A property of ergodic flows

by

MARIA JOIȚA and RADU-B. MUNTEANU (București)

Abstract. We introduce a property of ergodic flows, called Property B. We prove that an ergodic hyperfinite equivalence relation of type III_0 whose associated flow has this property is not of product type. A consequence is that a properly ergodic flow with Property B is not approximately transitive. We use Property B to construct a non-AT flow which—up to conjugacy—is built under a function with the dyadic odometer as base automorphism.

1. Introduction. A remarkable result of Krieger [9] establishes a complete correspondence between orbit equivalence classes of ergodic hyperfinite equivalence relations of type III₀, conjugacy classes of properly ergodic flows and isomorphism classes of approximately finite-dimensional factors of type III₀. Product type equivalence relations are hyperfinite equivalence relations, which, up to orbit equivalence, are generated by product type odometers. In order to show that there exist ergodic non-singular automorphisms not orbit equivalent to any product type odometer, Krieger [7] introduced a property of non-singular automorphisms, called Property A. He proved that any product type odometer has this property [8], and he also constructed an ergodic non-singular automorphism that does not have this property, and therefore is not of product type. It was shown in [11] that there exist non-singular automorphisms which have Property A but are not of product type.

To characterize the ITPFI factors among all approximately finite-dimensional factors, Connes and Woods [1] introduced a property of ergodic actions, called approximate transitivity, abbreviated AT. They showed that an approximately finite-dimensional factor of type III₀ is an ITPFI factor if and only if its flow of weights is AT. Equivalently, their result says that an ergodic hyperfinite equivalence relation \mathcal{R} of type III₀ is of product type if and only if the associated flow of \mathcal{R} is AT.

²⁰¹⁰ Mathematics Subject Classification: Primary 37A20; Secondary 37A35, 37A40, 46L10.

Key words and phrases: ergodic flows, ergodic equivalence relations, Property A, Property B, approximate transitivity.

In this paper we introduce a property of ergodic flows, called Property B. We show that no properly ergodic flow with this property is AT and we construct a flow which has this property. The non-AT flow corresponding to the non-ITPFI factor constructed in [4] does not have Property B, and so the property of a flow to be non-AT is not equivalent to Property B.

The paper is organized as follows. In Section 2, we recall some notation and definitions. In Section 3 we define Property B, we show that this property is invariant under conjugacy of flows and we characterize this property for a flow built under a function. In Section 4 we prove that a hyperfinite ergodic equivalence relation \mathcal{R} of type III₀ whose associated flow has Property B is not of product type and we show that a properly ergodic flow which has Property B is not AT. In Section 5, we show that there exists a flow with Property B. This flow is built under a function with the dyadic odometer as base automorphism.

2. Preliminaries. Throughout this paper, (X, \mathfrak{B}, μ) will be a standard σ -finite measure space. A measurable flow on (X, \mathfrak{B}, μ) is a one-parameter group $\{F_t\}_{t\in\mathbb{R}}$ of non-singular automorphisms of (X, \mathfrak{B}, μ) such that the mapping $X \times \mathbb{R} \ni (x, t) \mapsto F_t(x) \in X$ is measurable. Two flows $\{F_t\}_{t\in\mathbb{R}}$ and $\{F'_t\}_{t\in\mathbb{R}}$ on (X, \mathfrak{B}, μ) and $(X', \mathfrak{B}', \mu')$ respectively are conjugate if there exists an isomorphism $T : (X, \mathfrak{B}, \mu) \to (X', \mathfrak{B}', \mu')$ such that $F'_t(T(x)) = T(F_t(x))$ for all $t \in \mathbb{R}$ and μ -almost all $x \in X$. We say that $\{F_t\}_{t\in\mathbb{R}}$ is ergodic if every F_t -invariant measurable set is either null or conull.

