice that d(u,v) < 2rg4q for u € At g VU E AVY f,’k ,- The Fubini theorem

and Lemma 6 1mply

By the Fubini theorem Lemmas 6 and 7, and (36) we obtain
E sup |S, X (s)—SnX(t)| <4K; Z Sk+1—|-2K2< ) Z S;.

s,teT kel, k<m keJk<m
Notice that Y ;xS < (1 + 1) > k>0 Sk- We have proved that for
some constant K which depends only n,

E sup |SmX(s) = SmX ()] < K S
s,teT k>0

Since limy, o0 S X (t) = X (t), the Fatou lemma yields

E sup |X(s) — X(t)| < liminf B sup S, X(s) — SmX ()| < K> S
s,teT m—oo  steT >0

This ends the proof of the theorem. m

7. The case of 7/(0) < oo. We assume that 7/(0) < oo. Recall that
there exists m > 0 such that r,, > 0 and r,,+1 = 0. We have defined S,, as
the infimum of all ¢ > 0 such that

"™ A(B(0,¢)) € B e r’e
) = ¢<cA<B<o,a>>> =1 w<cn—1<a>n> =l
and S = 0 for k > m.

Proof of Theorem 2 in the case of '(0) < oo. We follow the proof of
Theorem 2 in the case of 7/(0) = co. The only difference is when S, = cc.
For all 0 < 6 < r,,/2 we denote by S,,(d) numbers such that
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E
} T ¢<sm<5>A<B<0,e>>> o

Tm 1 n n
= | Qi — de =1.

) e S er
Since S, = oo we have lims_, S, (0) = oo. The proof of the left-hand
inequality of (6) in Theorem 2 implies S, (d) < 3(n + 2)S(T,d, ¢). Hence
S(T,d,p) = co. This ends the proof. m
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