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Chara
terizations ofKurzweil�Hensto
k�Pettis integrable fun
tionsbyL. Di Piazza (Palermo) and K. Musiał (Wro
ªaw)
Abstra
t. We prove that several results of Talagrand proved for the Pettis integralalso hold for the Kurzweil�Hensto
k�Pettis integral. In parti
ular the Kurzweil�Hensto
k�Pettis integrability 
an be 
hara
terized by 
ores of the fun
tions and by properties ofsuitable operators de�ned by integrands.1. Introdu
tion. Our intention is to 
ontinue the study of the Kurz-weil�Hensto
k�Pettis integral, started in [9℄ in the 
ase of multifun
tions.The integral is the generalization of the Pettis integral of a fun
tion, obtainedby repla
ing the Lebesgue integrability of s
alar fun
tions by the Kurzweil�Hensto
k integrability. It integrates essentially more fun
tions than the Pet-tis integrable ones (
f. [9, Example 1℄). We refer to [19℄ and [20℄ for informa-tion about Pettis integrability.Here we �nd some 
onditions guaranteeing the Kurzweil�Hensto
k�Pet-tis integrability of a single fun
tion. To this end we asso
iate to ea
h s
alarlyKurzweil�Hensto
k integrable fun
tion f : [0, 1] → X an operator Tf : X∗ →

KH[0, 1], de�ned on the dual of the range spa
e of f and taking its values inthe spa
e of real-valued Kurzweil�Hensto
k integrable fun
tions. In Theo-rem 2, generalizing a 
lassi
al result for the Pettis integral, we prove thata fun
tion f is Kurzweil�Hensto
k�Pettis integrable if and only if the op-erator Tf is weak∗-weakly 
ontinuous on the unit ball. In Theorem 3 weprove that Kurzweil�Hensto
k�Pettis integrable fun
tions are determinedby weakly 
ompa
tly generated subspa
es. In Theorem 4 we 
hara
terizethe Kurzweil�Hensto
k�Pettis integrability in terms of the notion of 
ore,introdu
ed by Geitz [13℄. Theorems 3 and 4 are generalizations of the 
ele-brated results of Talagrand [24℄ 
hara
terizing Pettis integrable fun
tions.2000 Mathemati
s Subje
t Classi�
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160 L. Di Piazza and K. MusiaªTheorems 1�4 also hold for the Denjoy�Pettis integral (
f. [14, 12℄),whi
h is a generalization of the Kurzweil�Hensto
k�Pettis integral obtainedby repla
ing the Kurzweil�Hensto
k integrability of s
alar fun
tions by theDenjoy�Khin
hin integrability.2. Basi
 fa
ts. Let [0, 1] be the unit interval equipped with the usualtopology and the Lebesgue measure λ; L denotes the family of all Lebesguemeasurable subsets of [0, 1] and if E ∈ L, then |E| is its Lebesgue measure.
L+ denotes the family of all sets of positive Lebesgue measure, and I thefamily of all 
losed subintervals of [0, 1]. A partition in [0, 1] is a 
olle
tion
P = {(I1, t1), . . . , (Ip, tp)}, where I1, . . . , Ip are non-overlapping subintervalsof [0, 1] and ti ∈ Ii, i = 1, . . . , p. If ⋃p

i=1 Ii = [0, 1], we say that P is apartition of [0, 1]. Given a subset E of [0, 1], we say that the partition P isan
hored on E if ti ∈ E for ea
h i = 1, . . . , p. A gauge on [0, 1] is a positivefun
tion on [0, 1]. For a given gauge δ on [0, 1], we say that a partition
{(I1, t1), . . . , (Ip, tp)} is δ-�ne if Ii ⊂ (ti − δ(xi), ti + δ(xi)), i = 1, . . . , p.Fun
tions f, g : [0, 1] → R are 
alled equivalent if f = g almost every-where, in the sense of the Lebesgue measure. Identifying in this way realfun
tions of bounded variation on [0, 1], we obtain the spa
e BV[0, 1]. Wealways 
onsider this spa
e with the quotient variation norm ‖ · ‖BV.Throughout, X is an arbitrary Bana
h spa
e with dual X∗. We do notassume separability of X. The 
losed unit ball of X is denoted by B(X). If
Y ⊂ X, then Y ⊥ denotes the annihilator of Y in X∗. The weak topology of
X is often denoted by σ(X,X∗). The topology generated on X by a Bana
hspa
e Y is denoted by σ(X,Y ).Fun
tions f, g : [0, 1] → X are said to be s
alarly equivalent if for ea
h
x∗ ∈ X∗ the set Nx∗ := {t ∈ [0, 1] : x∗f(t) 6= x∗g(t)} is of Lebesgue measurezero.Definition 1. A fun
tion g : [0, 1] → R is said to be Kurzweil�Hensto
kintegrable (or simply KH-integrable) on [0, 1] if there exists a real number zwith the following property: for every ε > 0 there exists a gauge δ on [0, 1]su
h that ∣∣∣

p∑

i=1

g(ti)|Ii| − z
∣∣∣ < εfor ea
h δ-�ne partition {(I1, t1), . . . , (Ip, tp)} of [0, 1].We set z := (KH)

T1
0 g(t) dt.We denote by KH[0, 1] the set of all real-valued Kurzweil�Hensto
k in-tegrable fun
tions on [0, 1]. When the equivalent fun
tions are identi�ed wedenote the quotient spa
e by KH[0, 1]. Throughout the paper also the el-ements of KH[0, 1] are 
alled KH-integrable fun
tions. So, as is 
ommon



Kurzweil�Hensto
k�Pettis integrable fun
tions 161in measure theory, quite often we do not distinguish fun
tions from theirequivalen
e 
lasses, espe
ially in proofs. In parti
ular, stating that x∗nf → hweakly in KH[0, 1] means that the equivalen
e 
lasses of the fun
tions x∗nf
onverge to the equivalen
e 
lass of h.The spa
e KH[0, 1] is endowed with the Alexiewi
z norm (
f. [1℄)
‖g‖A = sup

0<α≤1

∣∣∣(KH)

α\
0

g(t) dt
∣∣∣.

