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On operators whi
h fa
tor through lp or c0by
Bentuo Zheng (College Station, TX)Abstra
t. Let 1 < p < ∞. Let X be a subspa
e of a spa
e Z with a shrinking F.D.D.

(En) whi
h satis�es a blo
k lower-p estimate. Then any bounded linear operator T from Xwhi
h satis�es an upper-(C, p)-tree estimate fa
tors through a subspa
e of (∑ Fn)lp , where
(Fn) is a blo
king of (En). In parti
ular, we prove that an operator from Lp (2 < p < ∞)satis�es an upper-(C, p)-tree estimate if and only if it fa
tors through lp. This gives ananswer to a question of W. B. Johnson. We also prove that if X is a Bana
h spa
e with
X∗ separable and T is an operator from X whi
h satis�es an upper-(C,∞)-estimate, then
T fa
tors through a subspa
e of c0.1. Introdu
tion. In [3℄, W. B. Johnson answered the following questionabout the relation between the stru
ture of Lp and lp.Question 1.1. Give a Bana
h spa
e 
ondition so that if X is a subspa
eof Lp (1 < p < 2) whi
h satis�es the 
ondition, then X embeds isomorphi-
ally into lp.The equivalent dual question would be:Question 1.2. Give a Bana
h spa
e 
ondition so that if X is a quotientof Lp whi
h satis�es the 
ondition, then X is isomorphi
 to a quotient of lp.For p > 2, W. B. Johnson and E. Odell had already proved in [5℄ thatif a subspa
e X of Lp has no subspa
e isomorphi
 to l2, then X embedsinto lp. For p < 2, W. B. Johnson proved that if there exists a K > 0 su
hthat every normalized weakly null sequen
e in X has a subsequen
e whi
his K-equivalent to the unit ve
tor basis of lp, then X is isomorphi
 to asubspa
e of lp. Further W. B. Johnson also gave a 
omplete answer to thedual question in [3℄; namely, a quotient of Lp (2 < p < ∞) whi
h is oftype p-Bana
h�Saks is a quotient of lp. Re
all that an operator T from a2000 Mathemati
s Subje
t Classi�
ation: Primary 46B03; Se
ondary 46B20.Key words and phrases: isomorphi
, weakly null tree, �nite-dimensional de
omposi-tion, blo
kings.Supported in part by NSF/DMS 02-00690 and 05-03688. This paper forms part of theauthor's do
toral dissertation whi
h is being prepared at Texas A&M University underthe dire
tion of W. B. Johnson. [177℄



178 B. ZhengBana
h spa
e X is of type p-Bana
h�Saks (where 1 < p < ∞) if there existsa 
onstant λ su
h that every normalized weakly null sequen
e in X has asubsequen
e (xn) whi
h satis�es for n = 1, 2, . . . ,
∥

∥

∥

n
∑

i=1

Txi

∥

∥

∥
≤ λn1/p.

X is said to be of type p-Bana
h�Saks when the identity operator on X is.From the results above, a more general question naturally arises.Question 1.3. Give a ne
essary and su�
ient 
ondition so that if anoperator T from Lp to any Bana
h spa
e Y satis�es the 
ondition, then Tfa
tors through lp.It was proved in [2℄ that a bounded linear operator T into Lp (2 < p <
∞) fa
tors through lp if and only if T is 
ompa
t when 
onsidered as anoperator into L2. This a
tually answers Question 1.3 for 1 < p < 2. In[2℄, W. B. Johnson 
onje
tured that an operator T from Lp (2 < p < ∞)fa
tors through lp if and only if T is of type p-Bana
h�Saks. As mentionedabove, this 
onje
ture was veri�ed in [3℄ in the 
ase when T has 
losed range.Later, W. B. Johnson dis
overed in [4℄ a 
ounterexample in the general 
ase,whi
h led him to formulate a 
onje
ture with a stronger 
ondition, namelyan operator T from Lp (2 < p < ∞) fa
tors through lp if and only if Tsatis�es the following 
ondition (when X is Lp).Condition 1.4. T is an operator from X so that for every normalizedweakly null sequen
e (xn) ⊂ X, there is a subsequen
e (xnk

) su
h that
∥

∥

∥
T

(

∑

akxnk

)∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R.In Se
tion 2, we use a spa
e 
onstru
ted by E. Odell and Th. S
hlump-re
ht in [12℄ to show that for an operator T from Lp (2 < p < ∞), Condi-tion 1.4 does not imply that T fa
tors through lp. E. Odell and Th. S
hlump-re
ht used this spa
e to disprove W. B. Johnson's 
onje
ture that Condi-tion 1.5 below and re�exivity of X imply that X embeds into an lp sumof �nite-dimensional spa
es. They also formulated Condition 1.6 below andproved that Condition 1.6 and re�exivity of X do imply that X embeds intoan lp sum of �nite-dimensional spa
es. The above-mentioned 
onditions arede�ned as follows:Condition 1.5. For all ε > 0, every normalized weakly null sequen
e in
X admits a subsequen
e whi
h is (1 + ε)-equivalent to the unit ve
tor basisof lp.Condition 1.6. There is a C > 1 su
h that every normalized weaklynull tree in X admits a bran
h whi
h is C-equivalent to the unit ve
tor basisof lp.