Let \mathcal{R} be an equivalence relation on (X, \mathfrak{B}, μ) . We say that \mathcal{R} is a *count-able measured equivalence relation* if the equivalence classes $\mathcal{R}(x), x \in X$, are countable, \mathcal{R} is a measurable subset of $X \times X$, and the saturation of any set of measure zero has measure zero. \mathcal{R} is called *ergodic* if every invariant set is either null or conull. Recall that if ν_l and ν_r are the left and the right counting measures on \mathcal{R} then $\nu_l \sim \nu_r$ and $\delta(x, y) = \frac{d\nu_l}{d\nu_r}(x, y)$ is the Radon–Nikodym cocycle of μ with respect to \mathcal{R} . We say that the measure μ is *lacunary* if there exist $\varepsilon > 0$ such that $\delta(x, y) = 0$ or $|\delta(x, y)| > \varepsilon$, for all $(x, y) \in \mathcal{R}$. The *full group* $[\mathcal{R}]$ of \mathcal{R} is the group of all non-singular automorphisms V of (X, \mathfrak{B}, μ) with $(x, Vx) \in \mathcal{R}$ for μ -a.e. $x \in X$.

A countable measured equivalence relation \mathcal{R} is called *finite* if $\mathcal{R}(x)$ is finite for almost all $x \in X$. We say that \mathcal{R} is *hyperfinite* if there are finite relations \mathcal{R}_n with $\mathcal{R}_n \subseteq \mathcal{R}_{n+1}$ and $\bigcup \mathcal{R}_n = \mathcal{R}$, up to a set of measure zero. We recall that \mathcal{R} is hyperfinite if and only if there exists a non-singular automorphism T on (X, \mathcal{B}, μ) such that, up to a set of measure zero, \mathcal{R} is equal to the equivalence relation $\mathcal{R}_T = \{(x, T^n x) : x \in X, n \in \mathbb{Z}\}$ generated by T, that is, $\mathcal{R}(x) = \{T^n x : n \in \mathbb{Z}\}$ for μ -a.e. $x \in X$.

Two countable measured equivalence relations \mathcal{R} and \mathcal{R}' on (X, \mathfrak{B}, μ) and $(X', \mathfrak{B}', \mu')$ respectively are called *orbit equivalent* if there exists an isomorphism $S : (X, \mathfrak{B}, \mu) \to (X', \mathfrak{B}', \mu')$ such that $S(\mathcal{R}(x)) = \mathcal{R}'(Sx)$ for μ -a.e. $x \in X$.

Let $(k_n)_{n\geq 1}$ be a sequence of positive integers, with $k_n \geq 2$. Consider the infinite product probability space $(X, \mu) = \prod_{n=1}^{\infty} (X_n, \mu_n)$, where $X_n = \{0, 1, \ldots, k_n - 1\}$ and each μ_n is a probability measure on X_n such that $\mu_n(x) > 0$ for all $x \in X_n$. We recall that the *tail equivalence relation* \mathcal{T} on (X, μ) is defined for $x = (x_n)_{n>1}$ and $y = (y_n)_{n>1}$ by

 $(x, y) \in \mathcal{T}$ if and only if there exists $n \ge 1$ such that $x_i = y_i$ for all i > n.

It can be easily observed that, up to a set of measure zero, \mathcal{T} is generated by the odometer defined on (X, μ) . A countable measured equivalence relation is said to be *of product type* if it is orbit equivalent to the tail equivalence relation on an infinite product probability space as above, or equivalently, if it is orbit equivalent to the equivalence relation generated by a product type odometer.

An ergodic equivalence relation \mathcal{R} is of type III if there is no σ -finite \mathcal{R} -invariant measure ν equivalent to μ . The type III equivalence relations are further classified into subtypes III_{λ}, where $0 \leq \lambda \leq 1$. Up to orbit equivalence, for $\lambda \neq 0$, there is only one hyperfinite equivalence of type III_{λ}, and it is of product type.

The orbit equivalence classes of ergodic hyperfinite equivalence relations of type III₀ are completely classified by the conjugacy class of their associated flow. For more details we refer the reader to [3], [5] and [6].