The 
ompletion K̂H[0, 1] of KH[0, 1] is isomorphi
 to the spa
e of distribu-tions whi
h are the distributional derivatives of 
ontinuous fun
tions (
f. [2℄).As is known, KH-integrability 
oin
ides with Denjoy�Perron integrability(
f. [15℄). The Denjoy�Perron integral is also 
alled the Denjoy integral in therestri
ted sense (see [21℄). If D[0, 1] is the (quotient) spa
e of Denjoy�Perronintegrable fun
tions endowed with the Alexiewi
z norm, then its 
onjugatespa
e is linearly isometri
 to the spa
e BV[0, 1] (see [1℄). Consequently, the
onjugate spa
e KH∗[0, 1] is linearly isometri
 to BV[0, 1].When we write that on a set L ⊂ KH[0, 1], weak sequential 
onvergen
e
oin
ides with 
onvergen
e in measure, we mean that any sequen
e in L
onverges (or not) in both senses to the same limit.A family A ⊂ KH[0, 1] is said to be Kurzweil�Hensto
k equiintegrable, orsimply KH-equiintegrable, on [0, 1] if in De�nition 1, for every ε > 0 thereexists a gauge δ on [0, 1] whi
h works for all fun
tions in A.Definition 2. A fun
tion f : [0, 1] → X is s
alarly measurable (resp.s
alarly integrable) if, for ea
h x∗ ∈ X∗, the fun
tion x∗f is Lebesgue mea-surable (integrable). A s
alarly integrable fun
tion f : [0, 1] → X is Dunfordintegrable if for ea
h nonempty set A ∈ L there exists a ve
tor wA ∈ X∗∗su
h that for every x∗ ∈ X∗,
〈x∗, wA〉 =

\
A

x∗f(t) dt.If wA ∈ X for ea
h A ∈ L, then f is said to be Pettis integrable on [0, 1]. We
all wA the Pettis integral of f over A and we write wA := (P)
T
A
f(t) dt.Definition 3. A fun
tion f : [0, 1] → X is s
alarly Kurzweil�Hensto
kintegrable if, for ea
h x∗ ∈ X∗, the fun
tion x∗f is Kurzweil�Hensto
k in-tegrable. A s
alarly Kurzweil�Hensto
k integrable fun
tion f : [0, 1] → Xis Kurzweil�Hensto
k�Dunford integrable (or simply KHD-integrable) if, forea
h interval [a, b] ∈ I, there exists a ve
tor wab ∈ X∗∗ su
h that for every

x∗ ∈ X∗,
〈x∗, wab〉 = (KH)

b\
a

x∗f(t) dt.



162 L. Di Piazza and K. MusiaªIf wab ∈ X for ea
h [a, b] ∈ I, then f is said to be Kurzweil�Hensto
k�Pettisintegrable (or simply KHP-integrable) on [0, 1]. We 
all wab the Kurzweil�Hensto
k�Pettis integral of f over [a, b] and we write wab := (KHP)
Tb
a
f(t) dt.We denote by KHP([0, 1], X) the set of all X-valued Kurzweil�Hensto
k�Pettis integrable fun
tions on [0, 1] (fun
tions that are s
alarly equivalent areidenti�ed).It is a 
lassi
al result that ea
h s
alarly integrable fun
tion is Dunfordintegrable. It follows from Theorem 3 of Gámez and Mendoza [12℄ that a fun
-tion f : [0, 1] → X is KHD-integrable if and only if f is s
alarly Kurzweil�Hensto
k integrable (they 
onsider the Denjoy�Khin
hin integral).If f : [0, 1] → X is a Kurzweil�Hensto
k s
alarly integrable fun
tion,then an operator Tf : X∗ → KH[0, 1], asso
iated with f , is de�ned by

Tf (x∗) := x∗f . If f is s
alarly integrable, Tf : X∗ → L1[0, 1] is de�ned inthe same way.For every f : [0, 1] → X we de�ne
Zf := {x∗f : x∗ ∈ B(X∗)} ⊂ R

[0,1].Identifying equivalent fun
tions we obtain the set Zf .
τm will denote the topology of 
onvergen
e in measure. Throughout wewill frequently apply the fa
t that, due to Fremlin's subsequen
e theorem[11℄, if f is s
alarly measurable, then the set Zf is τm-
ompa
t.We will be 
on
erned with generalizations of the following three funda-mental results 
on
erning the Pettis integral to the 
ase of the Kurzweil�Hensto
k�Pettis integral:
Theorem A. Let f : [0, 1] → X be a s
alarly integrable fun
tion. Then

f is Pettis integrable if and only if Tf : X∗ → L1[0, 1] is weak∗-weakly
ontinuous.
Theorem B ([24℄). Let f : [0, 1] → X be a s
alarly integrable fun
tion.Then f is Pettis integrable if and only if the following 
onditions are satis�ed:(i) Tf : X∗ → L1[0, 1] is weakly 
ompa
t;(ii) there exists a weakly 
ompa
tly generated subspa
e Y ⊂ X su
h that

x∗f = 0 a.e. for ea
h x∗ ∈ Y ⊥ (the ex
eptional sets Nx∗ := {t ∈
[0, 1] : x∗f(t) 6= 0} depend on x∗).

Theorem C ([24℄). A s
alarly integrable fun
tion f : [0, 1] → X is Pettisintegrable if and only if it satis�es the following 
onditions:(i) Tf : X∗ → L1[0, 1] is weakly 
ompa
t;(iii) corf (E) 6= ∅ for every E ∈ L+.In the theorem above
corf (E) :=

⋂
{convf(E \N) : λ(N) = 0}(see Geitz [13℄).



Kurzweil�Hensto
k�Pettis integrable fun
tions 1633. Multipliers of Kurzweil�Hensto
k�Pettisintegrable fun
tionsDefinition 4. Let g : [0, 1] → R be of bounded variation. A fun
tion
F : [0, 1] → X is weakly Riemann�Stieltjes integrable on [0, 1] with respe
tto g if for ea
h x∗ ∈ X∗ the fun
tion x∗F is Riemann�Stieltjes integrable on
[0, 1] with respe
t to g, and there is a point x ∈ X su
h that

x∗(x) = (RS)

1\
0

x∗F (t) dg(t) for every x∗ ∈ X∗,where the integral is the 
lassi
al Riemann�Stieltjes integral.We set x := (wRS)
T1
0 F (t) dg(t). The following result is well known. Wepresent it just for 
ompleteness.Proposition 1. If F : [0, 1] → X is weakly 
ontinuous (i.e. x∗F ∈

C[0, 1] for every x∗ ∈ X∗) and g ∈ BV[0, 1], then F is weakly Riemann�Stieltjes integrable with respe
t to g on [0, 1].Proof. Sin
e ea
h BV fun
tion 
an be written as a di�eren
e of two non-de
reasing fun
tions, and ea
h non-de
reasing fun
tion 
an be written as adi�eren
e of two in
reasing fun
tions, we may assume that g is in
reasing.If ψg : [g(0), g(1)] → [0, 1] is de�ned by ψg(t) := sup{s : g(s) ≤ t}, then ψgis in
reasing, ψg(g(t)) = t and it is 
ontinuous. Moreover,
(∗)