Operators whi
h fa
tor through lp or c0 179Let [N]<ω denote all �nite subsets of the positive integers. By a normal-ized weakly null tree, we mean a family (xA)A∈[N]<ω ⊂ SX with the propertythat every sequen
e (xA∪{n})n∈N is weakly null. Let A = {n1, . . . , nm} with
n1 < · · · < nm and B = {j1, . . . , jr} with j1 < · · · < jr. Then we say A is aninitial segment of B if m ≤ r and ni = ji when 1 ≤ i ≤ m. The tree order on
(xA)A∈[N]<ω is given by xA ≤ xB if A is an initial segment of B. A bran
h ofa tree is a maximal linearly ordered subset of the tree under the tree order.Motivated by Condition 1.6, we formulate a 
ondition stronger than Con-dition 1.4, whi
h is an operator version of Condition 1.6.Condition 1.7. For every normalized weakly null tree in X, there is abran
h (xk) so that

∥

∥

∥
T

(

∑

akxk

)
∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R.This 
ondition turns out to be the right one for answering Question 1.3when X = Lp (2 < p < ∞).2. A 
ounterexample. In this se
tion, we 
onstru
t an operator Tfrom l2 into X = (
∑

Xn)p (whi
h will be de�ned below) whi
h satis�esCondition 1.4 but does not fa
tor through lp for 2 < p < ∞. Sin
e l2 isisomorphi
 to a 
omplemented subspa
e of Lp, we also get an operator from
Lp into X = (

∑

Xn)p whi
h satis�es Condition 1.4 but does not fa
torthrough lp.Let 2 < q < p < ∞ and X = (
∑

Xn)p be the spa
e de�ned in [12℄, where
Xn is the 
ompletion of c00([N]≤n) under the norm
‖x‖n = sup

{(

m
∑

i=1

‖x|βi
‖p

q

)1/p
: (βi)

m
i=1 are disjoint segments in [N]≤n

}

.Here [N]≤n denotes all sets of natural numbers with 
ardinality less than n.By a segment in [N]≤n, we mean a sequen
e (Ai)
k
i=1 ∈ [N]≤n with

A1 = {n1, . . . , nl},

A2 = {n1, . . . , nl, nl+1}, . . . ,

Ak = {n1, . . . , nl, . . . , nl+k−1},for some n1 < · · · < nl+k−1. A bran
h in [N]≤n is a maximal segment in
[N]≤n.Remark 2.1. The node basis (ẽn

A)A∈[N]≤n given by ẽn
A(B) = δA,B forany B ∈ [N]≤n is a 1-un
onditional basis for Xn. Moreover, (ẽn

Ai
)n
i=1 is 1-equivalent to the unit ve
tor basis of lnq if (Ai)

n
i=1 is a bran
h in [N]≤n.If we write l2 = (

∑

l2)2, (en
A)A∈[N]≤n is the unit ve
tor basis of the nth

l2 and (ẽn
A)A∈[N]≤n is the unit ve
tor basis of Xn, then the operator T : l2 →
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X = (

∑

Xn)p is de�ned so that
T (en

A) = ẽn
A.Sin
e 2 < q < p we 
an linearly extend T to be an operator of norm onefrom l2 into X.Claim 1. The operator T satis�es Condition 1.4.Let (xn) be a normalized weakly null sequen
e in l2, and ε > 0. Then

(T (xn)) is a weakly null sequen
e in (
∑

Xn)p. By the proof of Example 4.2in [12℄, we 
an pi
k a subsequen
e (xnk
) su
h that for all (ak) ⊂ N,

∥

∥

∥
T

(

∑

akxnk

)∥

∥

∥
≤ 2

(

∑

‖T (akxnk
)‖p

)1/p
≤ 2

(

∑

|ak|
p
)1/p

.So we proved Claim 1. Our se
ond 
laim isClaim 2. T does not fa
tor through lp.In order to prove the 
laim, we need the following lemma whi
h is anappli
ation of a result 
on
erning blo
kings of F.D.D.'s proved in [7℄. Thisresult was reformulated as Proposition 1.g.4. in [10℄.Lemma 2.2. Let p > 2. Then any bounded linear operator A from l2 into
lp fa
tors through (