In order to show that there exist ergodic non-singular automorphisms not orbit equivalent to any product odometer, Krieger introduced a property of non-singular automorphisms, called Property A. This property can be defined for equivalence relations (see [10]) as follows. Suppose that \mathcal{R} is a hyperfinite equivalence relation on (X, \mathfrak{B}, μ) . Let ν be a σ -finite measure on X, equivalent to μ , and δ_{ν} the corresponding Radon–Nikodym cocycle. For $x \in A$, define

$$\Lambda_{\nu,A,\mathcal{R}}(x) = \{ \log \delta_{\nu}(y,x) : (x,y) \in \mathcal{R} \text{ and } y \in A \} \\ = \left\{ \log \frac{d\nu \circ \phi}{d\nu}(x) : \phi \in [\mathcal{R}], \ (x,\phi(x)) \in \mathcal{R} \text{ and } \phi(x) \in A \right\}.$$

For a σ -finite measure $\nu \sim \mu$, $A \in \mathcal{B}$ of positive measure and $s, \zeta > 0$, set

$$K_{\nu,\mathcal{R}}(A,s,\zeta) = \{ x \in A : (e^{s-\zeta}, e^{s+\zeta}) \cap \Lambda_{\nu,A,\mathcal{R}}(x) \neq \emptyset \}$$
$$\cup \{ x \in A : (-e^{s+\zeta}, -e^{s-\zeta}) \cap \Lambda_{\nu,A,\mathcal{R}}(x) \neq \emptyset \}.$$

DEFINITION 2.1. Let \mathcal{R} be a hyperfinite equivalence relation on (X, \mathfrak{B}, μ) . Then \mathcal{R} has *Property* A if there exists a σ -finite measure $\nu \sim \mu$ and $\eta, \zeta > 0$ such that every set $A \in \mathfrak{B}$ of positive measure contains a set $B \in \mathfrak{B}$ of positive measure such that

 $\limsup_{s \to \infty} \nu(K_{\nu,\mathcal{R}}(B,s,\zeta)) > \eta \cdot \nu(B).$

If \mathcal{R} is a hyperfinite equivalence relation and T is a non-singular automorphism such that $\mathcal{R} = \mathcal{R}_T$ up to a null set, it can be easily observed that \mathcal{R} has Property A if and only if T has Property A (see [11]). We mention the following result (see [8] and [11]) that will be used later.

PROPOSITION 2.2. Assume that \mathcal{R} has Property A. Then there exist $\eta, \delta > 0$ such that for all $\lambda \sim \mu$ and all $\epsilon > 0$, every measurable set A of positive measure contains a measurable set B of positive measure with

$$\limsup_{s \to \infty} \lambda(K_{\lambda,\mathcal{R}}(B, s, \delta + \epsilon)) > e^{-\epsilon} \eta \cdot \lambda(B).$$

We recall that Krieger's result from [8] can be reformulated as follows [11]:

THEOREM 2.3. Any ergodic equivalence relation of product type and of type III has Property A.

3. Property B. In this section we define a property of measurable flows that we call Property B, we show that it is an invariant for conjugacy of flows, and we characterize this property for a flow built under a function.

Let $\{F_t\}_{t\in\mathbb{R}}$ be a flow of automorphisms of (X, \mathfrak{B}, μ) . For $A \in \mathfrak{B}$ of positive measure and $s, \delta > 0$ we define

$$\Lambda_{F,\delta,s}(A) = \{ x \in A : \exists t \in (e^{s-\delta}, e^{s+\delta}) \cup (-e^{s+\delta}, -e^{s-\delta}), F_t(x) \in A \}.$$

DEFINITION 3.1. We say that $\{F_t\}_{t\in\mathbb{R}}$ has Property B if there exists a measurable set $A \subseteq X$ of positive measure such that for all $\delta > 0$,

(3.1)
$$\limsup_{s \to \infty} \mu(\Lambda_{F,\delta,s}(A)) = 0.$$

Since the proof of the lemma below uses standard arguments, we omit it.

LEMMA 3.2. Let $\{F_t\}_{t\in\mathbb{R}}$ be a flow on (X, \mathfrak{B}, μ) which has Property B.