1\
0

α(t) dg(t) =

g(1)\
g(0)

α(ψg(s)) dsfor every 
ontinuous α : [0, 1] → R.Noti
e now that F ◦ ψg is separably valued. Indeed, if Q is a 
ountabledense subset of [g(0), g(1)] then, due to the weak 
ontinuity of F ◦ ψg, theset F ◦ ψg(Q) is weakly dense in the range of F ◦ ψg. As F ◦ ψg is weakly
ontinuous and weak separability in a Bana
h spa
e 
oin
ides with normseparability, the fun
tion F ◦ψg is strongly measurable. Sin
e F is bounded,so is F ◦ ψg. Consequently, F ◦ ψg is Bo
hner integrable on [g(0), g(1)]. Let
x0 := (Bochner)

g(1)\
g(0)

F (ψg(t)) dt.If x∗ ∈ X∗, then applying (∗), we have
x∗(x0) =

g(1)\
g(0)

x∗(F (ψg(t))) dt =

1\
0

x∗(F (t)) dg(t).This proves the existen
e of the weak Riemann�Stieltjes integral of F withrespe
t to g.



164 L. Di Piazza and K. MusiaªNow we are in a position to prove the main result of this se
tion.Theorem 1. If f : [0, 1] → X is KHP-integrable and g ∈ BV[0, 1],then fg is also KHP-integrable. Conversely , if fg is KHP-integrable for ev-ery KHP-integrable f : [0, 1] → X, then g is almost everywhere equal to afun
tion in BV[0, 1].Proof. De�ne F : [0, 1] → X by F (t) := (KHP)
Tt
0 f(s) ds. It is a 
onse-quen
e of the 
lassi
al theory of Kurzweil�Hensto
k integrability that F isweakly 
ontinuous (
f. [15℄). Hen
e, a

ording to Proposition 1, F is weaklyRiemann�Stieltjes integrable with respe
t to g; let x0 = (wRS)

T1
0 F (t) dg(t).If x∗ ∈ X∗, then by the 
lassi
al theorem on integration by parts for theKH-integral (
f. [15℄), we have

(KH)

1\
0

x∗(f(t))g(t) dt

= x∗(F (1))g(1) − (RS)

1\
0

x∗(F (t)) dg(t) = x∗[F (1)g(1) − x0].Thus, fg is KHP-integrable.The se
ond part of the assertion is well known for real-valued fun
tions
f ∈ KH[0, 1] (see [18, Theorem 12.9℄) and this immediately yields the Bana
hspa
e 
ase.

4. Operator 
hara
terizations of Kurzweil�Hensto
k�Pettis in-tegrable fun
tions. The theorem below is a KHP-analogue of Theorem A.Theorem 2. Let f : [0, 1] → X be a KH-s
alarly integrable fun
tion.Then f is KHP-integrable if and only if the operator Tf : X∗ → KH[0, 1] isweak∗-weakly 
ontinuous.Proof. Assume the weak∗-weak 
ontinuity of Tf . Fix [a, b] ∈ I and let
wab ∈ X∗∗ be the KHD-integral of f on [a, b], i.e.

〈x∗, wab〉 = (KH)

b\
a

x∗f(t) dt = 〈Tf (x∗), χ[a,b]〉.We have to show that wab ∈ X. But χ[a,b] ∈ BV[0, 1] and so, a

ording tothe 
ontinuity assumption, the right hand side is weak∗-
ontinuous. Hen
eso is the left side. This means however that wab is a linear weak∗-
ontinuousfun
tional on X∗. Consequently, wab ∈ X.Assume now that f : [0, 1] → X is KHP-integrable. A

ording to Theo-rem 1, if g ∈ BV[0, 1], then fg is KHP-integrable, that is, there is w ∈ X
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tions 165su
h that for every x∗ ∈ X∗ we have
〈Tf (x∗), g〉 = (KH)

1\
0

x∗(f(t))g(t) dt = 〈x∗, w〉.Hen
e 〈Tf (·), g〉 is weak∗-
ontinuous, whi
h proves the weak∗-weak 
ontinu-ity of Tf .Proposition 2. If f : [0, 1] → X is KHP-integrable, then Zf is
σ(KH,BV)-
ompa
t and σ(KH,BV) 
oin
ides with τm on Zf .Proof. A

ording to Theorem 2, the set Zf is weakly 
ompa
t. Now takea sequen
e (x∗n) ⊂ B(X∗) su
h that x∗nf → h weakly in KH[0, 1]. A

ordingto Fremlin's theorem [11, Theorem 2F℄ ea
h subsequen
e of (x∗nf) 
ontains analmost everywhere 
onvergent subsequen
e. In order to prove that x∗nf → hin measure it is enough to show that for ea
h subsequen
e (x∗nk

) of (x∗n)su
h that x∗nk
f → g almost everywhere in [0, 1], we have h = g a.e. So let

(x∗nk
) be su
h a subsequen
e. If (y∗γ) is a subnet of (x∗nk

) weak∗-
onvergingto x∗0, then x∗0f = g almost everywhere in [0, 1] and the KHP-integrabilityof f yields y∗γf → x∗0f weakly in KH[0, 1] (
f. Theorem 2). But (y∗γf) isalso a subnet of (x∗nk
f) and so we have h = x∗0f = g a.e. Consequently, thesequen
e (x∗nk

f) is almost everywhere pointwise 
onvergent to h and (x∗nf)
onverges in measure to h.Take now a sequen
e (x∗n) ⊂ B(X∗) su
h that x∗nf → h in measure.Applying Fremlin's theorem [11, Theorem 2F℄ on
e again, we dedu
e that
h ∈ Zf . As Zf is weakly 
ompa
t, ea
h subsequen
e of (x∗nf) 
ontains aweakly 
onvergent subsequen
e. If x∗nk

f→g weakly, then we have just proventhat x∗nk
f → g in measure. Hen
e g = h a.e. Thus, ea
h weakly 
onvergentsubsequen
e of (x∗nf) 
onverges weakly to h. Consequently, x∗nf → h weakly.It follows that on Zf , weak-sequential 
onvergen
e 
oin
ides with se-quential 
onvergen
e in measure. Moreover, Fremlin's subsequen
e theoremimplies that Zf is τm-
ompa
t.To prove the 
oin
iden
e of the topologies we will prove that they have thesame 
losed sets. So let ∅ 6= W ⊂ Zf be arbitrary. If w0 ∈W