∑

En)lp in su
h a way that A = A′ ◦ J , where (En) is ablo
king of the 
anoni
al basis of l2 and J is the formal identity from l2 into
(
∑

En)lp .Proof. By Proposition 1.g.4 in [10℄, we �nd a blo
king (En) of the 
anon-i
al basis of l2 su
h that A(En) is essentially 
ontained in Fn−1 ⊕Fn, where
(Fn) is a blo
king of the 
anoni
al basis of lp. Let J be the formal identitymap from l2 into (

∑

En)lp . Sin
e p > 2, J is always bounded. Let A′ be thelinear map from (
∑

En)lp into lp su
h that A = A′ ◦ J . We 
laim that A′ isbounded. Indeed, let x =
∑

xn with xn ∈ En. Then by the 
onstru
tion of
(En) and (Fn), we have

‖A′(x)‖ ≤
∥

∥

∥
A′

(

∑

x2n

)
∥

∥

∥
+

∥

∥

∥
A′

(

∑

x2n−1

)
∥

∥

∥

≤ (‖A‖ + ε)
((

∑

‖x2n‖
p
)1/p

+
(

∑

‖x2n−1‖
p
)1/p)

≤ 2(‖A‖ + ε)
(

∑

‖xn‖
p
)1/p

.So A′ is bounded.Now we 
an prove Claim 2.Proof of Claim 2. Suppose T fa
tors through lp. Then by Lemma 2.2, Tfa
tors through (
∑

En)lp for some blo
king of the 
anoni
al basis of l2. Let
T = J1 ◦J2, where J1 is the formal identity from l2 into (

∑

En)lp and J2 is abounded linear operator from (
∑

En)lp into (
∑

Xn)lp . Sin
e T is the formal
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tor through lp or c0 181identity from l2 into (
∑

Xn)lp , we dedu
e that J2 is also a formal identity.By the 
hoi
e of (En) and the de�nition of Xn, for any k ∈ N, we 
an �nd a�nite basi
 subsequen
e (ek
An

)k
n=1 of l2 su
h that ek

An
's sit in di�erent Ern 'sand (An)k

n=1 is a bran
h of [N]≤k. As J2 is the formal identity, we have
J2(e

k
An

) = ẽk
An

, hen
e ‖J2‖ ≥ k1/q−1/p. Sin
e k is arbitrary, this shows that
J2 is not bounded. This is a 
ontradi
tion.3. Main result. Now we give a su�
ient 
ondition for an operator from
Lp (2 < p < ∞) to fa
tor through lp.Definition 3.1. Let 1 ≤ p < ∞, C > 0 and X, Y be Bana
h spa
es.Suppose T : X → Y is a bounded linear operator. We say that T satis�esan upper-(C, p)-tree estimate if for every normalized weakly null tree in X,there exists a bran
h (xi) su
h that

∥

∥

∥
T

(

∑

aixi

)∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R.When p = ∞, T satis�es an upper-(C,∞)-tree estimate if for every normal-ized weakly null tree in X, there exists a bran
h (xi) su
h that
sup

n

{∥

∥

∥
T

(

n
∑

i=1

xi

)∥

∥

∥

}

≤ C.Theorem 3.2. Let 2 < p < ∞, X be a Bana
h spa
e, and let T :
Lp → X be a bounded linear operator. Then T satis�es an upper-(C, p)-treeestimate if and only if T fa
tors through lp.As preparation for the proof, we present the following known lemmas(see [3℄).Lemma 3.3. Let 2 < p < ∞, X be a Bana
h spa
e, and let T : Lp → Xbe a bounded linear operator. Then T fa
tors through lp if and only if thereare a blo
king (Hn) of the Haar system and a bounded linear operator S :
(
∑

(Hn, ‖ · ‖p))lp → X su
h that T = S ◦ J , where J is the formal identitymap from Lp into (
∑

(Hn, ‖ · ‖p))lp.Remark 3.4. Sin
e 2 < p < ∞, the formal identity map J from Lp into
(
∑

(Hn, ‖ · ‖p))p is always bounded.Proof of Lemma 3.4. For any blo
king (Hn) of the Haar system, sin
e
Hn is �nite-dimensional and uniformly 
omplemented in Lp, it is uniformly
omplemented in lp. So (

∑

(Hn, ‖·‖p))lp is 
omplemented in lp, hen
e isomor-phi
 to lp by [14℄ (or Theorem 2.a.3 in [10℄). On the other hand, by TheoremII.1 in [3℄ any operator T from Lp into lp fa
tors through (
∑

(Hn, ‖ · ‖p))lpfor some blo
king (Hn) of the Haar system in the way that T = S ◦ J where
J is the formal identity.