- (i) If μ' is a σ -finite measure on (X, \mathfrak{B}) equivalent to μ , then the flow $\{F_t\}_{t\in\mathbb{R}}$ on (X, \mathfrak{B}, μ') has Property B.
- (ii) If $T : (X', \mathfrak{B}', \mu') \to (X, \mathfrak{B}, \mu)$ is an isomorphism and $\{F'_t\}_{t \in \mathbb{R}}$ is a flow on $(X', \mathfrak{B}', \mu')$ such that $T(F'_t(x)) = F_t(Tx)$ for all $t \in \mathbb{R}$ and μ' -almost all $x \in X'$, then F'_t has Property B.

The following proposition is a consequence of the above lemma.

PROPOSITION 3.3. Property B is an invariant for conjugacy of flows.

Let T be an automorphism of $(X_0, \mathfrak{B}_0, \mu_0)$ and $\xi : X_0 \to \mathbb{R}$ be a positive measurable function. Consider $Y = \{(x, t) \in X_0 \times \mathbb{R} : 0 \le t < \xi(x)\}$ and let ν be the measure on Y that is the restriction of the product measure $\mu_0 \times \lambda$, where λ is the usual Lebesgue measure on \mathbb{R} . Let $\{F_t\}_{t \in \mathbb{R}}$ be the flow built under the function ξ with base automorphism T; it is defined on (Y, ν) , and for t > 0 it is given by

$$F_t(x,s) = \begin{cases} (x,t+s) & \text{if } 0 \le t+s < \xi(x), \\ (T(x),t+s-\xi(x)) & \text{if } \xi(x) \le t+s < \xi(T(x)) + \xi(x), \\ \dots & \dots \end{cases}$$

For a measurable set $A \subseteq X_0$ we define

 $\Delta_{F,\delta,s}(A) = \{ x \in A : \exists t \in (e^{s-\delta}, e^{s+\delta}) \cup (-e^{s+\delta}, -e^{s-\delta}), F_t(x,0) \in A \times \{0\} \}.$ With this notation we have the following result:

PROPOSITION 3.4. The flow $\{F_t\}_{t\in\mathbb{R}}$ has Property B if and only if there exists a measurable set $A_0 \subseteq X_0$ of positive measure such that, for all $\delta > 0$,

(3.2)
$$\limsup_{s \to \infty} \mu_0(\Delta_{F,\delta,s}(A_0)) = 0.$$

Proof. For the "if" part notice that if A_0 satisfies the conditions of the proposition then $A = A_0 \times [0,1] \cap Y$ satisfies (3.1) for every $\delta > 0$. The "only if" is a consequence of the following: for every measurable set $A \subseteq Y$ of positive measure we can find a measurable set $A_0 \subseteq X_0$ of positive measure such that $\mu(A_x \cap I) > \alpha$ for some positive α and some bounded interval I (here $A_x = \{y \in \mathbb{R} : (x, y) \in A\}$).

4. Property B implies non-AT. In this section we show that if \mathcal{R} is an ergodic hyperfinite equivalence relation of type III₀ whose associated flow has Property B, then \mathcal{R} does not have Krieger's Property A and therefore is not of product type. A consequence is that a properly ergodic flow with Property B is not approximately transitive. Note that if \mathcal{R} is of type III_{λ}, $\lambda \neq 0$, then the associated flow of \mathcal{R} does not have Property B.

Consider an ergodic hyperfinite equivalence relation \mathcal{R} of type III₀ on (X, \mathfrak{B}, μ) and let δ be the Radon–Nikodym cocycle of μ with respect to \mathcal{R} . Replacing μ with an equivalent measure if necessary, we can assume that μ is a finite lacunary measure (see [6, Proposition 2.3 and the explanations leading to it]). Define

 $\xi(x) = \min\{\log \delta(x', x) : (x', x) \in \mathcal{R}, \log \delta(x', x) > 0\}$

and consider the equivalence relation \mathcal{S} on X given by

 $(x,y) \in \mathcal{S}$ if and only if $(x,y) \in \mathcal{R}$ and $\delta(x,y) = 1$.