σ (= σ(KH,BV)-
losure of W ), then due to the relative weak 
ompa
tness of W , there are
x∗nf ∈ W su
h that x∗nf → w0 weakly, and so by the 
oin
iden
e of thesequential 
onvergen
es, also x∗nf → w0 in measure. Thus, W σ

⊆W
τm .The proof of the reverse in
lusion is similar. Indeed, if v0 ∈ W

τm then,due to metrizability of 
onvergen
e in measure, there are x∗nf ∈W su
h that
x∗nf → v0, and 
onsequently x∗nf → v0 weakly. This proves that W τm ⊆W

σand 
ompletes the whole proof.For the Lebesgue integral it is easy to dedu
e that if a sequen
e ofLebesgue integrable fun
tions is almost everywhere pointwise 
onvergent to
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g1 and weakly 
onvergent to g2 in L1[0, 1], then g1 = g2 almost everywhere.In parti
ular, in the 
ase of a s
alarly integrable fun
tion f : [0, 1] → X, dueto Fremlin's subsequen
e theorem, 
ondition (i) in Theorems B and C 
anbe repla
ed by the following topologi
al 
ondition:On the set Zf ⊂ L1[0, 1] the topology σ(L1, L∞) 
oin
ides with τm.The KH-integral behaves di�erently. In [7℄ there is an example of a se-quen
e of real-valued KH-integrable fun
tions with pointwise limit di�erentfrom its limit in the weak topology of KH[0, 1]. We are going to show thatfor KHP-integrable fun
tions su
h pathologies 
annot take pla
e on Zf .Sin
e [7℄ is not easily a

essible, we sket
h the 
onstru
tion and dedu
ethe 
onsequen
e that is important for us.Example 1. Let α > 3 be arbitrary and let Cα be the Cantor set in [0, 1]with measure (α− 3)/(α− 2). Denote by ̺n

k = (an
k , b

n
k), k = 1, . . . , 2n−1,

n = 1, 2, . . . , the 
ontiguous intervals of Cα. Then |̺n
k | = α−n.For every n ∈ N de�ne a 
ontinuous fun
tion Fn : [0, 1] → [0, 1] by setting

Fn(x) =

{
21−n if x = 1 or x = as

k, k = 1, . . . , 2s−1, s = 1, . . . , n,
0 if x = 0 or x = bsk, k = 1, . . . , 2s−1, s = 1, . . . , n,and extending linearly to the whole interval [0, 1], without produ
ing newverti
es of the graph. Then let

fn(x) =

{
F ′

n(x) if F ′
n(x) exists,

0 otherwise.The sequen
e (fn) of KH-integrable fun
tions (they are in fa
t even Lebesgueintegrable) is as desired. Indeed, by easy 
omputations we get
fn(x) =





−21−nαi if x ∈ ̺i
s, i = 1, . . . , n, s = 1, . . . , 2i−1,

2

(
1 −

1

α

n−1∑

p=0

(
2

α

)p)−1 if x 6∈
⋃n

i=1

⋃2i−1

s=1 ̺
i
s,

0 otherwise,
̺i

s being the 
losure of ̺i
s. It 
an be easily seen that (fn(x)) 
onverges to

2(α − 2)(α − 3)−1 on Cα \ {an
k , b

n
k : k = 1, . . . , 2n−1, n ∈ N} and to zeroelsewhere. We denote the limit fun
tion by f . Noti
e that f ∈ L1[0, 1] ⊂

KH[0, 1].Now let h ∈ BV[0, 1] be arbitrary. The sequen
e (Fn) 
onverges uniformlyto zero. Therefore, integrating by parts we get
lim
n

〈h, fn〉 = lim
n

(KH)

1\
0

fnh dx = lim
n

(
[Fn h]

1
0 − (KH)

1\
0

Fn dh
)

= 0.So the sequen
e (fn) is weakly 
onvergent to zero. Thus, f−fn → 0 pointwiseon [0, 1] and f − fn → f weakly in KH[0, 1].



Kurzweil�Hensto
k�Pettis integrable fun
tions 167De�ne a fun
tion g : [0, 1] → c0 by g(t) := (f(t) − fn(t))∞n=1. If g wereKHP-integrable in c0, then for ea
h I ∈ I we would have the equality
(KHP)

T
I
g(t) dt = ((KH)

T
I
[f(t)− fn(t)] dt)∞n=1. But (f − fn) is σ(KH,BV)-
onvergent to f that is not negligible and so there is an interval I ∈ I su
hthat

(KH)
\
I

[f(t) − fn(t)] dt→ (KH)
\
I

f(t) dt 6= 0.Consequently, g is not KHP-integrable in c0.We now prove that the 
anoni
al inje
tion of Zg = {x∗g : ‖x∗‖ ≤ 1}into KH[0, 1] has relatively weakly 
ompa
t image. To prove it noti
e that if
x∗ ∈ l1, then x∗ = (αn), where ∑∞

n=1 |αn| ≤ 1. If acoW denotes the 
losedabsolutely 
onvex hall of W , then
x∗g =

∞∑

n=1

αn(f − fn) ∈ aco{f − fn : n ∈ N},

and the last set is weakly 
ompa
t in K̂H[0, 1] (due to Krein's theorem, 
f. [16,p. 162℄). Hen
e, Zg is relatively weakly 
ompa
t in KH[0, 1]. Equivalently,
Tg : l1 → KH[0, 1] is weakly 
ompa
t.Thus, we have obtained a fun
tion g : [0, 1] → c0 su
h that on Zg theweak topology σ(KH,BV) and the topology of 
onvergen
e in measure donot 
oin
ide.As already noted, g is not KHP-integrable but the operator Tg : l1 →
KH[0, 1] is weakly 
ompa
t. Sin
e g is determined by a separable spa
e, it is
lear that in order to get a generalization of Theorem B for the KHP-integralone 
annot simply repla
e L1[0, 1] by KH[0, 1]. An additional assumption isunavoidable.Lemma 1. Let f ∈ KH[0, 1] be su
h that , for every I ∈ I, (KH)

T
I
f = 0.Then f(t) = 0 almost everywhere in [0, 1].Proof. By hypothesis F (t) = (KH)

