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On operators which factor through [, or ¢,
by

BENTUO ZHENG (College Station, TX)

Abstract. Let 1 < p < co. Let X be a subspace of a space Z with a shrinking F.D.D.
(En) which satisfies a block lower-p estimate. Then any bounded linear operator 7" from X
which satisfies an upper-(C, p)-tree estimate factors through a subspace of (3 Fy.)1,,, where
(F,) is a blocking of (E,). In particular, we prove that an operator from L, (2 < p < 00)
satisfies an upper-(C, p)-tree estimate if and only if it factors through l,. This gives an
answer to a question of W. B. Johnson. We also prove that if X is a Banach space with
X™ separable and T is an operator from X which satisfies an upper-(C, co)-estimate, then
T factors through a subspace of ¢g.

1. Introduction. In [3], W. B. Johnson answered the following question
about the relation between the structure of L, and ,,.

QUESTION 1.1. Give a Banach space condition so that if X is a subspace
of L, (1 < p < 2) which satisfies the condition, then X embeds isomorphi-
cally into [,,.

The equivalent dual question would be:

QUESTION 1.2. Give a Banach space condition so that if X is a quotient
of L, which satisfies the condition, then X is isomorphic to a quotient of [,,.

For p > 2, W. B. Johnson and E. Odell had already proved in [5] that
if a subspace X of L, has no subspace isomorphic to /3, then X embeds
into l,,. For p < 2, W. B. Johnson proved that if there exists a K > 0 such
that every normalized weakly null sequence in X has a subsequence which
is K-equivalent to the unit vector basis of [,, then X is isomorphic to a
subspace of [,. Further W. B. Johnson also gave a complete answer to the
dual question in [3]; namely, a quotient of L, (2 < p < oo) which is of
type p-Banach-Saks is a quotient of /,. Recall that an operator 7' from a
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Banach space X is of type p-Banach—Saks (where 1 < p < o0) if there exists
a constant A such that every normalized weakly null sequence in X has a
subsequence (x,) which satisfies for n =1,2,...,

n
H ZT:U,H < Anl/P.
i=1

X is said to be of type p-Banach—Saks when the identity operator on X is.
From the results above, a more general question naturally arises.

QUESTION 1.3. Give a necessary and sufficient condition so that if an
operator 1" from L, to any Banach space Y satisfies the condition, then T’
factors through 1,,.

It was proved in [2] that a bounded linear operator T" into L, (2 < p <
oo) factors through [, if and only if T is compact when considered as an
operator into Lo. This actually answers Question 1.3 for 1 < p < 2. In
[2], W. B. Johnson conjectured that an operator T" from L, (2 < p < o0)
factors through [, if and only if T is of type p-Banach-Saks. As mentioned
above, this conjecture was verified in [3] in the case when 7" has closed range.
Later, W. B. Johnson discovered in [4] a counterexample in the general case,
which led him to formulate a conjecture with a stronger condition, namely
an operator T’ from L, (2 < p < oo) factors through [, if and only if T’
satisfies the following condition (when X is L,).

CONDITION 1.4. T is an operator from X so that for every normalized
weakly null sequence (x,) C X, there is a subsequence (z, ) such that

HT<Z%$W)H < C(Z |ak’p)1/p’ V(ar) CR.

In Section 2, we use a space constructed by E. Odell and Th. Schlump-
recht in [12] to show that for an operator T from L, (2 < p < c0), Condi-
tion 1.4 does not imply that T factors through /,. E. Odell and Th. Schlump-
recht used this space to disprove W. B. Johnson’s conjecture that Condi-
tion 1.5 below and reflexivity of X imply that X embeds into an [, sum
of finite-dimensional spaces. They also formulated Condition 1.6 below and
proved that Condition 1.6 and reflexivity of X do imply that X embeds into
an [, sum of finite-dimensional spaces. The above-mentioned conditions are
defined as follows:

ConbpITION 1.5. For all € > 0, every normalized weakly null sequence in
X admits a subsequence which is (1 + ¢)-equivalent to the unit vector basis
of 1.