Let $\mathfrak{B}(\mathcal{S})$ be the σ -algebra of sets in \mathfrak{B} that are \mathcal{S} -invariant. Let X_0 be the quotient space $X/\mathfrak{B}(\mathcal{S})$, that is, the space of ergodic components of \mathcal{S} . We denote the quotient map from X onto X_0 by π , where $\pi(x)$ is the element of X_0 containing x. On X_0 , consider the measure $\mu_0 = \mu \circ \pi^{-1}$. Note that $\xi(x)$ is

 $\mathfrak{B}(\mathcal{S})$ -measurable, and therefore ξ can be regarded as a function on X_0 . We have an ergodic automorphism T on X_0 defined by $T(\pi(x)) = \pi(x')$ where $(x, x') \in \mathcal{R}$ and $\log \delta(x', x) = \xi(\pi(x))$. Then the associated flow $\{F_t\}_{t \in \mathbb{R}}$ of \mathcal{R} can be realized as the flow built under the ceiling function ξ with base automorphism T (see for example [5] or [6]). As a direct consequence we obtain the following lemma.

LEMMA 4.1. Let
$$(x, x') \in \mathcal{R}$$
, $z = \pi(x)$ and $z' = \pi(x')$. Then
 $F_{\log \delta(x', x)}(z, 0) = (z', 0).$

THEOREM 4.2. With the above notation, if the associated flow $\{F_t\}_{t\in\mathbb{R}}$ of \mathcal{R} has Property B, then \mathcal{R} does not have Property A.

Proof. By Proposition 3.4, we can find a measurable set $A_0 \subseteq X_0$ of positive measure such that, for all $\delta > 0$,

$$\limsup_{s \to \infty} \mu_0(\Delta_{F,\delta,s}(A_0)) = 0.$$

Let $C = \pi^{-1}(A_0) \subseteq X$ and $\delta > 0$. Consider s > 0 and $x \in K_{\mu,\mathcal{R}}(C,s,\delta)$. Thus, $x \in C$ and there exists $y \in C$ such that $(x,y) \in \mathcal{R}$ and $\log \delta(y,x) \in (e^{s-\delta}, e^{s+\delta}) \cup (-e^{s+\delta}, -e^{s-\delta})$. From Lemma 4.1, we have

$$F_{\log \delta(y,x)}(\pi(x),0) = (\pi(y),0).$$

Hence, $\pi(x) \in \Delta_{F,\delta,s}(A_0)$ and so $x \in \pi^{-1}(\Delta_{F,\delta,s}(A_0))$. Therefore,

$$K_{\mu,\mathcal{R}}(C,s,\delta) \subseteq \pi^{-1}(\Delta_{F,\delta,s}(A_0)),$$

and consequently

$$\mu(K_{\mu,\mathcal{R}}(C,s,\delta)) \le \mu \circ \pi^{-1}(\Delta_{F,\delta,s}(A_0)) = \mu_0(\Delta_{F,s,\delta}(A_0)).$$

This clearly implies that

$$\limsup_{s \to \infty} \mu(K_{\mu,\mathcal{R}}(C,s,\delta)) = 0$$

and so, by Proposition 2.2, \mathcal{R} does not have Property A.

The following is an immediate consequence of the above theorem.

Corollary 4.3.

- (i) An equivalence relation R whose associated flow has Property B is not of product type.
- (ii) A properly ergodic flow with Property B is not AT.

REMARK 4.4. The converse of the second statement of Corollary 4.3 is not true: there exist ergodic flows which are not AT and do not have Property B. To give an example, consider the type III₀ factor N whose flow of weights is AT(2) but not AT, constructed by Giordano and Handelman in [4, Section VI]. Since, up to isomorphism, N is the von Neumann algebra associated to an ergodic hyperfinite equivalence relation \mathcal{R} , the flow of weights of N is, up to conjugacy, the associated flow of \mathcal{R} . According to [11], the equivalence relation \mathcal{R} has Property A, and so Theorem 4.2 implies that the associated flow of \mathcal{R} does not have Property B.