Tt
0 f ≡ 0 in [0, 1]. Sin
e F ′(t) = f(t)almost everywhere in [0, 1] (
f. for example [15℄), the statement follows.Noti
e that due to Lemma 1 the topology σ(KH,BV) is Hausdor� on Zf .The theorem below is a KHP-analogue of Theorem B.Theorem 3. Let f : [0, 1] → X be a s
alarly KH-integrable fun
tion.Then f is KHP-integrable if and only if the following two 
onditions areful�lled :(TC) on Zf ⊂ KH[0, 1] the topology σ(KH,BV) 
oin
ides with τm;(DC) there exists a weakly 
ompa
tly generated subspa
e Y ⊂ X su
hthat for ea
h x∗ ∈ Y ⊥ one has x∗f = 0 almost everywhere.
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KHP ⇒ (DC). Let now Y be the 
losed linear subspa
e of X generatedby the 
olle
tion {(KHP)

T
I
f : I ∈ I}. Sin
e KH∗[0, 1] = BV([0, 1]), by theGantma
her theorem we know that the adjoint operator T ∗

f : BV → X∗∗is also weakly 
ompa
t. Let I ∈ I be an interval; then its 
hara
teristi
fun
tion χI belongs to BV([0, 1]).For ea
h x∗ ∈ X∗ we have
〈T ∗

f χI , x
∗〉 = 〈χI , Tfx

∗〉 = (KH)
\
I

x∗f = x∗ (KHP)
\
I

f.Thus, T ∗
f χI = (KHP)

T
I
f ∈ X and

{
(KHP)

\
I

f : I ∈ I
}
⊂ 2T ∗

fB(BV[0, 1]).As T ∗
fB(BV[0, 1]) is weakly 
ompa
t, Y is weakly 
ompa
tly generated.Let x∗ be in Y ⊥. Then for ea
h I ∈ I we have

0 = x∗ (KHP)
\
I

f = (KH)
\
I

x∗f.Therefore, by Lemma 1, x∗f = 0 almost everywhere in [0, 1] and 
ondition(DC) is satis�ed.
(TC)+(DC) ⇒ KHP. Here we apply an idea borrowed from Proposition2.2 of [22℄. Assume now that 
onditions (TC) and (DC) are satis�ed andde�ne an operator QY : Y ∗ → KH[0, 1] by setting QY (y∗) = Tf (y∗ext), where

y∗ext ∈ Y ∗ is an arbitrary norm-preserving extension of y∗ to the whole X. Adire
t 
al
ulation shows that QY is well de�ned, bounded and Tf is weak∗-weakly 
ontinuous if and only if QY is weak∗-weakly 
ontinuous if and only if
Tf is σ(X∗, Y )-weakly 
ontinuous. Hen
e, a

ording to Theorem 2, in orderto prove the KHP-integrability of f it su�
es to show that Tf is σ(X∗, Y )-weakly 
ontinuous.As Y is weakly 
ompa
tly generated (hen
e has the Mazur property, i.e.ea
h element of Y ∗∗ whi
h is sequentially weak∗-
ontinuous on Y ∗ belongsto Y ), it is enough to prove that Tf is sequentially σ(X∗, Y )-weakly 
ontin-uous. So let (x∗n) ⊂ B(X∗) be a sequen
e σ(X∗, Y )-
onverging to zero. By
ondition (TC), Zf is weakly 
ompa
t. Then there is h ∈ KH[0, 1] and asubsequen
e (z∗n) of (x∗n) su
h that z∗nf → h weakly in KH[0, 1]. By (DC) wehave z∗nf → h in measure. Let (z∗nk

: k ∈ N) and z∗0 ∈ B(X∗) be su
h that z∗0is a weak∗ 
luster point of (z∗n) and z∗nk
f → z∗0f a.e. Consequently, z∗0 ∈ Y ⊥and so h = z∗0f = 0 a.e. It follows that every subsequen
e of (x∗nf) 
ontainsa subsequen
e whi
h is weakly 
onvergent to zero in KH[0, 1]. Consequently,

Tfx
∗
n → 0 weakly in KH[0, 1]. This gives us the desired sequential σ(X∗, Y )-weak 
ontinuity of Tf .
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tions 169Remark 1. As 
an be easily seen from the proof above, the subspa
e Yin Theorem 3 may be assumed to have only the Mazur property.Corollary 1. If f : [0, 1] → X is KHP-integrable, then ea
h set E ∈
L+ 
ontains an F ∈ L+ su
h that fχF is Pettis integrable.Proof. A

ording to [14, Corollary 32℄ if E ∈ L+, then there is L+ ∋
M ⊂ E su
h that f |M is s
alarly integrable (sin
e ea
h KH-integrable realfun
tion is Denjoy�Khin
hin integrable, we may apply [14℄). Then, applyingfor instan
e Corollary 3.1 from [19℄, one �nds M ⊃ F ∈ L+ su
h that fχFis s
alarly bounded (i.e. there is α > 0 su
h that for ea
h x∗ ∈ X∗ we have
|x∗f |F | ≤ α‖x∗‖ a.e.). But this means that Tf |F : X∗ → L1(λ|F ) is weakly
ompa
t. Together with 
ondition (DC) of Theorem 3, this yields the Pettisintegrability of f |F (
f. [20, Theorem 4.5℄).Even when X = R there are simple examples of f su
h that ea
h E ∈ L+
ontains an F of positive measure with fχF Lebesgue integrable but f itselfnot KH-integrable.Lemma 2. Let f : [0, 1] → X be a s
alarly integrable fun
tion. If Tfis σ(L1, L∞)-
ompa
t , then it is σ(KH,BV)-
ompa
t and on the set Zf ⊂
KH[0, 1] the weak topology σ(KH,BV) 
oin
ides with τm.Proof. Let U : L1 → KH[0, 1] be the natural inje
tion and let (x∗αf)be a net of fun
tions in TfB(X∗). Assume that Tf is σ(L1, L∞)-
ompa
tand the net (x∗αf) is σ(L1, L∞)-
onvergent to a fun
tion g ∈ L∞. Then
〈x∗αf − g, U∗h〉 = 〈Ux∗αf − Ug, h〉 for every h ∈ BV[0, 1] and so the net
(Ux∗αf) is weakly 
onvergent in KH[0, 1] to Ug. It follows that Tf is
σ(KH,BV)-
ompa
t.Sin
e Tf is σ(L1, L∞)-
ompa
t, ea
h sequen
e from TfB(X∗) 
ontains a
σ(L1, L∞)-
onvergent subsequen
e. Let (x∗nf) with x∗n ∈ B(X∗), n ∈ N, be
σ(KH,BV)-
onvergent to h ∈ Zf . Applying Theorem 2F of [11℄, we 
an �nda subsequen
e (x∗nk