CoNDITION 1.6. There is a C' > 1 such that every normalized weakly
null tree in X admits a branch which is C-equivalent to the unit vector basis
of 1.
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Let [N]<“ denote all finite subsets of the positive integers. By a normal-
ized weakly null tree, we mean a family (74)ac<w C Sx with the property
that every sequence (z4u{n})nen is weakly null. Let A = {n1,...,n,} with
ny < - <npyand B={ji,...,J-} with j; <--- < j,. Then we say A is an
initial segment of B if m < r and n; = j; when 1 <4 < m. The tree order on
(z4) ae[n)<w is given by 14 < xp if A is an initial segment of B. A branch of
a tree is a maximal linearly ordered subset of the tree under the tree order.

Motivated by Condition 1.6, we formulate a condition stronger than Con-
dition 1.4, which is an operator version of Condition 1.6.

CONDITION 1.7. For every normalized weakly null tree in X, there is a
branch (xj) so that

HT(Zakmk> H < C(Z \ak\p)l/’), V(ax) C R.

This condition turns out to be the right one for answering Question 1.3
when X =L, (2 < p < 00).

2. A counterexample. In this section, we construct an operator T
from Iy into X = (3 X,,), (which will be defined below) which satisfies
Condition 1.4 but does not factor through [, for 2 < p < oo. Since I3 is
isomorphic to a complemented subspace of L,, we also get an operator from
L, into X = () X,), which satisfies Condition 1.4 but does not factor
through 1,,.

Let 2 < ¢ <p <ooand X = (3_ X;), be the space defined in [12], where
X, is the completion of cyo([N]=") under the norm

- 1/p
|||, = sup {(Z Hx]ngg) : (8%, are disjoint segments in [N]S”}.
i=1

Here [N]=" denotes all sets of natural numbers with cardinality less than n.
By a segment in [N]<", we mean a sequence (4;)%_; € [N]<" with

A1 = {nl,...,nl},

A2 = {nlv"wnlanl-i-l}? [EES)
Ak‘ = {nlv sy Yy e 7nl—|—k:—1}7
for some n; < --- < nyyp_1. A branch in [N]S" is a maximal segment in

[N]=".
REMARK 2.1. The node basis (€}) scpyj<n given by €4 (B) = 04,5 for
any B € [N]S" is a l-unconditional basis for X,. Moreover, (€%,)iz is 1-

equivalent to the unit vector basis of I if (A;)f; is a branch in [N]=".

If we write I = (3_12)2, (€}) acpyj<n is the unit vector basis of the nth
l> and (€'}) scpyj<n is the unit vector basis of X,,, then the operator T": I —



180 B. Zheng

X = (> Xy)p is defined so that
T(e4) = éi-

Since 2 < g < p we can linearly extend T to be an operator of norm one
from 5 into X.

CraM 1. The operator T satisfies Condition 1.4.

Let (x,) be a normalized weakly null sequence in ls, and € > 0. Then
(T'(xy)) is a weakly null sequence in () X,),. By the proof of Example 4.2
in [12], we can pick a subsequence (x, ) such that for all (a;) C N,

(T )| <2( Zirt@anl) " < 2( Slarr) "

So we proved Claim 1. Our second claim is

CLAIM 2. T does not factor through l,,.

In order to prove the claim, we need the following lemma which is an
application of a result concerning blockings of F.D.D.’s proved in [7]. This
result was reformulated as Proposition 1.g.4. in [10].

LEMMA 2.2. Let p > 2. Then any bounded linear operator A from ly into
lp factors through (3~ Ey)y, in such a way that A = A’ o J, where (Ey) is a
blocking of the canonical basis of lo and J is the formal identity from la into
(Z En)lp-

Proof. By Proposition 1.g.4 in [10], we find a blocking (E),) of the canon-
ical basis of [y such that A(FE),) is essentially contained in F,,_; & F,,, where
(F,) is a blocking of the canonical basis of l,. Let J be the formal identity
map from Iy into (37 Ey);,. Since p > 2, J is always bounded. Let A’ be the
linear map from (3 E,);, into [, such that A = A’ o J. We claim that A’ is
bounded. Indeed, let x = > x,, with z,, € E,. Then by the construction of

(Ey) and (F),), we have
()]

14/l < |4 (3 an)
< (1Al + &) (D llezall?) 7y (> llwznflll”)l/p)

1/p
<21 A) + ) (3 llwall?)
So A’ is bounded. =

Now we can prove Claim 2.