182 B. ZhengLemma 3.5. Let 2 < p < ∞, X be a Bana
h spa
e, T : Lp → X be abounded linear operator and (Hn) be a blo
king of the Haar system. Thenthere is a bounded linear operator S : (
∑

(Hn, ‖ · ‖p))lp → X su
h that
T = S ◦J , where J is the formal identity map from Lp into (

∑

(Hn, ‖·‖p))lp ,if and only if there exists C > 0 su
h that(3.1) ∥

∥

∥
T

(

∑

akxk

)
∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R, xk ∈ SHk
.Proof. Inequality (3.1) is equivalent to saying that the map Q : J(Lp) →

X whi
h satis�es T = Q◦J is bounded. Considering Remark 2.1 and noti
ingthat J(Lp) is obviously dense in (
∑

(Hn, ‖ · ‖p))lp , we are done.Definition 3.6. (xn) is said to be a blo
k sequen
e with respe
t to (En)if there exists a sequen
e of integers 0 = m1 < m2 < · · · su
h that xn ∈
⊕mn+1−1

j=mn
Ej for all n ∈ N. (xn) is said to be a skipped-blo
k sequen
e withrespe
t to (En) if there exists a sequen
e of integers 0 = m1 < m2 < · · · su
hthat mn + 1 < mn+1 and xn ∈

⊕mn+1−1
j=mn+1 Ej for all n ∈ N. Two skipped-blo
k sequen
es (xn) and (yn) are said to be intrusive if x1, y1, x2, y2, . . . or

y1, x1, y2, x2, . . . is a blo
k sequen
e.Definition 3.7. A property P (C) with some parameter C > 0 for nor-malized blo
k sequen
es in X is said to be 
losed under 
ombination if thereis a C ′ > 0 depending only on C su
h that for any two intrusive normalizedblo
k sequen
es (xn)n∈N and (yn)n∈N satisfying P (C), the natural 
ombi-nation sequen
e x1, y1, x2, y2, . . . or y1, x1, y2, x2, . . . satis�es P (C ′). For any
C > 0 and ε > 0, if there exists (δi) ց 0 so that for any normalized se-quen
e (xn) that has property P (C) with xn ∈ Fn for some blo
king (Fn) of
(En), we have that any sequen
e (yn) with yn ∈ Fn and ‖yn − xn‖ < δn hasproperty P (C + ε), then we say P is stable under small perturbations.Definition 3.8. Let C > 0. A normalized blo
k sequen
e (xn) is saidto be C-good if (xn) has property P (C). Otherwise we say that it is C-bad.A bran
h of a normalized blo
k tree is C-good if it is a C-good sequen
e.A blo
king (Fn) of (En) is C-good if all normalized sequen
es (xn) with
xn ∈ Fn have property P (C). A blo
king (Fn) of (En) is C-semigood if allnormalized sequen
es (xn) with xn ∈ F2n have property P (C).Remark 3.9. If for every blo
king (Fn) of (En), (Fn) is C-semigood,then any skipped-blo
k sequen
e (xn) with respe
t to (En) is C-good. Onthe other hand, if any skipped-blo
k sequen
e with respe
t to (En) is C-good,then all blo
kings of (En) are C-semigood.Definition 3.10. We say x sits in a blo
k of (En) if x =

∑k2

i=k1
xiwith xi ∈ Ei. Let y =

∑m2

i=m1
yi with yi ∈ Ei. If k2 < m1, then we say ysits farther than x. A normalized blo
k tree with respe
t to (En) is a family

(xA)A∈[N]<ω ⊂ SX su
h that
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h fa
tor through lp or c0 183(a) For any A ∈ [N]<ω, xA sits in some blo
k of (En).(b) If A is a proper initial segment of B, then xB sits farther than xA.(
) If maxA < n < m, then xA∪{m} sits farther than xA∪{n}.Proposition 3.11. Let X be a Bana
h spa
e with an F.D.D. (En). Con-sider the three 
onditions:(i) There exists a C > 0 su
h that every blo
king of (En) has a furtherblo
king (Fn) so that all further blo
kings of (Fn) are C-good.(ii) There exists a C > 0 su
h that every blo
king of (En) has a furtherblo
king (Fn) so that all further blo
kings of (Fn) are C-semigood.(iii) There exists a C > 0 su
h that every normalized blo
k tree withrespe
t to (En) in X has a C-good bran
h.Then:(a) (i) implies (ii) and (ii) implies (iii).(b) If property P is 
losed under 
ombination, then (ii) implies (i).(
) If property P is stable under small perturbations and makes D′
C 
losedunder the pointwise topology on [N]ω, for all C > 0, then (iii) implies(ii).Here D′