f) that is a.e. pointwise 
onvergent to g. The sequen
e
ontains a further subsequen
e (xnkp
)p σ(L1, L∞)-
onvergent and a.e. 
on-vergent to h ∈ L1[0, 1]. If we now apply the theorem of Mazur, we get
onvex 
ombinations hp ∈ conv{xnkq
: q ≥ p} a.e. 
onvergent to h. Clearly

g = h a.e. This proves that σ(KH,BV)-
onvergent sequen
es are 
onvergentin measure to the same limits. The 
oin
iden
e of the topologies follows asin Proposition 2.The following result gives a 
hara
terization of Pettis integrable fun
tionsas a subset of KHP-integrable fun
tions. An example of a KHP-integrablefun
tion that is s
alarly integrable but not Pettis integrable is presentedin [12℄.
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alarly integrable and KHP-integrable fun
tion. Then f is Pettis integrable if and only if the operator
Tf : X∗ → L1[0, 1] is σ(L1, L∞)-
ompa
t.Proof. If f is Pettis integrable, then the weak 
ompa
tness of Tf followsfrom Theorem B.If Tf is σ(L1, L∞)-
ompa
t, then it follows from Lemma 2 that (TC) isful�lled.In the following we denote by τp the topology of pointwise 
onvergen
e inthe spa
e of all real-valued fun
tions. The following lemma is a reformulationof Lemma 5-1-2 from [24℄.Lemma 3. Let Z ⊂ KH[0, 1] be a 
onvex and τp-
ompa
t set. Assumethat the image of the 
anoni
al embedding of Z into KH[0, 1] is a weakly
ompa
t subset of KH[0, 1] and the weak topology σ(KH,BV) 
oin
ides with
τm on that image. If the 
anoni
al embedding Z → KH[0, 1] is not pointwiseweakly 
ontinuous at g ∈ Z, then there is f ∈ Z whi
h is not equal a.e. to
g, but g is in the τp-
losure of the set

Wf := {h ∈ Z : h = f a.e.}.Proof. By assumption, we may assume that there are h′ ∈ BV and α < βsu
h that (KH)
T1
0 g(t)h

′(t) dt ≤ α and g is in the τp-
losure of the set Y =

{h ∈ Z : (KH)
T1
0 h(t)h

′(t) dt ≥ β}.For a �nite set F ⊂ [0, 1] and ε > 0, let
UF,ε := {h ∈ Z : |(h− g)(t)| ≤ ε ∀t ∈ F}.If CF,ε := Y ∩ UF,ε, then CF,ε 6= ∅ and the 
losure HF,ε of the image C̃F,εof CF,ε in KH[0, 1] is 
onvex and weakly 
ompa
t, and C̃F,ε is weakly se-quentially dense in HF,ε. The family of sets HF,ε has the �nite interse
tionproperty and so there is f ′ ∈ KH[0, 1] whi
h is in every HF,ε. In parti
ular,

〈f ′, h′〉 ≥ β. Fix (F, ε). Then there is a sequen
e {fn} ⊂ C̃F,ε weakly 
on-vergent to f ′. By Fremlin's theorem [11, Theorem 2F℄, there is a fun
tion
f ′′ and a subsequen
e {fnk

} of {fn} 
onverging to f ′′ almost everywhere. As
Z is τp-
ompa
t, let fF,ε ∈ Z be a τp-
luster point of {fn}. Sin
e f ′′ = fF,εa.e., we get f ′′ ∈ KH[0, 1].By assumption, f ′ = f ′′ ∈ KH[0, 1].So we have fnk

→ f ′ a.e. Then fF,ε = f ′ a.e. Sin
e UF,ε is τp-
losed, wehave fF,ε ∈ UF,ε. It follows that g is a τp-
luster point of the set {fF,ε : F, ε}.Take for f an arbitrary fF,ε. We then have
(KH)

1\
0

h′f = (KH)

1\
0

h′fF,ε = (KH)

1\
0

h′f ′ ≥ β.Sin
e f = fF,ε a.e. for every (F, ε), we get the result.
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tions 171Lemma 4 (
f. [19, Lemma 6.2℄). Assume that f : [0, 1] → X is s
alarlymeasurable and corf (E) 6= ∅ for every E ∈ L+. If x∗ ∈ X∗, then x∗f = 0a.e. if and only if x∗ = 0 on corf [0, 1].The theorem below is a KHP-analogue of Theorem C.Theorem 4. A s
alarly KH-integrable fun
tion f : [0, 1] → X is KHP-integrable if and only if the following 
onditions are satis�ed :(TC) on Zf ⊂ KH[0, 1] the topology σ(KH,BV) 
oin
ides with τm;(CC) corf (E) 6= ∅ for every E ∈ L+.Proof. Assume that 
onditions (TC) and (CC) are ful�lled, but f is notKHP-integrable. By (TC) and Fremlin's subsequen
e theorem the set Zfis weakly 
ompa
t. Let Z := Zf . Applying Theorem 2 and Lemma 3, weget the existen
e of two fun
tionals y∗, z∗ ∈ B(X∗) su
h that |{t ∈ [0, 1] :
y∗f(t) 6= z∗f(t)}| > 0 and y∗f is in the τp-
losure of the set

Wf := {x∗f : x∗ ∈ B(X∗) & x∗f = z∗f a.e.}.Let (x∗αf) ⊂ Wf be a net τp-
onvergent to y∗f . We may assume that x∗α → y∗in σ(X∗, X). Sin
e for every α we have x∗αf = z∗f a.e. on [0, 1], it followsfrom Lemma 4 that x∗α|corf [0,1] = z∗|corf [0,1]. But then y∗|corf [0,1] = z∗|corf [0,1],whi
h yields, again by Lemma 4, y∗f = z∗f a.e. on [0, 1]. This however
ontradi
ts our assumption and so f is KHP-integrable.Assume now that f ∈ KHP([0, 1], X). Then (TC) is a 
onsequen
e ofTheorem 3, and (CC) follows from Corollary 1 and Theorem C.Remark 2. If c0 ⊆ X isomorphi
ally, then Gámez and Mendoza [12℄
onstru
ted an example of a KHP-integrable fun
tion f whi
h is not Pettisintegrable on any portion of some perfe
t subset F of [0, 1]. A