Proof of Claim 2. Suppose T factors through [,,. Then by Lemma 2.2, T
factors through (3 E,);, for some blocking of the canonical basis of I5. Let
T = JyoJo, where J; is the formal identity from I into () En)lp and Js is a
bounded linear operator from (3 E,);, into (3 X,,);,- Since T'is the formal

lp
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identity from [z into (}_ X);,, we deduce that J; is also a formal identity.
By the choice of (E,) and the definition of X, for any k£ € N, we can find a

finite basic subsequence (eﬁn)ﬁzl of I such that eﬁn’s sit in different E, ’s
and (A,)k_, is a branch of [N]<*. As Jy is the formal identity, we have

Jg(elj‘n) = élj‘n, hence ||Jo|| > kY/9-1/P, Since k is arbitrary, this shows that
Jo is not bounded. This is a contradiction. =

3. Main result. Now we give a sufficient condition for an operator from
L, (2 < p < o) to factor through [,.

DEFINITION 3.1. Let 1 < p < oo, C' > 0 and X,Y be Banach spaces.
Suppose T : X — Y is a bounded linear operator. We say that T satisfies
an upper-(C, p)-tree estimate if for every normalized weakly null tree in X,
there exists a branch (x;) such that

HT(Zaixi) ‘ < C’(Z |ai|/p>1/p7 V(a;) C R.

When p = oo, T satisfies an upper-(C, 0o)-tree estimate if for every normal-
ized weakly null tree in X, there exists a branch (z;) such that

s {|r(2e)

e

THEOREM 3.2. Let 2 < p < oo, X be a Banach space, and let T :
L, — X be a bounded linear operator. Then T satisfies an upper-(C, p)-tree
estimate if and only if T factors through .

As preparation for the proof, we present the following known lemmas
(see [3]).

LEMMA 3.3. Let 2 < p < 0o, X be a Banach space, and let T : L, — X
be a bounded linear operator. Then T' factors through ,, if and only if there
are a blocking (Hy,,) of the Haar system and a bounded linear operator S :
Qo (Hn, || - lp))y, — X such that T = S o J, where J is the formal identity

map from L, into (Y (H,, || - ”p))lp-

REMARK 3.4. Since 2 < p < 00, the formal identity map J from L, into
(O (Hp,| - lIp))p is always bounded.

Proof of Lemma 3.4. For any blocking (H,,) of the Haar system, since
H,, is finite-dimensional and uniformly complemented in L, it is uniformly
complemented in I,,. So (3 _(Hax, [|][p))1, is complemented in /,,, hence isomor-
phic to I, by [14] (or Theorem 2.a.3 in [10]). On the other hand, by Theorem
I1.1 in [3] any operator T' from L, into I, factors through (3 (Hp, || - ||p))1,
for some blocking (H,,) of the Haar system in the way that 7'= S o J where
J is the formal identity. m
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LEMMA 3.5. Let 2 < p < oo, X be a Banach space, T : L, — X be a
bounded linear operator and (H,) be a blocking of the Haar system. Then
there is a bounded linear operator S : (3 (Hp,|| - [lp)), — X such that
T = SoJ, where J is the formal identity map from Ly, into (3_(Hn, ||-[p))i,
if and only if there exists C > 0 such that

(3.1) HT(Zakxk> H < C’(Z \ak\p) 1/p7 V(ax) C R, z, € SH,.

Proof. Inequality (3.1) is equivalent to saying that the map @ : J(L,) —
X which satisfies T' = Qo J is bounded. Considering Remark 2.1 and noticing
that J(L,) is obviously dense in (Y (Hy, | - ||p))i,, we are done. =

DEFINITION 3.6. (x,,) is said to be a block sequence with respect to (E,)
if there exists a sequence of integers 0 = m; < mg < --- such that z,, €
@it E; for all n € N. (x,,) is said to be a skipped-block sequence with

Jj=mn

respect to (E,,) if there exists a sequence of integers 0 = m; < mg < --- such
that m, +1 < mp4+1 and z, € @;n:"%;_ll E; for all n € N. Two skipped-
block sequences (z,) and (yy) are said to be intrusive if x1,y1,22,¥y2,... or
Y1, T1,Y2, T2, ... is a block sequence.

DEFINITION 3.7. A property P(C) with some parameter C' > 0 for nor-
malized block sequences in X is said to be closed under combination if there
is a ¢’ > 0 depending only on C such that for any two intrusive normalized
block sequences (zp)nen and (yn)nen satisfying P(C'), the natural combi-
nation sequence 1, y1,%2,Y2, ... OT Y1, T1, Y2, T2, ... satisfies P(C"). For any
C > 0 and € > 0, if there exists (J;) \, 0 so that for any normalized se-
quence () that has property P(C) with z,, € F,, for some blocking (F},) of
(Ey), we have that any sequence (y,,) with y, € F,, and ||y, — x| < 6, has
property P(C + ¢), then we say P is stable under small perturbations.