C is de�ned as
D′

C ={M ∈ [N]ω : the blo
king of (En) 
orresponding to M is C-semigood}.
[N]ω denotes the set of all in�nite subsets of positive integers. For a blo
king
(Fn) of (En), given by Fn =

∑ni

i=ni−1+1 Ei and n0 = 0, we say that (Fn)
orresponds to the set {n1, n2, . . .}.Proof. Sin
e (a) and (b) trivially follow from the de�nitions above, weomit the proof.It remains to prove that (iii) implies (ii) when D′
C is 
losed under point-wise topology on [N]ω. This is essentially 
ontained in Theorem 3.3 of [12℄.For the 
onvenien
e of the reader, we write down a dire
t argument whi
hin
ludes only the part of the proof of Theorem 3.3 in [12℄ that is needed. Forany C > 0, set

DC = {blo
kings of (En) whi
h are C-semigood}.So we 
an identify DC with
D′

C = {M ∈ [N]ω : the blo
king 
orresponding to M is C-semigood}.Let (Gn) be any blo
king of (En). Sin
e property P makes D′
C 
losed underthe pointwise topology on [N]ω, by the in�nite version of Ramsey's theorem(
f. [11℄), there are two 
ases:

Case 1: there is a blo
king (Fn) of (Gn) all further blo
kings of whi
h are
C-semigood.
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Case 2: there is a blo
king (Fn) of (Gn) no further blo
king of whi
h is

C-semigood.In the �rst 
ase, we are done. In the se
ond 
ase, we will 
onstru
t a blo
ktree whi
h results in a 
ontradi
tion. Let N ′ be the in�nite subset of positiveintegers 
orresponding to the blo
king (Fn) no further blo
king of whi
his C-semigood. Then for ea
h M̃ ∈ [N ′]ω (whi
h 
orresponds to a furtherblo
king of (Fn)), we 
an pi
k a C-bad sequen
e (xM̃
i ) whi
h is a skipped-blo
k sequen
e relative to the blo
king 
orresponding to M̃ . Letting N ′ =

{n1, n2, n3, . . .}, we know that for any M̃ ∈ [{n3, n4, . . .}]
ω,

x
{n1,n2}∪M̃
1 ∈ S[Ei]|

n2
i=n1+1

.By Ramsey's theorem and the 
ompa
tness of S[Ei]|
n2
i=1

, we 
an �nd an x{1} ∈

S[Ei]|
n2
i=n1+1

and an M̃1 ⊂ {n3, n4, . . .} su
h that for all M̃ ∈ [M̃1]ω, we have
‖x{1} − x

{n1,n2}∪M̃
1 ‖ < δ1.Repeating the pro
edure again, we 
an �nd an x{2} ∈ S

[Ei]|
n′
2

i=1+n′
1

and an
M̃2 ∈ [M̃1]ω so that for all M̃ ∈ [M̃2]ω, we have

‖x{2} − x
{n′

1
,n′

2
}∪M̃

1 ‖ < δ1,where n′
1, n

′
2 are the �rst two elements of M̃2. Continuing this pro
edure,we get xi for all i ∈ N. For the se
ond level of the tree, by using the samemethod as above, we 
an �nd for x1 an x1,2 ∈ S

[Ei]|
n′
2

i=1+n′
1

and an M̃1,2 ∈

[M̃1 − {n′
1, n

′
2}]

ω su
h that for all M̃ ∈ [M̃1,2]ω, we have
‖x{1,2} − x

{n1,n2,n′
1
,n′

2
}∪M̃

2 ‖ < δ2.Let ñ2
1, ñ

2
2 be the smallest two elements of M̃1,2; then we 
an �nd our desired

x1,3 and so on. Sin
e P is stable under small perturbations, by 
ontinuingthis pro
ess, we get a normalized blo
k tree with respe
t to (Fn) no bran
h ofwhi
h has property P (C + ε). Sin
e C is arbitrary, we get a 
ontradi
tion.Now we 
an prove our main result.Proof of Theorem 3.2. Given an operator T , we say that a normalizedblo
k sequen
e (xn) with respe
t to the 
anoni
al Haar system (hn) hasproperty P (C) if
∥

∥

∥
T

(

∑

aixi

)∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R.Let (xn) and (yn) be two intrusive normalized skipped-blo
k sequen
es with



Operators whi
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tor through lp or c0 185respe
t to (hn). If both of them have property P (C), then
∥

∥

∥
T

(

∑

(aixi + biyi)
)
∥

∥

∥
≤

∥

∥

∥
T

(

∑

aixi

)
∥

∥

∥
+

∥

∥

∥
T

(

∑

biyi

)
∥

∥

∥

≤ C
((

∑

|ai|
p
)1/p

+
(

∑

|bi|
p
)1/p)