The following result gives a sufficient condition for a non-singular automorphism to be non-AT.

COROLLARY 4.5. Let T be a non-singular automorphism of (X, \mathfrak{B}, μ) . Assume that there exists $A \subset X$ of positive measure such that

 $\limsup_{s \to \infty} \mu(\{x \in A : \exists n \in (e^{s-\delta}, e^{s+\delta}) \cup (-e^{s+\delta}, -e^{s-\delta}), T^n x \in A\}) = 0.$

Then T is not AT.

Proof. Proposition 3.4 implies that $\{F_t\}_{t\in\mathbb{R}}$, the flow built under the constant function f = 1 with base automorphism T, has Property B, and Corollary 4.3 implies that $\{F_t\}_{t\in\mathbb{R}}$ is not AT. From [1, Lemma 2.5], we conclude that T is not AT.

5. An ergodic flow with Property B. In this section we construct a properly ergodic flow which has Property B and therefore is not AT. The flow that we construct is built under a function with a product odometer (conjugate to the dyadic odometer) as base automorphism.

Let $(z_n)_{n\geq 1}$ be the sequence of integers given by $z_n = 2^n - 1$ for $n \geq 1$. Consider the product space $X = \prod_{n\geq 1} \{0, 1, \ldots, z_n\}$ endowed with the usual product σ -algebra and the product measure $\mu = \bigotimes_{n\geq 1} \mu_n$, where each μ_n is the probability measure on $\{0, 1, \ldots, z_n\}$ given by $\mu_n(i) = 1/2^n$ for $i = 0, 1, \ldots, z_n$ and $n \geq 1$. Let $T : X \to X$ be the product odometer defined on X. We recall that T is the non-singular automorphism defined for almost every $x \in X$ by

(5.1)
$$(Tx)_n = \begin{cases} 0 & \text{if } n < N(x), \\ x_n + 1 & \text{if } n = N(x), \\ x_n & \text{if } n > N(x), \end{cases}$$

where $N(x) = \min\{n \ge 1 : x_n < z_n\}$. Notice that T is measure conjugate to the dyadic odometer.

Let $(K_n)_{n\geq 4}$ be the sequence given by

$$K_n = 1! 2! \cdots n!$$
 for $n \ge 4$.

and let $f: X \to \mathbb{R}$ be the function defined for almost every $x \in X$ by

(5.2)
$$f(x) = K_{2^{N+1}+x_{N+1}}$$

where $x = (x_n)_{n \ge 1}$ and N = N(x).

For $n \ge 1$, let $Z_n = \{x \in X : x_i = z_i \text{ for } i = 1, \dots, n\}$. Let $C_i^{n+1} = \{x \in Z_{n-1} : x_n \neq z_n, x_{n+1} = i\}$ for $i = 0, 1, \dots, 2^{n+1} - 1$. Then

$$\int_{X} f \, d\mu \ge \sum_{i=0}^{z_{n+1}} \int_{C_{i}^{n+1}} f \, d\mu > \sum_{i=0}^{2^{n+1}-1} \frac{(2^{n}-1)K_{2^{n+1}+i}}{2 \cdot 2^{2} \cdots 2^{n} \cdot 2^{n+1}}$$
$$> \frac{1}{2 \cdot 2^{2} \cdots 2^{n} \cdot 2^{n+1}} (2^{n}-1)2^{n+1}K_{2^{n+1}} > 2^{n+1}$$

Therefore

$$\int_X f \, d\mu = \infty$$

PROPOSITION 5.1. Let $n \ge 4$ be a positive integer, $m = \lfloor \log_2 n \rfloor$ and $l = n - 2^m$. For almost every $x \in X$, we have:

(i) If there exists an integer $k \ge 1$ such that

(5.3)
$$K_n \le \sum_{i=0}^{k-1} f(T^i x) < K_{n+1},$$

then $x_m = l$.