ording to [14,Theorem 33℄ we may assume (taking a suitable subset of F ) that f is s
alarlyintegrable on a portion F ∩ I of F . Consequently, applying Theorem 4 andthen Theorem C, we see that the operator Tf |(F∩I) : X∗ → L1(λ|(F ∩ I))is not weakly 
ompa
t. Equivalently, TfχF∩I
: X∗ → L1[0, 1] is not weakly
ompa
t.When investigating KH-integrals one meets immediately KH-equiinte-grable sets of fun
tions. We now formulate 
onsequen
es of Theorems 3 and4 in the 
ase when Zf satis�es some equiintegrability 
onditions.Lemma 5. Let f : [0, 1] → X be a s
alarly KH-integrable fun
tion su
hthat ea
h in�nite subset of Zf 
ontains an in�nite 
ountable KH-equiinte-grable subset. Then on Zf ⊂ KH[0, 1] the weak topology σ(KH,BV) 
oin
ideswith τm.Proof. Let (x∗nf)n ⊂ Zf be σ(KH,BV)-
onvergent to g ∈ KH[0, 1]. A
-
ording to Fremlin's subsequen
e theorem there is a subsequen
e (x∗nk

f)k
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onverging to a fun
tion h. We may assume that (x∗nk
f)kis KH-equiintegrable. Sin
e it is pointwise bounded, by Theorem 4 of [8℄it 
onverges to h in the Alexiewi
z norm, and hen
e weakly. Consequently,

g = h a.e. and ea
h subsequen
e of (x∗nf)n 
ontains a further subsequen
ethat is a.e. 
onvergent to g. Thus, (x∗nf)n 
onverges in measure to g.A

ording to Fremlin's subsequen
e theorem the set Zf is τm-
ompa
t.Take now a sequen
e (x∗nf)n ⊂ Zf 
onverging in measure to g ∈ KH[0, 1]. If
(x∗nk

f)k is almost everywhere 
onverging to g, then 
learly g = x∗f for some
x∗ ∈ B(X∗) and so g ∈ Zf . Moreover (x∗nk

f)k is pointwise bounded. Ap-plying the equiintegrability of a subsequen
e (x∗nkp
f)p, we see that (x∗nkp

f)p
onverges to g weakly in KH[0, 1] (see Theorem 4 of [8℄). It follows that ea
hsubsequen
e of (x∗nf)n 
ontains a subsequen
e weakly 
onvergent to g and so
(x∗nf)n is weakly 
onvergent to g. Consequently, Zf is σ(KH,BV)-
ompa
tand sequential σ(KH,BV)-
onvergen
e on Zf 
oin
ides with sequential τm-
onvergen
e. The 
oin
iden
e of the two topologies on Zf now follows exa
tlyas in Proposition 2. This 
ompletes the proof.Remark 3. In Lemma 5 one may weaken the assumptions, assumingthat for ea
h 
ountable subset H ⊂ Zf there is a set N of measure zero su
hthat the set {hχNc : h ∈ H} is KH-equiintegrable. As observed in [15℄ the
on
ept of KH-equiintegrability, unlike the 
on
ept of uniform integrability,does not allow one to ignore sets of measure zero.Corollary 2. Let f : [0, 1] → X be a s
alarly KH-integrable fun
tionsu
h that ea
h in�nite subset of Zf 
ontains a KH-equiintegrable in�nitesubset. If f satis�es (DC) or (CC), then f ∈ KHP(X, [0, 1]).For a Bana
h spa
e with the Mazur property we have the following suf-�
ient 
ondition for KHP-integrability:Proposition 4. If X has the property of Mazur (in parti
ular when Xis separable or weakly 
ompa
tly generated), then f is KHP-integrable if andonly if f : [0, 1] → X is s
alarly KH-integrable and ea
h in�nite subset of the
olle
tion {x∗f : ‖x∗‖ ≤ 1} 
ontains a KH-equiintegrable sequen
e.Proof. We �rst show that the linear fun
tion a : X∗ → (−∞,∞) givenby a(x∗) := (KH)

T1
0 x

∗f(t) dt is w∗-
ontinuous. So 
onsider a sequen
e offun
tionals x∗n ∈ B(X∗). Assuming that x∗n → x∗0 in the weak∗ topology, weget the pointwise 
onvergen
e x∗nf(t) → x∗0f(t). We may suppose that thesequen
e (x∗nf) is KH-equiintegrable; then we have (see [17℄)
a(x∗0) = (KH)

1\
0

x∗0f(t) dt = lim
n

(KH)

1\
0

x∗nf(t) dt = lim
n
a(x∗n).Consequently, a is w∗-
ontinuous, and so there exists x0 ∈ X su
h that

a(x∗) = x∗(x0). Thus, f is KHP-integrable.
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tions 173The 
onverse follows from Lemma 5, Theorem 3 and Remark 1.Remark 4. If in the de�nition of the Kurzweil�Hensto
k�Pettis inte-gral we repla
e the Kurzweil�Hensto
k integrability of s
alar fun
tions bythe Denjoy�Khin
hin integrability, we obtain the Denjoy�Pettis integral, in-trodu
ed in [14℄ and studied in [14, 12℄. Denote by DK[0, 1] the set of allreal-valued Denjoy�Khin
hin integrable fun
tions on [0, 1] and by DK[0, 1]its quotient spa
e. Then endow DK[0, 1] with the Alexiewi
z norm
‖g‖A = sup

0<α≤1

∣∣∣(DK)

α\
0

g(t) dt
∣∣∣,where (DK)Tα0 stands for the Denjoy�Khin
hin integral. Then the spa
e

KH[0, 1] is dense in DK[0, 1], the 
ompletion of DK[0, 1] in the Alexiewi
znorm 
oin
ides with the 
ompletion K̂H[0, 1] of KH[0, 1], and the 
onjugatespa
e DK∗[0, 1] is linearly isometri
 to BV[0, 1] (
f. [4℄). Moreover, the 
las-si
al theorem on integration by parts also holds for the Denjoy�Khin
hinintegral (
f. [15, Theorem 15.14℄). Using the above fa
ts instead of the 
or-responding ones for the Kurzweil�Hensto
k integral, it is easy to see thatDenjoy�Pettis versions of Theorems 1�4 also hold true. Clearly, we haveto take into a

ount that the range spa
e of the operator Tf is, this time,
DK[0, 1].5. Convergen
e theorems. It is the aim of this se
tion to present ageneralization of some 
onvergen
e theorems proved in [5℄ and [8℄.Theorem 5. Let (fn)n be a sequen
e of KHP-integrable X-valued fun
-tions and let f : [0, 1] → X be a fun
tion. Assume that the following 
ondi-tions are satis�ed :(a) x∗fn → x∗f a.e. for ea
h x∗ ∈ X∗ (the ex
eptional sets dependon x∗);(b) the sequen
e (fn)n is pointwise bounded ;(
) ea
h 
ountable subset of {x∗fn : ‖x∗‖ ≤ 1, n ∈ N} is KH-equiinte-grable.Then f is KHP-integrable and