≤ 2C
(

∑

(|ai|
p + |bi|

p)
)1/p

.So P is 
losed under 
ombination. Let (Hn) be a blo
king of (hn), and (xn)be a normalized blo
k sequen
e with xn ∈ Hn whi
h has property P (C).Let (yn) be another normalized blo
k sequen
e with yn ∈ Hn su
h that
‖xn − yn‖ < δn where δn < ε/2n‖T‖. Then

∥

∥

∥
T

(

∑

aiyi

)
∥

∥

∥
≤

∥

∥

∥
T

(

∑

aixi

)
∥

∥

∥
+

∥

∥

∥
T

(

∑

ai(xi − yi)
)
∥

∥

∥

≤ (C + ε)
(

∑

|ai|
p
)1/p

.So P is stable under small perturbations. Also noti
e that the set
Ω(C) =

{

(xk) ∈ Sω
Lp

:
∥

∥

∥
T

(

∑

akxk

)∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p}

, ∀(ak) ⊂ R,is 
losed under pointwise limits where Sω
Lp

denotes the set of all in�nitesequen
es in the unit sphere of Lp. Then the set
D′

C = {M ∈ [N]ω : the blo
king 
orresponding to M is C-semigood}is 
losed under pointwise limits in [N]ω. For Lp, sin
e every blo
k tree is aweakly null tree, by hypothesis every blo
k tree has a good bran
h. So byProposition 3.11 and our argument above, we know that there is a blo
king
(Hn) of (hn) and D < ∞ su
h that all blo
k sequen
es of (Hn)n>1 are in
Ω(D). Then it is easy to see that there is a C ′ > 0 so that all blo
k sequen
esof (Hn) are in Ω(C ′). Combining Lemmas 3.3 and 3.5, we 
on
lude that Tfa
tors through lp.Remark 3.12. If T fa
tors through lp, say T = T1 ◦ T2 where T2 is anoperator from Lp into lp and T1 is an operator from lp into X, then for anynormalized weakly null tree (xA) in Lp, (T2(xA)) is a weakly null tree in lp.Hen
e there is a bran
h of (xA) whi
h satis�es an upper-(2, p)-tree estimate.So the upper-(C, p)-tree estimate is also a ne
essary 
ondition.A
tually we have the following generalization of Theorem 3.2.Definition 3.13. Let 1 ≤ p ≤ ∞. Let X be a Bana
h spa
e with anF.D.D. (En). We say (En) satis�es a blo
k lower-p estimate if there exists a
C > 0 su
h that for any blo
k basis (xn) with respe
t to (En),

∥

∥

∥

∑

xn

∥

∥

∥
≥ C

(

∑

‖xn‖
p
)1/p

.



186 B. ZhengTheorem 3.14. Let 1 < p ≤ ∞ and X be a Bana
h spa
e with a shrink-ing F.D.D. (En) whi
h satis�es a blo
k lower-p estimate. Let T : X → Ybe a bounded linear operator whi
h satis�es an upper-(C, p)-tree estimate. If
p < ∞, then T fa
tors through (

∑

Fn)lp and if p = ∞, T fa
tors through
(
∑

Fn)c0 for some blo
king (Fn) of (En).Proof. Let p < ∞. Let (Fn) be any blo
king of (En) and JF : (
∑

Fn)X →
(
∑

Fn)lp be the formal identity map. Sin
e (En) satis�es a blo
k lower-pestimate, JF is always bounded. If the map SF : JF (X) → Y with T =
SF ◦ JF |X is bounded, i.e. there exists a C > 0 su
h that for all (xk) with
xk ∈ Fk and j ∈ N,

∥

∥

∥
T

(

j
∑

k=1

akxk

)
∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R,then T fa
tors through the subspa
e JF [X] of (
∑

Fn)lp . Sin
e JF [X] isdense in (
∑

Fn)lp , the operator SF 
an be extended to the whole spa
e
(
∑

Fn)lp . Hen
e T fa
tors through (
∑

Fn)lp . For an operator T , we say thata normalized blo
k sequen
e (xn) with respe
t to (En) has property P (C) iffor all j ∈ N,
∥

∥

∥
T

(

j
∑

i=1

aixi

)∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R.As in the proof of Theorem 3.2, we 
an 
he
k that property P is 
losed under
ombination and stable under small perturbation. Sin
e (En) is shrinking,every blo
k tree is weakly null, hen
e by hypothesis every blo
k tree has agood bran
h. Now by applying Proposition 3.11, we 
on
lude that there isa blo
king (Fn) of (En) so that the operator SF de�ned above is bounded.The proof above works as well when p = ∞.A further question is what if X is only a subspa
e of a spa
e with ashrinking F.D.D. In the 
ase when p is �nite, we 
an prove the followinggeneralization of Theorem 3.2 by using the method of the proof of Theorem4.1 in [12℄.Theorem 3.15. Let 1 < p < ∞ and X be a subspa
e of a spa
e Zwith a shrinking F.D.D. (En) whi
h satis�es a blo
k lower-p estimate. Let
T : X → Y be a bounded linear operator whi
h satis�es an upper-(C, p)-treeestimate. Then T fa
tors through a subspa
e of (