(ii) If there exists an integer $k \ge 1$ such that

(5.4)
$$K_n \le \sum_{i=1}^{\kappa} f(T^{-i}x) < K_{n+1},$$

then $x_m = l.$

Proof. (i) Let $x \in X$ be such that $K_n \leq \sum_{i=0}^{k-1} f(T^i x) < K_{n+1}$ for some integer $k \geq 1$. Let

$$p = \max\{N(T^i x) : 0 \le i \le k - 1\}.$$

Hence, there exists $0 \leq j < k$ such that $N(T^j x) = p$. By (5.2) we have $f(T^j x) = K_{2^{p+1}+x_{p+1}}$. Notice that $(T^i x)_q = x_q$ for q > p and $1 < i \leq k$. Indeed, if there exist $i \in \{1, \ldots, k\}$ and q > p such that $T(T^{i-1}x)_q = (T^i x)_q \neq x_q$, then (5.1) implies that $N(T^{i-1}x) > p$, which is a contradiction. We also have $2 \cdot 2^2 \cdots 2^p > k$. If we assume that $k \geq 2 \cdot 2^2 \cdots 2^p$ then by (5.1) there exists $j \leq k-1$ such that $(T^j x)_i = z_i$ for all $i = 1, \ldots, p$, which implies that $N(T^j x) > p$. Hence,

$$K_{2^{p+1}+x_{p+1}} \le \sum_{i=0}^{k-1} f(T^i x) < 2 \cdot 2^2 \cdots 2^p \cdot K_{2^{p+1}+x_{p+1}} < K_{2^{p+1}+x_{p+1}+1}.$$

We claim that $n = 2^{p+1} + x_{p+1}$. Indeed, if $n < 2^{p+1} + x_{n+1}$ we have $K_{n+1} \le K_{2^{p+1}+x_{n+1}} \le \sum_{i=0}^{k-1} f(T^i x)$, which contradicts (5.3). If $n > 2^{p+1} + x_{p+1}$, then $K_n \ge K_{2^{p+1}+x_{p+1}+1} > \sum_{i=0}^{k-1} f(T^i x)$, which again contradicts (5.3). Therefore $n = 2^{p+1} + x_{p+1}$, and so m = p + 1 and $x_m = l$.

256

(ii) Let $x \in X$ be such that $K_n \leq \sum_{i=1}^k f(T^{-i}x) < K_{n+1}$ for some positive integer k. Let

$$p = \max\{N(T^{-i}x) : 1 \le i \le k\}$$

and note that $(T^{-i}x)_q = x_q$ for q > p and $1 \le i \le k$. The conclusion follows as in case (i); we leave the details to the reader.

Let $\{F_t\}_{t\in\mathbb{R}}$ be the flow built under the function f with base automorphism T. Since $\int_X f d\mu = \infty$ and T is measure perserving it follows that the flow $\{F_t\}_{t\in\mathbb{R}}$ is infinite measure preserving. Notice also that it is properly ergodic. The following lemma is immediate from the definition of $\{F_t\}_{t\in\mathbb{R}}$.

Lemma 5.2.

- (i) If t > 0 then F_t(x, 0) ∈ X × {0} if and only if there exists an integer k ≥ 1 such that t = ∑_{i=0}^{k-1} f(Tⁱx).
 (ii) If t < 0 then F_t(x, 0) ∈ X × {0} if and only if there exists an integer
- (ii) If t < 0 then $F_t(x, 0) \in X \times \{0\}$ if and only if there exists an integer $k \ge 1$ such that $t = -\sum_{i=1}^k f(T^{-i}x)$.