DEFINITION 3.8. Let C' > 0. A normalized block sequence (x;,) is said
to be C-good if (z,,) has property P(C'). Otherwise we say that it is C'-bad.
A branch of a normalized block tree is C-good if it is a C-good sequence.
A blocking (F,) of (Ey) is C-good if all normalized sequences (z,) with
xn, € F, have property P(C). A blocking (F,,) of (E,) is C-semigood if all
normalized sequences (z,) with x,, € Fb, have property P(C).

REMARK 3.9. If for every blocking (F,,) of (E,), (F,) is C-semigood,
then any skipped-block sequence (z,,) with respect to (E,) is C-good. On
the other hand, if any skipped-block sequence with respect to (E,,) is C-good,
then all blockings of (E,,) are C-semigood.

DEFINITION 3.10. We say x sits in a block of (E,) if x = fikl x

with x; € E;. Let y = Z;’fml y; with y; € FE;. If ko < mq, then we say y
sits farther than x. A normalized block tree with respect to (E,) is a family
(4) aei<w C Sx such that
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(a) For any A € [N]<¥, x4 sits in some block of (E,).
(b) If A is a proper initial segment of B, then zp sits farther than z 4.
(c) If max A <n < m, then 4, sits farther than z 4y¢p)-

PROPOSITION 3.11. Let X be a Banach space with an F.D.D. (E,). Con-
sider the three conditions:

(i) There exists a C > 0 such that every blocking of (Ey) has a further
blocking (F),) so that all further blockings of (F,) are C-good.
(ii) There exists a C > 0 such that every blocking of (Ey) has a further
blocking (F),) so that all further blockings of (F),) are C-semigood.
(iii) There exists a C > 0 such that every normalized block tree with
respect to (Ey) in X has a C-good branch.

Then:
(a) (i) implies (ii) and (ii) implies (iii).
(b) If property P is closed under combination, then (ii) implies (i).
(c) If property P is stable under small perturbations and makes Dy, closed
under the pointwise topology on [N|¥, for all C > 0, then (iii) implies
(ii).
Here Dy, is defined as
Dy ={M € [N]¥: the blocking of (E,) corresponding to M is C-semigood}.
[N]“ denotes the set of all infinite subsets of positive integers. For a blocking
(Fy,) of (Ey), given by F,, = Z?;ni,lﬂ E; and ny = 0, we say that (F,)
corresponds to the set {ni,ng,...}.

Proof. Since (a) and (b) trivially follow from the definitions above, we
omit the proof.

It remains to prove that (iii) implies (ii) when Dy, is closed under point-
wise topology on [N]¥. This is essentially contained in Theorem 3.3 of [12].
For the convenience of the reader, we write down a direct argument which
includes only the part of the proof of Theorem 3.3 in [12] that is needed. For
any C > 0, set

D¢ = {blockings of (E,) which are C-semigood}.
So we can identify Do with
Dy = {M € [N]“ : the blocking corresponding to M is C-semigood}.
Let (G,,) be any blocking of (E,,). Since property P makes D¢, closed under

the pointwise topology on [N]¥; by the infinite version of Ramsey’s theorem
(cf. [11]), there are two cases:

CASE 1: there is a blocking (F},) of (Gy,) all further blockings of which are
C-semigood.
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CASE 2: there is a blocking (F,) of (G,) no further blocking of which is
C-semigood.

In the first case, we are done. In the second case, we will construct a block
tree which results in a contradiction. Let N’ be the infinite subset of positive
integers corresponding to the blocking (F,) no further blocking of which

is C-semigood. Then for each M € [N']“ (which corresponds to a further

blocking of (F},)), we can pick a C-bad sequence (zM

;") which is a skipped-

block sequence relative to the blocking corresponding to M. Letting N =
{n1,n9,ng, ...}, we know that for any M € [{ng, ng,...}|*,