lim
n

‖x∗fn − x∗f‖A = 0 for ea
h x∗ ∈ X∗.Proof. We �rst prove that ea
h sequen
e {x∗mf : x∗m ∈ B(X∗)} is KH-equiintegrable. So let {x∗mf : x∗m ∈ B(X∗)} be an arbitrary sequen
e. Thenset Nm = {t ∈ [0, 1] : x∗mfn(t) 9 x∗mf(t)} and N =
⋃∞

m=1Nm.Fix an arbitrary ε > 0. A

ording to (
) and [15, p. 361℄, there is a gauge
δ′ su
h that if {(I1, t1), . . . , (Ip, tp)} is a δ′-�ne partition of [0, 1], then for
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∣∣∣

p∑

i=1

x∗mfn(ti)χNc(ti)|Ii| −
1\
0

x∗mfn(t) dt
∣∣∣ < ε.Moreover, it follows from (a) that for ea
h m there is nm ∈ N su
h thatfor every n ≥ nm,

∣∣∣
p∑

i=1

x∗mfn(ti)χNc(ti)|Ii| −

p∑

i=1

x∗mf(ti)χNc(ti)|Ii|
∣∣∣ < ε.By (
) the sequen
e (x∗mfn)n is equiintegrable and by (b) it is pointwisebounded. Then, by Theorem 4 of [8℄, there is km ≥ nm su
h that for every

n ≥ km,
∣∣∣
1\
0

x∗mfn(t) dt−
1\
0

x∗mf(t) dt
∣∣∣ < ε.Consequently, for ea
h m,

∣∣∣
p∑

i=1

x∗mf(ti)χNc(ti)|Ii| −
1\
0

x∗mf(t) dt
∣∣∣

≤
∣∣∣

p∑

i=1

x∗mf(ti)χNc(ti)|Ii| −

p∑

i=1

x∗mfkm
(ti)χNc(ti)|Ii|

∣∣∣

+
∣∣∣

p∑

i=1

x∗mfkm
(ti)χNc(ti)|Ii| −

1\
0

x∗mfkm
(t) dt

∣∣∣

+
∣∣∣
1\
0

x∗mfkm
(t) dt−

1\
0

x∗mf(t) dt
∣∣∣ < 3ε.But a

ording to [8℄ there is a gauge δ′′ onN su
h that if {(I1, t1), . . . , (Ip, tp)}is a δ′′-�ne partition an
hored in N , then supm

∑p
i=1 x

∗
m|f(ti)| |Ii| < ε. So if

δ(t) := δ′(t)χNc(t)+δ′′(t)χN (t), then for ea
h partition {(I1, t1), . . . , (Ip, tp)}of [0, 1] that is δ-�ne, we have
∣∣∣

p∑

i=1

x∗mf(ti)|Ii| −
1\
0

x∗mf(t) dt
∣∣∣ < 4ε,whi
h proves the equiintegrability of the sequen
e (x∗mf)m.It follows from Lemma 5 that on the set Zf the topologies σ(KH,BV) and

τm 
oin
ide. Thus 
ondition (TC) of Theorem 3 is satis�ed. In order to provethe KHP-integrability of f we need to show yet the existen
e of a weakly
ompa
tly generated spa
e Y ⊂ X su
h that x∗f = 0 a.e. if x∗ ∈ Y ⊥. Butas ea
h fn is in KHP([0, 1], X) there is a weakly 
ompa
t set Wn ⊂ B(X)
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h that x∗fn = 0 a.e. if x∗ ∈ Y ⊥
n , where Yn is the Bana
h spa
e generatedby Wn. Consequently, if W =

⋃∞
n=1 2−nWn, then W is weakly 
ompa
t andthe Bana
h spa
e Y generated by W has the required property. Thus, f isKHP-integrable.Sin
e ea
h sequen
e (x∗fn)n is equiintegrable and pointwise bounded,applying Theorem 4 of [8℄ we get

lim
n

‖x∗fn − x∗f‖A = 0 for ea
h x∗ ∈ X∗.Remark 5. A more 
areful analysis of the above proof shows that one
an weaken 
ondition (
) to: ea
h 
ountable set {x∗mk
fmk

: k ∈ N, ‖x∗mk
‖

≤ 1} 
ontains a subset {x∗mkl
fmkl

: l ∈ N, ‖x∗mkl
‖ ≤ 1} that is KH-equi-integrable.Remark 6. We re
all that the 
on
ept of KH-equiintegrability, unlikeuniform integrability, does not allow one to ignore sets of measure zero (seee.g. [15℄). As in 
ondition (a) of Theorem 5 the assumption of �pointwise
onvergen
e� has been relaxed, we had to assume the pointwise boundednessof the fun
tions. As in Lemma 5 we might have weakened (
), assuming thatone 
an 
hoose 
ountable subsets KH-equiintegrable on a set of full measure.It is known that a sequen
e of real-valued pointwise 
onvergent fun
tionsis KH-equiintegrable if and only if the sequen
e of their primitives is uni-formly ACG∗

(s) (see e.g. [17℄, [3℄). For the de�nition of the uniform ACG∗
(s)
ondition we refer to [4℄. So if we observe that under the assumption of theuniform ACG∗

(s) of the primitives the notion of KH-equiintegrability is notaltered by possibly 
hanging the values of a fun
tion on a null set, thenthe proof of the next theorem follows, after suitable 
hanges, as for Theo-rem 1 in [5℄. In any 
ase we note that in the proof of Theorem 1 in [5℄ a fewimportant details have been negle
ted or overlooked.Theorem 6. Let (fn)n be a sequen
e of KHP-integrable X-valued fun
-tions and let f : [0, 1] → X be a fun
tion. Assume that :(α) x∗fn → x∗f a.e. for ea
h x∗ ∈ X∗ (the ex
eptional sets depend on
x∗);(β) ea
h 
ountable subset of {x∗Fn : ‖x∗‖ ≤ 1, n ∈ N} is uniformly
ACG∗

(s), where Fn's are the KHP-primitives of fn's.Then f is KHP-integrable and
lim
n

‖x∗fn − x∗f‖A = 0 for ea
h x∗ ∈ X∗.
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