∑

Fn)lp , where (Fn) is ablo
king of (En).In order to prove the above theorem, we need Lemma 3.16, whi
h is aresult of W. B. Johnson restated as Corollary 4.4 in [12℄.Lemma 3.16 (Corollary 4.4 in [12℄). Let X be a subspa
e of the re�exivespa
e Z and let (Fi) be an F.D.D. for Z. Let δi ↓ 0. There exists a blo
king
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(Gi) of (Fi) given by Gi =

⊕Ni

j=Ni−1+1 Fj for some 0 = N0 < N1 < · · ·with the following property. For all x ∈ SX there exist (xi)
∞
i=1 ⊂ X and

ti ∈ (Ni−1, Ni] for i ∈ N so that :(a) x =
∑∞

i=1 xi.(b) For i ∈ N, either ‖xi‖ < δi or ‖P⊕ti−1

j=ti−1+1
Fj

(xi) − xi‖ < δi‖xi‖.(
) For i ∈ N, ‖P⊕ti−1

j=ti−1+1
Fj

(x) − xi‖ < δi.Proof of Theorem 3.15. Let (Fn) be any blo
king of (En) and JF :
(
∑

Fn)Z → (
∑

Fn)lp be the formal identity map. Sin
e (En) satis�es ablo
k lower-p estimate, JF is always bounded. If the map SF : JF (X) → Ywith T = SF ◦ JF |X is bounded, i.e. there exists a C > 0 su
h that for all
x =

∑

akxk ∈ X with xk ∈ SFk
,

∥

∥

∥
T

(

∑

akxk

)∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

,then T fa
tors through a subspa
e of (
∑

Fn)lp . Let C > 0 and set
A =

{

(xi) ∈ Sω
X : ∀j ∈ N,

∥

∥

∥
T

(

j
∑

i=1

aixi

)
∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R

}

.Applying Proposition 2.4 in [13℄ to the set A, we get a blo
king (Fi) of
(Ei) su
h that there exists δ = (δi) so that if (xn) ⊂ SX is a δ-skippedblo
k with respe
t to (Fn) (see De�nition 2.2 in [13℄), then whenever ∑

aixi
onverges, we have ‖T (
∑

aixi)‖ ≤ 2C(
∑

|ai|
p)1/p. Be
ause the F.D.D. (Ei)is shrinking and satis�es a blo
k lower-p estimate, Z is re�exive. Now let (Gi)be the blo
king of (Fi) given by Lemma 3.16. Let x ∈ SX , x =

∑

xi =
∑

x̃iwith x̃i ∈ Gi and xi as in Lemma 3.16. Let yi = P⊕ti−1

j=ti−1+1
Fj

x; then thereexist C1, C2 su
h that
C1 max(‖yi‖, ‖yi+1‖) − δi ≤ ‖x̃i‖ ≤ C2‖yi‖ + δi.So when δi's are su�
iently small, we have

∥

∥

∥
T

(

∑

x̃i

)∥

∥

∥
=

∥

∥

∥
T

(

∑

xi

)∥

∥

∥
≤ C

(

∑

‖xi‖
p
)1/p

≤ 2C
(

∑

‖yi‖
p
)1/p

≤ C ′
(

∑

‖x̃i‖
p
)1/p

.This is exa
tly what we want.In parti
ular, when Z is Lp (2 < p < ∞), we have the 
orollary below.Corollary 3.17. Let 2 < p < ∞ and let X be a subspa
e of Lp. If
T : X → Y is a bounded linear operator whi
h satis�es an upper-(C, p)-treeestimate, then T fa
tors through a subspa
e of lp.
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ase when p = ∞, we have the following result, the proof of whi
hwas shown to me by W. B. Johnson.Theorem 3.18. Let X be a Bana
h spa
e with X∗ separable. Let T :
X → Y be a bounded linear operator satisfying an upper-(C,∞)-tree esti-mate. Then T fa
tors through a subspa
e of c0.To prove the theorem, we need the following lemma, whi
h is a 
orollaryof Theorem 3.14.Lemma 3.19. Let X be a Bana
h spa
e with a shrinking F.D.D. (Ei) andlet T : X → Y be a bounded linear operator satisfying an upper-(C,∞)-treeestimate. Then T fa
tors through a subspa
e of c0.Proof. By Theorem 3.14, we know that T fa
tors through (