{nl,ng}UM n

.’1}'1 - S[E’L”zgnl+1

By Ramsey’s theorem and the compactness of S[Ei]lr-?l’ we can find an (1) €

Sty and an M' C {n3,ny,...} such that for all M € [M']*, we have

i=ni41
na}UM
oy — 21" ") < 6.
Repeating the procedure again, we can find an z(9) € S[E-H"/? and an
Hi=14n]

M? € [M']* so that for all M € [M?]*, we have

{n) ny UM
2oy — 2y 72| < 0u,
where n/,nf are the first two elements of M?. Continuing this procedure,
we get x; for all © € N. For the second level of the tree, by using the same
method as above, we can find for x1 an 212 € S / and an M2 €

n
. 2
(B2, n

[M' — {n!,n,}]* such that for all M € [M"?]*, we have

|10y — a2 OM )

Let 712, 723 be the smallest two elements of M"Y2; then we can find our desired
x13 and so on. Since P is stable under small perturbations, by continuing
this process, we get a normalized block tree with respect to (F},) no branch of
which has property P(C +¢). Since C' is arbitrary, we get a contradiction. =

Now we can prove our main result.

Proof of Theorem 3.2. Given an operator T, we say that a normalized
block sequence (z,) with respect to the canonical Haar system (h,) has
property P(C) if

HT(Z&.’L‘) ‘ < C(Z|ai|p)1/p, V(a;) C R.

Let (x,) and (y,) be two intrusive normalized skipped-block sequences with
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respect to (hn). If both of them have property P(C), then
(S )] = (Sin) | fr (S )|
ce((S ) (Ser))
<20( Y (ol + !bilp))l/p-

So P is closed under combination. Let (Hy) be a blocking of (h,), and (z,)
be a normalized block sequence with x,, € H, which has property P(C).
Let (yn) be another normalized block sequence with vy, € H, such that
|xn — yn|| < 0, where 6, < £/2™||T||. Then

7 (o) < (e ) | + [ (Eates - w0)|
< (C—i—a)(z ’ai‘p)l/p.

So P is stable under small perturbations. Also notice that the set

2(0) =@ e 5z, [T X )| < (Slank) ). e c 2

is closed under pointwise limits where S‘“ denotes the set of all infinite
sequences in the unit sphere of L,. Then the set

Dy = {M € |N]“ : the blocking corresponding to M is C-semigood}

is closed under pointwise limits in [N]“. For L, since every block tree is a
weakly null tree, by hypothesis every block tree has a good branch. So by
Proposition 3.11 and our argument above, we know that there is a blocking
(Hy) of (hy) and D < oo such that all block sequences of (Hy),>1 are in
(D). Then it is easy to see that there is a C’ > 0 so that all block sequences
of (H,) are in £2(C"). Combining Lemmas 3.3 and 3.5, we conclude that T'
factors through /,,. =

REMARK 3.12. If T factors through l,, say T' = T7 o T> where T3 is an
operator from L, into [, and 77 is an operator from [, into X, then for any
normalized weakly null tree (z4) in L,, (T2(x4)) is a weakly null tree in [,.
Hence there is a branch of (z4) which satisfies an upper-(2, p)-tree estimate.
So the upper-(C, p)-tree estimate is also a necessary condition.

Actually we have the following generalization of Theorem 3.2.

DEFINITION 3.13. Let 1 < p < oco. Let X be a Banach space with an
F.D.D. (E,). We say (E,) satisfies a block lower-p estimate if there exists a
C > 0 such that for any block basis (x,) with respect to (Ey),

H > || > C(Z Hman)l/p.
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THEOREM 3.14. Let1 < p < oo and X be a Banach space with a shrink-
ing F.D.D. (E,) which satisfies a block lower-p estimate. Let T : X — Y
be a bounded linear operator which satisfies an upper-(C,p)-tree estimate. If
p < oo, then T factors through (3 Fy);, and if p = oo, T factors through
(3" Fo)e, for some blocking (F,) of (Ey).