PROPOSITION 5.3. For any $\delta > 0$,

(5.5)
$$\lim_{s \to \infty} \mu(\Delta_{F,\delta,s}(X)) = 0.$$

Proof. By Lemma 5.2 we have

(5.6)
$$\mu(\Delta_{F,\delta,s}) = \mu\Big(\Big\{x \in X : \exists k \in \mathbb{N}, e^{s-\delta} < \sum_{i=0}^{k-1} f(T^i x) < e^{s+\delta}\Big\}$$
$$\cup \Big\{x \in X : \exists k \in \mathbb{N}, e^{s-\delta} < \sum_{i=1}^k f(T^{-i} x) < e^{s+\delta}\Big\}\Big).$$

Proposition 5.1 implies that

(5.7)
$$\mu\Big(\Big\{x \in X : \exists k \in \mathbb{N}, \, K_n \le \sum_{i=0}^{k-1} f(T^i x) < K_{n+1}\Big\}\Big) \le \frac{1}{2^{[\log_2 n]}}$$

(5.8)
$$\mu\Big(\Big\{x \in X : \exists k \in \mathbb{N}, \, K_n \le \sum_{i=1}^k f(T^{-i}x) < K_{n+1}\Big\}\Big) \le \frac{1}{2^{[\log_2 n]}}.$$

Notice that for s sufficiently large, $(e^{s-\delta}, e^{s+\delta})$ intersects at most two consecutive intervals $[K_n, K_{n+1})$. This together with (5.6)–(5.8) implies (5.5).

From Propositions 3.4 and 5.3 we can deduce:

COROLLARY 5.4. The flow $\{F_t\}_{t \in \mathbb{R}}$ constructed above has Property B.

Comment. As already mentioned, the flow with Property B constructed in this paper is infinite measure preserving. It would be of interest to construct a finite measure preserving flow that would have Property B. Acknowledgments. This work was supported by a grant of the Romanian Ministry of Education, CNCS - UEFISCDI, project number PN-II-RU-PD-2012-3-0533. The authors thank the referee for helpful comments and suggestions.

References

- [1] A. Connes and E. J. Woods, *Approximately transitive flows and ITPFI factors*, Ergodic Theory Dynam. Systems 5 (1985), 203–236.
- [2] A. H. Dooley and T. Hamachi, Markov odometer actions not of product type, Ergodic Theory Dynam. Systems 23 (2003), 813–829.
- [3] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, II, Trans. Amer. Math. Soc. 234 (1977), 289–359.
- [4] T. Giordano and D. Handelman, Matrix-valued random walks and variations on property AT, Munster J. Math. 1 (2008), 15–72.
- [5] T. Hamachi and M. Osikawa, Computation of the associated flows of ITPFI₂ factors of type III₀, in: Geometric Methods in Operator Algebras, Pitman Res. Notes Math. 123, Longman, New York, 1986, 196–210.
- Y. Katznelson and B. Weiss, The classification of non-singular actions, revisited, Ergodic Theory Dynam. Systems 11 (1991), 333–348.
- [7] W. Krieger, On the infinite product construction of non-singular automorphisms of a measure space, Invent. Math. 15 (1972), 144–163.
- W. Krieger, Erratum to: "On the infinite product construction of non-singular automorphisms of a measure space", Invent. Math. 26 (1974), 323–328.
- W. Krieger, On ergodic flows and isomorphisms of factors, Math. Ann. 223 (1976), 19-70.
- [10] R.-B. Munteanu, On constructing ergodic hyperfinite equivalence relations of nonproduct type, Canad. Math. Bull. 6 (2013), 136–147.
- [11] R.-B. Munteanu, A non-product type non-singular automorphism which satisfies Krieger's property A, Israel J. Math. 190 (2012), 307–324.
- [12] K. Schmidt, Algebraic Ideas in Ergodic Theory, CBMS Reg. Conf. Ser. Math. 76, Amer. Math. Soc, 1990.

Maria Joita Radu-B. Munteanu Department of Mathematics Department of Mathematics Faculty of Applied Sciences University of Bucharest University Politehnica of Bucharest 14 Academiei St. 313 Splaiul Independentei 010014 București, Romania 060042 București, Romania E-mail: radu-bogdan.munteanu@g.unibuc.ro and Department of Mathematics University of Bucharest 14 Academiei St. 010014 București, Romania

E-mail: mjoita@fmi.unibuc.ro

Received July 16, 2014 Revised version December 22, 2014

258

(8020)