∑

Fi)c0 forsome blo
king (Fi) of (Ei). Sin
e (
∑

Fi)c0 embeds into c0, T fa
tors througha subspa
e of c0.Proof of Theorem 3.18. For 
onvenien
e, without loss of generality, weassume Y is l∞. Sin
e X∗ is separable, by Theorem IV.4 in [6℄ (or see Theo-rem 1.g.2 in [10℄), there is a 
losed subspa
e E of X so that both E and X/Ehave a shrinking F.D.D. Let TE be the restri
tion of the operator T to E. ByLemma 3.19, TE fa
tors through a subspa
e of c0. We write TE = B◦A where
A is an operator from E into c0 and B is an operator from A[E] into l∞.Sin
e X is separable and A[E] is in c0, we 
an extend A to be de�ned on X.Let Ã be the extension. Sin
e Y = l∞, we 
an also extend B to be de�nedon c0. Let B̃ be the extension. So we get a new operator T̃ = B̃ ◦ Ã whi
hfa
tors through a subspa
e of c0 (a
tually through c0).Now we 
onsider the operator T − T̃ . It is identi
ally zero on E and alsosatis�es an upper-(C1,∞)-tree estimate. So it naturally indu
es an operator Sfrom X/E into l∞ (S(x + E) = (T − T̃ )(x)). If we 
an prove that S satis�esan upper-(C,∞)-tree estimate, then by Lemma 3.19, S fa
tors through asubspa
e of c0. Hen
e so does T − T̃ . Sin
e T̃ fa
tors through a subspa
eof c0, we 
on
lude that so does T = (T − T̃ ) + T̃ .So it is enough to show S satis�es an upper-(C,∞)-tree estimate. Letus �rst prove that for any normalized weakly null sequen
e (zi) in X/E,there is a subsequen
e (zki

) whose pull ba
k (under the 
anoni
al quotient
Q : X → X/E) (xi) in X is also weakly null and max{‖xi‖} < 2. Pi
k asequen
e (xi) in X su
h that Q(xi) = zi and max{‖xi‖} < 1 + ε. Sin
e l1does not embed into X, by Rosenthal's l1 theorem (see [15℄) and passing to asubsequen
e, we 
an assume (xi) is weakly Cau
hy. Sin
e (zi) is weakly null,we 
an �nd 
onvex 
ombinations yi =

∑Ni

j=Ni−1+1 αjzj su
h that ‖yi‖ < 1/2i.Repla
ing xi by xi −
∑Ni

j=Ni−1+1 αjxj, we see that (xi) is weakly null and
‖Q(xi) − zi‖ < 1/2i. By repla
ing xi by an element in the ball 
entered at
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xi with radius 1/2i, we get a weakly null sequen
e (xi) su
h that Q(xi) = ziand ‖xi‖ < 2.For any normalized weakly null tree in X/E, using the result above, it iseasy to prove by indu
tion that there is a subtree whose pull ba
k in X is alsoa weakly null tree and the norms of ea
h element of the tree are uniformlybounded. Sin
e T − T̃ satis�es an upper-(C1,∞)-tree estimate, we 
on
ludethat S satis�es an upper-(C,∞)-tree estimate. We are done.When T is the identity map, in view of Lemma 3.21, we have the following
orollary.Corollary 3.20 (Theorem 3.2 in [9℄). Let X be a separable Bana
hspa
e whi
h does not 
ontain l1. If for every normalized weakly null treein X, there is a bran
h (xi) so that

sup
n

{∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

X

}

≤ C,then X embeds into c0.Lemma 3.21. Let 1 < p ≤ ∞. When X is a Bana
h spa
e with anupper-(C, p)-tree estimate, then the 
ondition �X is separable and l1 doesnot embed into X� and the 
ondition �X∗ is separable� are equivalent.Proof of Lemma 3.21.Fa
t 1 (see Theorem 4.2 in [1℄). If l1 does not embed into X, then
η(X) = I+

w (X).Here η(X) is the Szlenk index (see De�nition 4.1 in [1℄) and I+
w (X) isthe l+1 -weakly null index (see De�nition 3.6 in [1℄).Fa
t 2. The upper-(C, p)-tree estimate implies that I+

w (X) = ω.Fa
t 3 (see (ix) of Theorem 3.14 of [1℄). If l1 does not embed into X,then η(X) < ω1 is equivalent to X∗ being separable.From the above fa
ts, we know that if l1 does not embed into X and Xsatis�es an upper-(C, p)-tree estimate for some p > 1, then X∗ is separable.The other dire
tion is trivial. So we are done.A
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hni
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