Proof. Let p < co. Let (F,,) be any blocking of (E,,) and Jg : (3] Fp)x —
(2>_ Fu)i, be the formal identity map. Since (E),) satisfies a block lower-p
estimate, Jp is always bounded. If the map Sp : Jp(X) — Y with T' =
Sr o Jp|x is bounded, i.e. there exists a C' > 0 such that for all (z3) with
xp € Fpand j € N|

()] < (Sir)”. v e
k=1

then T factors through the subspace Jp[X] of (3 Fy);,. Since Jp[X] is
dense in (3 Fy);,, the operator Sy can be extended to the whole space
(>~ Fu)i,- Hence T factors through (3 F},);,. For an operator T', we say that
a normalized block sequence (z,,) with respect to (E,) has property P(C) if
for all j € N,

()] <(Shar)", v

As in the proof of Theorem 3.2, we can check that property P is closed under
combination and stable under small perturbation. Since (E,,) is shrinking,
every block tree is weakly null, hence by hypothesis every block tree has a
good branch. Now by applying Proposition 3.11, we conclude that there is
a blocking (F),) of (E,) so that the operator Sr defined above is bounded.
The proof above works as well when p = co. =

A further question is what if X is only a subspace of a space with a
shrinking F.D.D. In the case when p is finite, we can prove the following
generalization of Theorem 3.2 by using the method of the proof of Theorem
4.1 in [12].

THEOREM 3.15. Let 1 < p < oo and X be a subspace of a space Z
with a shrinking F.D.D. (E,) which satisfies a block lower-p estimate. Let
T:X —Y be a bounded linear operator which satisfies an upper-(C,p)-tree
estimate. Then T factors through a subspace of (3 Fy)i,, where (Fy,) is a
blocking of (Ey,).

In order to prove the above theorem, we need Lemma 3.16, which is a
result of W. B. Johnson restated as Corollary 4.4 in [12].

LEMMA 3.16 (Corollary 4.4 in [12]). Let X be a subspace of the reflexive
space Z and let (F;) be an F.D.D. for Z. Let 6; | 0. There exists a blocking
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(G;) of (F;) given by G; = @;.V:"Ni_IHFj for some 0 = Ny < Nj < ---
with the following property. For all x € Sx there exist (x;)2, C X and
t; € (Ni—laNi] for i € N so that:

(a) = =327, =
(b) Fori e N, either ||z;|| < d; or ||P@t_i_1 7 (@) — ]| < bi|za]-
j=ti_1+17%J

(c) ForieN, |[|[Ppt—1 (7) — ]| < di.
eaj:ti—l

+1 Fj

Proof of Theorem 3.15. Let (F,) be any blocking of (E,) and Jp :
(>_Fn)z — (3 Fn)i, be the formal identity map. Since (E,) satisfies a
block lower-p estimate, Jr is always bounded. If the map Sp : Jp(X) = Y
with 7" = Sp o Jp|x is bounded, i.e. there exists a C' > 0 such that for all
x =) agry € X with z, € Sp,,

(o) | = (i)™

then T' factors through a subspace of (3 F,);,. Let C' > 0 and set

T(iaiaji) ) < C’(Z ]ai|p)1/p, Y(a;) C ]R}.
i=1

Applying Proposition 2.4 in [13] to the set A, we get a blocking (F;) of
(E;) such that there exists § = (0;) so that if (z,) C Sx is a d-skipped
block with respect to (F,) (see Definition 2.2 in [13]), then whenever > a;z;
converges, we have || (3 a;2;)|| < 2C (3 |as|P)*/P. Because the F.D.D. (E;)
is shrinking and satisfies a block lower-p estimate, Z is reflexive. Now let (G;)
be the blocking of (F;) given by Lemma 3.16. Let x € Sx, x = > 2, = > &;

with Z; € G; and z; as in Lemma 3.16. Let y; = P ¢, 1 x; then there
@j:ti_l-&-l J

A:{(:vi)eS%:VjeN,

exist C'1, Cy such that
Crmax([|ysl], [[yi+1l]) — 6 < (|2l < Colluill + b

So when §;’s are sufficiently small, we have
(S a)] = e () < (S )™
<20( X lullr) " < (i)

This is exactly what we want. m

In particular, when Z is L), (2 < p < 00), we have the corollary below.

COROLLARY 3.17. Let 2 < p < oo and let X be a subspace of L. If
T:X —Y is a bounded linear operator which satisfies an upper-(C, p)-tree
estimate, then T' factors through a subspace of 1.
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For the case when p = 0o, we have the following result, the proof of which
was shown to me by W. B. Johnson.

THEOREM 3.18. Let X be a Banach space with X* separable. Let T :
X — Y be a bounded linear operator satisfying an upper-(C,o0)-tree esti-
mate. Then T factors through a subspace of cg.

To prove the theorem, we need the following lemma, which is a corollary
of Theorem 3.14.

LEMMA 3.19. Let X be a Banach space with a shrinking F.D.D. (E;) and
let T: X —Y be a bounded linear operator satisfying an upper-(C, oo)-tree
estimate. Then T factors through a subspace of cg.

Proof. By Theorem 3.14, we know that T factors through () F;)., for
some blocking (F;) of (E;). Since (> F;)., embeds into ¢, T factors through
a subspace of ¢y. =

Proof of Theorem 38.18. For convenience, without loss of generality, we
assume Y is . Since X* is separable, by Theorem IV.4 in [6] (or see Theo-
rem 1.g.2 in [10]), there is a closed subspace E of X so that both F and X/FE
have a shrinking F.D.D. Let Tr be the restriction of the operator T" to E. By
Lemma 3.19, Tg factors through a subspace of ¢y. We write Ty = Bo A where
A is an operator from E into ¢y and B is an operator from A[E] into ls.
Since X is separable and A[E] is in ¢g, we can extend A to be defined on X.
Let A be the extension. Since Y = lso, we can also extend B to be defined
on ¢o. Let B be the extension. So we get a new operator T = B o A which
factors through a subspace of ¢ (actually through c¢p).

Now we consider the operator T'— T'. It is identically zero on E and also
satisfies an upper-(C1,00)-tree estimate. So it naturally induces an operator S
from X/F into Iy, (S(z + E) = (T — T)(z)). If we can prove that S satisfies
an upper-(C, co)-tree estimate, then by Lemma 3.19, S factors through a
subspace of ¢g. Hence so does T — T. Since T factors through a subspace
of ¢y, we conclude that so does T = (T —T) +T.

So it is enough to show S satisfies an upper-(C, co)-tree estimate. Let
us first prove that for any normalized weakly null sequence (z;) in X/E,
there is a subsequence (zx,) whose pull back (under the canonical quotient
Q: X — X/E) (z;) in X is also weakly null and max{||z;||} < 2. Pick a
sequence (x;) in X such that Q(z;) = z; and max{||z;||} < 1+ e. Since 1
does not embed into X, by Rosenthal’s [ theorem (see [15]) and passing to a
subsequence, we can assume (z;) is weakly Cauchy. Since (z;) is weakly null,

we can find convex combinations y; = Z‘;Y;Ni—1+1 ajzj such that [Jy;|| < 1/2.
Replacing x; by x; - E;‘V:iNi_ﬁl ajxj, we see that (z;) is weakly null and
|Q(x;) — zi|]| < 1/2'. By replacing z; by an element in the ball centered at
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x; with radius 1/2¢, we get a weakly null sequence (x;) such that Q(x;) = z;
and ||z;]| < 2.

For any normalized weakly null tree in X/F, using the result above, it is
easy to prove by induction that there is a subtree whose pull back in X is also
a weakly null tree and the norms of each element of the tree are uniformly
bounded. Since T — T satisfies an upper-(C1, 0o)-tree estimate, we conclude
that S satisfies an upper-(C, 0o)-tree estimate. We are done. =

When T is the identity map, in view of Lemma 3.21, we have the following
corollary.

COROLLARY 3.20 (Theorem 3.2 in [9]). Let X be a separable Banach
space which does not contain l1. If for every normalized weakly null tree
in X, there is a branch (x;) so that

n
sup{” Z:}:Z
n i=1

X}SC’

then X embeds into cg.

LEMMA 3.21. Let 1 < p < oco. When X is a Banach space with an
upper-(C, p)-tree estimate, then the condition “X is separable and ly does
not embed into X” and the condition “X™ is separable” are equivalent.

Proof of Lemma 3.21.

FAcT 1 (see Theorem 4.2 in [1]). If 1 does not embed into X, then
n(X) = 1;(X).

Here 1(X) is the Szlenk index (see Definition 4.1 in [1]) and I} (X) is
the I -weakly null index (see Definition 3.6 in [1]).

FACT 2. The upper-(C, p)-tree estimate implies that I} (X) = w.

FACT 3 (see (ix) of Theorem 3.14 of [1]|). If l1 does not embed into X,
then n(X) < wy is equivalent to X* being separable.

From the above facts, we know that if /1 does not embed into X and X
satisfies an upper-(C, p)-tree estimate for some p > 1, then X* is separable.
The other direction is trivial. So we are done. u

Acknowledgements. The author thanks the referees for thorough read-
ing of this paper, which led to many useful suggestions for formal improve-
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